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ABSTRACT

MLIR has become popular since it was open sourced in 2019. A

sub-project of LLVM, the flexibility provided by MLIR to represent

Intermediate Representations (IR) as dialects at different abstrac-

tion levels, to mix these, and to leverage transformations between

dialects provides opportunities for automated program optimisa-

tion and parallelisation. In addition to general purpose compilers

built upon MLIR, domain specific abstractions have also been de-

veloped.

In this paper we explore complimenting the Flang MLIR gen-

eral purpose compiler by combiningwith the domain specificOpen

Earth Compiler’sMLIR stencil dialect. Developing transformations

to discover and extracts stencils from Fortran, this specialisation

delivers between a 2- and 10-times performance improvement for

our benchmarks on a Cray supercomputer compared to using Flang

alone. Furthermore, by leveraging existing MLIR transformations

we develop an auto-parallelisation approach targetingmulti-threaded

and distributed memory parallelism, and optimised execution on

GPUs, without any modifications to the serial Fortran source code.
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1 INTRODUCTION

Since it was first released open source by Google in 2019 and then

merged into the LLVM codebase as a sub-project thereafter, MLIR

[14] has gained significant popularity. Enabling hierarchies of In-

termediate Representations (IR) to be expressed and mixed in a

structured manner, and for lowerings between these abstraction

levels to be provided, numerous tools and technologies have been

developed that leverage MLIR in their flow.

One such class of tools that can strongly benefit from MLIR

is that of Domain Specific Languages (DSLs), such as [13], [17],

[4], which provide domain specific abstractions that enable pro-

grammes to express their problem in a high level, abstract, fash-

ion. It is possible, using MLIR, to develop IR dialects that closely

match these domain specific abstractions, and for these dialects to

then be lowered to more general purpose abstractions which them-

selves benefit from existing lowerings to LLVM-IR and ultimately

the LLVM backends. Given the rich semantic information that can

often be found in domain specific abstractions about a program-

mer’s intentions, it is often possible for the compiler framework

to drive key decisions around performance and parallelism using

this high level information far more effectively than, for example,

working with the lower-level LLVM-IR directly.

General purpose compilers, such as Flang [10] for Fortran, Polygeist

[16] for C++, and Pylir for Python [19], have been developedwhich

sit atop the MLIR ecosystem. Whilst these leverage the central

ideas of MLIR, these general purpose language compilers do not

tend to fully exploit the domain specific abstractions that are found

in some MLIR dialects.

In this paper we explore the potential of combing MLIR-based

general purpose compilers with domain specificMLIR abstractions

by enriching the Flang compiler with the MLIR stencil dialect from

the Open Earth Compiler [12]. By automatically identifying and

translating appropriate Fortran constructs into the stencil dialect

during compilation, we aim to explore whether improved perfor-

mance and new capabilities can be unlocked by leveraging this do-

main specific specialisation built atop MLIR. This paper is struc-

tured as follows; Section 2 describes the background to this work,

exploring the central building blocks such as MLIR, the stencil di-

alect, Flang and xDSL that we use in this work. Our stencil-based

Flang compilation flow is then described in Section 3, where we

highlight our approach to Fortran code stencil identification, ex-

plore how existing MLIR passes can be leveraged by our approach

to target a variety of architectures and work around some of the

challenges present in Flang. Performance of our approach is com-

pared against that of using Flang alone and the Cray compiler (for

CPUs) and Nvidia HPC SDK (for GPUs) in Section 4 across sin-

gle CPU core, multi-threaded and distributed memory parallelism,

and GPUs. Section 5 then surveys how our contribution relates to

existing work, before Section 6 draws conclusions and discusses

further work.

The contributions of this paper are as follows:

• We demonstrate that, by exploiting stencil-based domain

specific information one can deliver improved performance

compared to using general purpose Flang alone for stencil

codes.

• Illustrate that domain specific MLIR abstractions and the

wider ecosystem can enable the targeting of multiple HPC

architectures and scales of parallelism in an automated fash-

ion without requiring source code modifications.

http://arxiv.org/abs/2310.01882v1
https://orcid.org/0000-0003-2925-7275
https://orcid.org/0000-0003-1626-4871
https://orcid.org/0009-0001-9389-8512
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• Providing a wider study around the benefits that the com-

posability of MLIR dialects can provide to compliment gen-

eral purpose compilers for high performance workloads.

2 BACKGROUND

At its core LLVM provides numerous language frontends and ar-

chitecture specific backends which are connected via LLVM-IR. An

LLVM frontend, such as Clang, generating LLVM-IR can therefore

target any backend, and backends for a wide range of architectures

including CPUs, GPUs, and FPGAs have been developed. However,

LLVM-IR itself is low level, requiring significant work by the fron-

tends in lowering to this level and resulting in potential redundan-

cies between them.

MLIR aims to address this issue by providing a series of IR di-

alects and transformations between these, so that frontends can

instead translate to more suitable, higher level intermediate rep-

resentations. MLIR is also a framework where developers can add

their own dialects and transformations, and dialects can be mixed

and manipulated at different levels of abstraction, enabling pro-

gressive lowering of the abstraction level to LLVM-IR. Much of this

lowering is undertaken by existing dialects and transformations,

thus significantly reducing the overall software effort in develop-

ing compilers by promoting reuse between them.

