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Federated recommender systems (FedRecs) have been widely explored recently due to their ability to protect
user data privacy. In FedRecs, a central server collaboratively learns recommendation models by sharing model
public parameters with clients, thereby offering a privacy-preserving solution. Unfortunately, the exposure
of model parameters leaves a backdoor for adversaries to manipulate FedRecs. Existing works about FedRec
security already reveal that items can easily be promoted by malicious users via model poisoning attacks, but
all of them mainly focus on FedRecs with only collaborative information (i.e., user-item interactions). We
argue that these attacks are effective because of the data sparsity of collaborative signals. In practice, auxiliary
information, such as products’ visual descriptions, is used to alleviate collaborative filtering data’s sparsity.
Therefore, when incorporating visual information in FedRecs, all existingmodel poisoning attacks’ effectiveness
becomes questionable. In this paper, we conduct extensive experiments to verify that incorporating visual
information can beat existing state-of-the-art attacks in reasonable settings.

However, since visual information is usually provided by external sources, simply including it will create
new security problems. Specifically, we propose a new kind of poisoning attack for visually-aware FedRecs,
namely image poisoning attacks, where adversaries can gradually modify the uploaded image to manipulate
item ranks during FedRecs’ training process. Furthermore, we reveal that the potential collaboration between
image poisoning attacks and model poisoning attacks will make visually-aware FedRecs more vulnerable to
being manipulated. To safely use visual information, we employ a diffusion model in visually-aware FedRecs
to purify each uploaded image and detect the adversarial images. Extensive experiments conducted with
two FedRecs on two datasets demonstrate the effectiveness and generalization of our proposed attacks and
defenses.
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1 INTRODUCTION
Recommender systems have become an integral part of web applications (e.g., e-commerce [5, 53]
and social media [58]), during the era of information explosion, since they are effective in reducing
information overload by discovering users’ potential interests. Traditionally, recommender systems
are trained in a centralized server using a vast collection of user data [66]. However, with the
growing awareness of privacy and the release of privacy protection regulations, such as the General
Data Protection Regulation (GDPR) [49] in the European Union and the California Consumer
Privacy Act (CCPA) [11] in the United States, collecting and storing user data has become more
challenging.

Federated learning, as a privacy-preserving paradigm, allows for training models on decentralized
data [32]. Consequently, an increasing number of researchers are exploring the potential of federated
learning in recommender systems, resulting in the emergence of federated recommender systems
(FedRecs). In FedRecs, the central server and users/clients1 collaborate to learn a recommendation
model by sharing model public parameters instead of user private data. Due to the significant
advantage of data privacy protection, after the first FedRec framework proposed by Ammad et
al. [2], several extended versions have sprung up to enhance the effectiveness and efficiency of
FedRecs [18, 26, 34].

Due to the exposure of model parameters to all participants, and some of themmay havemalicious
intentions, the security issues of FedRecs have raised concerns among researchers. Adversarial
item rank manipulation is one of the most studied security problems in FedRecs, driven by financial
incentives, which can lead to strong unfairness and even reduce the validity and usability of
recommender systems. In [68], the first model poisoning attack, PipAttack, was introduced to
demonstrate the vulnerability of FedRecs to being controlled by malicious participants who upload
poisoned model updates. After that, all existing works about item rank manipulation in FedRecs are
based on model poisoning attacks. For example, FedRecAttack [42] argues that PipAttack requires
too many malicious users, which is not practical. It, on the other hand, achieves item promotion
with fewer malicious users but requires more prior knowledge, such as a small proportion of
user interaction data, which even violates the FedRec learning protocol. [41] proposed the first
model poisoning attacks without any prior knowledge assumptions. Nevertheless, its performance
is unstable and undesirable because it randomly samples vectors from a Gaussian distribution
to act as the proxy of user embeddings. In our previous work [62], we proposed PSMU, which
achieves state-of-the-art attack performance without relying on any prior knowledge and with
fewer malicious users and training epochs, revealing the severe threats of model poisoning attacks
to FedRecs.

However, all existing model poisoning attacks, including our previous work [62], only verify the
threat in FedRecs with collaborative data (i.e., user-item interaction data). We argue that due to
the inherent sparsity of collaborative information, many items, especially cold ones, lack sufficient
descriptions. Consequently, these attacks can easily manipulate the rank order of items by uploading
poisoned gradients. In real-life scenarios, item visual descriptions are used to alleviate collaborative
data’s sparsity problem. Intuitively, incorporating these visual signals makes the item features more
comprehensive and robust, and as a result, existing state-of-the-art model poisoning attacks may fail
1In this paper, client and user are equivalent, since a client is only responsible for one user considering privacy protection
requirements.
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Fig. 1. Overview of the new threats “image poisoning attack” and our diffusion model based defense mecha-
nism.

to promote items adversarially. In this paper, we empirically show that all existing state-of-the-art
model poisoning attacks fail the adversarial item promotion in visually-aware FedRecs. i.e., visual
information can mitigate the adversarial promotion threat caused by model poisoning attacks.

While visual signals can alleviate the model poisoning problem, incorporating them may leave
another backdoor for adversaries to manipulate item ranks, as the product visual descriptions
are typically provided by external sources that are not always trustworthy. In other words, the
adversaries can be item image providers who promote the target items by uploading images with
human-imperceptible noise. In this paper, we refer to such attacks as image poisoning attacks.
Fig. 1 presents an overview of image poisoning attacks. It is worth noting that some research
has used polluted images to change item ranks in centralized recommender systems (i.e., visual
attacks [6, 29]). However, our image poisoning attacks have many different settings. Specifically, in
centralized recommender systems, the model parameters are not accessible unless a “white-box”
assumption is made. In contrast, the public parameters of FedRecs are apparent, but the user’s
private parameters are strictly out of reach. Moreover, all research in centralized recommender
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systems [6, 29] assumes adversaries can obtain benign users’ feedback, which is not valid in FedRecs.
Furthermore, previous visual attacks for centralized recommendations can only be launched after
the recommender system is well-trained, as adversaries cannot participate in the training process.
While the image poisoning attacks in FedRecs are continually executed during the training process.

In this paper, we propose the first image poisoning attack, namely PSMU(V) (poisoning with
synthetic malicious users via visual information), to disclose the risk of directly using visual
information in FedRecs as shown in the bottom left of Fig. 1. Specifically, PSMU(V) is an image
poisoning version of our previous work PSMU which is a model poisoning attack. The same as
PSMU, PSMU(V) constructs a group of synthetic users with randomly selected interactions. It then
calculates image perturbations with attack objectives guided by these synthetic users. Finally, the
adversary uploads the poisoned image to the central server to influence the target item’s feature
representation. The above steps are iteratively executed with the training process of FedRecs.
Through experimental results, we demonstrate the effectiveness of our image poisoning attacks and
reveal the risks of using images provided by external sources directly. Additionally, since PSMU and
PSMU(V) can have a consistent attack objective and can be launched simultaneously, we propose
PSMU++ (i.e., PSMU+PSMU(V)) to reveal a more severe threat caused by the potential collaboration
of PSMU and PSMU(V). That is, by launching both model poisoning attacks and image poisoning
attacks, the target items will be more easily exposed to users than executing only one of these
attacks.

The threats posed by image poisoning attacks underscore the need for a safer mechanism to use
visual information. However, the defense against image poisoning attacks is still under-explored.
In centralized recommendation, [48] attempted to employ adversarial training to improve visually-
aware recommender systems’ robustness, but it can only defend against untargeted attacks that aim
to destroy a recommender system, and [29] indicated that adversarial training cannot effectively
prevent item promotion attacks. Inspired by the great achievement of the Denoising Diffusion
Probabilistic Model (DDPM) [16, 45] in image generation, we propose our novel image poisoning
defender, Guided DiffusionModel for Purification and Detection (GDMPD), as shown in the middle
part of Fig. 1. GDMPD can achieve two functions: purification and detection. The purification
function aims to prevent adversarial images from achieving their malicious purpose. Particularly,
the purification is based on DDPM which includes two processes: diffusion process and reverse
process. During the diffusion process, the model gradually adds noise to the image, which can
submerge the adversarial perturbations. Then, the reverse process purifies these noises to recover
the image, which can remove both added noise and adversarial perturbations. In FedRecs, besides
reducing the effectiveness of attacks, detecting malicious behavior is also necessary since it can
provide the system manager with valuable insights for conducting further processes. Therefore,
our GDMPD provides the detection function to further indicate which image is adversarial.
To support the proposed attack and defense methods, we extend the base FedRecs (Fed-NCF

and Fed-LightGCN) used in our previous work [62] to visually-aware FedRecs. Then, we conduct
extensive experiments with these FedRecs on two recommendation datasets (MovieLens-1M and
Amazon Cell Phone). The experimental results demonstrate that incorporating visual signals can
alleviate model poisoning attacks but simply using visual information provided by untrusty sources
will leave a backdoor for image poisoning attacks, and our novel defense method can fix such a
backdoor.

