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ABSTRACT

Geolocating precise locations from images presents a challenging problem in computer vision and
information retrieval. Traditional methods typically employ either classification—dividing the Earth’s
surface into grid cells and classifying images accordingly, or retrieval—identifying locations by
matching images with a database of image-location pairs. However, classification-based approaches
are limited by the cell size and cannot yield precise predictions, while retrieval-based systems usually
suffer from poor search quality and inadequate coverage of the global landscape at varied scale and
aggregation levels. To overcome these drawbacks, we present Img2Loc, a novel system that redefines
image geolocalization as a text generation task. This is achieved using cutting-edge large multi-
modality models (LMMs) like GPT-4V or LLaVA with retrieval augmented generation. Img2L.oc
first employs CLIP-based representations to generate an image-based coordinate query database. It
then uniquely combines query results with images itself, forming elaborate prompts customized for
LMMs. When tested on benchmark datasets such as Im2GPS3k and YFCC4k, Img2ILoc not only
surpasses the performance of previous state-of-the-art models but does so without any model training.
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1 Introduction

The field of visual recognition has witnessed a marked improvement, with state-of-the-art models significantly advancing
in areas such as object classification [[1} 2| 3} 4], object detection [} 16} [7]], semantic segmentation [8, 9, 10, [11]], scene
parsing [12| [13]], disaster response [[14} [15]], environmental monitoring[16] among others [17, [18| [19]. As progress
moves forward, the information retrieval community is widening its focus to include the prediction of more detailed and
intricate attributes of information. A key attribute in this expanded scope is image geolocalization [20, 21} 22]], which
aims to determine the exact geographic coordinates given an image. The ability to accurately geolocalize images is
crucial, as it provides possibilities for deducing a wide array of related attributes, such as temperature, elevation, crime
rate, population density, and income level, providing a comprehensive insight into the context surrounding the image.

In our study, we delve into predicting the geographic coordinates of a photograph solely from the ground-view image.
Predictions are considered accurate if they closely match the actual location (Figure([T). Prevailing research approaches
fall under the categories of either retrieval-based or classification-based methods. Retrieval-based techniques compare
query images against a geo-tagged image database [23} 24} 25| 126} 127, 28] |29} 130], using the location of the image that
closest matches the query image to infer its location. Although straightforward, this method faces hurdles such as the
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? Where is this image “

Figure 1: The image geolocalization problem refers to predicting the coordinates of any given image.

complexity of feature extraction, the computational intensity of nearest neighbor search, and potential inaccuracies
from over-reliance on database image locations. Alternatively, classification-based methods treat geolocalization as a
classification task [311,[32} 33| 34} 35| 36 [37]], segmenting the Earth into discrete cells and training neural networks to
classify images into these cells. However, this approach can yield significant errors, especially when the actual location
of an image differs significantly from the center of its assigned cell. Moreover, the predefined cell structure introduces
inherent limitations and biases, decreasing generalizability and accuracy across various global locations.

Given the inherent limitations of both retrieval and classification approaches, we are transitioning to the more recent
and increasingly dominant approach of foundation models. In this vein, we propose a generative approach that predicts
the geographic coordinates of new query images using a reference gallery and multimodality language models, named
Img2Loc. Initially, we transform all geo-tagged images into embeddings using the CLIP model [38], creating a vast
embedding space. To navigate this space efficiently, we use a vector database with GPU-accelerated search algorithms,
quickly pinpointing and retrieving gallery images similar to the query images. Next, we formulate elaborate prompts
integrating the image and the geographical coordinates of these reference points and feed them into state-of-the-art
multi-modality models like GPT-4V or LLaVA [40]), known for their adeptness in generating accurate outputs from
combined image and text inputs. To further improve the accuracy, we introduce negative sampling by identifying and
using the most dissimilar points in the database as a counterreference. This sharpens the model’s ability to distinguish
between relevant and irrelevant data points. Our model, when evaluated on well-established datasets such as Im2GPS3k
and YFCC4k [32]], demonstrates notable advances, significantly outperforming the prior state-of-the-art methods
without any model fine-tuning. This highlights the efficacy of our generative approach, which synergizes the retrieval
method’s strengths with the advanced understanding and generative prowess of contemporary language models.

In summary, our study makes significant strides for the task of image geolocalization, marked by the following
contributions:
* To the best of our knowledge, this study is the first successful demonstration of multi-modality foundation
models in addressing the challenges of geolocalization tasks.

* Our approach is training-free, avoiding the need for specialized model architectures and training paradigms
and significantly reducing the computational overhead.

» Using a refined sampling process, our method not only identifies reference points closely associated with
the query image but also effectively minimizes the likelihood of generating coordinates that are significantly
inaccurate.

* We achieve outstanding performance on challenging benchmark datasets including Im2GPS3k and YFCC4k
compared with other state-of-the-art approaches.

