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X-distribution: Retraceable Power-law Exponent of Complex

Networks

PRADUMN KUMAR PANDEY and AIKTA ARYA, Indian Institute of Technology, Roorkee, India

AKRATI SAXENA, LIACS, Leiden University, The Netherlands

Network modeling has been explored extensively by means of theoretical analysis as well as numerical simu-

lations for Network Reconstruction (NR). The network reconstruction problem requires the estimation of the

power-law exponent (γ ) of a given input network. Thus, the effectiveness of the NR solution depends on the

accuracy of the calculation of γ . In this article, we re-examine the degree distribution-based estimation of γ ,

which is not very accurate due to approximations. We propose X-distribution, which is more accurate than

degree distribution. Various state-of-the-art network models, including CPM, NRM, RefOrCite2, BA, CDPAM,

and DMS, are considered for simulation purposes, and simulated results support the proposed claim. Further,

we apply X-distribution over several real-world networks to calculate their power-law exponents, which dif-

fer from those calculated using respective degree distributions. It is observed that X-distributions exhibit more

linearity (straight line) on the log-log scale than degree distributions. Thus, X-distribution is more suitable

for the evaluation of power-law exponent using linear fitting (on the log-log scale). The MATLAB imple-

mentation of power-law exponent (γ ) calculation using X-distribution for different network models and the

real-world datasets used in our experiments are available at https://github.com/Aikta-Arya/X-distribution-

Retraceable-Power-Law-Exponent-of-Complex-Networks.git.
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1 INTRODUCTION

Networked systems are ubiquitous in nature, for example, transportation networks [6, 14], social

networks [13], biological networks [12], and communication networks [21, 22], which are ana-

lyzed using graphs or networks to understand their complex dynamics. In the past two decades,

the problem of Structural Reconstruction of real-world networks has received a lot of attention. The

structural reconstruction of a real-world network is concerned with the reconstruction of a given
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Fig. 1. Network evolution dynamics of CPM. A newly inserted node j at time t connects to an already existing

node i with the given probability 1/t and establishes links with neighbors of node i with probability p.

network by using both a network model and limited information about the network [1]. The recon-

struction means that the generated network should possess the same collective spectral and struc-

tural properties as the input real-world network. In literature, various network-generating models

have been proposed to understand and study the evolution process of real-world networks, which

exhibit various patterns and properties of real-world networks, such as degree distribution, clus-

tering, triangle formation, and small-world phenomena [2, 7, 12, 18, 21]. These proposed models

are used to generate synthetic networks that look alike real-world networks and are broadly used

to understand network evolution and dynamic processes taking place on these networks, such as

influence propagation, opinion formation, anomaly detection, and so on.

The first very-well-known network model in this direction is the Barabási–Albert (BA) model

[3], in which each new node makes k connections with the existing nodes, and the probability of

connecting with an existing node is directly proportional to its degree. This leads to the rich-get-

richer phenomenon, and the degree distribution of the generated network follows a power law,

i.e., approximated as p(k) = c ·k−γ . After this, there have been proposed several models, including

fitness model [5], triad-formation model [15], local-world model [19], mutual attraction model

[28], copying model [16], Network Reconstruction Model (NRM) [24], RefOrCite2 Model [25],

Context Dependent Preferential Attachment Model (CDPAM) [23], Dorogovtsev, Mendes,

and Samukhin (DMS) model [10], and so on [26]. All these existing network-generation models

primarily focus on the network’s degree distribution so that the generated network follows the

expected power-law degree distribution.

In the network reconstruction process of scale-free networks, estimating the power-law expo-

nent of a given real-world network is required [24]. The novelty of network reconstruction so-

lutions depends on the accuracy of power-law exponent calculation. Most of the state-of-the-art

network models follow the power law if they use approximation, which may result in an error-

prone estimation of the power-law exponent. The considered approximations in different models

provide that model-generated networks follow power law in their tail only (high degree nodes)

[9, 10, 23, 24].

Motivation: We consider the copying model (CPM) [16], in which nodes appear in a sequence

one by one. A newly appeared node j selects an older (existing) node i uniformly randomly, and

then j connects neighbors (via outgoing edges) of node i with probabilityp; see Figure 1. The power-

law exponent for CPM is γ = 1/p. By setting p ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.12, 0.15}, we simulate networks of size n = 105. Using the degree distributions of simulated

networks, the calculated values of γ are {4.9, 3.5, 2.8, 2.2, 2.9, 1.7, 1.5, 1.3, 1.3, 4.5, 4.1}
corresponding to the selected values of parameter p. But the expected values of γ for the selected

values of p should be {10.0, 5.0, 3.3, 2.5, 2, 1.7, 1.4, 1.25, 1.1, 8.3, 6.7}. There is a significant deviation

in the values of γ of simulated networks as compared to their expected values.

This motivates us to re-investigate the degree distribution for other models that are used for

structural reconstruction. If degree distribution is not capable enough to be used for computation
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of the parameter γ , then another metric or variable, similar to degree, is required to calculate γ .

Apart from that, in the literature, it is shown that the various network growth processes follow

power-law degree distributions in the tail with the condition that the size of the network is very

large [9, 10, 23, 24]. Thus, it is essential to define a new property to evaluate the value of power-

law exponent γ of a given network more accurately, and it is expected to be more consistent with

the change in the size of the networks. In this article, a variable Xi for node i is considered that

is derived from the degree of the node and a constant. For various growing scale-free networks,

Xi follows scale-free (power-law) distribution for Xi > 0; in the case of their respective degree

distributions, it follows scale-free (power-law) distribution for higher values (ki >>> 1). A novel

method for more accurate power-law exponent computation is proposed based on the distribution

of X in a growing scale-free network under a given model or growth dynamics. The proposed

method is compared with the degree distribution-based power-law exponent computation method

proposed in Reference [8].