To sum up, our major new contributions are listed as follows:

• Our previous work [62] only studied the threat of model poisoning attacks for federated
recommender systems on collaborative data. In this paper, we make the exploration of model
poisoning attacks in visually-aware federated recommender systems. The empirical results
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demonstrate that visually-aware federated recommender systems are robust to existing state-
of-the-art model poisoning attacks, since visual signals can alleviate the data sparsity problem
of collaborative information.
• Although visual information can defend against model poisoning attacks, we propose the
first image poisoning attack, PSMU(V), to reveal a new backdoor for adversaries to promote
items if visual information is directly used. To the best of our knowledge, this is the first
work to reveal such threats in visually-aware FedRecs. Furthermore, we propose PSMU++ to
investigate the potential hazard of collaboration between model poisoning attacks and image
poisoning attacks.
• To fix the security hole of image poisoning attacks, we propose the Guided Diffusion Model
for Purification and Detection (GDMPD), which is a diffusion model based defense mechanism
in the central server of FedRecs to purify each uploaded image and detect the adversarial
images. So far as we know, this is the first work that utilizes the diffusion model as defense
method in federated recommender systems.
• We have performed comprehensive experiments using two visually-aware FedRecs that we
extended from our previous work [62] on two widely-used recommendation datasets. The
experimental results demonstrate the effectiveness and generalizability of our proposed
methods.

The remainder of the paper is organized as follows. Related work is reviewed in Section 2,
followed by the introduction of the visually-aware federated recommender systems in Section 3.
Section 4 presents the technical details of our attacks extended from our previous work [62]. Then,
in Section 5, we show how to fix the security problem revealed by image poisoning attacks. Section 6
exhibits a comprehensive analysis of experimental results. Finally, Section 7 gives a brief conclusion
of this paper.

2 RELATEDWORK
In this section, we briefly review the literature on four related topics: federated recommender
systems, attacks and defense mechanisms for federated recommender systems, visually-aware
recommender systems, and diffusion models. Other involved topics such as the development of
general recommender systems and federated learning can be referred to corresponding surveys [24,
60, 70].

2.1 Federated Recommender Systems
Federated Recommender Systems (FedRecs) have gained increasing attention in recent years due
to their ability to protect user privacy. Ammad et al [2] presented the first FedRec framework that
applies federated learning with a collaborative filtering model. Based on this basic framework,
many extended versions have been proposed in a short time [1, 47]. Some works attempt to reduce
the performance gap between FedRecs and centralized recommender systems. For example, [54]
utilizes Graph Neural Network (GNN) [43] to achieve fairly good recommendation accuracy. Wu
et al. [56] employed contrastive learning in FedRecs. Other works focus on the efficiency of Fe-
dRecs. [4, 34] investigate fast convergence of FedRecs, while Zhang et al. [65] proposed a lightweight
communication strategy based on learning to hash (L2H) [51]. ReFRS [18] learns dynamic and
diversified user preferences on resource-constrained devices. Some work transplant FedRecs to
specific recommendations, such as news recommendation [38], social recommendation [30], POI
recommendation [10], and so on [27].
In addition to enhancing the effectiveness and efficiency of FedRecs, privacy concerns are also

a crucial research direction in this area. Chai et al. [3] demonstrated that even if user data is not
directly shared, adversaries can still recover sensitive information from the model updates sent
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by the target user. To address this issue, a central server can apply a differential privacy (DP)
mechanism to perturb the global model, as proposed in [52]. However, this approach assumes that
the central server is in a sterile environment, which is not applicable in real-life scenarios where
the server may be curious about clients’ private information. To protect user privacy further, local
differential privacy (LDP) is equipped on the client side [54]. Zhang et al. [67] introduced adaptive
LDP, which can protect privacy with less impact on recommendation performance. Nevertheless,
Yuan et al. [63] discovered that LDP alone cannot safeguard user-item interaction information,
which is known as the user-item interaction leakage problem. They provided a regularization-based
method to tackle such a problem. Additionally, [64] enables FedRecs to comply with the privacy
regulations of the “right to be forgotten”.

2.2 Attacks and Defenses for Federated Recommender Systems
Given the significant advancements achieved by FedRecs, many researchers are now investigating
the security concerns associated with these systems. They have proposed several effective attack
methods against FedRecs, exposing the vulnerabilities of current FedRecs under specific conditions.
In general, the attacks in FedRecs can be divided into two categories: inference attacks and poisoning
attacks. Inference attacks aim to detect certain information (e.g., user attributes [67], user private
date [63]) from FedRecs to reveal certain privacy problems, as introduced in Section 2.1.
In this paper, our topic is closer to poisoning attacks. According to the attack’s goal, there are

targeted attacks and untargeted attacks. Untargeted attacks aim to cause a loss of recommendation
accuracy and undermine the validity of the target model. FedAttack [55] attempts to compromise
FedRecs using hard negative samples. Yu et al. [61] introduced a cluster-based attack to disrupt
recommender systems. Targeted attacks aim to make specific items to be recommended to as
many users as possible. Compared to untargeted attacks, targeted attacks are more stealthy and
are more common due to financial incentives. Therefore, in this paper, we focus on targeted
attacks. PipAttack [68] demonstrates that malicious users can manipulate the order of item ranks
by uploading poisoned gradients. However, their attack requires a large proportion of compromised
clients, which may be unaffordable in real applications. Rong et al. [42] reduced the number
of malicious users by incorporating more prior knowledge. [41] is the first model poisoning
attack that does not rely on any prior knowledge, but its performance is unstable. Our previous
work [62] proposed a more effective model poisoning attack, PSMU, which achieves state-of-the-art
performance. Besides, our previous work is the first to provide a defense mechanism based on
gradient clipping to defend against existing model poisoning attacks.
However, all existing targeted poisoning attacks have been launched in FedRecs that rely on

collaborative filtering data. These data suffer from severe sparsity problems, leading to strong
biases that make it easier for poisoning attacks to manipulate items, especially for the cold ones.
When visual signals are incorporated, data sparsity can be alleviated. Therefore, the performance
of existing poisoning attacks for visually-aware FedRecs is unknown.

2.3 Visually-aware Recommender Systems and Attacks
Visual signals are important for making accurate recommendations [5, 17]. Some models solely
rely on the feature vectors extracted from images to provide recommendations [19, 20]. However,
the feature vectors are not optimized for making a good recommendation. VBPR [13] is the first
work that fuses both visual information and collaborative signals based on BPR [40]. After that,
many works [21, 28] are proposed based on the general framework: a pre-trained model is used to
extract visual features, and then, certain fusion methods are used to aggregate visual features with
collaborative signals (or other modality signals [39, 59, 69]) to feed a recommendation model. In
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this paper, based on such a framework, we extend the basic FedRecs used in our previous work [62]
to visually-aware FedRecs.
Due to the large scale of item catalogues, product visual descriptions are usually provided by

external sources. Since visual information can influence the ranking of items, image providers may
have a chance to adversarially manipulate item ranks. [8] attempts to change the popularity of
items with the same categories. [29] is the first work research item promotion via image pollution
in centralized recommendation with white-box settings. [6] further investigates such attacks under
black-box settings. However, all of the above works are based on centralized recommender systems,
and they assume that users’ recommendation list is available, which is infeasible in FedRecs.
Therefore, in this paper, we explore image poisoning attacks in FedRecs to reveal the threats of
incorporating visual information, and then, we propose defense solution to prevent the threat.