MLIR has becomepopular since it became a sub-project of LLVM,

and has the potential to revolutionise compiler development. Pro-

viding many dialects as standard, such as arith for arithmetic op-

erations, scf for structured control flow which provides serial and

parallel loops, memref for memory management and data access,

openmp for OpenMP parallelism, gpu for GPU execution, and vec-

tor for vectorisation. Transformations exist which will manipulate

dialects and lower between them. For instance, there are lowerings

from the dialects listed above to the llvmdialect which corresponds

to LLVM-IR. Once lowered, it is possible to generate LLVM-IR from

the llvm dialect and for this to be provided to the LLVM backends.

2.1 xDSL

Arguably one of the challenges faced by MLIR is the steep learn-

ing curve associated with the technology. Requiring the developer

to leverage C++, understand LLVM concepts, and work with the

Tablegen format in order to describe dialects raises the overhead

involved in development.

By contrast, xDSL [22] is a Python based compiler design toolkit

which is 1-1 compatible with MLIR. Providing not only the major-

ity of MLIR dialects, but also numerous additional experimental

dialects too, these are expressed in IRDL [8] format within Python

classes. xDSL enables a rapid exploration and prototyping of MLIR

dialects and concepts, with a view to then committing the mature

dialects and transformations into the main MLIR codebase once

the concepts are proven. As xDSL is 1-1 compatible with MLIR,

one is able to arbitrarily go between the two technologies during

compilation.

In addition to providing many of the standard MLIR dialects 1,

xDSL also provides additional dialects such as Distributed Mem-

ory Parallelism (DMP) which, in a technology agnostic manner, ex-

presses parallelism across nodes. DMP can then be lowered to the

1Providing a complete set of MLIR dialects is planned by the xDSL developers

MPI xDSL dialect, which specialises DMP to leverage MPI which

is then lowered to interaction with the MPI library via the func

dialect.

2.2 Stencil dialect

1 do i = 2, 255

2 do j = 2, 255

3 data(j,i) = (data(j,i−1)+data(j,i+1)+data(j−1,i)+data(j+1,

i)) ∗ 0.25

4 enddo

5 enddo

Listing 1 Sketch of Fortran stencil code example which averages

all neighbouring values across a grid

A dialect provided by xDSL is the stencil dialect which was ini-

tially developed by ETHZurich as part of the Open Earth Compiler

[12]. A stencil is a geometric arrangement of a group of neighbour-

ing grid cells that, by using a numerical approximation routine, re-

late to a specific grid cell of interest. The stencil dialect expresses

stencil calculations such as that illustrated in Listing 1 which is cal-

culating an average of values across neighbouring grid cells in two

dimensions. Driven by nested loops, two in Listing 1, the loop vari-

ables are used as array indices typically with some offset applied

such as data(j,i-1) which accesses the grid cell at the same location

in the first dimension and one step before in the second dimension

(arrays index precedence is from left to right in Fortran).

Stencil-based calculations are extremely common in computa-

tional simulation codes, for instance to solve systems of PDEs, [3]

[21] [6], and Listing 2 sketches the corresponding IR in Static Sin-

gle Assignment (SSA) form using the stencil dialect for the calcu-

lation of Listing 1. It can be seen that the nested loops at lines 1

and 2 of Listing 1 have been transformed into the stencil.apply op-

erator at line 1 of Listing 2 which accepts a stencil.temp field as an

input argument. There are additional stencil operators to convert

from a memref to this stencil.temp type, but these have been omit-

ted for brevity. The stencil.access operations at lines 4 to 7 of List-

ing 2 correspond to accesses on the data array at line 3 of Listing

1 and each of these operations loads a specific neighbouring grid

cell. Lines 8 to 11 then use the standard arith dialect to undertake

the calculation which is returned from the stencil apply operator

block at line 12. It is important to highlight that this stencil.apply

operator is running across the entire grid, whose lower and upper

bounds are determined by the types of the input and output fields,

effectively executing lines 3 to 12 for every grid cell.

It should be stressed that the code provided in this section is just

an example and there is no existing lowering from Fortran to the

stencil dialect. Indeed it is the objective of thework reported in this

paper to be able to generate SSA such as that of Listing 2 from For-

tran code. Our hypothesis is that, by transforming and simplifying

applicable loops and their calculations into the stencil dialect, we

unlock the potential for richer and more complex optimisations by

the compiler framework. Driven by existing transformations, some

of which bespoke for the stencil dialect and others standard MLIR

passes, it is then possible to target different architectures such as

2



1 %result = "stencil.apply"(%18) ({

2 ^0(%data : !stencil.temp<[−1,255]x[−1,255]xf64>):

3 %c0 = arith.constant 2.500000e−01 : f64

4 %d0 = "stencil.access"(%data) {"offset" = #stencil.index<0, −1>} : (!stencil.temp<[−1,255]x[−1,255]xf64>) −> f64

5 %d1 = "stencil.access"(%data) {"offset" = #stencil.index<0, 1>} : (!stencil.temp<[−1,255]x[−1,255]xf64>) −> f64

6 %d2 = "stencil.access"(%data) {"offset" = #stencil.index<−1, 0>} : (!stencil.temp<[−1,255]x[−1,255]xf64>) −> f64