2 Related Work

Image Geolocalization as a classification task. The predominant approach for the image geolocalization problem
involves first segmenting the planet’s surface into discrete grids, such as the Google S2 grid, and assigning a geographic
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coordinate to each grid [31} 132} 133} 134, 135, 37, [36]. This methodology permits a model to directly predict a class,
thereby simplifying the complex task of geolocalization into a more manageable form of classification. To refine this
approach and introduce granularity into the prediction, recent advances have involved partitioning the Earth’s surface
into multiple levels, offering a hierarchical, multi-scale perspective of localization [33]]. However, while this cell-based
classification system simplifies the prediction process, it inherently introduces localization errors, particularly if the
actual location of interest lies far from the center of the predicted cell. This discrepancy stems from the coarse nature
of cell-based classification, where the precision of localization is inherently limited by the size and scale of the cells
defined in the model.

Image Geolocalization as a retrieval task. In another direction, image geolocalization has significantly evolved
from rudimentary methods to sophisticated retrieval-based systems over the years [23| 24} 25| 26, 27, 28| 29| 30]].
Retrieval-based systems, recognized for their intuitiveness, leverage these extensive databases to find matches for query
images based on feature similarity in a multi-dimensional space. However, creating planet-level reference datasets
for these systems presents formidable challenges, not limited to scale but also encompassing data diversity, temporal
changes, and the need for precise annotations. To address the intrinsic differences in ground and aerial perspectives,
separate models are often adopted, with the integration of these models aiming to provide a more comprehensive
understanding and robust localization system [41]]. Nonetheless, this integration introduces the significant hurdle of
misalignment between perspectives, potentially undermining accuracy. An innovative solution to this challenge is the
implementation of non-uniform cropping [27], which selectively focuses on the most informative patches of aerial
images. This method prioritizes features that offer distinctive geographical cues, enhancing precision by addressing the
issue of non-uniform feature distribution across different views.
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Figure 2: The architecture of the proposed framework.

Multi-modality foundation models and Retrieval-Augmented Generation. Large language models like GPT-4
[42]] and LLaMA [43]] have set new benchmarks in natural language processing, surpassing human performance in
a variety of tasks as evidenced by their results on SuperGLUE [44] or BIG-bench [45]. Their exceptional zero-shot
capabilities enable these generative models to be applicable across a wide range of research domains. Building on this
success, multi-modality models such as GPT-4V [39] and LLaVA [40] have extended the prowess of large language
models (LLMs) into the visual domain. However, alongside these remarkable achievements, certain challenges have
become evident, most notably issues related to hallucination and reliance on outdated knowledge databases. These
issues can compromise the reliability and trustworthiness of models’ outputs. To address these concerns, innovative
methodologies such as the chain of thoughts (COT) [46] reasoning and Retrieval-Augmented Generation (RAG) [47]]
have been developed. These approaches significantly enhance the fidelity of the models’ responses. In particular, RAG
represents a groundbreaking advancement by merging the powerful reasoning capabilities of foundation models (FM)
with up-to-date external information. This is achieved by augmenting the input prompt with pertinent information
retrieved from a comprehensive and up-to-date database. Such a process ensures that the model’s generations are not
only creative and contextually aware but also grounded in solid, verifiable evidence. Consequently, this approach
markedly improves the accuracy and relevance of the results, mitigating some of the earlier concerns associated with
large language models. The integration of external databases into the generative process ensures that the output of these
models remains both innovative and anchored in reality.
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3 Method

Our method allows the user to input any image of interest for geolocalization. Subsequently, the image is processed
by the query and retrieval module, wherein the locations of the most similar and most dissimilar images are extracted.
The image, along with these two sets of locations, is then fed into a multi-modality model. Finally, the geolocalization
result is displayed as an interactive map, which can be explored via a web interface. We will explain each step in the
following sections.

3.1 Construction of the Image-Location Database

The core of the retrieval-based image localization system lies in how images are encoded into the database and how the
nearest neighbor search is performed. Here, We utilize the CLIP model [38] for feature encoding and employ FAISS for
the storage of resulting embeddings (Figure[3).

CLIP-Based Feature Encoding. The CLIP model, which is widely used as a fundamental representation model for
various downstream tasks [48]], is introduced to generate semantic embeddings of images. In particular, it accepts the
query image and outputs the semantic embeddings of the outputs, which encapsulate rich information about the image
in a condensed vector space. Utilizing the MediaEval Placing Tasks 2016 (MP-16) dataset [49], we have constructed a
database encompassing over four million image embedding-location pairs, providing comprehensive coverage of the
Earth’s surface.