2.4 Diffusion Models
Motivated by non-equilibrium thermodynamics [45], the diffusion model has shown a strong
ability to generate high-quality images [7, 46]. Different from other commonly used generative
models such as GANs [9] and VAEs [23], diffusion models generate samples by predicting the noise.
Therefore, they are naturally suitable for adversarial image purification [57]. Nie et al. [36] was
the first to use the diffusion model to purify adversarial images. Wang et al. [50] utilized guidance
to further improve the quality and fidelity of purified images. This paper takes the first time to
integrate diffusion models into the visually-aware federated recommender systems to allow the
secure using of visual information.

3 VISUALLY-AWARE FEDERATED RECOMMENDER SYSTEMS
In this part, we provide the fundamental settings of our visually-aware federated recommender
systems. The federated recommendation framework used in this paper is the same as all previous
FedRecs attack works [41, 63, 68], which was originally proposed by [2].

LetU andV denote the set of benign users and items, respectively. |U| and |V| are the sizes of
users and items. In FedRec, each user 𝑢𝑖 is a client who manages its’ own training dataset D𝑖 . D𝑖

consists of many user-item interactions (𝑢𝑖 , 𝑣 𝑗 , 𝑟𝑖 𝑗 ), where 𝑟𝑖 𝑗 is a binary rating denoting whether
user 𝑢𝑖 has interacted with item 𝑣 𝑗 . That is, 𝑟𝑖 𝑗 = 1 means 𝑢𝑖 has interacted with 𝑣 𝑗 , while 𝑟𝑖 𝑗 = 0
indicates no interaction between 𝑢𝑖 and 𝑣 𝑗 . In addition, a single image 𝑖 𝑗 is available for each item
𝑣 𝑗 as an auxiliary description, which is uploaded by the item provider and managed by the central
server.V+𝑖 andV−𝑖 are the sets of interacted items and non-interacted items for user 𝑢𝑖 . Using the
above data, FedRec aims to predict 𝑟𝑖 𝑗 between user 𝑢𝑖 and non-interacted item 𝑣 𝑗 and recommend
items according to top-K highest prediction scores.
To ensure privacy protection, the parameters of the recommendation model are divided into

private and public parameters. Private parameters are generally user embeddings U, which are
maintained by corresponding users and are never shared with others. The public parameters, on
the other hand, include item embeddings V, visual feature extractor 𝚽, visual feature transform
matrix E and other parameters 𝚯, are transmitted between a central server and clients to achieve
collaborative learning.

Federated learning protocol. In FedRecs, a central server coordinates the learning process.
Initially, the central server initializes all public parameters, meanwhile, the clients initialize their
corresponding private parameters locally. Then, a recommender system is trained by iteratively
repeating the following steps. First, the central server randomly selects a set of users U𝑡−1 to
participate in the training process and sends the public parameters to these users. The selected users
combine the received public parameters with the private parameters to form a local recommendation
model. The local recommender system is trained on local datasetD𝑖 by optimizing certain objective
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functions, such as:

L𝑟𝑒𝑐 = −
∑︁
(𝑢𝑖 ,𝑣𝑗 ,𝑟𝑖 𝑗 ) ∈D𝑖

𝑟𝑖 𝑗 log 𝑟𝑖 𝑗 + (1 − 𝑟𝑖 𝑗 ) log(1 − 𝑟𝑖 𝑗 ) (1)

After local training, the selected user 𝑢𝑖 updates its private parameters (E.q. 2) and transmits public
parameters’ gradients ∇Θ𝑡−1

𝑖 , ∇E𝑡−1
𝑖 and ∇V𝑡−1

𝑖 to the central server:

u𝑡𝑖 = u𝑡−1𝑖 − 𝑙𝑟∇u𝑡−1𝑖 (2)

Then, the central server aggregates all received public parameter updates. The following formula
takes item embeddings as an example:

V𝑡 = V𝑡−1 − 𝑙𝑟
∑︁

𝑢𝑖 ∈U𝑡−1

∇V𝑡−1
𝑖 (3)

where 𝑙𝑟 is the learning rate. Note that the visual extractor Φ can be trainable or freeze. In this
paper, we freeze the visual extractor Φ, since it is a large pretrained model and retraining it will
dramatically increase the difficulty of convergence.

Base recommendation model. Generally, the above federated recommendation framework is
compatible with most existing deep learning-based recommendation models [66]. In our previous
work [62], we choose two classical and widely used recommenders, Neural Collaborative Filtering
(NCF) [15] and LightGCN [14], as the base model. In this paper, we extend these two models to
consider visual information when making recommendations, namely VNCF and LightVGCN. And
then, we integrate these two models into the above FedRec framework to form Fed-VNCF and
Fed-LightVGCN.
In Fed-VNCF, the local recommendation model in client 𝑢𝑖 predicts 𝑟𝑖 𝑗 using the following

formula:
𝑟𝑖 𝑗 = 𝜎 (h⊤𝐹𝐹𝑁 ( [u𝑖 , v𝑗 ,E𝚽(𝑖 𝑗 )])) (4)

where h and E are trainable public parameters, u𝑖 and v𝑗 are embeddings of user 𝑢𝑖 and item 𝑣 𝑗 ,
and [·] is concatenation operation.

For Fed-LightVGCN, the user-item interactions are viewed as a bipartite graph and all users and
items are treated as distinct nodes. Then, user and item embeddings are learned by propagating
their neighbour nodes’ embeddings:

u𝑙𝑖 =
∑︁
𝑗 ∈N𝑢𝑖

1√︃��N𝑢𝑖

��√︃��N𝑣𝑗

�� (v𝑙−1𝑗 + E𝚽(𝑖 𝑗 ))

v𝑙𝑗 =
∑︁
𝑖∈N𝑣𝑗

1√︃��N𝑣𝑗

��√︃��N𝑢𝑖

��u𝑙−1𝑖

(5)

where N𝑢𝑖 and N𝑣𝑗 denote the sets of 𝑢𝑖 ’s and 𝑣 𝑗 ’s neighbors. 𝑙 is the propagation layer. In order to
protect privacy, each user can only perform the above calculation on its local bipartite graph. After
propagation, we aggregate all layers’ embeddings as the final user and item embeddings:

u𝑖 =
𝐿∑︁
𝑙=0

u𝑙𝑖 , v𝑗 =

𝐿∑︁
𝑙=0

v𝑙𝑗 (6)

Finally, the same as VNCF, we use E.q. 4 to compute the predicted preference scores.
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Algorithm 1 Visually-aware Federated Recommender Systems.
Input: global epoch 𝑇 ; local epoch 𝐿; learning rate 𝑙𝑟 , visual extractor Φ . . .
Output: public parameter V, E and Θ, local client embedding u𝑖 |𝑖∈U
1: Initialize public parameter V0, E0, and Θ0

2: Initialize item image set I0 = {}
3: for each round t =1, ..., 𝑇 do
4: if new images uploaded by item providers then
5: I𝑡 ← update I𝑡−1 // The threats of image poisoning attack
6: end if
7: sample a fraction of clientsU𝑡−1 fromU // The threats of model poisoning attack
8: for 𝑢𝑖 ∈ U𝑡−1 in parallel do
9: // run on client 𝑢𝑖
10: calculate ∇u𝑡−1𝑖 , ∇V𝑡−1

𝑖 , and ∇E𝑡−1
𝑖 , and ∇Θ𝑡−1

𝑖 using E.q. 1
11: u𝑡𝑖 ← update local private parameters using E.q. 2
12: upload ∇V𝑡−1

𝑖 , ∇E𝑡−1
𝑖 and ∇Θ𝑡−1

𝑖 to the central server
13: end for
14: V𝑡 ,E𝑡 ,Θ𝑡 ← aggregate gradients using E.q. 3
15: end for

4 ADVERSARIAL ITEM PROMOTION VIA IMAGE AND MODEL POISONING
ATTACKS

In this section, we present the details of our attacks, including the model poisoning attack (PSMU),
image poisoning attack (PSMU(V)), and the combination of model poisoning attack and image
poisoning attack (PSMU++).

4.1 Attack Task Formulation
Manipulating recommender systems includes promoting and demoting the rank order of items. In
this work, we mainly discuss item promotion, since the demotion can be achieved by reversing the
attack objective or promoting all other items. Adversarial item promotion has been widely studied
in the poisoning attacks for FedRecs, which aims to increase the target item’s exposure chances
motivated by financial incentives [68]. However, all previous works only consider item promotion
in FedRecs with collaborative data, none of them investigates the threat in visually-aware FedRecs.
In this section, we present preliminaries and basic settings of adversarial item promotion in this
paper.