7 %d3 = "stencil.access"(%data) {"offset" = #stencil.index<1, 0>} : (!stencil.temp<[−1,255]x[−1,255]xf64>) −> f64

8 %t0 = arith.addf %d3, %d2 : f64

9 %t1 = arith.addf %t0, %d1 : f64

10 %t2 = arith.addf %t1, %d0 : f64

11 %t3 = arith.mulf %t2, %c0 : f64

12 "stencil.return"(%t3) : (f64) −> ()

13 }) : (!stencil.temp<[−1,255]x[−1,255]xf64>) −> !stencil.temp<[0,254]x[0,254]xf64>

Listing 2 Sketch of corresponding SSA-based IR leveraging the stencil dialect to represent the stencil calculation of Listing 1

CPUs and GPUs, as well as implicit shared memory and distributed

memory parallelism in an efficient manner.

2.3 Flang

Flang is the LLVM Fortran frontend, and whilst there was a previ-

ous Flang compiler for several years, known as classic Flang, this

was never an official LLVM project and has been recently replaced

with a ground-up rewrite built on-top of MLIR. This new Flang

compiler is an official component of LLVM, and the objective is

to support the full range of standard Fortran, including future ver-

sions of the language. However, at the time of writing support for

Fortran at or beyond 2003 is still work in progress and yet to reach

full maturity.

After lexing and parsing of Fortran code, this is then lowered

to the Fortran IR (FIR) [9] dialect 2 which provides IR level expres-

sion of Fortran constructs and concepts. However, the developers

of Flang have adopted a surprising design decision where FIR is

then lowered directly to LLVM-IR by Flang, rather than lowering

first to more general MLIR dialects such as scf and then leveraging

existing MLIR passes to optimise these and ultimately lower to the

llvm dialect.

Furthermore, only a small subset of the standard MLIR dialects

are registered in Flang, and conversely mlir-opt is unaware of the

FIR dialect. Consequently interoperability between FIR and many

of the standard dialects is limited, which was a challenge this work

and is explored further in Section 3.

3 COMBINING FLANG WITH STENCIL
DIALECT ABSTRACTIONS

Figure 1 illustrates the overall architecture of our approach, where

Fortran source code is processed by Flang and, using the -fc1 -emit-

mlir flags, we output the corresponding SSA-based IR in the FIR

MLIR dialect.

The SSA-based IR is loaded by xDSL which provides the FIR di-

alect, and our discover stencils transformation is then run on this

FIR IR to identify any stencil calculations that are being under-

taken. Listing 3 sketches the algorithm used by this pass, where

2There is an HL-FIR dialect in development which provides higher level FIR opera-

tions although at the time of writing the default compilation flow is still via FIR

all the loops in the code are first gathered and then all FIR store

operations in the module are identified and iterated over. It is first

determined, for a store operation, whether it is indexed by loops in

the program (line 5 of Listing 3) and this involves walking the IR to

find the corresponding fir.coordinate_of operation which provides

the indices into the array. The expressions which contribute to

each index of fir.coordinate_of operation are thenwalked to extract

the calculations involved, for instance the array access data(i,j) of

the example in Listing 1 will identify that the first dimension is in-

dexed by variable i and the second dimension by j. These extracted

variable indices are then compared against the gathered loops to

determine whether the store is being driven by nested loops and if

so is_indexed_by_loops returns true.

The SSA-based IR is then walked to locate array read operations

which are on the right hand side of the calculation. In addition

to capturing the array variable being accessed, array indices are

walked in a manner similar to the store operation however in ad-

dition to capturing the index variables, this also identifies offsets

where, for example, data(j,i-1) would record j indexing the first di-

mension and i minus 1 as the second dimension. Using this infor-

mation, the list of arrays that are accessed as part of this calculation

are determined at line 7 and then, for each of these, the correspond-

ing stencil loading operations are then generated at line 10, with

the operations and SSA value returned, the later then used as input

to the stencil.apply operation at line 15.

The loops which drive this stencil calculation are then identi-

fied at line 13 of Listing 3, and from these the lower and upper

bounds in each dimension. The stencil.apply operation is gener-

ated at line 15 and the generate_stencil_apply function first creates

a stencil.apply based upon the lower and upper bounds and with

each array load SSA result as an input, before thenwalking the SSA

IR to identify the mathematical expressions and data dependencies

that contribute to the stencil calculation. These mathematical ex-

pressions are removed from the original FIR code and placed into

the stencil, with the data dependencies being replaced by the sten-

cil.apply operationwhich sets the field offset based upon the offsets

already gathered in rhs_read_ops, for instance 0 for dimension zero

and minus 1 for dimension one in the example above.

Operations to store the result of applying the stencil back to the

memref are generated at line 16 of Listing 3, before the applicable

3



Figure 1: Architectural pipeline diagram of our approach, identifying and extracting stencils from Fortran code, by operating

on the Flang generated FIR, and then leveraging appropriate transformations. Boxes represent transformations and annotated

arrows the dialects. Blue boxes are activities in Flang, Green boxes are transformation passes executing in xDSL, and red boxes

are passes running inside MLIR.

