
High-performance Effective Scientific Error-bounded Lossy
Compression with Auto-tuned Multi-component
Interpolation
JINYANG LIU, University of California, Riverside, USA

SHENG DI∗, Argonne National Laboratory, USA
KAI ZHAO, Florida State University, USA
XIN LIANG, University of Kentucky, USA

SIAN JIN, Indiana University Bloomington, USA

ZIZHE JIAN, University of California, Riverside, USA

JIAJUN HUANG, University of California, Riverside, USA

SHIXUN WU, University of California, Riverside, USA

ZIZHONG CHEN, University of California, Riverside, USA

FRANCK CAPPELLO, Argonne National Laboratory, USA

Error-bounded lossy compression has been identified as a promising solution for significantly reducing

scientific data volumes upon users’ requirements on data distortion. For the existing scientific error-bounded

lossy compressors, some of them (such as SPERR and FAZ) can reach fairly high compression ratios and some

others (such as SZx, SZ, and ZFP) feature high compression speeds, but they rarely exhibit both high ratio and

high speed meanwhile. In this paper, we propose HPEZ (a.k.a. QoZ 2.0) with newly designed interpolations

and quality-metric-driven auto-tuning, which features significantly improved compression quality upon the

existing high-performance compressors, meanwhile being exceedingly faster than high-ratio compressors.

The key contributions lie as follows: (1) We develop a series of advanced techniques such as interpolation

re-ordering, multi-dimensional interpolation, and natural cubic splines to significantly improve compression

qualities with interpolation-based data prediction. (2) The auto-tuning module in HPEZ has been carefully

designedwith novel strategies, including but not limited to block-wise interpolation tuning, dynamic dimension

freezing, and Lorenzo tuning. (3) We thoroughly evaluate HPEZ compared with many other compressors

on six real-world scientific datasets. Experiments show that HPEZ outperforms other high-performance

error-bounded lossy compressors in compression ratio by up to 140% under the same error bound, and by

up to 360% under the same PSNR. In parallel data transfer experiments on the distributed database, HPEZ

achieves a significant performance gain with up to 40% time cost reduction over the second-best compressor.

∗
Corresponding author

Authors’ addresses: Jinyang Liu, University of California, Riverside, Riverside, CA, USA, jliu447@ucr.edu; Sheng Di,

Argonne National Laboratory, Lemont, IL, USA, sdi1@anl.gov; Kai Zhao, Florida State University, Tallahassee, FL, USA,

kzhao@cs.fsu.edu; Xin Liang, University of Kentucky, Lexington, KY, USA, xliang@cs.uky.edu; Sian Jin, Indiana University

Bloomington, Bloomington, IN, USA, sianjin@iu.edu; Zizhe Jian, University of California, Riverside, Riverside, CA, USA,

zjian106@ucr.edu; Jiajun Huang, University of California, Riverside, Riverside, CA, USA, jhuan380@ucr.edu; Shixun Wu,

University of California, Riverside, Riverside, CA, USA, swu264@ucr.edu; Zizhong Chen, University of California, Riverside,

Riverside, CA, USA, chen@cs.ucr.edu; Franck Cappello, Argonne National Laboratory, Lemont, IL, USA, cappello@mcs.anl.

gov.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee,

contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right

to publish or reproduce this article, or to allow others to do so, for Government purposes only. Request permissions from

owner/author(s).

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/2-ART4

https://doi.org/10.1145/3639259

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

ar
X

iv
:2

31
1.

12
13

3v
3

 [
cs

.D
C

]
 2

5
Se

p
20

24

https://doi.org/10.1145/3639259

4:2 Jinyang Liu, et al.

CCS Concepts: • Information systems→ Data compression; • Theory of computation→ Data com-
pression; • Mathematics of computing→ Interpolation.

Additional Key Words and Phrases: error-bounded lossy compression, interpolation, scientific database

ACM Reference Format:
Jinyang Liu, Sheng Di, Kai Zhao, Xin Liang, Sian Jin, Zizhe Jian, Jiajun Huang, Shixun Wu, Zizhong Chen,

and Franck Cappello. 2024. High-performance Effective Scientific Error-bounded Lossy Compression with

Auto-tuned Multi-component Interpolation. Proc. ACM Manag. Data 2, 1 (SIGMOD), Article 4 (February 2024),

27 pages. https://doi.org/10.1145/3639259

1 INTRODUCTION
The gigantic scale and exceptionally intense computation power of modern supercomputers have

empowered the exascale scientific simulation applications to generate tremendous amounts of

data in short periods, bringing up significant burdens for distributed scientific databases and cloud

data centers. For instance, A one-trillion particle Hardware/Hybrid Accelerated Cosmology Code

(HACC) [15] can harness approximately 22PB output data in a single simulation, and Community

Earth System Model (CESM) [20] simulation may generate 2.5PB data for a simulation task [41].

To this end, error-bounded lossy compression techniques have been developed for those scientific

data, and they have been recognized as the most proper strategy to manage the extremely large

amount of data. The advantage of error-bounded lossy compression is primarily two-fold. On the

one hand, it can reduce the original data to an incredibly shrunken size which is much smaller

than the compressed data size generated by a lossless compressor. On the other hand, the error-

bounded lossy compression can constrain the point-wise data distortion strictly upon the users’

requirements. Existing state-of-the-art error-bounded lossy compressors in diverse archetypes,

such as prediction-based model – SZ3 [32, 53] and QoZ [35], transform-based model – ZFP [33]

and SPERR [27], and dimension-reduction-based model – TTHRESH [7], have been widely adopted

in many use cases in practice.

Considering the abundant scope of related optimization strategies, we summarize the existing

error-bounded lossy compressors as well as their pros and cons as follows. The orthogonal transform-

based compressors like ZFP, exhibit high execution speeds but their compression ratios are limited

to a certain extent because they focus on only local correlations (confined within 4
𝑑
-blocks). The

wavelet-based compressors such as SPERR and the Singular Value Decomposition (SVD) based

compression such as TTHRESH, although can obtain quite high compression ratios, suffer from

very low compression speeds attributed to their high-cost integrated data operation modules.

Some prediction-based compressors (e.g. SZ3 and QoZ) deliver relatively high compression ratios

with moderate running speeds, nevertheless, they may suffer from relatively low compression

ratios in some cases. Recently, FAZ [36] attempted to create a hybrid framework taking advantage

of heterogeneous compression techniques, however, its design fully orients the optimization of

rate-distortion, so that its compression/decompression is much slower than the classic compressors

such as SZ and ZFP.

For modern scientific databases and cloud data centers which often involve multiple sites over

a wide area network (WAN), the extremely large amount of raw data costs an unacceptable time

to transfer between machines. Therefore, data compressors are critical for efficient data transfer

because transferring compressed data will significantly reduce the time cost, as confirmed by prior

research [26, 38]. In this case, compression ratios and speeds are both critical for achieving high data

transfer throughput. However, designing a versatile error-bounded lossy compressor that delivers

high compression ratios with sufficient performance (i.e. speed) is quite challenging. On one hand,

to reach a high compression performance, general techniques have to perform relatively simple

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

https://doi.org/10.1145/3639259

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:3

data transform [33] or prediction within short-range areas [5, 30, 53], which cannot take advantage

of long-range data correlations, thus leading to very limited compression ratios inevitably. On

the other hand, to reach a high compression ratio, general techniques are applying sophisticated

techniques such as wavelet transform on the full data input [27, 36] or higher-order SVD [7], which

suffer from very expensive operations inevitably, conflicting with our high-performance objective.

As such, we must design more compact and effective data operation methods with relatively low

computational costs, featuring high speed, meanwhile yielding comparable compression ratios

compared to the existing high-ratio compression techniques.

In order to design an error-bounded compressor that features both high compression ratios and

satisfactory speeds, we propose an optimized quality-metric-driven error-bounded lossy compressor

HPEZ (also known as QoZ 2.0 as it serves as the second major version of QoZ) by developing a

brand-new auto-tuning strategy and an anchor-based level-wise hybrid interpolation predictor.

Integrating extensively optimized interpolation predictors and auto-tuning modules, HPEZ attains

far better compression ratios and lower distortions than other high-performance error-bounded

lossy compressors with limited compression speed degradation. HPEZ substantially outperforms

high-ratio compressors in terms of speed. It achieves optimized throughput performance in a

variety of use cases such as parallel data transfer for large (distributed) databases. We attribute our

contributions as follows:

• Founded on theoretical analysis and algorithmic optimizations, we substantially upgrade the

most critical step in the quality-oriented compression – interpolation prediction, leading to

an immensely improved data prediction accuracy.

• We develop a series of optimization strategies including block-wise interpolation tuning,

dynamic dimension freezing, and Lorenzo tuning, which can substantially improve the

adaptability of the auto-tuning for the compression across a broad spectrum of inputs.

• We perform solid experiments using 6 real-world scientific datasets. HPEZ significantly

outperforms state-of-the-art error-bounded lossy compressors in terms of rate-distortion,

while still having a satisfactory speed. It preserves a leading speed compared to other high-

ratio compressors. Consequently, it achieves the best throughput in distributed data transfer

over WAN based on our experiments. HPEZ exhibits the least time cost in data transfer for

most scientific datasets with up to 40% time reduction.

The remainder of this paper is organized as follows: Section 2 introduces related works. Section

3 provides the research background and the research problem formulation. Section 4 demonstrates

the overall framework of HPEZ. The new designs of interpolation predictors in HPEZ are illustrated

in detail in Section 5, and our designed auto-tuning blocks are proposed in Section 6. In section

7, the evaluation results are presented and analyzed. Finally, Section 8 concludes our work and

discusses future work.

2 RELATEDWORK
In general, scientific data compression techniques can be divided into two categories - lossless

compression and lossy compression. Examples of existing lossless compressors for databases are

Gorilla [40] and AMMO [48] for time-series data, and traditional lossy data compression methods

include ModelarDB [18, 22] for time-series data and [13, 25, 28, 51] for Geology spatial-temporal

data. Besides that, error-bounded lossy compression has been preferred and crafted to serve various

scientific data reduction applications [9] and scientific databases. To meet the requirement of

scientists, the error-bounded lossy compression needs to constrain the point-wise compression

errors within a certain value, which differs from compression techniques for traditional data such

as JPEG-2000 [44] for image data and h.265 [42] for video data. The error-bounded scientific

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:4 Jinyang Liu, et al.

compressors are classified into four main categories: prediction-based, transform-based, dimension-

reduction-based, and neural-network-based. They also essentially utilize approaches to manage

the data distortion in line with user-specified error bounds.

The prediction-based compressors use data prediction techniques, like linear regression [30] and

dynamic spline interpolations [53], to anticipate the data points. Well-known examples are SZ2 [30]

and SZ3 [32, 53]. Transform-based compressors, on the other hand, use data transformations to de-

correlate the data, then switch to compress themore compressible transformed coefficients. ZFP [33],

for example, is a typical example that employs exponent alignment, orthogonal discrete transform,

and embedded encoding. SPERR [27], a more recent work, leverages wavelet transform for data

compression. Dimension-reduction-based compressors apply dimension reduction techniques, with

(high-order) singular vector decomposition (SVD) being a case in point (for instance, TTHRESH

[7]). Neural-network-based compressors [14, 17, 34, 37] utilize neural network models like the

autoencoder family [8, 23, 24], however, the speeds of them and relatively quite slow.