Attack goal. Obviously, the goal of adversaries is to promote target items to as many users
as possible. Formally, given that a recommender system recommends 𝐾 items V̂𝑖 to user 𝑢𝑖 , the
adversaries would like to improve the target item’s exposure rate at rank 𝐾 (ER@K):

𝐸𝑅@𝐾 =
1���Ṽ��� ∑︁

𝑣𝑗 ∈Ṽ

���{𝑢𝑖 ∈ U|𝑣 𝑗 ∈ V̂𝑖 ∧ 𝑣 𝑗 ∈ V−𝑖
}�����{𝑢𝑖 ∈ U|𝑣 𝑗 ∈ V−𝑖 }�� (7)

Ṽ is the set of target items.
Attack approach. We explore two kinds of poisoning attacks in this work: model poisoning

attacks (a.k.a., gradient poisoning attacks) and image poisoning attacks. For model poisoning
attacks, as shown in the upper part of Fig. 1, the attacker will employ a group of malicious users Ũ
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to upload poisoned gradients to optimize E.q. 7:

𝑎𝑟𝑔𝑚𝑎𝑥
{∇Ṽ𝑡 ,∇Ẽ𝑡 ,∇Θ̃𝑡 }𝑇−1𝑡=𝑠

𝐸𝑅@𝐾 (U𝑇 ,V𝑇 ,E𝑇 ,Θ𝑇 ) (8)

where 𝑠 is the epoch when the attacks are launched. ∇Ṽ𝑡 , ∇Ẽ𝑡 and ∇Θ̃𝑡 are gradients generated by
malicious users at epoch 𝑡 . These poisoned gradients will be aggregated in the central server using
E.q. 3, since the central server is unaware of poisoned attacks.

For image poisoning attacks, we assume that the adversary is the target item image provider. It
increases the target item’s ER@K by uploading an image with human-unaware perturbations as
follows:

𝑎𝑟𝑔𝑚𝑎𝑥

{Ĩ𝑡 }𝑇−1𝑡=𝑠

𝐸𝑅@𝐾 (U𝑇 ,V𝑇 ,E𝑇 ,Θ𝑇 )

ĩ𝑡𝑗 = i𝑗 + 𝜹𝑡
𝑗 , for ĩ𝑡𝑗 ∈ Ĩ𝑡

(9)

where Ĩ𝑡 is the set of poisoned images for target items Ṽ at epoch 𝑡 . Note that the model poisoning
attacks and image poisoning attacks can be launched simultaneously to promote the same target
items, as follows:

𝑎𝑟𝑔𝑚𝑎𝑥

{∇Ṽ𝑡 ,∇Ẽ𝑡 ,∇Θ̃𝑡 ,Ĩ𝑡 }𝑇−1𝑡=𝑠

𝐸𝑅@𝐾 (U𝑇 ,V𝑇 ,E𝑇 ,Θ𝑇 ) (10)

Attack prior knowledge. Following our previous work [62], in this paper, we assume that for
both model poisoning attacks and image poisoning attacks, the attacker knows public parameters
V, E, and Θ received from the central server, which is consistent with FedRecs’ protocol. Besides,
we assume the image poisoning attacker already knows the visual extractor Φ, which is reasonable
since Φ is an open-source pretrained model and it can be easily inferred by comparing the image
feature vectors generated from the system and from guessed extractors.

4.2 Poisoning Attack
Formulate the optimization problem. The goal of all our attacks, including PSMU, PSMU(V),
and PSMU++, is to promote target items Ṽ to as many users as possible. To achieve that, these
attacks use different approaches to maximize E.q. 7, such as E.q. 8, E.q. 9, and E.q. 10. However,
for all these attacks, it is challenging to directly optimize their objective function because of the
following two problems: (1) The complex dependence of model parameter updates [62]; (2) ER@K
is not differentiable; For the first problem, instead of finding a globally optimal solution, we greedily
calculate the optimal results at each epoch, which will simplify the optimization problem:

PSMU: 𝑎𝑟𝑔𝑚𝑎𝑥
{∇Ṽ𝑡−1,∇Θ̃𝑡−1 }

𝐸𝑅@𝐾 (U𝑡−1,V𝑡−1 − 𝑙𝑟∇Ṽ𝑡−1,E𝑡−1 − 𝑙𝑟∇Ẽ𝑡−1,Θ𝑡−1 − 𝑙𝑟∇Θ̃𝑡−1)

PSMU(V): 𝑎𝑟𝑔𝑚𝑎𝑥

{Ĩ𝑡−1 }
𝐸𝑅@𝐾 (U𝑡−1,V𝑡−1,E𝑡−1,Θ𝑡−1)

PSMU++: 𝑎𝑟𝑔𝑚𝑎𝑥

{∇Ṽ𝑡−1,∇Θ̃𝑡−1,Ĩ𝑡−1 }
𝐸𝑅@𝐾 (U𝑡−1,V𝑡−1 − 𝑙𝑟∇Ṽ𝑡−1,E𝑡−1 − 𝑙𝑟∇Ẽ𝑡−1,Θ𝑡−1 − 𝑙𝑟∇Θ̃𝑡−1)

(11)
For the second problem, we approximately optimize ER@K by forcing the target items’ predicted
preference scores to be higher than other recommended items’ scores:

L𝑎𝑡𝑡 =
∑︁
𝑢𝑖 ∈U

∑︁
𝑣𝑡 ∈Ṽ∧𝑣𝑡∉V+𝑖

∑︁
𝑣𝑗 ∈V̂𝑖∧𝑣𝑗∉Ṽ

𝜎 (𝑟𝑖 𝑗 − 𝑟𝑖𝑡 ) (12)
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We omit the time index for the prediction scores in E.q. 12 to make the formula clear. To compute
E.q. 12, we need the feedback from benign users (i.e., the recommended items V̂𝑖 and the scores
of target items 𝑟𝑖𝑡 ). The calculation of V̂𝑖 and 𝑟𝑖𝑡 are based on user 𝑢𝑖 ’s private parameters, which
is strictly not accessible in FedRecs. Following our previous work [62], we construct a group of
synthetic users to replace benign users. Specifically, we randomly select a group of items as fake
user 𝑢𝑖 ’s interacted items Ṽ+𝑖 . Based on Ṽ+𝑖 , we build the synthetic dataset D̃𝑖 . Then, we fix all
public parameters and train the fake user’s user embeddings with the recommendation objective:

Ũ𝑡−1 = 𝑎𝑟𝑔𝑚𝑖𝑛
Ũ𝑡−1

L𝑟𝑒𝑐 (Ũ𝑡−1,V𝑡−1,E𝑡−1,Θ𝑡−1, D̃𝑡−1) (13)

Note that at different epochs, we reconstruct different Ṽ+𝑖 and D̃𝑖 , so that even with a small size of
malicious users, we can still simulate many synthetic users.

After constructed synthetic users, E.q. 12 is transformed to:

L̃𝑎𝑡𝑡 =
∑︁
𝑢𝑖 ∈Ũ

∑︁
𝑣𝑡 ∈Ṽ∧𝑣𝑡∉Ṽ+𝑖

∑︁
𝑣𝑗 ∈ ^̃V𝑖∧𝑣𝑗∉Ṽ

𝜎 (𝑟𝑖 𝑗 − 𝑟𝑖𝑡 ) (14)

where ^̃V𝑖 is the set of items that have the highest prediction scores for malicious user 𝑢𝑖 .
Optimizing via poisoned gradients (PSMU). As shown in E.q. 11, PSMU promotes target

items by uploading poisoned gradients to the central server. Specifically, given current public
parameters V𝑡−1, E𝑡−1, Θ𝑡−1, and the calculated fake user embeddings Ũ𝑡−1, we compute the
poisoned gradients as follows:

∇Ṽ𝑡−1 =
𝜕

𝜕V𝑡−1 L̃
𝑎𝑡𝑡 (Ũ𝑡−1,V𝑡−1,E𝑡−1,Θ𝑡−1)

∇Ẽ𝑡−1 =
𝜕

𝜕E𝑡−1 L̃
𝑎𝑡𝑡 (Ũ𝑡−1,V𝑡−1,E𝑡−1,Θ𝑡−1)

∇Θ̃𝑡−1 =
𝜕

𝜕Θ𝑡−1 L̃
𝑎𝑡𝑡 (Ũ𝑡−1,V𝑡−1,E𝑡−1,Θ𝑡−1)

(15)

It is worth noting that compared to original poison FedRecs, in visually-aware FedRecs, we also
poison public parameters related to visual signals, such as E, for a fair comparison. Naturally,
poisoning more items will make the attack goal easier to achieve, however, it will also cause too
many side effects on FedRec performance. Therefore, for item embeddings, PSMU only uploads
poisoned gradients for target items’ embeddings.