1 identified_stencils=[]

2 loops = gather_program_loops(module)

3

4 for store_op in module:

5 if is_indexed_by_loops(store_op, loops):

6 rhs_read_ops=get_array_read_data_ops(store_op)

7 unique_array_names=get_unique_array_names(rhs_read_ops)

8 load_ops=[], load_ssa_results=[]

9 for name in unique_array_names:

10 specific_ops, specific_ssa_results=generate_stencil_field_load(name)

11 load_ops=load_ops.append(specific_ops)

12 load_ssa_results=load_ssa_results.append(specific_ssa_results)

13 applicable_loops=get_applicable_loops(store_op, loops)

14 lb, ub=get_loop_bounds_per_dim(applicable_loops)

15 stencil_apply_ops=generate_stencil_apply(load_ssa_results, lb, ub, store_op)

16 store_ops=generate_stencil_store(store_op)

17 identified_stencils.append((applicable_loops, load_ops+stencil_apply_ops+store_ops))

18

19 for stencil in identified_stencils:

20 applicable_loops=stencil[0]

21 ops=stencil[1]

22 top_level_loop=find_top_level_loop(applicable_loops)

23 insert_ops_before(top_level_loop, ops)

24

25 for loop in loops:

26 if loop is empty:

27 remove_loop(loop)

28

29 merge_stencils_if_possible(module)

Listing 3 Sketch of stencil discovery algorithm used in the first transformation of our pipeline of Figure 1

loops that this stencil involves along with the generated instruc-

tions are stored in the identified_stencils list. The next step is then

to add these stencils into the IR, which are added directly preced-

ing the outer most loop involved in the stencil calculation. This is

handled between lines 19 and 23, where the top level loop for the

stencil is identified at line 22 and the stencil operations added into

the list of operations directly preceding this at line 23.

The bodies of all FIR loops are then walked at lines 25 to 27

and those loops which are now empty, because their operations

have been transformed into the stencil dialect and extracted, are

removed. Lastly, a pass is undertaken across the SSA-based IR to
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merge any stencils that are located next to each other and share

the same lower and upper bounds.

It should be noted that Listing 3 is a sketch of the algorithm,

and there are some specific complexities omitted for brevity. For

instance, differences in how arrays are represented in FIR by Flang

if they are stack or heap allocatedmean that there are different pos-

sible routes when walking backwards from fir.store and fir.load op-

erations. Other features, such as accessing loop indexes, constants

and non-stencil based variables within a stencil calculation are also

supported and translated to the corresponding operations in the

stencil dialect.

Once stencils have been identified, the SSA-based IR is now in

the form of the FIR and stencil dialects being mixed together. How-

ever, this is problematic because, as explained in Section 2.3, Flang

is unaware of many of the standardMLIR dialects, and likewise the

MLIR driver tool,mlir-opt, is unaware of FIR. Consequently the FIR

portions of the IR must be separated from that of the stencil dialect.

This is performed by the extract stencil pass which lifts the stencil

components out as a function into a separate MLIR module, which

will then be called from FIR by a function call. As these are then sep-

arate MLIR modules they can then be compiled by different flows,

i.e. one using Flang and the other mlir-opt, and linked together at

runtime. Due to this requirement of the stencil dialect IR not con-

taining any FIR dialect IR, during the phase in Listing 3 where we

build up the stencil.apply operator by extracting the mathematical

expressions from FIR into the stencil, we need to convert FIR op-

erations into standard dialects. This is simplified significantly by

the fact that Flang leverages the standard arith and math dialects

for arithmetic and mathematical operations, which are registered

with mlir-opt and-so can be handled. However, FIR data conver-

sions and miscellaneous operations, such as fir.no_reassoc which

is used to prevent operator reassociation, do need to be converted

into their standard MLIR dialect counterparts.

A further challenge is in providing data interoperability between

FIR, which contains its own bespoke data representation opera-

tions and types, and the stencil dialect which uses the standard

memref dialect. The only way to support this is to convert the FIR

data to an FIR llvm_ptr type, and pass this to the stencil function

which then builds the memref from this. In-fact FIR is entirely iso-

lated from a typing perspective, as one can only reduce to its own,

FIR dialect, representation of an llvm_ptr, and not the llvm_ptr in

the llvm dialect. Furthermore, it is not possible in the FIR-based

IR module to leverage an unrealized conversion cast, which would

enable one to go from an FIR llvm_ptr to an LLVM llvm_ptr from

a typing perspective, because the builtin dialect is not registered

with Flang. However, llvm_ptr in the FIR and llvm dialects is se-

mantically identical and passing an argument of type FIR llvm_ptr

to a function that accepts LLVM llvm_ptr is allowed when linking

the resulting object files.

As per Figure 1, the IRmodule containing the stencil dialect por-

tion is then transformed either for CPU or GPU using the xDSL

stencil lowering. In fact these lowerings are the same source code,

but driven by a command line option to tune for the architecture in

question, for instance the CPU lowering converts the top level loop

into scf.parallel and nested inner loops into scf.for, whereas the

GPU lowering attempts to coalesce the loops into a single scf.parallel

loop. For GPU, shared memory parallelism and single core execu-

tion the lowered IR is then transformed by existing MLIR scf trans-

formation passes, for instance convert-scf-to-openmp to lower to

the OpenMP dialect, convert-parallel-loops-to-gpu for GPU execu-

tion, and scf-for-loop-specialization for vectorisation. Alternatively,

if the programmer wishes to leverage distributed memory paral-

lelism then they can apply the lower to DMP transformation which

will transform to the DMP dialect in xDSL, which can then be low-

ered to MPI and the corresponding function calls via two subse-

quent passes.