The aforementioned compressors each have their strengths and weaknesses, depending on the

nature of the input data and user needs. To enhance scientific error-bounded lossy compression,

two emerging approaches are raised to further refine the specialization of the compressor or to

boost its versatility. Regarding compressor specialization, MDZ [52], a prediction-based compressor,

is specifically tailored for molecular dynamics simulation data. SZx [49] offers low-ratio lossy

compression at incredibly high speeds. CuSZ [45], CuSZ+ [46] and FZ-GPU [50] delve into GPU-

based scientific lossy compression to quicken the compression process. [19] aims at maintaining

the quantities of interest (QoI) of the input data. When it comes to enhancing the versatility of

lossy compressors, QoZ [35] integrates user-specified quality metric optimization targets and

anchor-point-based level-wise interpolation auto-tuning into the SZ3 compression framework. This

can effectively improve the compression quality with limited speed degradation. FAZ [36], a hybrid

compression framework, combines diverse compression techniques and adaptively generates the

compression pipeline for varying inputs, while suffering from low compression speed.

With all those evolving works taken into insight, there is still a lack of broad-spectrum scientific

error-bounded lossy compressors that can achieve both top-tier compression quality and adequate

compression speed. In this paper, our proposed solution endeavors to fill this gap: we pursue both

high compression quality (by optimizing the rate-distortion) and high execution throughput across

a wide range of scientific datasets.

3 PROBLEM FORMULATION AND ANALYSIS
In this section, we mathematically formulate our research target and then present the fundamental

analysis for addressing the target. With those analyses, we can determine the best-fit archetype for

the to-be-proposed compressor HPEZ.

3.1 Problem Formulation
The target of HPEZ is to jointly optimize the compression ratio and the user-specified quality

metrics (PSNR, SSIM, etc.). Moreover, the proposed new compressor is expected to have relatively

high compression and decompression speeds and be well-adapted to diverse types of input data

(integer and floating point, single-dimensional and multi-dimensional, and so on).

Eq. 1 is the formulated research target in this paper. A compressor 𝐶 and a decompressor

𝐷 compose the error-bounded lossy compression framework, together with their configuration

parameters (denoted by 𝜃). With the input data (denoted by 𝑋) and a user-specified absolute error

bound 𝑒 , the compression framework generates compressed data (denoted as 𝑍 = 𝐶𝜃 (𝑋)) and the

decompressed data (denoted as𝑋
′
= 𝐷𝜃 (𝑍)), which should strictly respect the error bound (denoted

𝑒) point-wisely. Under those mandatory conditions, HPEZ determines 𝐶 , 𝐷 , and 𝜃 by optimizing

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:5

the compression ratio under a user-specified quality metric requirement (denoted as𝑚0). Each

quality metric corresponds to (and is calculated from) a function 𝑀 , which can be chosen from

PSNR, SSIM, a constant function (in case no quality but just compression ratio is concerned), etc.

Moreover, to ensure the applicability of our proposed compressor for various use cases, we would

like the proposed compressor to become a high-performance compressor (including SZ3, QoZ, et

al.) having an overall execution speed of at least comparable to SZ3.

𝐶, 𝐷, 𝜃 = argmax

𝐶,𝐷,𝜃

|𝑋 |
|𝑍 |

𝑠 .𝑡 . |𝑥𝑖 − 𝑥
′
𝑖 | ≤ 𝑒,∀𝑥𝑖 ∈ 𝑋

𝑀 (𝑋,𝑋 ′) =𝑚0

(1)

3.2 Determining the Best-fit Compressor Archetype for HPEZ
As mentioned before, our proposed compressor should exhibit both good rate-distortion and

relatively high speeds. To this end, we need to investigate existing scientific error-bounded lossy

compressors to identify the best-fit compressor archetype for our design. The categorization of

compressors is priorly discussed in Section 1 and Section 2, but to conduct a deeper analysis here

we categorize the existing compressors into more types according to their designs:

• Hybrid-data-prediction-based: Applying multiple data predictors for data prediction and

reconstruction, such as regressors and Lorenzo predictors [30, 55].

• Interpolation-based: Leveraging interpolations for prediction-based data compression [35, 53].

• Discrete-orthogonal-transform-based: Making use of block-wise Discrete Orthogonal Trans-

form and embedded coding in the compression [33].

• Wavelet-transform-based: Combining wavelet transforms and coefficient encoding methods

for compression [27, 36].

• SVD-based: In TTHRESH [7], high-order singular value decomposition is the core of its data

processing techniques.

• Deep-learning-based: Quite a few deep-learning-based error-bounded lossy compressors

have been proposed. Among them, there are autoencoder-based ones [17, 34] and

coordinate-network-based ones [16, 39].

Several existing works [34–36] have also conducted systematic and thorough experimental

analyses of those compressors in diverse types, having tested them in multiple aspects including

and not limited to execution speeds, rate-distortion, and practical use cases (e.g. I/O throughput).

We conclude their findings as follows:

• Despite their great potential in achieving high compression ratios, wavelets-based and SVD-

based compressors suffer from low compression speeds due to high computational costs.

With fixed data processing strategies, certain examples of them such as SPERR and TTHRESH

also fail to perform well in terms of rate-distortion on some data inputs.

• Discrete-orthogonal-transform-based ZFP has a very high compression efficiency, but it only

presents quite limited compression ratios.

• The practicality of current deep-learning-based compressors is also not satisfactory. The

networks integrated into them either need per-data online training (for each compression

task) or large sizes of training data from the same application for pre-training. This fact

greatly damages the availability and efficiency of deep-learning-based compressors.

• Compared with others, prediction-based compressors (including hybrid-data-prediction-

based and interpolation-based ones) have the advantage of achieving both good compression

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:6 Jinyang Liu, et al.

ratios and acceptable compression speeds. Among them, interpolation-based compressors

such as SZ3 [32] and QoZ [35] optimize the compression rate-distortion. In the experiments

carried out by [35], QoZ shows the best performance in the parallel I/O throughput tests.

According to our research target and the pros and cons of existing compressor archetypes, we

develop a novel high-performance effective compressor namely HPEZ based on the interpolation-

based compressor design. In Section 4, 5, and 6, we will fully demonstrate the design details of

HPEZ, including the research background and newly proposed features.

4 HPEZ DESIGN OVERVIEW
In this section, we propose an overview of the HPEZ compressor. As an interpolation-based scientific

error-bounded lossy compressor, HPEZ is designed for structured data grids in types of floating

points and integers. HPEZ is adaptive to either one-dimensional (1D) or multi-dimensional (2D, 3D,

4D ...) inputs, and exploits the dimension-wise spatial correlations and smoothness of them. HPEZ

also has the potential to be applied to other domains including image and video because those

data are also formatted as (or can be transformed into) structured data grids. The compression

framework of HPEZ is illustrated in Figure 1. HPEZ takes advantage of the SZ3 modular framework

[32], which contains the auto-tuning module, data prediction module, error quantization module,

Huffman encoding module, and the Zstd lossless module. The detailed demonstration of the HPEZ

compression pipeline is as follows:

• Step 1: Auto-tuning. With a user-specified quality metric optimization target, HPEZ first

auto-tunes its predictor configurations, which will be featured in Section 6.

• Step 2: Data prediction: HPEZ applies the auto-tuned data predictor on the whole input,

acquiring the prediction errors.

• Step 3: Linear quantization (error control): A linear error quantization module quantizes

the data prediction errors in step 2 to control the element-wise decompression error. For

example, for each data value 𝑥 and its prediction 𝑥
′
, the original error is 𝑒 = 𝑥 − 𝑥

′
and the

quantized error 𝑒𝑞 satisfies |𝑒𝑞 − 𝑒 | <= 𝜖 (𝜖 is the error bound). In this way, we can use 𝑥
′ + 𝑒𝑞

as the decompression of 𝑥 which is bounded by 𝜖 .

• Step 4: Huffman encoding: The quantized prediction errors acquired from Step 3 are

further encoded with Huffman encoding. A more concentrated distribution of quantization

errors will lower the encoded tree size, therefore the reduction of prediction error is key to

improving the compression ratio.

• Step 5: Lossless postprocessing: The encoded quantized errors and other metadata are

losslessly compressed by Zstd [12] to further reduce the compressed size.

HPEZ leverages existing modules in stereotype prediction-based error-bounded compression model

(orange ones in Figure 1) and interpolation techniques (yellow ones in Figure 1). Most importantly,

our HPEZ framework introduces several new modules and significantly improved components

(as marked in blue and pink), including interpolation designs and auto-tuning techniques. In the

data prediction module and the auto-tuning module, new designs have been incorporated in HPEZ

to enhance the compression rate-distortion substantially. With those new designs, first, we have

significantly improved the interpolation-based data predictors in HPEZ, introducing multiple

refinements upon the existing dynamic spline interpolation; Second, the auto-tuning module of

HPEZ has also been facilitated with new components for handling new interpolation configurations

and boosting adaptability for more datasets. Third, the compression speed of HPEZ still maintains

at a high level, empowering it to well-fit efficiency-oriented tasks. Those newly proposed designs

will be demonstrated in Section 5 and Section 6.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:7

Auto-tuning
Module

Data
Prediction

Module

Error
Quantization

Module

1D-style
Interp

Multi-dim
Interp

Not-a-knot
Spline

Natural
Spline

Inter-level
Interp

Same-level
Interp

Dimension
Freezing

Input

Block-wise
Tuning

Huffman
Encoding
Module

Z-std
Lossless
Module

Output

Existing design

New in HPEZ

Fig. 1. HPEZ framework

5 HPEZ INTERPOLATION-BASED PREDICTOR
In this section, we describe the details of our fine-tuned multi-component interpolation-based

data predictor for HPEZ. Compared to the existing interpolation-based predictors, the HPEZ

interpolation-based predictor projects a significant improvement over them, attributed to several

new components we designed and proposed. These components can obtain a significantly improved

prediction accuracy, thus leading to much better rate distortions in the compression. Those new

designs together with the existing interpolation designs will be described in the rest of this section

and will get auto-tuned for optimization of compression quality (to be detailed in Section 6).

5.1 Overview of Interpolation-based Prediction
The interpolation-based data prediction and reconstruction in HPEZ follow the hierarchical anchor-

based level-wise dynamic spline interpolation concept, whose prototype was first proposed in SZ3

[53] and then developed in QoZ [35]. Figure 2 presents the interpolation-based data prediction

process in the QoZ compressor. Initialized with a sparse losslessly-saved grid, on each interpolation

level, the predictor expands the predicted/reconstructed data grid by 2× (on each dimension), until

all data points are predicted/reconstructed. The interpolations with larger strides are performed at

higher levels, and the interpolation stride reduces (halved) as the level goes down. We refer the

readers to read [35] for details. The key features of QoZ level-wize interpolation method include:

• Storing anchor points losslessly (with a fixed anchor stride);

• The interpolations are done hierarchically (level by level), from large strides (half of the

anchor stride) to small strides (1).

• Each level may have different error bounds. Higher levels have smaller error bounds, and the

last level always follows the input global error bound.

• Leveraging both linear (first-order) and cubic (third-order) 1-D spline interpolation;

• Performing the interpolation along each dimension;

• Selecting the best-fit interpolation method for each level;

• Auto-tuning and applying different error-bound values dynamically for different levels;

Such an anchor-based level-wise interpolation prediction features three critical advantages. (1)

The prediction has a very low time complexity:𝑂(𝑁), where 𝑁 is the total number of data points in

the input dataset. This is because, for the prediction of each data point, the interpolation is executed

just once with an upper-bounded number of neighbor points (e.g. for SZ3/QoZ the upper-bound is

4), and the quantization of its prediction error is also completed in constant time. (2) The level-wise

design allows it to set various error bounds at different levels to minimize the negative impact of

data compression errors in the data prediction. (3) The design of anchor points avoids inaccurate

large-stride interpolations, maintaining its prediction accuracy at a relatively high level.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:8 Jinyang Liu, et al.