∇Ṽ𝑡−1 =

{
0 𝑣𝑚 ∉ 𝑉

∇Ṽ𝑡−1
𝑚 𝑣𝑚 ∈ 𝑉

𝑚 = 0, 1, . . . , |V| (16)

Optimizing via poisoned images (PSMU(V)). In visually-aware FedRecs, item images are
provided by external sources, which are usually item providers. These item providers may provide
images with slight pollutions to mislead recommender systems to give higher preference scores to
their items for as many users as possible. Formally, given V𝑡−1, E𝑡−1, Θ𝑡−1 and Ũ𝑡−1, the attacker
calculates perturbations as follows:

𝜹𝑡−1 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜹𝑡−1

L̃𝑎𝑡𝑡 (Ũ𝑡−1,V𝑡−1,E𝑡−1,Θ𝑡−1), ∥𝜹 ∥ ≤ 𝜖 (17)

To avoid the perturbations being aware by normal users, the attacker should restrict the size of
noise 𝜹𝑡−1 with the bound 𝜖 at each epoch. Previous visual attacks in centralized recommender
systems usually set 𝜖 to at least 32 for a 255 pixel value range. In this paper, we only use 𝜖 = 4 then
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we can achieve ER@5=1.0 results, which shows the severe threats of image poisoning attacks in
FedRecs.

PSMU++. Since PSMU and PSMU(V) have consistent objectives and there is no conflict between
their poisoning implementations, the adversary can combine these two attacks together to form a
more effective item promotion attack, named PSMU++. In PSMU++, we assume the item providers
are the adversaries and they not only upload poisoned product images, but also upload poisoned
gradients using a group of compromised users. Specifically, the malicious users upload poisoned
gradients by launching the PSMU algorithm, meanwhile, the item provider launch PSMU(V) based
on these malicious users’ synthetic user embeddings (i.e., Algorithm 3 Line 4).

Algorithm 2 PSMU: Poisoning with Synthetic Malicious Users
Input: public parameters V𝑡−1, Θ𝑡−1, E
Output: public parameter poisoned gradients ∇Ṽ𝑡−1

𝑖 , ∇Ẽ𝑡−1
𝑖 , ∇Θ̃𝑡−1

𝑖

1: // run on malicious client 𝑢𝑖
2: randomly construct training set D̃𝑡−1

𝑖

3: calculate synthetic user embedding ũ𝑡−1𝑖 using E.q. 13
4: calculate ∇Ṽ𝑡−1

𝑖 , ∇Ẽ𝑡−1
𝑖 , ∇Θ̃𝑡−1

𝑖 using E.q. 15
5: ∇Ṽ𝑡−1

𝑖 ← constraint ∇Ṽ𝑡−1
𝑖 using E.q. 16

6: upload ∇Ṽ𝑡−1
𝑖 , ∇Ẽ𝑡−1

𝑖 , ∇Θ̃𝑡−1
𝑖 to the central server

Algorithm 3 PSMU(V): Poisoning with Synthetic Malicious Users via Visual Information
Input: public parameters V𝑡−1, Θ𝑡−1, E
Output: image adversarial perturbation 𝜹𝑡−1

1: // run on target items’ image provider
2: if malicious users Ũ exist then
3: // PSMU++
4: request for malicious user embeddings Ũ𝑡−1

5: else
6: randomly construct training set D̃𝑡−1 and calculate user embeddings Ũ𝑡−1 using E.q. 13
7: end if
8: calculate 𝜹𝑡−1 using E.q. 17
9: construct and upload adversarial images Ĩ𝑡−1

5 GUIDED DIFFUSION MODEL FOR PURIFICATION AND DETECTION
The experimental results in Section 6 indicate that traditional model poisoning attacks, such as
PSMU, are ineffective in visually-aware FedRecs. However, the presence of visual information creates
another backdoor, which provides an opportunity for corporations to promote items effectively
through PSMU and PSMU(V), underscoring the urgent need for image poisoning defense. GDMPD
leverages a pretrained Denoising Diffusion Probabilistic Model (DDPM) [16, 45] to purify all
uploaded images with guidance, eliminating the need for additional computation resources for
training. After purification, adversarial images have a high probability of losing their delicate
perturbations. To maintain the recommender system, it is essential to detect which images are
adversarial. Based on the purified image, our GDMPD achieves an adversarial image detection
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… … … …

𝑥% − 𝑥'%

guidance
c𝑜𝑠_𝑠𝑖𝑚(Φ(𝑥") −Φ(𝑥'"))	 < 	ρ?

Fig. 2. Overview of the proposed image poisoning defender: GDMPD.

function. Notably, our detection method is also training-free. Fig. 2 gives an overview illustration
of our GDMPD.

5.1 Diffused Image Guided Purification
In Section 4, we use i𝑡𝑗 to represent the visual discription of item 𝑗 uploaded at epoch 𝑡 . For clarity
of description, when using the image as input for GDMPD, we denote it as x. Generally, DDPM
consists of two Markov processes: the diffusion process and the reverse process. In the diffusion
process, DDPM adds noise to the input image at each time step until it becomes Gaussian noise.
Then, the reverse process gradually removes this noise to recover the input image.

Diffusion process. Formally, assume x0 be the input image where 𝑡 = 0. Note that to avoid
misunderstanding with FedRec’s global epochs 𝑡 denoted by superscript, here we use subscript 𝑡 to
denote the diffusion time step. 𝑇 is the length of diffusion steps. DDPM incrementally corrupts the
input image x0 into Gaussian noise as follows:

𝑞(x1, x2, . . . , x𝑇 |x0) =
𝑇∏
𝑡=1

𝑞(x𝑡 |x𝑡−1)

𝑞(x𝑡 |x𝑡−1) = N(x𝑡 ;
√︁
1 − 𝛽𝑡x𝑡−1, 𝛽𝑡 I)

(18)

whereN(𝑥, 𝜇, 𝜎2) means 𝑥 is sampled from a Gaussian distribution with a mean 𝜇 and variance 𝜎 . 𝛽𝑡
is generated from a predefined noise adding schedule 𝛽 . Common settings of 𝛽 include consine [16],
square-root [25], and linear schedule [50]. In this paper, following [7, 50], we use the linear schedule
and define 𝛽𝑡 as: 𝛽𝑡 = 𝑡−1

𝑇−1 (𝛽𝑇 − 𝛽1), where 𝛽𝑇 = 2 × 10−2 and 𝛽1 = 1 × 10−4 are hyper-parameters.
According to [16], we can directly calculate x𝑡 at an arbitrary diffusion step directly conditioned
on x0 with following euqation:

𝑞(x𝑡 |x0) = N(x𝑡 ;
√
𝛼𝑡x0, (1 − 𝛼𝑡 )I)

𝛼𝑡 =

𝑡∏
𝑖=1

𝛼𝑖 , 𝛼𝑖 = 1 − 𝛽𝑖
(19)

Then, with reparameter trick, we can generate x𝑡 as follows:

x𝑡 =
√
𝛼𝑡x0 +

√︁
1 − 𝛼𝑡𝜻 (20)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: August 2018.