Efficient Nearest Neighbor Search in the Vector Database. Once image embeddings are generated, it becomes
crucial to store them in an efficient manner to facilitate effective search operations. To address the challenge, we use
FAISS, a vector-based data storage system [S0]], which utilizes flat indexes and GPU parallel computation techniques to
enhance efficiency. Then, to find the nearest neighbor for the query image, we propose using the inner product of the
image embedding provided by the CLIP as the measurement. The underlying principle is straightforward: a higher
inner product value signifies a greater level of similarity, and vice versa. This system allows us to generate an arbitrary
number of nearest neighbors with ease.

Moreover, we posit that identifying images most dissimilar to the query image (positive neighbors) can also contribute
to ruling out implausible locations, as they usually represent scenes that are geographically distant from the query
image. This “negative neighbors search” is executed by finding the farthest neighbors for the negative query embedding.
Upon completion of this search, the locations of both positive and negative neighbors are integrated into the subsequent
step of our process.

3.2 Generate locations with augmented prompt

Current multi-modality foundation models, such as GPT-4V and LLaMA, accept input from both images and text to
generate responses. In our approach, we conceptualize the task of image geolocalization as a text generation task.
Specifically, we prompt these foundation models to provide the precise latitude and longitude corresponding to a given
image. We enhance the input prompt with additional information derived from our retrieval of similar and dissimilar
locations (Figure[2)). The similar images’ coordinates and dissimilar images’ coordinates will be appended to the text
prompt as anchor information.
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4 [Experiments

4.1 Datasets and Evaluation Details

We build our search database using the MediaEval Placing Tasks 2016 (MP-16) dataset [49]], encompassing 4.72 million
geotagged images from FliCkl{ﬂ The performance of our model is evaluated using Im2GPS3k [32] and YFCC4k [32]
datasets. We compute the geodesic distance between the predicted and actual geographical coordinates for each test
image and quantify the proportion of these predictions that align with set distance thresholds (1km, 25km, 200km,
750km, and 2500km). In terms of multi-modality models, our focus is on GPT-4V and LLaVA, selected for their
availability and superior performance. It’s noteworthy that our framework is designed for flexibility, allowing for
seamless integration of the latest model releases as they become available.

4.2 Results
Distance (a, [%] @ km)
Dataset Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2500 km

[L]IKNN, o =4 [132] 7.2 194 26.9 38.9 55.9

PlaNet [35] 8.5 24.8 34.3 48.4 64.6

CPlaNet [36] 10.2 26.5 34.6 48.6 64.6

Im2GPS | ISNs (M, f, S3) [33] 10.1 27.2 36.2 49.3 65.6
3k Translocator [31] 11.8 31.1 46.7 58.9 80.1
[32] GeoGuessNet [34] 12.8 33.5 45.9 61.0 76.1
GeoCLIP [22] 14.11 34.47 50.65 69.67 83.82
Img2Loc(LLaVA) 7.98 23.37 29.94 40.11 51.12
Img2Loc(GPT4V) 17.10 45.14 57.87 72.91 84.68

[L]IKNN, o =4 [32] 2.3 5.7 11.0 23.5 42.0

PlaNet [35] 5.6 14.3 22.2 36.4 55.8

YFCC CPlaNet [36] 7.9 14.8 21.9 36.4 55.5
Ak ISNs (M, f, S3) [33] 6.5 16.2 23.8 37.4 55.0
321 Translocator [31] 8.4 18.6 27.0 41.1 60.4
GeoGuessNet[34] 10.3 24.4 339 50.0 68.7
GeoCLIP[22] 9.59 19.31 32.63 55.0 74.69
Img2Loc(LLLaVA) 7.93 14.20 19.51 29.98 39.72
Img2Loc(GPT4V) 14.11 29.57 41.40 59.27 76.88

Table 1: Geo-localization accuracy of the proposed method compared to previous methods, across two baseline datasets.

The data presented in Table [I|demonstrates that our methods outperform previous classification and retrieval methods
across all granularity levels on both tested datasets. On the Im2GPS3k dataset, we have achieved significant improve-
ments over the prior top-performing method, GeoCLIP, without ever training any of the models on geo-tagged data
(MP-16 dataset [49]) The improvements are +2.89%, +10.67%, +7.22%, +3.24%, and +0.86% at the 1km, 25km,
200km, 750km, and 2500km thresholds, respectively. Furthermore, on the YFCC4k dataset, our method surpasses
the previous best model, GeoGuessNet, by margins of +3.81%, +5.17%, +7.5%, +9.27%, and +8.18% for the same
respective distance thresholds.

5 Conclusion

In our study, we present Img2Loc, a cutting-edge system that harnesses the power of multi-modality foundation
models and integrates advanced image-based information retrieval techniques for image geolocalization. Our approach
has demonstrated evidently-improved performance when compared to existing methods. We envision Img2Loc as
a compelling example of leveraging modern foundation models to address complex problems in a streamlined and
effective manner.

Thitps://www.flickr.com/
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