Anchor points

Unpredicted data points

Linear Interp

Le
ve

l 2

Le
ve

l 3

Lossless

Lo
ss

y:
 e

=
0.

05
Lo

ss
y:

 e
=

0.
1

Data points predicted at level 2
Data points predicted at level 1

Cubic Interp

Le
ve

l 1

dim1- cubic
interpolation

dim1- linear
interpolation

dim0- linear
interpolation

dim0- cubic
interpolation

Fig. 2. The anchor-based level-wise dynamic spline interpolation.

Although the interpolation-based prediction in HPEZ is built upon QoZ, HPEZ proposes several

key improvements that significantly boost its prediction accuracy over QoZ, including:

• The natural cubic spline function;

• The multi-dimensional spline interpolation;

• Re-ordering of the interpolations.

Next, we will take a deep insight into the interpolation-based prediction in HPEZ, thoroughly

demonstrating both the backgrounds and the new characteristics.

5.2 Spline Interpolation Formulas
All interpolations in HPEZ are based on certain spline interpolation formulas, which interpolate

each data point with its neighbors along one dimension. As mentioned in Section 5.1, the spline

interpolation formulas are categorized into linear spline interpolation and cubic spline interpolation.

Illustrated in Figure 3, the data value 𝑑𝑖 on index 𝑖 is going to be predicted by a prediction 𝑝𝑖 with

the known data points 𝑑𝑖−3, 𝑑𝑖−1, 𝑑𝑖+1, and 𝑑𝑖+3 in its neighbours. The linear spline interpolation

just applies 2 of them with the following formula:

𝑝𝑖 =
1

2
𝑑𝑖−1 + 1

2
𝑑𝑖+1 (2)

The cubic spline interpolation formulas leverage all the 4 neighbor points, and the formulas are

deducted from 3 cubic spline functions (𝑓1 (𝑥), 𝑓2 (𝑥), and 𝑓3 (𝑥)):

f1(x) f2(x) f3(x)

di–3

di–1 di+1

di+3

di

i–3 i–1 i+1 i+3i

value

idxi–2

di–2
di+2

i+2

pi

Fig. 3. Illustration of 1D cubic spline interpolation.

𝑓1 (𝑥) = 𝑎1 (𝑥−(𝑖−3))3+𝑏1 (𝑥−(𝑖−3))2+𝑐1 (𝑥−(𝑖−3))+𝛿1
𝑓2 (𝑥) = 𝑎2 (𝑥−(𝑖−1))3+𝑏2 (𝑥−(𝑖−1))2+𝑐2 (𝑥−(𝑖−1))+𝛿2
𝑓3 (𝑥) = 𝑎3 (𝑥−(𝑖+1))3+𝑏3 (𝑥−(𝑖+1))2+𝑐3 (𝑥−(𝑖+1))+𝛿3

(3)

The spline functions 𝑓1, 𝑓2, and 𝑓3 have scopes of [𝑖−3,𝑖−1], [𝑖−1,𝑖+1], and [𝑖+1,𝑖+3], respectively.
The zero-order, first-order, and second-order interpolation conditions are shown as follows:

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:9

𝑓1 (𝑖 − 3) = 𝑑𝑖−3; 𝑓1 (𝑖 − 1) = 𝑑𝑖−1
𝑓2 (𝑖 − 1) = 𝑑𝑖−1; 𝑓2 (𝑖 + 1) = 𝑑𝑖+1
𝑓3 (𝑖 + 1) = 𝑑𝑖+1; 𝑓3 (𝑖 + 3) = 𝑑𝑖+3
𝑓
′
1
(𝑖 − 1) = 𝑓

′
2
(𝑖 − 1); 𝑓 ′

2
(𝑖 + 1) = 𝑓

′
3
(𝑖 + 1)

𝑓
′′
1
(𝑖 − 1) = 𝑓

′′
2
(𝑖 − 1); 𝑓 ′′

2
(𝑖 + 1) = 𝑓

′′
3
(𝑖 + 1)

(4)

Since 𝑓1, 𝑓2, and 𝑓3 have 12 coefficients in total and Eq. 4 only has 10 conditions, two more

boundary conditions are needed. The traditional SZ3 and QoZ cubic spline interpolation [35, 53]

applies the following ’not-a-knot’ conditions:

𝑓
′′′
1
(𝑖 − 1) = 𝑓

′′′
2
(𝑖 − 1); 𝑓 ′′′

2
(𝑖 + 1) = 𝑓

′′′
3
(𝑖 + 1) (5)

Then with Eq. 4 and Eq. 5, the prediction value of 𝑝𝑖 is:

𝑝𝑖 = 𝑓2 (𝑖) = − 1

16
𝑑𝑖−3 + 9

16
𝑑𝑖−1 + 9

16
𝑑𝑖+1 − 1

16
𝑑𝑖+3 (6)

However, there are other choices for the 2 boundary conditions, which may lead to different

cubic spline interpolation formulas. We explore another set of boundary conditions: the natural

spline condition, which is:

𝑓
′′
1
(𝑖 − 3) = 0; 𝑓

′′
3
(𝑖 + 3) = 0 (7)

Combining Eq. 4 and Eq. 7, the interpolation function for predicting 𝑝𝑖 would be written as:

𝑝𝑖 = 𝑓2 (𝑖) = − 3

40
𝑑𝑖−3 + 23

40
𝑑𝑖−1 + 23

40
𝑑𝑖+1 − 3

40
𝑑𝑖+3 (8)

Our experiments with multiple datasets under diverse error thresholds showed that Eq. 2, Eq. 6,

and Eq. 8 have distinct advantages. In different cases, each of them is able to outperform others.

Therefore, we employ all 3 of them and dynamically select from them for each task.

5.3 1D and Multi-dimensional Spline Interpolation
In traditional interpolation-based compressors, for each data point, the interpolation is performed

along a single dimension, so we need to switch the interpolation directions during this process

and arrange an order for those directions. In the following text, we call the interpolation method

adopted by SZ3/QoZ 1D-style interpolation. As an example, in Figure 4 (a), the 1D-style interpolation

first proceeds interpolations along Dim0, then performs the rest of the interpolations along Dim1.

Actually, The existing 1D-style interpolation has not fully exploited the multi-dimensional

continuity and smoothness of input data arrays, because all the interpolations are constricted in a

single-dimensional direction. To address this limitation, we propose a new interpolation paradigm

for HPEZ called multi-dimensional spline interpolation, which can take better advantage of data

correlation across multiple dimensions. As shown in Figure 4 (b), the multi-dimensional spline

interpolation initially performs the 1D interpolations for some data points as there are only 1D

neighbors at the moment, then it performs 2D interpolations for the remaining data points that

already have neighbors in two dimensions. The multi-dimensional spline interpolation is symmetric

across all the dimensions, meaning that it does not need a selection of dimensional order.

With themain concept of the HPEZmulti-dimensional spline interpolation inmind, two questions

remain: how should we carry out the multi-dimensional interpolations specifically, and why does

it outperform the 1D-style interpolations?

We feature the HPEZ multi-dimensional interpolation as follows. For each data point 𝑥 , suppose

𝑋𝑖 (1 ≤ 𝑖 ≤ 𝑛) are all the available 1D interpolation results for predicting 𝑥 (which can either be

linear interpolation or cubic interpolation and are along all dimensions), the multi-dimensional

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:10 Jinyang Liu, et al.

dim0

d
im

1

dim0

d
im

1

Dim1 interpolation

Dim0 interpolation

dim0

d
im

1

dim0

d
im

1

2D interpolation

Dim0 interpolation

dim0

d
im

1

Dim1 interpolation

(a) 1D-style Interpolation (b)HPEZ 2D Interpolation

Known data points Unknown data points interpolation

Fig. 4. Comparison of 1D-style interpolation and HPEZ multi-dimensional interpolation (an 2D example).

interpolation result 𝑋
′
is a linear-combination of 𝑋𝑖 :

𝑋
′
=

𝑛∑︁
𝑖=1

𝛼𝑖𝑋𝑖 (
𝑛∑︁
𝑖=1

𝛼𝑖 = 1) (9)

Theorem 5.1. With fine-tuned 𝛼𝑖 , 𝑋
′
would have a no higher prediction error than that of the

1D-style interpolation 𝑋𝑖 .

Proof. Without loss of generality, we can regard {𝑋𝑖 } and 𝑋
′
as random variables, in which

{𝑋𝑖 } are independent with each other. When dealing with smooth data inputs, the {𝑋𝑖 } can be

thought of as no-biased estimations of 𝑥 , i.e. 𝐸 (𝑋𝑖) = 𝑥 .

Now consider the 𝑋
′
. Since

∑𝑛
𝑖=1 𝛼𝑖 = 1, it is easy to know that 𝐸 (𝑋 ′) = 𝑥 , so 𝑋

′
is still a non-

biased estimation of 𝑥 . Because 𝑋𝑖 are independent with each other, (𝑋 ′ − 𝑥) = ∑𝑛
𝑖=1 𝛼𝑖 (𝑋𝑖 − 𝑥)

follows the distribution of 𝑁 (0, 𝜎2), in which:

𝜎2 =

𝑛∑︁
𝑖=1

𝛼2

𝑖 𝜎
2

𝑖 (10)

With the Lagrange method, based on the constraint

∑𝑛
𝑖=1 𝛼𝑖 = 1,

min𝜎2 =

∏𝑛
𝑖=1 𝜎

2

𝑖∑𝑛
𝑖=1 𝜋𝑖

≤ min{𝜎2

1
, 𝜎2

2
, ...𝜎2

𝑛} (𝜋𝑖 =
∏𝑛

𝑗=1 𝜎
2

𝑗

𝜎2

𝑖

) (11)

, and the minimum is obtained when:

𝛼∗
𝑖 =

𝜋𝑖∑𝑛
𝑗=1 𝜋 𝑗

(12)

As such, we have proved that, if the {𝛼𝑖 } is selected based on Eq. 12, the prediction error variance

of the multi-dimensional interpolation 𝑋
′
will be no larger than each of the 1D-style interpolation

𝑋𝑖 according to Eq. 11. So, the average L-1 prediction error will also be minimized. □

How to determine 𝛼∗
𝑖 in HPEZ (i.e. how to estimate 𝜎2

𝑖) will be detailed in Section 6.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:11

5.4 Interpolation Re-ordering
After the proposal of natural cubic spline andmulti-dimensional interpolation, HPEZ also introduces

interpolation re-ordering, which improves both prediction accuracy and prediction speed. It includes

two aspects: the fast-varying-first interpolation and same-level cubic interpolation.

5.4.1 Fast-varying-first interpolation. In the existing implementation of 1D interpolations, the

interpolations are executed axis by axis on the input dataset, and along each axis, the interpolations

are performed ’slice by slice’. The ’slice’ here means a slice of the data array along an interpolation

axis. Figure 5 (a) presents a 2D example for the order of interpolations adopted by QoZ (and also SZ3):

the interpolations are performed in the sequence of numbers (1 , 2 , 3 , · · ·). For the interpolation
along Dim0 in QoZ, it follows dim0-major order: the interpolation is executed along Dim0 with a

higher preference compared with Dim1. However, when Dim1 is the fastest-varying-dimension ,

this interpolation order may fall into a bad cache usage because it is successively accessing data

points located distantly in the memory. To resolve this issue, HPEZ re-arranges the interpolation

order, having the interpolations first move along the fast-varying dimension (the Dim1-major

style as in Figure 5), as demonstrated in Figure 5 (b). The interpolation position first traverses

through Dim1 and then moves along Dim0. In this way, the data points are accessed sequentially

with shorter distances in the memory so that the cache usage can be optimized, greatly saving the

memory access cost.