Irrespective of the specific passes and targets, this IR is then

transformed through a series of existing MLIRmiscellaneous passes,

such as lowering dialects such as math and memref to LLVM, rec-

onciling unrealised conversion casts, and canonicalization. TheMLIR

pass pipeline for GPU target is reported in Listing 4 and there are

several aspects to highlight. Firstly, for GPUs, we found that this

was very sensitive and slight modifications to the pipeline would

silently fail to generate GPU target binary code and run only on

the CPU. As the GPU binary is embedded in the single generated

MLIR CPU file, this is very easy to miss. Secondly, there is a sen-

sitivity to the loop tiling factors on the GPU, provided to the scf-

parallel-loop-tiling pass as arguments, as these can make both an

impact on performance and furthermore some values can result in

runtime failures on the GPU. We have had to find these optimal

values empirically, although the values illustrated in Listing 4 per-

form well across a range of kernels, and an improved MLIR pass

that avoids the need for these specific numbers would be beneficial.

Thirdly, several transformations by default lower to opaque point-

ers, whereas in our flow we favour including the type and size.

Consequently, we provide the option to use transparent pointers

instead.

mlir−opt −−pass−pipeline="builtin.module(test−math−

algebraic−simplification,scf−parallel−loop−tiling{

parallel−loop−tile−sizes=32,32,1},canonicalize,test−

expand−math,func.func(gpu−map−parallel−loops),

convert−parallel−loops−to−gpu, fold−memref−alias−

ops,finalize−memref−to−llvm{index−bitwidth=64 use−

opaque−pointers=false},lower−affine, gpu−kernel−

outlining,func.func(gpu−async−region),canonicalize,

convert−arith−to−llvm{index−bitwidth=64},finalize−

memref−to−llvm{index−bitwidth=64 use−opaque−

pointers=false},convert−scf−to−cf,convert−cf−to−llvm{

index−bitwidth=64},finalize−memref−to−llvm{use−

opaque−pointers=false}, gpu.module(convert−gpu−to−

nvvm,reconcile−unrealized−casts,canonicalize,gpu−to−

cubin),fold−memref−alias−ops,lower−affine,gpu−to−

llvm{use−opaque−pointers=false},finalize−memref−to−

llvm{index−bitwidth=64 use−opaque−pointers=false},

reconcile−unrealized−casts)" stencil.mlir

Listing 4Command issued to lower transformed stencil IR to GPU

via mlir-opt

Once the stencil has been lowered to the LLVM MLIR dialect,

this is then transformed into LLVM-IR, compiled into an object file
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by Clang. The isolated FIR IR module is compiled by Flang into an

object file and these are then linked together into an executable. In

the manner described in this section we have intercepted the FIR-

based IR representation of a Fortran code, transformed applicable

parts into stencils and then applied specialist optimisations and

transformations on these.

4 RESULTS AND EVALUATION

4.1 Experimental environment

In this section we use two stencil-based codes as benchmarks, the

first solving LaPlace’s equation for diffusion in three dimensions

via a Gauss Seidel solver. An iterative algorithm containing an

outer loop operating across the entire domain and generating a

progressively improving sequence approximate solutions, for each

grid cell at each iteration this benchmark works with a 7-point

stencil, the orthogonal neighbours in three dimensions, and aver-

ages values across the six neighbouring cells. Consequently, there

are six floating point operations required per grid cell.

The second benchmark is the Piacsek and Williams advection

scheme [18], commonly used byMetOffice codes such as theMONC

high-resolution atmospheric model [3], for calculating the move-

ment of quantities through the atmosphere due to kinetic effects

(i.e. wind). This is more complex than the first benchmark, contain-

ing three separate stencil computations across three fields which

are then fused by our stencil transformation into a single stencil

region. There are 63 floating point operations required per grid

cell.

CPU based benchmarks conducted in this paper have been run

on ARCHER2, a Cray-EX which is the UK national supercomputer.

Each node contains two 64-core AMD EPYC 7742 (Rome, Zen 2)

CPUs with 256 GB of memory. There are 16 cores per NUMA re-

gion, providing a total of 8 NUMA regions per node. Nodes are

interconnected via HPE Cray Slingshot, delivering two 100 Gbps

bi-directional links per node.

GPU based benchmarks are run on Cirrus, an HPE/SGI 8600

HPC system, where the GPU nodes provide Nvidia Tesla V100-

SXM2-16GB (Volta) GPUs and two 20-core Intel Xeon Gold 6248

(Skylake) CPUs with 384 GB of memory. Nodes are interconnected

via an FDR single infiniband (IB) fabric.

All experiments are averaged over five runs, and we use ver-

sion 15 of the Cray Compilation Environment (CCE), version 16

of LLVM, version 0.14.0 of xDSL, and version 22.11 of the Nvidia

HPC SDK. Performance is reported in terms of throughput, using

the metric millions of grid cells per second (MCells/s). Because

the Gauss Seidel benchmark is simpler, requiring only 6 floating

point operations per grid cell compared to 63 FP operations for the

PW advection benchmark, this will naturally deliver the higher

throughput of the two benchmarks and therefore a throughput

comparisons between benchmarks is less interesting than compar-

isons for different sizes and configurations of each individual bench-

mark.