1:14 Yuan et al.

where 𝜻 is noise sampled from standard Gaussian distribution, i.e., 𝜻 ∼ N(0, I).
Considering the input image is adversarial image x𝑎𝑑𝑣0 (a.k.a., ĩ in Section 4) and x𝑎𝑑𝑣0 = x0 + 𝜹 ,

then, after 𝑡 steps diffusion, the image equals to:

x𝑎𝑑𝑣𝑡 =
√
𝛼𝑡x0 +

√
𝛼𝑡𝜹 +

√︁
1 − 𝛼𝑡𝜻 (21)

When 𝑡 increases,
√
𝛼𝑡 will gradually decrease while

√
1 − 𝛼𝑡 will gradually increase. Since ∥𝜹 ∥

should be small (lower than 𝜖) to guarantee the perturbations’ unawareness, after an appropriate
length of diffusion, the magnitude of Gaussian noise 𝜻 will be large enough to submerge the
delicately calculated perturbation 𝜹 . Meanwhile, the semantic meaning of original image x0 still
can be largely preserved, since 𝜹 is negligible compared with x0.
Reverse process. The reverse process is a Markov process that denoises the diffused x𝑡 to

approximate the original input x0 by predicting the noise added in the diffusion process. Formally,
the reverse process from step 𝑇 to 0 is as follows:

𝑝w (x̂0, x̂1, . . . , x̂𝑇−1 |x𝑇 ) =
𝑇∏
𝑡=1

𝑝w (x̂𝑡−1 |x̂𝑡 )

𝑝w (x̂𝑡−1 |x̂𝑡 ) = N(x̂𝑡−1; 𝝁w (x̂𝑡 , 𝑡), Σw (x̂𝑡 , 𝑡)I)
(22)

where the mean 𝝁w (x𝑡 , 𝑡) is a neural network parameterized by w, the variance Σw (x𝑡 , 𝑡) can be
either neural network or predefined time step dependent constant [16, 35]. As results, the reverse
process iteratively samples x̂𝑡−1 using 𝑝w (x̂𝑡−1 |x̂𝑡 ) to get the predicted input image x̂0. Assume the
input image is adversarial image x𝑎𝑑𝑣0 , after the process of E.q. 21, the adversarial perturbations are
corrupt by gradually added Gaussian noise. Then, E.q. 22 is used to eliminate the Gaussian noise and
is very likely to simultaneously remove the perturbations. This is because: (1) The normalization of
perturbation is small and the adversarial information is destroyed by adding noise in x𝑎𝑑𝑣𝑡 ; (2) We
use a pretrained DDPM which is learned on normal image datasets, therefore, it tends to recover
the image to the domain of clean images in the reverse process.

Guided reverse process. However, simply using DDPM to purify uploaded images in FedRecs
will have the following challenge: how to largely recover the original semantic of the input image
meanwhile remove most perturbations. Specifically, if the diffusion steps 𝑡 are too large, the original
information of x0 in x𝑡 will be destroyed and the results of the reverse process will tend to be
random [7]. As a result, the FedRecs’ recommendation performance will be compromised since all
items’ visual information will be altered by the defense mechanism. On the contrary, when the
diffusion steps are too small, the diffusion and reverse process may not be strong enough to purify
all perturbations. In FedRecs, since perturbations are usually small, when we diffuse the image to
Gaussian distribution, the perturbations will be largely be submerged. Therefore, the challenge is
mainly about how to recover an image with high quality.

To improve the fidelity of images generated by the reverse process, we propose to add guidance
during the reverse process. Concretely, we use the counterpart image x𝑡 in the diffusion steps to
guide x̂𝑡 ’s generation as shown in Fig. 2. To achieve this, we modify the reverse process 𝑝w (x̂𝑡−1 |x̂𝑡 )
in E.q. 22 to condition on x𝑡 , i.e., 𝑝w (x̂𝑡−1 |x̂𝑡 , x𝑡 ). According to [7, 45], we can further get the
following approximation:

log 𝑝w (x̂𝑡−1 |x̂𝑡 , x𝑡 ) ≈ log 𝑝w (x̂𝑡−1 |x̂𝑡 )𝑝 (x𝑡 |x̂𝑡 )
≈ log 𝑝 (𝑧) (23)

𝑧 ∼ N(𝝁w (x̂𝑡 , 𝑡) + Σw (x̂𝑡 , 𝑡)∇x̂𝑡 log 𝑝 (x𝑡 |x̂𝑡 ), Σw (x̂𝑡 , 𝑡)I) (24)
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where 𝑝w (x̂𝑡−1 |x̂𝑡 ) is the probability from unconditional DDPM and 𝑝 (x𝑡 |x̂𝑡 ) can be interpreted as
“how close x𝑡 and x̂𝑡 are”. In this paper, 𝑝 (x𝑡 |x̂𝑡 ) is designed as follows:

𝑝 (x𝑡 |x̂𝑡 ) = exp(𝜆 ∥x𝑡 − x̂𝑡 ∥) (25)
𝜆 is the factor that controls the scale of guidance. ∥·∥ is mean squared error. Combined with E.q. 24,
we can get:

𝑧 ∼ N(𝝁w (x̂𝑡 , 𝑡) + 𝜆Σw (x̂𝑡 , 𝑡)∇x̂𝑡 ∥x𝑡 − x̂𝑡 ∥ , Σw (x̂𝑡 , 𝑡)I) (26)
Finally, we can use the pretrained DDPM to infer purified image x̂0 given the input image x0.
Algorithm 4 illustrates how to purify uploaded item visual information using our diffused image-
guided DDPM.

Algorithm 4 Diffused Image Guided Purification
Input: pretrained DDPM 𝝁w (x̂𝑡 , 𝑡) and Σw (x̂𝑡 , 𝑡), guidance factor 𝜆, input image x0, . . .
Output: purified image x̂0
1: // diffusion process
2: for each round t=1, . . . ,𝑇 do
3: calculate diffused image x𝑡 with E.q. 19 and E.q. 20
4: end for
5: // reverse process
6: for each round t=𝑇, . . . , 1 do
7: 𝝁, Σ← 𝝁w (x̂𝑡 , 𝑡), Σw (x̂𝑡 , 𝑡)
8: sample x̂𝑡−1 from N(𝝁 + 𝜆Σ∇x̂𝑡 ∥x𝑡 − x̂𝑡 ∥ , ΣI)
9: end for

5.2 Adversarial Image Detection
The image purification function guarantees that all uploaded images used for recommendations are
unlikely to contain adversarial perturbations. However, in real-life scenarios, it is also essential to
detect adversarial images as it provides insights into system maintenance. For example, the system
manager can collect detected images to analyze potential attacks and even punish the detected
adversarial image providers directly.
Detecting adversarial images in FedRecs is non-trivial since we only have normal images and

we cannot get adversarial images for training before we can detect them. As we know, image
poisoning attacks achieve adversarial goals by adding imperceptible perturbations to the image.
These perturbations can cause remarkable changes for the image feature vectors which are encoded
by the extractor 𝚽. Based on this characteristic, we propose a training-free method to detect
adversarial images. Specifically, we assume that the image purified by Algorithm 4 will be a “safe”
image. In other words, the purified image will not cause remarkable changes to its encoding feature,
since the purifications are destroyed. Therefore, we employ the feature extractor to encode the
image before and after purification and compare the difference between these two feature vectors.
If the similarity of these two feature vectors is smaller than a threshold 𝜌 , the image will be detected
as an adversarial image:

𝑐𝑜𝑠_𝑠𝑖𝑚(𝚽(x0) − 𝚽(x̂0)) < 𝜌 (27)
We use cosine similarity to measure the difference of image vectors2. 𝜌 is a preset hyper-parameter
and its value will directly influence the accuracy of the detector. In this paper, we set 𝜌 as follows:
first, we use our DDPM to purify a large number of clean images, such as those from public datasets
2We also tried Euclidean distance and get equivalent experimental results.
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like ImageNet. Next, we calculate the difference between purified and original images and use
statistics to define 𝜌 . If the difference between purified and original images is smaller than 𝜌 , such
an image is likely different from clean images from the image extractor perspective, indicating that
it is an adversarial image.

6 EXPERIMENTS
In this section, we take extensive experiments to answer the following research questions (RQs):
• RQ1. Are current state-of-the-art model poisoning attacks still effective for visually-aware
federated recommender systems?
• RQ2. Are there any risks of using visual information in federated recommender systems?
i.e., Are our PSMU(V) and PSMU++ effective for visually-aware federated recommendations?
• RQ3. How is the effectiveness of our diffusion model-based defense method?

6.1 Dataset
In this paper, we leverage two popular federated recommendation datasets for evaluation:MovieLens-
1M (ML) [12] and Amazon Cell Phone (AZ) [31]. ML contains 6, 040 users and 3, 706 items with
1, 000, 208 feedback, and 3, 301 items have image descriptions. AZ includes 103, 593 interactions
with 13, 174 users, 5, 970 products, and 5, 877 visual signals. All users have at least 5 interactions
with different products. Following [62, 68], we binarize the user-item ratings, where all ratings are
transformed to 𝑟𝑖 𝑗 = 1 and negative instances are sampled with 1 : 4 ratio. Table 1 illustrates the
basic statistics of these two datasets. It is worth pointing out that we choose two datasets with very
different data sparsity to show the data sparsity problem’s impacts on our poisoning attacks.