5

62 4

1 3

dim1

d
im
0

(a) QoZ Dim0 interpolation order (b) HPEZ Dim0 interpolation order

3

64 5

1 2

dim1

d
im
0

Fig. 5. Comparison of QoZ and HPEZ interpolation orders (Dim1 is the fastest-varying dimension)

Existing 1D cubic interpolation

HPEZ 1D cubic interpolation
Step1: Inter-level cubic interp

HPEZ 1D cubic interpolation
Step2: Same-level cubic interp

Known data points Unknown data points (to be predicted)

Interpolated data points (on current level)

Fig. 6. Illustration of same-level cubic interpolation

5.4.2 Same-level cubic interpolation. We develop a new same-level cubic interpolation in HPEZ,

which can further improve prediction accuracy. In the traditional interpolation design [35, 53], at

each interpolation level, the neighbor points of each data point to be interpolated are limited on

the higher levels (interpolation levels with larger strides). For the 1D cubic spline interpolation

applied on a data point with stride 𝑠 , 4 neighbor points with distance 𝑠 and 3𝑠 are used, which have

been predicted on the higher interpolation levels. As shown in Figure 6 (note that 𝑠 is the distance

between each closest hollow and solid point), the first row shows this interpolation method, in

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:12 Jinyang Liu, et al.

which all the hollow data points (on the current interpolation level) are predicted by the solid data

points (on higher interpolation levels). If we are able to include more neighbors for each point (for

example, the 2 white points with a distance of 2𝑠 to it), the prediction accuracy can be improved.

As illustrated in the 2nd and 3rd rows of Figure 6, instead of traversing through all the white

data points in one step, HPEZ splits the 1D cubic spline interpolation into 2 steps. In the first step

(the second row of Figure 6), half of the white points are interpolated by inter-level interpolation

(the existing interpolation) with 4 neighbor points. In the second round, the rest half of the white

points are interpolated by the same-level interpolation with 6 neighbor points for each, including

points interpolated on higher interpolation levels and the current interpolation level. With this new

interpolation, half of the data points are predicted with two more neighbor points to achieve better

prediction accuracy. Similar to the deductions in Section 5.2, for a data point 𝑝𝑖 , with its 6 neighbor

points 𝑑𝑖−3, 𝑑𝑖−2, 𝑑𝑖−1, 𝑑𝑖+1, 𝑑𝑖+2, and 𝑑𝑖+3 the same-level cubic spline interpolation formula would

be the following two. Eq. 13 is for the not-a-knot cubic spline and Eq. 14 is for the natural cubic

spline. The same strategy can also be extended to the multi-dimensional interpolation, splitting it

into 2 steps each with halved data points.

𝑝𝑖 = − 1

6
𝑑𝑖−2 + 4

6
𝑑𝑖−1 + 4

6
𝑑𝑖+1 − 1

6
𝑑𝑖+2 (13)

𝑝𝑖 =
3

62
𝑑𝑖−3 − 18

62
𝑑𝑖−2 + 46

62
𝑑𝑖−1 + 46

62
𝑑𝑖+1 − 18

62
𝑑𝑖+2 + 3

62
𝑑𝑖+3 (14)

6 HPEZ AUTO-TUNING MODULES
we developed an advanced auto-tuning module in HPEZ, which plays a critical role in preserving

and optimizing the compression quality by making the best use of the abundant interpolation

options offered by HPEZ which are discussed in Section 5. Figure 7 displays all the components and

processes of the HPEZ auto-tuning module. This module inherits the interpolation error-bound

tuning process from QoZ [35], while substantially upgrading the QoZ ’global’ interpolation tuning

process. Specifically, HPEZ exploits several brand-new processes: dynamic dimension freezing

tuning, block-wise interpolation tuning, Lorenzo tuning, and a data sampling/statistical analysis

process supporting those tuning processes. In the remainder of this section, we present the detailed

design of the auto-tuning-related components in HPEZ.

Data
Sampling

 & Statistical
Analysis

Global
Interpolation

Tuning

Interpolation
Error Bound

Tuning

Block-wise
Interpolation

Tuning

Existing New in HPEZ

Lorenzo
Tuning

Dimension
Freezing
Tuning

Fig. 7. HPEZ auto-tuning module

6.1 Data Sampling and Statistical Analysis
The data sampling and statistical analysis is an auxiliary process of the HPEZ auto-tuning module.

In this process, HPEZ uniformly samples a small portion from the full data input (based on a

hyper-parameter with the default sampling rate of 0.2%), and then it performs the 1D interpolation

(both linear and cubic) on those data points with their neighbors along all dimensions. Afterward,

the mean square errors (MSE) of the interpolations along different dimensions can serve as the

estimations of the interpolation error variances (𝜎2

𝑖) described in Section 5.3. Thus, it can be used

to determine the most non-smooth dimension in the data for dynamic dimension freezing (Section

6.3) by selecting the dimension with the largest interpolation MSE.

6.2 Global Interpolation Tuning
The global interpolation tuning process in HPEZ is derived from the predictor tuning process

proposed in QoZ, which aims to select the best-fit interpolation configuration from different choices

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:13

Specifically, at each interpolation level, the global interpolation tuning process makes the following

selection for the input data:

• Existing in QoZ: The order of interpolation (linear or cubic);

• Existing in QoZ: The dimensional order (only for 1D-style interpolation);

• New in HPEZ: The type of cubic spline (not-a-knot or natural, only for cubic interpolation);

• New in HPEZ: The interpolation paradigm (1D-style or multi-dimensional);

• New in HPEZ: Applying inner-level interpolation or not (only for cubic interpolation);

Similar to QoZ, the sampled data are used for performing compression tests with all the available

interpolation configurations. Then, HPEZ selects the interpolation configuration with the lowest

average absolute prediction error as the final tuning result.

6.3 Dynamic Dimension Freezing
The dynamic dimension freezing in HPEZ is designed to avoid inaccurate interpolation predictions

along non-smooth dimensions. For a multi-dimensional input data array, it may present fine

smoothness along some of its dimensions but present bad smoothness along the other dimensions.

In those cases, both the 1D-style and multi-dimensional interpolation will fail in achieving high

prediction accuracy as they will involve interpolations along non-smooth directions. The dimension

freezing is that, given one dimension, HPEZ sets anchor points along those dimensions with stride

1 (without intervals) and never performs interpolations along those dimensions. Figure 8 uses the

interpolation on a 3D data block as an example of dimension freezing. For a clear view, only the 1D

interpolations are shown. Figure 8 (a) is the normal 1D interpolations without a frozen dimension,

and Figure 8 (b) is the 1D interpolations with a dimension frozen, in which no interpolations

are made along the frozen dimension. With this dynamic strategy, HPEZ does not require data

smoothness along all dimensions to optimize its compression ratio. According to our experimental

results, compared to the highly improved prediction accuracy and greatly reduced quantization bin

size, the storage overhead for additional anchor points is affordable. To determine whether to freeze

a dimension and which dimension should be frozen, the auto-tuning module of HPEZ first specifies

the most non-smooth dimension in the input data array in the statistical analysis (Section 6.1), then

separately tunes 2 optimized interpolation configurations with/without this dimension frozen. If

freezing this dimension presents a better compression ratio, HPEZ will freeze this dimension.

Frozen
Dim

Known data points Unknown data points

(a) Without frozen dimension (b) With frozen dimension

interpolation

Fig. 8. Illustration of dimension freeze

6.4 Interpolation Error Bound Tuning
Previously indicated in Section 5.1, the HPEZ interpolations on each interpolation level follow a

separate dynamically auto-tuned error bound. For the level-wise error-bound setting, HPEZ follows

the same design as in QoZ [35]. The error bound for each level is computed by Eq. 15, in which 𝛼

and 𝛽 are tunable parameters:

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:14 Jinyang Liu, et al.

𝑒𝑙 =
𝑒

𝑚𝑖𝑛(𝛼𝑙−1, 𝛽)
(𝛼 ≥ 1 𝑎𝑛𝑑 𝛽 ≥ 1) (15)

In the auto-tuning process for determining 𝛼 and 𝛽 , HPEZ also leverages the module proposed

in QoZ. We refer the readers to check [35] for details.

6.5 Tuning with Lorenzo Predictor
Leveraged in SZ3 but excluded by QoZ, the dynamic-order Lorenzo predictor designed in [55]

is involved in HPEZ, as it is still an essential supplement of interpolation-based predictors for

high-accuracy low-compression-ratio cases [32, 36, 53]. In the auto-tuning compression test process,

after the auto-tuning module has acquired the optimized interpolation-based rate-distortion pair

and its corresponding configuration, the auto-tuning module runs one more compression test with

the Lorenzo predictor, then makes the selection between the interpolation-based predictor and the

Lorenzo predictor according to the pre-given optimization target. Following the design in [36], a

multiplicative coefficient is applied to adjust the bit rate estimation of the Lorenzo predictor.

6.6 Block-wise Interpolation Tuning
If the interpolation predictor is finally selected after the Lorenzo tuning, the block-wise interpolation

tuning will fine-tune the interpolation configuration separately on each data block. Various regions

of the input data will exhibit different characteristics (such as dimension-wise smoothness), which

makes them adapt to different interpolation configurations accordingly. To address this issue, HPEZ

introduces the block-wise interpolation tuning process into its auto-tuning module, dedicated to

identifying the best-fit interpolation configurations for diverse segments of the data. Figure 9 shows

the details of the HPEZ block-wise interpolation tuning. First, after the auto-tuning has globally

determined the level-wise interpolation error bounds (Figure 9 (a)), the input data array is split

into blocks (Figure 9 (b)) of the same size. On each data block, a sub-block (in default has 4% of the

full block size) is sampled out in the center of this block (Figure 9 (c)), and then the interpolation

configuration for this block (Figure 9 (d)) is tuned by the compression tests performed on the

sampled sub-block. The block size for block-wise interpolation tuning is a hyper-parameter in

HPEZ, and after primary experiments, we use the default value of 32 for it.

(a) Global eb tuning (b) Split into blocks (c) Tuning on sub-blocks (d) Block-wise configs

Fig. 9. Block-wise interpolation tuning

7 PERFORMANCE EVALUATION
To verify the effectiveness and efficiency of HPEZ, systematical evaluations of HPEZ together with

six other state-of-the-art error-bounded lossy compressors are presented in this section.

7.1 Experimental Setup
7.1.1 Experimental environment and datasets. We conducted all the evaluation experiments on the

Purdue Anvil supercomputer (for all experiments) and the Argonne Bebop supercomputer (for the

Globus-based data transfer test). On the Anvil supercomputer, each computing node features two

AMD EPYC 7763 CPUs with 64 cores having a 2.45GHz clock rate and 256 GB DDR4-3200 RAM.

The computing node we used on the Bebop has the Intel Xeon E5-2695v4 CPU with 64 CPU cores

and a total of 128GB of DRAM.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:15

In order to evaluate the compressors more comprehensively and systematically, 8 real-world

scientific applications from diverse scientific domains that have been frequently used for the

evaluation of scientific data error-bounded lossy compression [54] are involved in the evaluation.