4.2 Single node CPU performance

Figure 2 reports performance, as throughput, achieved on a single

core of ARCHER2 for our two benchmarks at different problem

sizes. We are comparing approaches leveraging the Cray compiler

Figure 2: Single core performance comparison for Gauss Sei-

del and PW advection benchmarks using different problem

sizes across Cray, Flang only and our stencil approach.

(Cray in Figure 2), Flang on its own (Flang only in Figure 2), and

our stencil approach (Stencil in Figure 2) described in Section 3.

It can be seen that the Cray compiler provides excellent perfor-

mance, which is inline with previous community experience, and

using Flang directly delivers the lowest performance. Our stencil

approach achieves performance that lies between the Cray com-

piler and Flang, and when profiling we found that the executable

generated by the Cray compiler undertakes considerably more vec-

torisation than our stencil approach, even though we use the scf-

parallel-loop-specialization transformation pass in our CPU flow. It

can be seen clearly however, that by leveraging our stencil opti-

misation the programmer is able to obtain significantly higher per-

formance than Flang alone, especially for the PW advection bench-

mark.

Figure 3: Multithreaded performance comparison for Gauss

Seidel benchmark using OpenMP with a problem size of 2.1

billion grid cells across Cray, Flang only and our stencil ap-

proach.

Figures 3 and 4 report multithreaded performance for the Gauss

Seidel and PW advection benchmarks respectively when run on

the largest problem size of 2.1 billion grid cells. Similarly to single

core performance, it can be seen that generally the Cray compiler

delivers the best performance, with vanilla Flang the lowest and

our stencil approach between these two. However, it can be seen
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Figure 4: Multithreaded performance comparison for PW

advection benchmark using OpenMPwith a problem size of

2.1 billion grid cells across Cray, Flang only and our stencil

approach.

in Figure 4 that for the PW advection benchmark our stencil ap-

proach delivers the highest performance at 64 and 128 thread. Fur-

thermore, it should be highlighted that the Cray and vanilla Flang

multithreaded experiments are being executed with hand written

OpenMP code, requiring the programmer to modify their code to

run multithreaded. By comparison, our stencil approach is lever-

aging unchanged serial code with the OpenMP parallelism added

automatically by the compiler.

4.3 GPU performance

Figure 5 reports the log scale performance of our two benchmarks,

at different problem sizes, running on a Nvidia V100 GPU. For each

configuration there are three numbers reported, firstly the perfor-

mance obtained from a manual porting of the code to the V100

GPU using OpenACC and compiledwith the Nvidia compiler (Ope-

nACC with Nvidia in Figure 5). There are two results for our stencil

approach where the initial approach we adopted, (Stencil (initial

data approach) in Figure 5), was for the GPU dialect to manage all

data movement via the gpu.host_register operation on all stencil

data arrays. However, we found that this delivered very poor per-

formance and when profiling discovered it was due to excessive

movement of data between the host and GPU over PCI express.

Effectively, this gpu.host_register operation is allocating data on

the host and moves it across on demand, without effective caching

which was causing significant runtime overhead.

Consequently, we developed our own approach, (Stencil (opti-

mised data approach) in Figure 5), to managing the memory by de-

veloping a bespoke transformation pass. This walks the SSA-based

IR just after the stencil extraction pass described in Section 3, and

identifies what data must be placed on the GPU and when. Addi-

tional functions are added into the extracted stencil module to call

operations in the GPU dialect for data allocation, movement, and

deallocation and these are called from FIR using the same approach

as when calling stencil execution. The FIR IR holds references to

the GPU allocated data as FIR LLVM pointers which are provided

to the stencil execution functions as arguments and can also be

used, in combination with the FIR data reference, to copy data be-

tween the host and device. It was found that this transformation

was highly effective and by undertaking this direct management of

data via a transformation pass we were able to achieve significant

performance as can be seen in the log scale results of Figure 5.

Figure 5: Log scale GPU performance comparison on Nvidia

V100 GPU for both benchmarks at different problem sizes.

Comparing OpenACC compiled with the Nvidia compiler

against our stencil approach. Stencil approach reports fig-

ures for both our initial and optimised data management

strategies.

It can be seen in Figure 5 that the data optimised version of

our stencil approach is very competitive against the hand writ-

ten OpenACC compiled with the Nvidia compiler. For the Gauss

Seidel benchmark our approach outperforms the Nvidia compiler

with hand written OpenACC for the smallest problem size and is

comparable for the two larger problem sizes. Whilst there is con-

siderablymore work per grid cell, and hence a lower throughput in

terms of grid cells processed per second, our optimised approach

out performs the manually written OpenACC for all sizes with the

PW advection benchmark. When profiling the OpenACC code we

found that, due to the use of unifiedmemory, there were numerous

data access stalls. The overhead is far less than that of the MLIR

managed data approach, but it does still add considerable overhead.

Whilst it would likely be possible to obtain increased performance

with themanual code by controlling all the datamovement directly

in code, this would further increase the complexity. By contrast, in

our approach the programmer’s Fortran source code is unchanged

to run on the GPU.