Table 1. Statistics of recommendation datasets

Dataset #users #items #interactions Avg. Density
ML 6,040 3,706 1,000,208 166 4.46%
AZ 13,174 5,970 103,593 8 0.13%

6.2 Evaluation Protocol
For both model poisoning attacks and image poisoning attacks, the evaluation protocol is consistent
with our previous work [62]. Specifically, FedRecs are trained without attacks for a few epochs and
then we launch the attacks. The FedRecs are trained until convergence or reaching the pre-defined
maximum global epochs. We select the most unpopular items as target items. ER@5 is used to
evaluate both model poisoning attacks and image poisoning attacks. The purification of the defense
method is evaluated from two aspects: (1) whether it can reduce target items’ ER@5 to normal
level; (2) whether it deteriorates recommendation performance (NDCG@20). The detection of the
defense method is evaluated by accuracy.

6.3 Parameter Settings
All the experiments are implemented using PyTorch [37]. For both Fed-NCF, Fed-VNCF, Fed-
LightGCN, and Fed-LightVGCN, the dimension of user and item embeddings are set to 32 fol-
lowing [62]. We use the deep pretrained CNN model from [44] as our visual extractor 𝚽3. Then,
the visual feature extracted by CNN model is transformed to 32 dimension size vector by the
3We also tried other visual extractors such as ResNet and get similar results and trends, since our attack and defense do not
make any special assumption on the visual extractor.
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Fig. 3. The performance comparison of existing state-of-the-art (SOTA) model poisoning attacks for general
federated recommender systems and visually-aware federated recommender systems. All current SOTAmodel
poisoning attacks are ineffective in visually-aware FedRecs.

visual feature transform matrix E. Three layers of feedforward layers are utilized to process the
concatenated user, item, and visual feature vectors (optional) with sizes of [96, 32, 16] for Fed-VNCF
and Fed-LightVGCN and [64, 32, 16] for Fed-NCF and Fed-LightGCN, respectively. The layer of
LightGCN propagation is 1 for both Fed-LightGCN and Fed-LightVGCN. Adam [22] with a learning
rate of 0.001 is adopted as the optimizer. The same as in [62], all poisoning attacks are launched at
8th global epoch. The number of selected items for synthetic users

���Ṽ+𝑖 ��� is 30. For model poisoning
attacks, the proportion of malicious users 𝜉 equals 0.1% without specific mention. For image
poisoning attacks, 𝜖 is 4 as default, which is much smaller than visual attacks in centralized recom-
mendation [6, 29]. For the diffusion model, we use an unconditional 256 ∗ 256 DDPM4 pretrained
by [7]. The number of diffusion steps is set to 1000 according to [7]. The guidance factor 𝜆 is 1000.

6.4 Effectiveness of Model Poisoning Attacks for Visually-aware FedRecs (RQ1)
All existing model poisoning attacks [41, 42, 68], including our previous work [62], have demon-
strated their effectiveness only in FedRecs with collaborative data. In this paper, we argue that the
effectiveness of these attacks is due to the sparsity of collaborative information, which results in less
robust item embeddings (especially for cold items) due to insufficient data description. Therefore,
when additional item auxiliary information such as product visual description is incorporated,
these poisoning attacks may become ineffective.

To support our argument, we conduct experiments with both general FedRecs and visually-aware
FedRecs using A-hum and PSMU. A-hum is the earlier state-of-the-art model poisoning attack
proposed by Rong et al [41]. PSMU is the current state-of-the-art model poisoning attack proposed
by our previous work [62]. We choose these two attacks to do experiments since our previous
work [62] already showed that other model poisoning attacks have very poor performance with
limited malicious users (𝜉 = 0.1%).
Fig. 3 presents the performance comparison of these two model poisoning attacks on FedRecs

with or without visual information. For Fed-NCF and Fed-LightGCN, both PSMU and A-hum have
the ability to influence the value of exposure rate on all datasets, meanwhile, our PSMU achieves
better performance than A-hum (i.e., achieving higher ER@5 values or achieving ER@5=1.0 with
fewer epochs.) This result proves the effectiveness of these two model poisoning attacks for FedRecs
with only collaborative information. Besides, by comparing the same attack’s performance in the
same FedRec across datasets, we can observe that the sparser the dataset is, the better performance
the attack has. For example, PSMU obtains 1.0 ER@5 scores using about 4 and 3 epochs on the ML
4https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion.pt
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(d) Fed-LightVGCN on AZ.

Fig. 4. The effectiveness of PSMU with more malicious user proportion in visually-aware FedRecs.

dataset for Fed-NCF and Fed-LightGCN, while it only costs 3 and 1 epochs on AZ. However, when
FedRecs were equipped with product visual information, all these attacks’ ER@5 scores dropped
to 0 in all cases (the line of “A-hum for Visually-aware FedRec” and “PSMU for Visually-aware
FedRec” in Fig. 3), which indicates that incorporating visual information can make Fed-NCF and
Fed-LightGCN more robust to malicious poisoning attacks.

In Fig. 3, we have already demonstrated that PSMU, our state-of-the-art model poisoning attack,
is unable to promote target items in visually-aware FedRecs when using the default setting of
our previous work [62]. However, the effectiveness of PSMU may increase with more malicious
users, although the cost of launching such attacks will also increase. Therefore, we investigate the
effectiveness of PSMU with more malicious users in Fig. 4. The results show that PSMU requires a
higher proportion of malicious users to be effective in visually-aware FedRecs. Specifically, PSMU
cannot be effective until the proportion of malicious users increased to 1.5% and 0.5% for Fed-VNCF
onML and AZ, respectively, which are 15 and 5 times higher than the settings for FedRecs with only
collaborative data. To manipulate Fed-LightVGCN, PSMU requires at least 25 and 20 times more
malicious users on ML and AZ than the default settings. As a result, the costs of utilizing model
poisoning attacks to compromise visually-aware FedRecs are much higher than the original FedRecs.
Furthermore, by comparing different models on the same dataset (i.e., Fig. 4a and Fig. 4c, Fig. 4b
and Fig. 4d), we find that Fed-LightVGCN is relatively more robust than Fed-VNCF when facing
model poisoning attacks. This is because visual information is fully utilized in Fed-LightVGCN
compared to Fed-NCF: Fed-LightVGCN not only uses visual information for directly predicting the
preference scores (E.q. 4) but also utilizes it during LightGCN propagation (E.q. 5).

By combining Fig. 3 and Fig. 4 we can conclude that incorporating visual information can improve
the robustness of FedRecs for current state-of-the-art model poisoning attacks.

6.5 Effectiveness of PSMU(V) and PSMU++ (RQ2)
Although Section 6.4 manifests that using visual information can defend against model poisoning
attacks, in this subsection, we disclose that visual information will create new backdoors for
adversaries to promote items by presenting the effectiveness of PSMU(V) (RQ2). Besides, we further
reveal that the backdoor of visual information gives adversaries an opportunity to simultaneously
launch image and model poisoning attacks (PSMU++) to manipulate item ranks.

As mentioned in Section 1, we are the first to present image poisoning attacks in visually-aware
FedRecs. Most previous visual attacks [6, 29] in the centralized recommendation are not applicable
in FedRecs settings since they depend on the feedback of benign users. For comparison purposes, we
construct the following baselines: No Attack and Popularity Attack. No Attack displays the original
exposure rate of target items. Popularity Attack is similar to the EXPA attack proposed by [29], but
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Fig. 5. The trend of exposure rate of target items for different image poisoning attacks with 𝜖 = 4.

it differs in that it gradually changes item images during the training process. In Popularity Attack,
we assume that adversaries have knowledge of the popularity information of items. At each global
epoch, the attacker tries to add noise to make the target item’s visual vector close to the feature
vector of popular items.

𝜖 = 0 𝜖 = 4 𝜖 = 8 𝜖 = 16 𝜖 = 32

Original

GDMPD(-guidance)

GDMPD

Fig. 6. Example of adversarial images with different perturbation constraints (𝜖) and corresponding purified
images generated by different purification methods. All these adversarial images are generated by PSMU(V)
and can achieve ER@5=1.0. The original image is from the ML dataset.