The detailed information of the datasets is in Table 1. As suggested by domain scientists, some

fields of the datasets listed above are transformed to their logarithmic domain before compression

for better visualization. Among those 8 datasets, 6 are in the floating point type and 2 are in the

integer type. Because floating point data are the very majority of scientific data and several of the

existing scientific compressors only support floating point data, in the following experiments we

mainly focus on the 6 floating point datasets and present the evaluations on the integer datasets as

verification of HPEZ for its adaptiveness to scientific integer datasets and other integer datasets

(natural images and videos).

Table 1. Information of the datasets in experiments

App. # files Dimensions Total Size Domain Type

RTM [21] 37 449×449×235 6.5GB Seismic Wave Floating points

SEGSalt [4] 3 1008×1008×352 4.2GB Geology Floating points

Miranda [1] 7 256×384×384 1GB Turbulence Floating points

SCALE-LetKF [3] 12 98×1200×1200 6.4GB Climate Floating points

CESM-ATM [20] 33 26×1800×3600 17GB Weather Floating points

JHTDB [29] 10 512×512×512 5GB Turbulence Floating points

NSTX-GPI [2] 1 50000×80×64 977MB Fusion Integer

APS 5 1792×2048 71MB Material Integer

7.1.2 Comparison of lossy compressors in evaluation. In our experiments, we compare HPEZ with

six other error-bounded lossy compressors, which have been verified to have good compression

quality and/or performance in prior works [32, 35, 36, 53]. The six compressors can be categorized

into high-performance compressors and high-ratio compressors. The high-performance

compressors have relatively fast compression speeds with moderate compression ratios, including

SZ3.1 [32], ZFP 0.5.5 [33], and QoZ 1.1 [35]. The high-ratio compressors achieve a high compression

ratio/quality with advanced data processing methods, therefore having relatively low compression

speeds. They are SPERR 0.6 [27], FAZ [36], and TTHRESH [7]. HPEZ should be categorized as a

high-performance compressor because it exhibits comparable compression speed with modern

high-performance compressors.

We didn’t involve deep-learning-based compressors due to the following reasons: 1) Coordinate-

network-based compressors suffer from extremely low compression speeds which are far from

acceptable. 2) Autoencoder-based compressors also have low compression speeds (not comparable

with high-performance compressors. For example, AE-SZ has similar speeds with SPERR [34]).

Meanwhile, their compression ratios are lower than SZ3 as validated in [34].

7.1.3 Experimental configurations and evaluation metrics. In the compression experiments, the error

bound mode we adopted is value-range-based error bound (denoted as 𝜖) [43], which is essentially

equivalent to the absolute error bound (denoted as 𝑒), with the relationship of 𝑒 = 𝜖 · 𝑣𝑎𝑙𝑢𝑒_𝑟𝑎𝑛𝑔𝑒 .
Since the value-range-based error bound can adapt to diverse amplitudes of datasets, it has been

broadly used in the lossy compression community [30–32, 36, 55].

We perform the evaluation based on the following key metrics:

• Speeds: Check the compression and decompression speeds of compressors.

• Compression ratio (CR) under the same error bound: Compression ratio is the metric mostly

cared for by the users. Given the input data 𝑋 and compressed data 𝑍 , the compression ratio

𝐶𝑅 is: 𝐶𝑅 =
|𝑋 |
|𝑍 | (| | is the size operator).

• Rate-PSNR plots: Plot curves for compressors with the bit rate of the compressed data and the

decompression data PSNR.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:16 Jinyang Liu, et al.

• Rate-SSIM plots: Another rate distortion evaluation plotting bit rate and SSIM [47].

• Parallel throughput performance with compressors: Simulate and perform parallel data

transfer tests on the distributed scientific database on multiple supercomputers.

• Visualization with the same CR: Comparing the visual qualities of the reconstructed data

from different compressors based on the same CR.

7.2 Experimental Results
7.2.1 Speeds. To verify our categorization of compressors and examine the compression efficiency

of HPEZ, in Table 2 we present the compression and decompression speeds of 6 comparison

compressors and HPEZ (under error bound 1e−3, i.e., 10−3) on the Anvil machine. From the table,

we can clearly observe that the high-performance compressors (SZ 3.1, ZFP 0.5.5, and QoZ 1.1)

have far better compression speeds than the high-ratio compressors (SPERR, FAZ, and TTHRESH)

with the gap of 3×-10×. Having a speed of around 70% ∼ 90% of QoZ 1.1, HPEZ can definitely be

regarded as a high-performance compressor, achieving 2× ∼ 6× performance improvement over

SPERR/FAZ, and 4× ∼ 17× performance improvement over TTHRESH. This relatively high speed

ensures the advantages of HPEZ on efficiency-oriented and high-ratio-preferred compression tasks.

Figure 10 presents the error bound-compression speed curves of each compressor on the 6 tested

datasets (the x-axis is the negative log10 of the error bounded and the y-axis is the compression

speed). Those plots also prove that HPEZ is much more efficient than the high-ratio compressors

(SPERR, FAZ, and TTHRESH) and has close performances to SZ3 and QoZ.

Table 2. Execution speeds (MB/s per CPU core) with 𝜖=1e-3

Type Dataset SZ 3.1 ZFP 0.5.5 QoZ 1.1 SPERR 0.6 FAZ TTHRESH HPEZ

C
o
m
p
r
e
s
s
i
o
n

CESM 219 331 215 49 58 10 140

RTM 211 412 191 63 30 18 142

Miranda 163 416 157 35 29 28 140

SCALE 188 191 182 32 61 17 129

JHTDB 140 225 122 33 28 23 105

SegSalt 189 645 201 51 36 13 141

D
e
c
o
m
p
r
e
s
s
i
o
n

CESM 661 584 689 92 101 53 513

RTM 786 622 626 124 64 108 510

Miranda 419 946 351 75 60 111 473

SCALE 610 553 567 68 140 53 450

JHTDB 376 425 243 70 59 60 330

SegSalt 592 1060 629 108 65 97 485

7.2.2 Compression ratios with the same error bounds. Compressing the datasets with the selected

compressors under the same error bounds, we list all the compression ratios in Table 3 and 4.

Table 3 is a comparison among the high-performance compressors (in which the compression

ratio optimization targets are set for QoZ, FAZ, and HPEZ). HPEZ achieves the best compression

ratio in all cases. On the SegSalt dataset, HPEZ has a 40% ∼ 75% compression ratio improvement

over the second-best compressor. On the RTM, Miranda, and JHTDB datasets, HPEZ achieves

20%-45% compression ratio improvements over the second-best. On the CESM-ATM dataset, under

the error bound of 1e-3, HPEZ has a compression ratio of about 2.36× as high as the second-best

(SZ3.1). With these considerable improvements, we can assert that HPEZ is the best choice among

high-performance compressors regarding optimizing the error-bound-fixed compression ratio.

We also compare the compression ratios of HPEZ with the ones from the high-ratio compressors

in Table 4. It shows that HPEZ can obtain even higher compression ratios than them in certain

cases (e.g. on SCALE-LetKF and JHTDB). Note that the speed of HPEZ is substantially faster than

the high-ratio compressors, making it quite competitive over them in speed-concerned use cases.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:17

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Error Bound (-LOG10)

0
100
200
300
400
500
600

Cm
p

Sp
ee

d
(M

B/
s)

HPEZ
QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(a) RTM

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Error Bound (-LOG10)

0

100

200

300

400

Cm
p

Sp
ee

d
(M

B/
s)

HPEZ
QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(b) CESM-ATM

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Error Bound (-LOG10)

50

100

150

200

250

Cm
p

Sp
ee

d
(M

B/
s)

HPEZ
QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(c) JHTDB

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Error Bound (-LOG10)

0

100

200

300

400

Cm
p

Sp
ee

d
(M

B/
s)

HPEZ
QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(d) Miranda

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Error Bound (-LOG10)

50

100

150

200

250
Cm

p
Sp

ee
d

(M
B/

s)
HPEZ
QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(e) SCALE-LetKF

2.0 2.5 3.0 3.5 4.0 4.5 5.0
Error Bound (-LOG10)

0

200

400

600

800

1000

Cm
p

Sp
ee

d
(M

B/
s)

HPEZ
QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(f) SegSalt

Fig. 10. Error bound-compression speed plots.

Table 3. Compression Ratios of High-Performance Compressors (SZ, ZFP, QoZ and HPEZ)

Dataset 𝜖 SZ 3.1 ZFP 0.5.5 QoZ 1.1 HPEZ Improve (%)

RTM
1E-2 1764 62.9 2156 2701 25.3

1E-3 249 26.2 285 395 38.6

1E-4 55.3 14.3 58 71.1 22.6

Miranda
1E-2 574.6 46.6 977 1320 35.1

1E-3 168 25.6 181 258 42.5

1E-4 47.3 14.5 47.7 63.6 33.3

SegSalt
1E-2 856 59.1 1005 1484 47.7

1E-3 140.6 24.9 151 260 72.2

1E-4 38.2 14.9 35.9 61.7 61.5

SCALE
1E-2 167.3 14.5 160 186 11.2

1E-3 40.4 7.8 41.5 52.9 27.5

1E-4 14.1 4.6 13.4 15.4 9.2

JHTDB
1E-2 528.2 22.3 647 838 29.5

1E-3 73.2 9.8 77.8 101 29.8

1E-4 15.8 5 15.9 20.6 29.6

CESM-ATM
1E-2 373 18.2 263 675 81.0

1E-3 64.9 9.6 59.4 153 135.7

1E-4 22.9 5.8 21.7 38.9 69.9

7.2.3 Compression rate-distortion. In this section, we mainly present the evaluations of the com-

pression rate-distortion with HPEZ and other high-performance compressors. The high-ratio

compressors are capable of achieving excellent compression rate-distortion by spending much

more time cost than high-performance compressors, therefore the comparison of rate-distortion

would be fair if and only if we exclude the high-ratio compressors, making it within the scope

of high-performance compressors to clearly examine how HPEZ has improved the compression

quality meanwhile maximally preserving the compression efficiency.

In Figure 11, the bit rate-PSNR curves of 4 high-performance compressors on 6 datasets are

plotted and displayed (in which the rate-PSNR optimization targets are set for QoZ, FAZ, and HPEZ).

Apparently, HPEZ has dominated this evaluation term, achieving the best PSNR under all bit rates

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:18 Jinyang Liu, et al.