4.4 Distributed memory performance

As described in Section 3, there is also a lowering in xDSL from the

stencil dialect to MPI via an intermediate Distributed Memory Par-

allelism (DMP) dialect. Whilst this is somewhat experimental, it is

worth exploring the performance that we can obtainwhen running

on an unmodified Fortran code compared to a hand-crafted MPI

parallelisation to explore the potential for automatic distributed

memory parallelisation of serial code. Of our two benchmarks, we

selected Gauss Seidel only for this experiment because it operates

in iterations, requiring a halo swap between iterations. The PW ad-

vection benchmark by comparison is a kernel called from a larger

code base which then undertakes halo swapping before the next

timestep when other calculations have completed.

Figure 6 reports the distributed memory performance of the

Gauss Seidel benchmark running on ARCHER2, where there are
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Figure 6: Distributed memory performance of Gauss Seidel

benchmark across nodes of ARCHER2, using one MPI pro-

cess per core (128 cores per node). Global problem size of

17 billion grid cells comparing a hand-parallelised version

compiled with the Cray compiler to the distributedmemory

version auto-generated from our flow.

128 cores per node and we are mapping one MPI process to each

core. We decompose the 3D space into two dimensions, and the

results compare a hand parallelised version with the Cray com-

piler, (Hand parallelised in Figure 6), against the automatic paral-

lelisation obtained via lowering our stencil dialect IR to the xDSL

MPI dialect via the DMP dialect (Stencil automatic parallelisation

in Figure 6). It can be seen that the hand parallelised version out-

performs our automatically parallelised version which is for two

reasons. Firstly, as reported for single core runs, the Cray compiler

is very good at vectorisation and delivering high single core per-

formance which is relevant for the baseline performance. Secondly,

the hand parallelised version scales better than the automatic par-

allelisation via the DMP dialect.

Whilst this demonstrates that there is still work to be done in

the DMP and MPI xDSL dialects to obtain optimal performance, it

should be noted that we are still able to take an unmodified For-

tran serial code and for it to run across 8192 CPU cores and obtain

a throughput of around 70,000 million grid cells per second. We be-

lieve that this demonstrates the potential of our approach, even if

the individual components still need further enhancement to reach

a level of maturity where they can match the performance of hand

parallelised code.

5 RELATED WORK

There are several existing frameworks and DSLs which aim to opti-

mise the execution of stencil-based computations. For instance, the

Pochoir [20] stencil compiler enables programmers to write their

code in C++ and use bespoke templates to drive a higher level de-

scription of their stencil computation. This is then provided to the

Pochoir compiler which undertakes source to source translation as

a preprocessing step, the results of which are then compiled by the

Intel compiler. Leveraging Cilk [2], which provides multithreading

parallelism capabilities, their source to source translation tool gen-

erates Cilk based code from the programmer’s source code.

ExaStencils [15] is a stencil-based framework, and this supports

a wider range of execution targets than Pochoir. Similar to our ap-

proach, ExaStencils supports shared and distributedmemory paral-

lelism as well as execution on GPUs. However, similarly to Pochoir

users must learn new abstractions and explicitly port their code to

this technology, whereas our approach leverages unmodified serial

Fortran code. The major disadvantage with both Pochoi and ExaS-

tencils is the siloed nature of their compilation stacks, where these

have been developed as bespoke compilers and share no underly-

ing infrastructure with other projects. This is especially important

given the effort undertaken to optimise stencil execution by these

projects, which not only requires significant investments of time

to initially develop, but then a continuing maintenance burden to

support new architectures and fix bugs. Adoping DSLs like these

results in a risk for users, as they can not be sure about the long

term future of these technologies, especially as many are devel-

oped during research projects with a fixed end date.

By contrast, our approach leverages the popular LLVM/MLIR

ecosystem which is actively developed and maintained by a large

community including individuals, academic organisations, and com-

mercial companies. Furthermore, the bespoke nature of our contri-

bution is a small part in the overall compilation flow where, as

described in Section 3, we provide stencil discovery and extrac-

tion transformations for FIR, with the generated SSA-based IR then

transformed by passes developed by other groups, many of which

are in the main MLIR codebase. Consequently, programmers can

havemuchmore confidence leveraging an approach that sitswithin

theMLIR ecosystem because of the significant investment that has,

and i,s being made into this project.

LLVM is used extensively in HPC as a growing number of com-

pilers from vendors are now built upon the framework. Promi-

nent HPC compiler teams, such as those at Cray, Intel, ARM, AMD

and Nvidia have made significant investments in LLVM and MLIR,

and many of these organisations produce products build upon the

technologies. There are additional community activities exploring

optimisation opportunities provided by LLVM and MLIR, for in-

stance [7] which explored the use of MLIR to optimise the exe-

cution of stencil-based codes. Developing their own cfd dialect

which contained a stencil operation, although this is significantly

more limited than the Open Earth Compiler’s stencil dialect used

in this work, the authors were able to demonstrate that the MLIR

ecosystem is beneficial for optimising these calculations in a multi-

threaded environment. However they did not integrate their work

with existing, general purpose, MLIR compilers or attempt to un-

dertake the stencil discovery and extraction from code as explored

in this paper. Furthermore, by only consideringmulti-threadedCPU

execution of their dialect they limit the benefits to be gained from

the MLIR ecosystem such as GPU execution.