Fig. 5 presents the results of different image poisoning attacks. Both PSMU(V) and PSMU++
use 0.1% synthetic users which is the same as the setting in model poisoning attacks. In Fig. 5,
we can see that No Attack and Popularity Attack cannot create any changes in the exposure rate
of the target item. In contrast, PSMU(V) promotes target items to all users with 9, 10, 5, and 7
global epochs in the cases of “Fed-VNCF on ML”, “Fed-LightVGCN on ML”, “Fed-VNCF on AZ”,
and “Fed-LightVGCN on AZ”, respectively. Moreover, when incorporating PSMU (i.e., PSMU++),
the item promotion process is accelerated as shown by the red line in Fig. 5. Besides, comparing
the results from different datasets, we can get a consistent conclusion with Fig. 3: Promoting items
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is easier on AZ than on ML since AZ is sparser. Additionally, Fed-LightVGCN is relatively more
reliable than Fed-NCF under poisoning attacks since the visual information is fused by not only
concatenation but also with LightGCN propagation. It is worth noting that we set the normalization
of perturbations to be less than 4, making the polluted image be human-imperceptible. The first
line of Fig. 6 provides an example of adversarial images with different perturbation scales. 𝜖 = 0
represents the original image. The adversarial image with 𝜖 = 4 perturbations is indistinguishable
from the original image to humans, ensuring the stealthiness of our image poisoning attacks.

6.6 The Effectiveness of GDMPD
The effectiveness of PSMU(V) and PSMU++ reveals the backdoor created by incorporating visual
information from external sources. In this paper, we propose a safe way to utilize images from
untrustworthy sources through GDMPD, which can purify images and detect adversarial images.
In this section, we conduct experiments to demonstrate the effectiveness of our GDMPD. First, we
show the purification effectiveness, followed by the accuracy of GDMPD detection.
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Fig. 7. The trend of exposure rate of PSMU++ for FedRecs with purification mechanism.

Table 2. The comparison of recommendation performance (NDCG@20) for different purified methods in
visually-aware FedRecs.

FedRec Model Purification Method ML AZ

Fed-VNCF
original 0.03985 0.02786
GDMPD(-guidance) 0.04833 0.02806
GDMPD 0.05032 0.02849

Fed-LightVGCN
original 0.03831 0.02065
GDMPD(-guidance) 0.04494 0.02135
GDMPD 0.04623 0.02246

Table 3. The standard deviation of Blur and Brisque scores of images with different purification methods.
Lower values indicate that the image quality difference is less.

ML AZ
Purification Method Blur Brisque Blur Brisque
original 2444.68 11.82 1682.55 18.138
GDMPD(-guidance) 821.41 8.83 552.84 16.80
GDMPD 801.02 8.62 523.75 16.59
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Table 4. The effectiveness of GDMPD for defending against PSMU++ with different perturbation scales. The
value of each cell (𝑥,𝑦) represents: 𝑥 is the highest ER@5 scores that PSMU++ achieves in FedRecs without
defense method, and 𝑦 is the highest ER@5 scores that PSMU++ achieves when equipped with GDMPD.

Dataset Fed-VNCF Fed-VLightGCN
(𝑥,𝑦) 𝜖 = 4 𝜖 = 8 𝜖 = 16 𝜖 = 32 𝜖 = 4 𝜖 = 8 𝜖 = 16 𝜖 = 32
ML (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0)
AZ (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0) (1.0, 0.0)

To safely use external images, we incorporate purification mechanisms in visually-aware FedRecs.
Fig. 7 shows PSMU++’s attack results for different purification methods. GDMPD(-guidance) is
GDMPD without diffused image guidance. In Fig. 7, all purification methods can reduce the attack’s
ER@5 to 0, which demonstrates that by adding Gaussian noises during the diffusion process, the
perturbations have been diluted. An effective defense method should not only prevent the attacker’s
achieving its malicious goals, but also consume less recommendation performance. Table 2 presents
the recommendation performance of visually-aware FedRecs with different purification methods.
“original” is the visually-aware FedRecs that leverage original images. According to the results in
Table 2, FedRecs with purified images even have better performance than using original images.
This is because the diffusion model can shrink the variance of original images, where images are
provided by different providers and the quality of them is different. Table 3 provides a proof-of-
concept. We calculate the standard deviation of Brisque [33] and Blur scores (Laplacian operator
value) to evaluate the quality deviation of images generated by different methods. In Table 3, the
standard deviations of original images in both ML and AZ are much higher than purified images,
indicating the original images’ large quality difference.
When adding more perturbations, the attacker’s goal will be easier to achieve. Therefore, we

evaluate our defense method’s effectiveness with increased 𝜖 from 4 to 32 in Table 4. The results
show that before utilizing our purification mechanism, the attack’s ER@5 can reach to 1.0 with
all different 𝜖 scales. However, when incorporating our defense methods, the scores of ER@5
reduce to 0.0 in all cases, which implies that our defense methods can at least tolerate PSMU++
with 𝜖 < 32. Fig. 6 presents a case study of adversarial images with different perturbation scales
purified by different methods. The comparison of purified images and adversarial images with
large-scale perturbations (e.g., 𝜖 = 16 or 32) shows that the diffusion model can remove abnormal
noise. Furthermore, by comparing the images generated by our GDMPD and GDMPD(-guidance),
we can see that after adding guidance, the generated images are more consistent with the original
ones, demonstrating the effectiveness of our guidance.

To improve the maintenance of recommender systems, we have implemented a detection function
in GDMPD that is based on its purification ability. Since our detector is training-free, the detection
results for ML and AZ are almost identical, so we present the overall results for the union set
of ML and AZ adversarial images. Specifically, we use PSMU++ to generate 100 images that can
promote cold items to 1.0 on ML and AZ respectively. Then, we tested whether GDMPD can
detect these adversarial images when mixed with all other normal item images. As described in
E.q. 27, the accuracy of adversarial image detection mainly depends on the setting of 𝜌 . In our
experiments, we set 𝜌 as follows. First, we randomly sample a subset (10, 000 in our experiments)
of images from a publicly available image dataset, ImageNet. These images are normal images and
we use our GDMPD to purify them. After purification, we calculate the cosine similarity between
purified and original images. Finally, we naively use the minimal value of the similarity scores as
𝜌 . If the original image from FedRecs has smaller scores than 𝜌 with its corresponding purified
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Fig. 8. Visualization of the density distribution of normal and adversarial images similarity scores fitting with
normal distribution. 𝜌0 is the minimal similarity score from normal images. 𝜌1 is the best setting of 𝜌 that
can filter out all adversarial images.

image, GDMPD will mark it as an adversarial image. Based on this setting, we get 0.72 accuracy for
detecting adversarial images and no normal images are falsely predicted as adversarial images. To
further analyze our detection, we visualize the distribution of normal images’ similarity scores and
adversarial images’ similarity scores in Fig. 8. 𝜌1 = 0.69 is the “best” setting of 𝜌 that can achieve
1.0 accuracy to detect adversarial images from FedRecs but we cannot directly get 𝜌1 in practice
since we have limited prior knowledge of adversarial images. In this paper, we simply set 𝜌 to 𝜌0
according to the minimal value of normal images’ similarity scores. How to estimate a better 𝜌 can
be explored in future work.

7 CONCLUSION
Recently, numerous studies have exposed the threat of model poisoning attacks on federated
recommender systems (FedRecs) that rely on collaborative data. We argue that these attacks are
effective due to the sparsity of user-item interactions in the data. In this paper, we propose the
incorporation of visual information to alleviate the data sparsity problem and demonstrate that
existing model poisoning attacks cannot easily promote target items in visually-aware FedRecs.
Subsequently, we propose PSMU(V) image poisoning attacks that exploit the newly created backdoor
in visually-aware FedRecs. These attacks can work in tandem with model poisoning attacks, posing
a greater threat and highlighting the need for a secure visual information usage mechanism. To
address this gap, we propose a novel image poisoning defender based on DDPM that can not only
purify adversarial images but also detect them. Extensive experiments conducted on two real-world
datasets using two visually-aware FedRecs demonstrate the effectiveness of our proposed attacks
and defenses.
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