Table 4. Compression Ratios of HPEZ and high-ratio compressors (SPERR, FAZ, and TTHRESH)

Dataset 𝜖 SPERR 0.6 FAZ TTHRESH HPEZ

RTM
1E-2 2187 2695 782 2701
1E-3 440 642 71.4 395

1E-4 84.1 119 23.7 71.1

Miranda
1E-2 971.4 996.5 447 1320
1E-3 243.9 263.5 142 258

1E-4 74.5 93.6 55.1 63.6

SegSalt
1E-2 1219.4 1639.6 291 1484

1E-3 228.9 388.9 99.5 260

1E-4 61.3 117.3 28.8 61.7

SCALE
1E-2 103.5 177.9 80.0 186
1E-3 35.5 51.8 18.9 52.9
1E-4 15 16.8 8.4 15.4

JHTDB
1E-2 639.8 726 373 838
1E-3 89.3 90.7 65.1 101
1E-4 19.9 20.2 17.1 20.6

CESM-ATM
1E-2 1221 292 83.5 675

1E-3 150 77.4 20.4 153
1E-4 35 26.3 8.7 38.9

on each dataset. This implies that, among the high-performance compressors, HPEZ can always

provide the best quality of decompressed data (in terms of PSNR) under the same compression

ratio, or can always yield the most compact compressed data for a certain PSNR constraint. On the

CESM-ATM dataset, under PSNR of 70, HPEZ reaches around 360% compression ratio improvement

over the second-best QoZ 1.1. On the SegSalt dataset, under PSNR of 80 HPEZ achieves about 100%

compression ratio improvement over the second-best QoZ 1.1. There are approximately 20% ∼ 80%

same-PSNR compression ratio improvements achieved by HPEZ on the other 4 datasets.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Bit rate

50

60

70

80

90

100

110

PS
NR

 (d
B)

HPEZ
QoZ1.1
SZ3
ZFP

(a) RTM

0.0 0.5 1.0 1.5 2.0 2.5
Bit rate

50

60

70

80

90

100

110

PS
NR

 (d
B)

HPEZ
QoZ1.1
SZ3
ZFP

(b) CESM-ATM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Bit rate

50

60

70

80

90

100

110

PS
NR

 (d
B)

HPEZ
QoZ1.1
SZ3
ZFP

(c) JHTDB

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bit rate

50
60
70
80
90

100
110

PS
NR

 (d
B)

HPEZ
QoZ1.1
SZ3
ZFP

(d) Miranda

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bit rate

50

60

70

80

90

100

110

PS
NR

 (d
B)

HPEZ
QoZ1.1
SZ3
ZFP

(e) SCALE-LetKF

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bit rate

50

60

70

80

90

100

110

PS
NR

 (d
B)

HPEZ
QoZ1.1
SZ3
ZFP

(f) SegSalt

Fig. 11. Rate-distortion (PSNR) plots of high-performance compressors.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:19

To evaluate the HPEZ compression quality with more quality metrics, we also checked the

SSIM of the decompressed results of each high-performance compressor, and those results are

illustrated in Figure 12. Same as the PSNR, HPEZ undoubtedly presented the best SSIM under the

same compressed size over all other evaluated high-performance compressors. Under the same

compression bit rate, on multiple datasets including RTM, JHTDB, SCALE-LetKF, and SegSalt,

there are 20% ∼ 40% SSIM improvements from HPEZ over the second-best QoZ 1.1. The SSIM

improvements can be even much larger in the case of the CESM-ATM dataset.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bit rate

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

SS
IM

HPEZ
QoZ1.1
SZ3
ZFP

(a) RTM

0.000.250.500.751.001.251.501.752.00
Bit rate

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

SS
IM

HPEZ
QoZ1.1
SZ3
ZFP

(b) CESM-ATM

0.000.050.100.150.200.250.300.350.40
Bit rate

0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

SS
IM

HPEZ
QoZ1.1
SZ3
ZFP

(c) JHTDB

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bit rate

0.50

0.55

0.60

0.65

0.70

0.75

SS
IM

HPEZ
QoZ1.1
SZ3
ZFP

(d) Miranda

0.0 0.2 0.4 0.6 0.8 1.0
Bit rate

0.90

0.92

0.94

0.96

0.98

1.00

SS
IM

HPEZ
QoZ1.1
SZ3
ZFP

(e) SCALE-LetKF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit rate

0.60

0.65

0.70

0.75

0.80

0.85

SS
IM

HPEZ
QoZ1.1
SZ3
ZFP

(f) SegSalt

Fig. 12. SSIM of high-performance compressors.

In our analysis, the outstanding compression quality of HPEZ as a high-performance compressor

is attributed to 3 aspects: First, the advanced interpolation techniques described in Section 5 have

significantly raised the interpolation-based prediction accuracy for smooth datasets such as RTM,

Miranda, SegSalt, and JHTDB. Next, avoiding interpolations along non-smooth directions, the

compression for datasets with non-smooth dimensions (e.g. SCALE-LetKF and CESM-ATM) have

been obviously enhanced by the dynamic dimension freezing technique (Section 6.3). Third, the

block-wise interpolation tuning (Section 6.6) fine-tunes the interpolation on each data block, further

optimizing the overall compression. In Section 7.2.7, we will feature the contribution of each HPEZ

design component with more experimental results and in-depth analysis.

Lastly, we would like to claim that, in several cases, the compression quality (i.e. rate-distortion)

of HPEZ can be at least comparable with the high-ratio compressors. In the comparisons between

HPEZ and high-ratio compressors displayed in Figure 13, although on the Miranda dataset (Figure

13 (b)) HPEZ has quality gaps to the SPERR and FAZ, Figure 13 (a), (c) and (d) indicate that HPEZ

may achieve close or even similar rate-distortion to the high-ratio compressors, with a compression

speed far higher than them.

7.2.4 Parallel data transfer test on the distributed database. In Section 7.2.3, we have analyzed

how HPEZ over-performs other high-performance compressors in terms of compression quality.

Furthermore, we will examine whether HPEZ can over-perform existing state-of-the-art error-

bounded lossy compressors including high-ratio compressors in real-world use cases in which

the compression and decompression time need to be taken into account. To this end, we have

designed a real-world scale parallel data transfer experiment on the distributed scientific database.

In this experiment, a distributed scientific database is established on multiple machines, and to

accomplish the target of fast data transfer and access between the super-computers, instead of

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:20 Jinyang Liu, et al.

0 1 2 3 4 5
Bit rate

50
60
70
80
90

100
110
120

PS
NR

 (d
B)

HPEZ
SPERR
FAZ
TTHRESH

(a) JHTDB

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bit rate

50
60
70
80
90

100
110
120

PS
NR

 (d
B)

HPEZ
SPERR
FAZ
TTHRESH

(b) Miranda

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Bit rate

50

60

70

80

90

100

110

PS
NR

 (d
B)

HPEZ
SPERR
FAZ
TTHRESH

(c) SCALE-LetKF

0.0 0.5 1.0 1.5 2.0 2.5
Bit rate

50

60

70

80

90

100

110

PS
NR

 (d
B)

HPEZ
SPERR
FAZ
TTHRESH

(d) CESM-ATM

Fig. 13. Rate-PSNR of HPEZ and high-ratio compressors (HPEZ’s speed is 2x-17x of high-ratio compressors).

Table 5. Compression-based parallel data transfer throughput time (in seconds, 2048 cores, under PSNR=80).
Inter-machine speed is the transfer speed of compressed data between 2 machines.

Dataset Direction

Inter-machine

SZ3 ZFP QoZ 1.1 SPERR 0.6 FAZ TTHRESH HPEZ

Improve

Speed (GB/s) (%)

CESM-ATM Anvil to Bebop 0.79 ∼0.91 1934 3221 1812 1560 1586 7752 1005 35.6

(41TB) Bebop to Anvil 0.95 ∼1.19 1614 2695 1553 1522 1544 8560 916 39.8

RTM Anvil to Bebop 0.58 ∼1.19 198 362 173 277 494 527 181 -4.8

(14TB) Bebop to Anvil 0.47 ∼1.04 189 524 166 296 474 560 182 -9.5

Miranda Anvil to Bebop 0.46 ∼1.04 49 84 44 72 87 121 39 11.3

(2TB) Bebop to Anvil 0.54 ∼0.82 46 117 49 71 86 120 43 6.5

SCALE-LetKF Anvil to Bebop 0.88 ∼0.94 873 1354 820 1037 782 2354 728 7.0

(13TB) Bebop to Anvil 1.05 ∼1.15 745 1181 707 1007 670 2002 624 6.8

JHTDB Anvil to Bebop 0.83 ∼1.15 567 826 527 645 583 835 417 20.9

(10TB) Bebop to Anvil 0.97 ∼1.18 486 707 473 648 574 883 366 22.7

SegSalt Anvil to Bebop 0.63 ∼1.18 163 289 174 221 251 393 137 15.9

(8TB) Bebop to Anvil 0.76 ∼1.06 167 241 153 213 265 300 132 14.0

costing unacceptable time transferring the original exascale data, a lossy compressor compresses and

decompresses the data in parallel on the source and destination machine, and only the compressed

data with a highly-reduced size are transferred between the machines. The total time cost of this

task is the accumulation of the local data I/O time, compression time, decompression time, and

transfer time of the compressed data.

To convincingly prove the effectiveness of HPEZ for the parallel data transfer task, we conduct

the corresponding experiments under a certain configuration. For a parallel test with 𝑝 cores,

we augment the datasets by 𝑝 times then let each core compress and decompress the data in the

original size. Using 2048 cores, we leveraged the 7 compressors to compress and transfer the datasets

bidirectionally between the Anvil and Bebop supercomputer, constraining the decompressed data

following the same distortion (PSNR = 80). The inter-machine data transfer is supported by the

Globus Transfer Service [6, 10, 11], which is an efficient and widely adopted data transfer service

in scientific research and education fields. Table 5 presents data transfer speed and the time cost

with each compressor for each dataset. On most of the datasets tested (except for the RTM), HPEZ

improves the optimal overall transfer time by 5% ∼ 40%, and in the worst case (on the RTM dataset),

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:21

it is just slightly worse than QoZ 1.1. Therefore, the optimized balance of compression quality and

efficiency of HPEZ does contribute to its utility in real-world large-scale parallel data transfer tasks.

Due to the computing resource limitation for executing the multi-core large-scale data trans-

fer tests and repeating them with different datasets, compressors, and configurations, we have

also designed a model for approximating the actual time costs in those tasks. For a specific core

number 𝑝 and a data transfer speed 𝑠 , we use the sequential compression/decompression speed

of the compression/decompression with the same per-core data to estimate the parallel compres-

sion/decompression time cost, and the approximated data transfer time is just the compressed

data size divides the transfer speed 𝑠 . With those approximation methods, for each dataset, we

approximate the time costs under a variety of compression error bounds, then plot and present the

time cost-PSNR curves in Figure 14. The compressor speeds are acquired on the Anvil machine

introduced in Section 7.1.1, the core numbers are 2048, and the data transfer speed is set to 1GB/s

(according to the experimental results in Table 5). From the plots, we can claim that, for this task,

HPEZ has the potential to keep an advantage over the other existing compressors. On Miranda,

CESM-ATM, and JHTDB datasets, with the approximations, HPEZ exhibits the minimized time

cost for each fixed PSNR. On RTM, SCALE-LetKF, and SegSalt datasets, HPEZ may still always be

the top-performing compressor and can have the optimized time cost in wide ranges of PSNR.

0 100 200 300 400 500 600 700 800
Overall time (s)

50

60

70

80

90

100

110

PS
NR

 (d
B) HPEZ

QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(a) RTM

0 500 1000 1500 2000 2500 3000 3500
Overall time (s)

50

60

70

80

90

100

110

PS
NR

 (d
B) HPEZ

QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(b) CESM-ATM

0 200 400 600 800 1000120014001600
Overall time (s)

50

60

70

80

90

100

110
PS

NR
 (d

B) HPEZ
QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(c) JHTDB

0 20 40 60 80 100
Overall time (s)

50
60
70
80
90

100
110

PS
NR

 (d
B) HPEZ

QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(d) Miranda

0 200 400 600 80010001200140016001800
Overall time (s)

50

60

70

80

90

100

110

PS
NR

 (d
B) HPEZ

QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(e) SCALE-LetKF

0 100 200 300 400 500
Overall time (s)

50

60

70

80

90

100

110

PS
NR

 (d
B) HPEZ

QoZ1.1
SZ3
ZFP
SPERR
FAZ
TTHRESH

(f) SegSalt

Fig. 14. Parallel data transfer time approximation and decompression PSNR (simulation on the Anvil super-
computer, 𝑝 = 2048, 𝑠 = 1𝐺𝐵/𝑠).