Lastly, DaCE [23] is a parallel programming framework that op-

erates over codes typically written in Python and converts these

into a dataflow Directed Acyclical Graph (DAG) IR representation.

This is then used by DaCE to generate optimal code for a variety of

targets including shared and distributed memory CPUs and GPUs.

Providing interoperability with MLIR via the DaCE dialect [1], the

ability to move between DaCE dataflow and MLIR control flow

representations can deliver improved executable performance. Fur-

thermore, Stencilflow [5] provides the ability to translate stencils
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into the DaCE dataflow DAG IR with the primary objective of en-

abling these to be efficiently executed on FPGAs. However, at the

time of writing, Stencilflow is not actively maintained, and further-

more does not undertake the automated discovery and extraction

of stencils from existing code as described in this paper. It would

also likely be impractical to integrate DaCE with MLIR-based com-

pilers, such as Flang, due to its extensive nature and the additional

maintenance dependency. By contrast, our approach is far more

lightweight and could be integrated by the addition of our two ad-

ditional compiler passes into these tools.

6 CONCLUSIONS AND FURTHER WORK

In this paper we have explored the potential to enrich general

purpose compiler flows by leveraging domain specific information

via MLIR dialects and transformations. By discovering and extract-

ing stencils from the FIR intermediate representation generated by

Flang, we have demonstrated that it is possible to then exploit this

domain specific information and transformations to target numer-

ous architectures and forms of parallelism. Flang provides an un-

usual approach to leveraging MLIR, by translating the FIR dialect

directly into LLVM-IR rather than into the existing standard MLIR

dialects which themselves are lowered. This does decrease compos-

ability between dialects, but as demonstrated in this paper can be

worked around by extracting dialects that are not registered with

Flang into separate modules and compiling independently.

Our main objective was to explore whether a fusion of domain

specific abstractionwith the general purpose Flang compilerwould

enable us to deliver improved performance compared with Flang

alone and, using two benchmarks, we demonstrated that our ap-

proach delivers around a two time speed up for the iterative Gauss

Seidel solver and approximately a 10 times speed up for the atmo-

spheric PW advection scheme on a single CPU compared to Flang.

We found that the Cray compiler delivers impressive performance,

considerably outperforming Flang and our stencil approach. How-

ever, it should be borne in mind that the Cray compiler is a ma-

ture product and the result of many years of development, further-

more it is not available for general release and can only be found

on Cray supercomputers. Nevertheless, our stencil approach did

outperform the Cray compiler for the PW advection benchmark

when run shared memory at 64 and 128 threads. Consequently we

have demonstrated that to help close the performance gap between

Flang and compilers such as the Cray compiler, then leveraging

other existing parts of the MLIR ecosystem can be beneficial.

On a V100 GPU our stencil flow, automatically porting the For-

tran code to GPUs from the programmer’s perspective, delivered

similar performance to a hand written OpenACC implementation

for the Gauss Seidel benchmark, and our approach was on average

approximately 15 times faster than the hand written OpenACC for

the PW advection benchmark. Furthermore, we explored lowering

our stencils via the existing xDSL distributed memory and MPI di-

alects on up to 8192 cores of ARCHER2. Whilst hand parallelised

distributed memory code did perform and scale better than the au-

tomatic parallelised version, the fact that we were able to scale to

8192 cores is encouraging given that the same, unchanged, Fortran

source code was used for this experiment as for the single CPU,

multi-threaded CPU, and GPU experiments.

There are five avenues that would be interesting to explore as

further work. Firstly, single CPU performance optimisations in the

scf dialect lowering, especially targeting improved vectorisation,

would be worthwhile. Secondly, the xDSL DMP and MPI dialects

are currently in active development and the results of this paper

demonstrate that whilst they are currently usable they would ben-

efit from additional optimisation and tuning to match the perfor-

mance of existing hand crafted codes. Thirdly, we believe that it

would be useful to pursue combining the stencil optimisation re-

ported in this paper with general purpose MLIR compilers so that

they can benefit from this optimisation. As this work has been de-

veloped with Fortran as the focus, then Flang integration would

likely be the easiest to achieve, although we would need to con-

sider whether to integrate with FIR or wait for the new HL-FIR to

be fully matured. However our central algorithm and associated

transformations could also be adapted to other languages and ben-

efit a wider set of MLIR based compilers such as Polygeist and Pylir.

Fourthly, we believe that it would be worth exploring the poten-

tial of lowering FIR into the standard MLIR dialects rather then

directly to LLVM-IR. This could reduce the maintenance burden

as lowering to LLVM-IR from the standard dialects would exploit

more shared passes, and furthermore would also aid in bringing

additional dialects into the Flang ecosystem. Lastly, combining dis-

tributed memory parallelism with GPU execution, enabling multi-

node GPU execution, potentially in combination with a communi-

cation technology such as NVLink [11], would be worthwhile.

We conclude that this study highlights that there is a significant

potential for MLIR to enrich our existing programming languages

and development, not only by leveraging domain specific knowl-

edge to deliver improved performance, but to also potentially sup-

port delivering new capabilities for codes such as automatic par-

allelisation and architecture portability. Using the existing build-

ing blocks of MLIR, we have found that it can be very effective

to develop bespoke components and then integrate these with the

existing ecosystem.
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