7.2.5 Case study: decompression visualizations. As an example of the effectiveness of the HPEZ

compression, in this section, we propose a case study of the compression tasks, visualizing the

decompression outputs from various high-performance compressors. The example data input is the

QS field (getting logarithmized in preprocessing) from the SCALE-LetKF dataset, and we compress

it with HPEZ and 2 high-performance compressors: QoZ and ZFP (we omit SZ3 in this test because

QoZ and SZ3 have close speeds and QoZ has better compression quality than SZ3) under similar

compression ratios. The visualizations of 2-D slices from the original data and decompressed data are

presented in Figure 15. In this case, among the decompression results with very close compression

ratios, the decompression result of HPEZ (Figure 15 (b)) achieves the lowest data distortion with

the highest PSNR (56.8). Moreover, regarding the magnified regions in Figure 15, compared to the

decompression results of QoZ (Figure 15 (c), PSNR=52.7), HPEZ has better preserved the local data

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:22 Jinyang Liu, et al.

patterns in the original input (Figure 15 (a)). This case is an example to show the strong capability

of HPEZ in providing high-quality compression results with high compression speed.

(a) SCALE-LetKF (QS) (b) HPEZ (CR=127,PSNR=56.8)

(c) QoZ (CR=126,PSNR=48.4) (d) ZFP (CR=118,PSNR=21.0)

Fig. 15. Visualization of SCALE-QS field (logarithmized) and the decompressed data.

7.2.6 Compression of HPEZ on integer datasets. In this section, we propose the compression rate-

distortion of HPEZ on the 2 integer datasets described in Section 7.1. Those datasets are scientific

images and movies, therefore the experimental results with them can also reflect the potential of

HPEZ to be leveraged on more integer-based datasets such as natural images and videos. Figure

16 contains the rate-PSNR curves from HPEZ and other integer-supportive high-performance

compressors (SZ3 and QoZ). Apparently, HPEZ has comparatively excellent rate-distortion on the

integer datasets as well as on the floating point datasets, presenting the optimized or near-optimized

PSNR under the same bit rate.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Bit rate

36
38
40
42
44
46
48
50

PS
NR

 (d
B)

HPEZ
QoZ1.1
SZ3

(a) APS (2D Image)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Bit rate

38

40

42

44

46

48

50

PS
NR

 (d
B)

HPEZ
QoZ1.1
SZ3

(b) NSTX-GPI (3D Movie)

Fig. 16. Rate-PSNR on integer datasets.

7.2.7 Ablation study. To better understand how HPEZ can generate high-quality compression

outputs with comparatively fast speeds, we decompose the design of HPEZ, aggregating the design

components to QoZ 1.1 one by one for determining and quantifying the compression improvement

brought by each component.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:23

0.0 0.1 0.2 0.3 0.4 0.5
Bit rate

60

65

70

75

80

85

90

PS
NR

 (d
B)

QoZ1.1
+Interp Reordering
+Natural Spline
+MultiDim Interp
+Block Tuning (HPEZ)

(a) RTM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Bit rate

60

70

80

90

100

110

PS
NR

 (d
B)

QoZ1.1
+Sec5 Interp
+Blockwise Tuning
+Dim Freezing (HPEZ)

(b) CESM-ATM

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bit rate

70

75

80

85

90

95

100

PS
NR

 (d
B)

QoZ1.1
+Interp Reordering
+Natural Spline
+MultiDim Interp
+Block Tuning (HPEZ)

(c) JHTDB

0.0 0.2 0.4 0.6 0.8 1.0
Bit rate

70

75

80

85

90

95

100

PS
NR

 (d
B)

QoZ1.1
+Interp Reordering
+Natural Spline
+MultiDim Interp
+Block Tuning (HPEZ)

(d) Miranda

0 1 2 3 4 5
Bit rate

60

70

80

90

100
PS

NR
 (d

B)

QoZ1.1
+Sec5 Interp+Block Tuning
+Dim Freezing
+Lorenzo (HPEZ)

(e) SCALE-LetKF

0.0 0.2 0.4 0.6 0.8 1.0
Bit rate

60
65
70
75
80
85
90
95

100

PS
NR

 (d
B)

QoZ1.1
+Interp Reordering
+Natural Spline
+MultiDim Interp
+Block Tuning (HPEZ)

(f) SegSalt

Fig. 17. Ablation study for rate-PSNR.

Figure 17 shows the rate-PSNR plots on the RTM dataset with QoZ 1.1, HPEZ, and the different

accumulations of new design components between them. For example, in Figure 17 (a) representing

the results of the RTM dataset, there is a curve showing the rate-distortion of QoZ 1.1, a curve

showing the rate-distortion of QoZ 1.1 plus the interpolation re-ordering, a curve for the afore-

mentioned one plus the natural cubic spline, and so on, eventually to the complete HPEZ. For the

RTM, JHTDB, Miranda, and SegSalt datasets (Figure 17 (a) (c) (d) (f)), analyzing the rate-distortion

curves we can easily find that the HPEZ interpolation designs, including interpolation re-ordering

(Section 5.4), natural cubic spline (Section 5.2), and multi-dimensional interpolation (Section 5.3) all

contribute to the improvement of rate-distortion. Additionally, block-wise interpolation tuning

(Section 6.6) also plays an important role in optimizing the compression of their compression. Lastly,

the effectiveness of multi-dimensional spline interpolation proved the generalization of Theorem

5.1 on diverse datasets and the integration of multiple interpolation optimization techniques.

In Figure 17 (b) and (e) corresponding to the CESM-ATM and SCALE-LetKF datasets, we can

verify the effectiveness of dynamic dimension freezing (Section 6.3) and the Lorenzo predictor

(Section 6.5) The dashed curve in Figure 17 (b) and (e) integrates all the interpolation designs in

Section 5. Nevertheless, compared with QoZ 1.1 they have not refined the compression sufficiently.

In contrast, the dynamic dimension freezing itself (the solid curves in Figure 17 (b) and the dash-

dotted curve in Figure 17 (e)) has solely boosted the rate-distortion to a remarkable extent for

those 2 datasets. Furthermore, comparing the solid curve and the dash-dotted curve in Figure

17 (e), leveraging the Lorenzo predictor has quite enhanced the compression quality of HPEZ in

low-error-bound (i.e. high bit rates) cases.

Last, to examine the acceleration by the fast-varying-first interpolation described in Section

5.4.1, in Table 6 we compare the sequential compression/decompression speeds of HPEZ between

leveraging fast-varying-first interpolation or not (named as HPEZ (w/o FVFI)) in the table).

Table 6 clearly shows that the fast-varying-first interpolation has appreciably contributed to the

performance of HPEZ, especially on the Miranda and JHTDB datasets.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:24 Jinyang Liu, et al.

Table 6. Compression Speeds (MB/s) with and without fast-varying-first interpolation (𝜖=1e-3, i.e., 10−3)

Type Dataset CESM RTM Miranda SCALE JHTDB SegSalt

Cmp

HPEZ (w/o FVFI) 132 139 101 124 87 134

HPEZ 140 142 140 129 105 141

Dcmp

HPEZ (w/o FVFI) 469 457 202 420 184 390

HPEZ 513 510 473 450 330 485

8 CONCLUSION AND FUTUREWORK
In this paper, we propose HPEZ, an optimized interpolation-based error-bounded lossy compressor

that supports quality-metric-driven auto-tuning and significantly improves compression ratio with

low computation cost. The integration of advanced interpolation and auto-tuning designs in HPEZ

has profoundly exploited the potential of the high-performance prediction-based compressor. In

experiments, HPEZ achieves much better compression ratios and rate-distortion than existing high-

performance error-bounded compressors with at most 140% or 360% compression ratio improvement

under the same error bound or PSNR. HPEZ also over-performs existing error-bounded lossy

compressors in data throughput tasks. In parallel data transmission experiments for distributed

databases, HPEZ can achieve at most 40% time cost reduction over the second bests, when compared

with both high-performance and high-ratio error-bounded lossy compressors.

In the future, we plan to revise and develop HPEZ as follows: first, we will further optimize the

speeds of HPEZ. Second, we will design more effective data prediction techniques for non-smooth

data. Last, we will attempt to integrate compression techniques with a more flexible speed to

adaptively tune the compression pipeline according to the requirements of compression speeds.

ACKNOWLEDGMENTS
This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-

SC, a collaborative effort of two DOE organizations – the Office of Science and the National Nuclear

Security Administration, responsible for the planning and preparation of a capable exascale ecosys-

tem, including software, applications, hardware, advanced system engineering and early testbed

platforms, to support the nation’s exascale computing imperative. The material was supported

by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research

(ASCR), under contract DE-AC02-06CH11357, and supported by the National Science Foundation

under Grant OAC-2003709, OAC-2104023, OAC-2311875, OAC-2311877, and OAC-2153451. We

acknowledge the computing resources provided on Bebop (operated by Laboratory Computing

Resource Center at Argonne).

REFERENCES
[1] [n. d.]. Miranda application. https://wci.llnl.gov/simulation/computer-codes/miranda

[2] [n. d.]. NSTX-GPI. https://w3.pppl.gov/~szweben/NSTX%20Blob%20Library/NSTXblobs.html

[3] [n. d.]. Scalable Computing for Advanced Library and Environment (SCALE) – LETKF. https://github.com/gylien/scale-

letkf.

[4] [n. d.]. SEGSalt. https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models.

[5] Mark Ainsworth, Ozan Tugluk, Ben Whitney, and Scott Klasky. 2018. Multilevel techniques for compression and

reduction of scientific data—the univariate case. Computing and Visualization in Science 19, 5 (2018), 65–76.
[6] Rachana Ananthakrishnan, Kyle Chard, Ian Foster, and Steven Tuecke. 2015. Globus platform-as-a-service for

collaborative science applications. Concurrency and Computation: Practice and Experience 27, 2 (2015), 290–305.
[7] Rafael Ballester-Ripoll, Peter Lindstrom, and Renato Pajarola. 2019. TTHRESH: Tensor compression for multidimen-

sional visual data. IEEE transactions on visualization and computer graphics 26, 9 (2019), 2891–2903.
[8] Dor Bank, Noam Koenigstein, and Raja Giryes. 2020. Autoencoders. arXiv preprint arXiv:2003.05991 (2020).
[9] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Gok M. Ali, Dingwen Tao, Chun Yoon Hong, Xin-chuan Wu, Yuri

Alexeev, and T. Frederic Chong. 2019. Use cases of lossy compression for floating-point data in scientific datasets.

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

https://wci.llnl.gov/simulation/computer-codes/miranda
https://w3.pppl.gov/~szweben/NSTX%20Blob%20Library/NSTXblobs.html
https://github.com/gylien/scale-letkf
https://github.com/gylien/scale-letkf
https://wiki.seg.org/wiki/SEG/EAGE_Salt_and_Overthrust_Models

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:25

International Journal of High Performance Computing Applications (IJHPCA) 33 (2019), 1201–1220.
[10] Kyle Chard, Jim Pruyne, Ben Blaiszik, Rachana Ananthakrishnan, Steven Tuecke, and Ian Foster. 2015. Globus data

publication as a service: Lowering barriers to reproducible science. In 2015 IEEE 11th International Conference on
e-Science. IEEE, 401–410.

[11] Kyle Chard, Steven Tuecke, and Ian Foster. 2016. Globus: Recent enhancements and future plans. In Proceedings of the
XSEDE16 Conference on Diversity, Big Data, and Science at Scale. 1–8.

[12] Yann Collet. 2015. Zstandard – Real-time data compression algorithm. http://facebook.github.io/zstd/ (2015).
[13] Ziquan Fang, Yuntao Du, Lu Chen, Yujia Hu, Yunjun Gao, and Gang Chen. 2021. E 2 dtc: An end to end deep trajectory

clustering framework via self-training. In 2021 IEEE 37th International Conference on Data Engineering (ICDE). IEEE,
696–707.

[14] Andrew Glaws, Ryan King, and Michael Sprague. 2020. Deep learning for in situ data compression of large turbulent

flow simulations. Physical Review Fluids 5, 11 (2020), 114602.
[15] Salman Habib, Adrian Pope, Hal Finkel, Nicholas Frontiere, Katrin Heitmann, David Daniel, Patricia Fasel, Vitali

Morozov, George Zagaris, Tom Peterka, et al. 2016. HACC: Simulating sky surveys on state-of-the-art supercomputing

architectures. New Astronomy 42 (2016), 49–65.

[16] Jun Han and Chaoli Wang. 2022. Coordnet: Data generation and visualization generation for time-varying volumes

via a coordinate-based neural network. IEEE Transactions on Visualization and Computer Graphics (2022).
[17] Lucas Hayne, John Clyne, and Shaomeng Li. 2021. Using Neural Networks for Two Dimensional Scientific Data

Compression. In 2021 IEEE International Conference on Big Data (Big Data). IEEE, 2956–2965.
[18] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2018. Modelardb: Modular model-based time

series management with spark and cassandra. Proceedings of the VLDB Endowment 11, 11 (2018), 1688–1701.
[19] Pu Jiao, Sheng Di, Hanqi Guo, Kai Zhao, Jiannan Tian, Dingwen Tao, Xin Liang, and Franck Cappello. 2022. Toward

Quantity-of-Interest Preserving Lossy Compression for Scientific Data. Proceedings of the VLDB Endowment 16, 4
(2022), 697–710.

[20] J. E. Kay and et al. 2015. The Community Earth System Model (CESM) large ensemble project: A community resource

for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological
Society 96, 8 (2015), 1333–1349.

[21] Suha Kayum et al. 2020. GeoDRIVE – a high performance computing flexible platform for seismic applications. First
Break 38, 2 (2020), 97–100.

[22] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2019. Scalable Model-Based Management of

Correlated Dimensional Time Series in ModelarDB+. arXiv e-prints (2019), arXiv–1903.
[23] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013).
[24] Soheil Kolouri, Phillip E Pope, Charles E Martin, and Gustavo K Rohde. 2018. Sliced Wasserstein auto-encoders. In

International Conference on Learning Representations.
[25] Sriram Lakshminarasimhan, Neil Shah, Stephane Ethier, Scott Klasky, Rob Latham, Rob Ross, and Nagiza F. Samatova.

2011. Compressing the Incompressible with ISABELA: In-situ Reduction of Spatio-temporal Data. In Euro-Par 2011
Parallel Processing, Emmanuel Jeannot, Raymond Namyst, and Jean Roman (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 366–379.

[26] Sihuan Li, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello. 2021. Resilient Error-Bounded

Lossy Compressor for Data Transfer. In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (St. Louis, Missouri) (SC ’21). Article 94, 14 pages.

[27] Shaomeng Li, Peter Lindstrom, and John Clyne. 2023. Lossy scientific data compression with SPERR. In 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 1007–1017.

[28] Xiucheng Li, Kaiqi Zhao, Gao Cong, Christian S Jensen, and Wei Wei. 2018. Deep representation learning for trajectory

similarity computation. In 2018 IEEE 34th international conference on data engineering (ICDE). IEEE, 617–628.
[29] Yi Li, Eric Perlman, Minping Wan, Yunke Yang, Charles Meneveau, Randal Burns, Shiyi Chen, Alexander Szalay, and

Gregory Eyink. 2008. A public turbulence database cluster and applications to study Lagrangian evolution of velocity

increments in turbulence. Journal of Turbulence 9 (2008), N31.
[30] Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hanqi Guo, Zizhong Chen, and Franck Cappello. 2018.

Error-Controlled Lossy Compression Optimized for High Compression Ratios of Scientific Datasets. In 2018 IEEE
International Conference on Big Data. IEEE.

[31] Xin Liang, Ben Whitney, Jieyang Chen, Lipeng Wan, Qing Liu, Dingwen Tao, James Kress, David R Pugmire, Matthew

Wolf, Norbert Podhorszki, et al. 2021. MGARD+: Optimizing multilevel methods for error-bounded scientific data

reduction. IEEE Trans. Comput. (2021).
[32] Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M Gok, Jiannan Tian, Junjing Deng, Jon C Calhoun,

Dingwen Tao, et al. 2022. SZ3: A modular framework for composing prediction-based error-bounded lossy compressors.

IEEE Transactions on Big Data (2022).

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

4:26 Jinyang Liu, et al.

[33] Peter Lindstrom. 2014. Fixed-rate compressed floating-point arrays. IEEE transactions on visualization and computer
graphics 20, 12 (2014), 2674–2683.

[34] Jinyang Liu, Sheng Di, Kai Zhao, Sian Jin, Dingwen Tao, Xin Liang, Zizhong Chen, and Franck Cappello. 2021. Exploring

Autoencoder-based Error-bounded Compression for Scientific Data. In 2021 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE, 294–306.

[35] Jinyang Liu, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello. 2022. Dynamic quality metric oriented

error bounded lossy compression for scientific datasets. In 2022 SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). IEEE Computer Society, 892–906.

[36] Jinyang Liu, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, and Franck Cappello. 2023. FAZ: A flexible auto-tuned

modular error-bounded compression framework for scientific data. In Proceedings of the 37th International Conference
on Supercomputing. 1–13.

[37] Tong Liu, Jinzhen Wang, Qing Liu, Shakeel Alibhai, Tao Lu, and Xubin He. 2021. High-Ratio Lossy Compression:

Exploring the Autoencoder to Compress Scientific Data. IEEE Transactions on Big Data (2021).
[38] Yuanjian Liu, Sheng Di, Kyle Chard, Ian Foster, and Franck Cappello. 2023. Optimizing Scientific Data Transfer on

Globus with Error-bounded Lossy Compression. arXiv:2307.05416 [cs.DC]

[39] Yuzhe Lu, Kairong Jiang, Joshua A Levine, and Matthew Berger. 2021. Compressive neural representations of volumetric

scalar fields. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 135–146.

[40] Tuomas Pelkonen et al. 2015. Gorilla: A Fast, Scalable, in-Memory Time Series Database. Proc. VLDB Endow. 8, 12 (Aug.
2015), 1816–1827.

[41] Tjerk P Straatsma, Katerina B Antypas, and Timothy J Williams. 2017. Exascale scientific applications: Scalability and
performance portability. CRC Press.

[42] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand. 2012. Overview of the high efficiency video

coding (HEVC) standard. IEEE Transactions on circuits and systems for video technology 22, 12 (2012), 1649–1668.

[43] Dingwen Tao, Sheng Di, Hanqi Guo, Zizhong Chen, and Franck Cappello. 2019. Z-checker: A framework for assessing

lossy compression of scientific data. The International Journal of High Performance Computing Applications 33, 2 (2019),
285–303. https://doi.org/10.1177/1094342017737147

[44] David S Taubman, Michael W Marcellin, and Majid Rabbani. 2002. JPEG2000: Image compression fundamentals,

standards and practice. Journal of Electronic Imaging 11, 2 (2002), 286–287.

[45] Jiannan Tian et al. 2020. CuSZ: An Efficient GPU-Based Error-Bounded Lossy Compression Framework for Scientific

Data. In Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques (PACT
’20). 3–15.

[46] Jiannan Tian, Sheng Di, Xiaodong Yu, Cody Rivera, Kai Zhao, Sian Jin, Yunhe Feng, Xin Liang, Dingwen Tao, and

Franck Cappello. 2021. cuSZ (x): Optimizing Error-Bounded Lossy Compression for Scientific Data on GPUs. CoRR
(2021).

[47] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image quality assessment: from error

visibility to structural similarity. IEEE transactions on image processing 13, 4 (2004), 600–612.

[48] Xinyang Yu et al. 2020. Two-Level Data Compression using Machine Learning in Time Series Database. In 36th IEEE
International Conference on Data Engineering. 1333–1344.

[49] Xiaodong Yu, Sheng Di, Kai Zhao, jiannan Tian, Dingwen Tao, Xin Liang, and Franck Cappello. 2022. SZx: an Ultra-fast

Error-bounded Lossy Compressor for Scientific Datasets. arXiv preprint arXiv:2201.13020 (2022).
[50] Boyuan Zhang, Jiannan Tian, Sheng Di, Xiaodong Yu, Yunhe Feng, Xin Liang, Dingwen Tao, and Franck Cappello. 2023.

FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific Computing Applications on GPUs. arXiv preprint
arXiv:2304.12557 (2023).

[51] Dongxiang Zhang, Mengting Ding, Dingyu Yang, Yi Liu, Ju Fan, and Heng Tao Shen. 2018. Trajectory simplification:

an experimental study and quality analysis. Proceedings of the VLDB Endowment 11, 9 (2018), 934–946.
[52] Kai Zhao, Sheng Di, Perez Danny, Zizhong Chen, and Franck Cappello. 2022. MDZ: An Efficient Error-bounded Lossy

Compressor for Molecular Dynamics Simulations. In 2022 IEEE 38th International Conference on Data Engineering
(ICDE).

[53] Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot, Zizhong Chen, and Franck Cappello. 2021. Op-

timizing Error-Bounded Lossy Compression for Scientific Data by Dynamic Spline Interpolation. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). 1643–1654. https://doi.org/10.1109/ICDE51399.2021.00145

[54] Kai Zhao, Sheng Di, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac, Zizhong Chen, and Franck Cappello. 2020.

SDRBench: Scientific Data Reduction Benchmark for Lossy Compressors. In 2020 IEEE International Conference on Big
Data (Big Data). 2716–2724.

[55] Kai Zhao, Sheng Di, Xin Liang, Sihuan Li, Dingwen Tao, Zizhong Chen, and Franck Cappello. 2020. Significantly

Improving Lossy Compression for HPC Datasets with Second-Order Prediction and Parameter Optimization. In

Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing (Stockholm,

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

https://arxiv.org/abs/2307.05416
https://doi.org/10.1177/1094342017737147
https://doi.org/10.1109/ICDE51399.2021.00145

High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Interpolation 4:27

Sweden) (HPDC ’20). Association for Computing Machinery, New York, NY, USA, 89–100. https://doi.org/10.1145/

3369583.3392688

Received July 2023; revised October 2023; accepted November 2023

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 4. Publication date: February 2024.

https://doi.org/10.1145/3369583.3392688
https://doi.org/10.1145/3369583.3392688

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation and Analysis
	3.1 Problem Formulation
	3.2 Determining the Best-fit Compressor Archetype for HPEZ

	4 HPEZ Design Overview
	5 HPEZ Interpolation-based Predictor
	5.1 Overview of Interpolation-based Prediction
	5.2 Spline Interpolation Formulas
	5.3 1D and Multi-dimensional Spline Interpolation
	5.4 Interpolation Re-ordering

	6 HPEZ Auto-tuning Modules
	6.1 Data Sampling and Statistical Analysis
	6.2 Global Interpolation Tuning
	6.3 Dynamic Dimension Freezing
	6.4 Interpolation Error Bound Tuning
	6.5 Tuning with Lorenzo Predictor
	6.6 Block-wise Interpolation Tuning

	7 Performance Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Conclusion and Future Work
	References