Contributions: This article makes the following contributions:

— In this article, X-distribution (a derivative of degree) is defined, which is more accurate and

consistent in calculating the power-law exponent of given networks.

— Extensive experimentation over different state-of-the-art network models, including CPM

[16], NRM [24], RefOrCite2 Model [25], BA [3], CDPAM [23], and DMS model [10], exhibits

novelty of X-distribution. We also apply our proposed algorithm successfully to calculate

power-exponents of X-distribution for various real-world networks and compare with the

degree distribution-based method.

The rest of the article is organized as follows: Section 2 is dedicated to discussing the limitation of

degree distribution and the definition of X-distribution. An algorithm is proposed to calculate the

power-law exponentγ for a given network. In Section 3, X-distribution and degree distribution are

applied to retrace the microdynamics (γ ) of the networks obtained under CPM, NRM, RefOrCite2,

BA, CDPAM, and DMS models. The comparative analysis of degree distribution and X-distribution

indicates the superiority of X-distribution in the estimation of γ more accurately and consistently.

Finally, the work is concluded in Section 4.

2 X-DISTRIBUTION

Degree distribution to X-distribution: Here, we discuss the way we define X-distribution using

the degree of nodes and its advantages over degree distribution.

We consider copying the model in References [4, 16] to explain X-distribution. Let us assume

that k in
i (t), kout

i (t), and ki (t) (= k in
i + kout

i ) be the in-degree, out-degree, and degree of node i ,
respectively, at time t . The growth in the degree of node i can happen in two ways: either a new

coming node j gets attached with node i with probability 1
t

directly (Figure 1), or node j first gets

connected with one of the neighbors (nodes of incoming edges Ni ) of node i and then to node i
with probability p (i .e . p 1

t
); see Figure 2. Thus,

dki (t + 1)

dt
=

1

t
+

(
1 −

1

t

) ∑
l ∈Ni

p
1

t
=

1 + pki

t
−
pki

t2
. (1)

By mean-field approximation,

1

p

∫
dpki (t)

1 + pki (t)
=

∫
dt

t
.
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Fig. 2. Node i also gets new connection when j gets connected with neighbors (incoming) of node i under

evolution dynamics of CPM. A node j newly introduced at time t connects to an older base node i4 with

probability 1/t and then gets connected with one of the first neighbors (out-links only) of node i4 with

probability p.

Asserting boundary condition ki (ti ) = k
out
i (t) = k0

i ,

ln
ki (t + 1)p + 1

k0
i p + 1

= p ln
t + 1

ti
,

ki (t + 1) + 1/p

k0
i + 1/p

=

(
t + 1

ti

)p

.

For ki (t) to exceed k , we need

ti < (t + 1)(k + 1/p)−1/p (k0
i + 1/p)1/p . (2)

Since nodes arrive uniformly, we have

Pr(ki > k) ∼ (k + 1/p)−1/p (k0
i + 1/p)1/p , (3)

where limt→∞ ki (t) → ki .

Thus, the degree distribution closely follows a power law with a dependency on the initial

degree, and this dependency leads to approximation and more error in curve fitting while retracing

the model parameters. To work around the initial condition, we consider a variable

Xi =
ki (t + 1) + 1/p

k0
i + 1/p

(4)

instead of degree ki (t + 1), the event Xi > x corresponds to (t/ti )
p > x , or ti < tx−1/p , implying

that

Pr(Xi > x) = x−1/p ,

a perfect power law, and minimizes error in retracing the model parameters using curve fitting.

X-distribution: Now, we define

Xi =
ki + C

k0
i + C

, (5)

where C is a constant. So, the distribution of the variableXi is called X-distribution. If we compare

Equations (4) and (5), constant C depends on model parameters. Due to the mean-field approxi-

mation made on Equation (1), C = γ = 1/p as t −→ ∞. Thus, for the networks of limited sizes

obtained using model (1), the value of C can differ from γ and 1/p.
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For different models that are working on the framework of the BA model, we can get constant

C and γ using the following comparative analysis:

dki (t + 1)

dt
=

1

γ

(
ki (t) + C

t

)
,

Pr(Xi > x) = x−γ .

(6)

If the growth equation of a model can be written in the form of Equation (6), then we can get

the value of γ in terms of model parameters.

Equation (6) produces better approximation than Equation (3), thus an algorithm (Algorithm 1)

is proposed to calculate γ more accurately using X-distribution. Algorithm 1 is divided into four

blocks, namely, B(I), B(II), B(III), and B(IV). First block B(I) does the initialization of variable C ,

which varies from 0.001 to 50 in the interval of 0.01. For each value ofC (for loop in line 5), values

of Xi in block B(II) and the cumulative frequency of Xi (Y1i ) corresponding to unique values of

Xi are calculated in B(III), and finally, linear fitting on the log-log scale and error estimation is

done in B(IV) using MATLAB functions polyfit1 and polyval.2 Meanwhile, γ is the negative slope

of the linear fitting (line 18 in Algorithm 1). Algorithm 1 reports γ (in line 20) corresponding to

the minimum error.

ALGORITHM 1: PLE: Power-law Exponent

Now, we consider a network dataset to understand the implementation of Algorithm 1. Pro-

cess: In the first step, the algorithm does the calculation of Xi for all the nodes in the considered

1https://in.mathworks.com/help/matlab/ref/polyfit.html
2https://in.mathworks.com/help/matlab/ref/polyval.html
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Fig. 3. (a) ForC = 4.9610, X-distribution is calculated. Its linear fitting (on log-log scale) is done to calculate

the power-law exponent, γ = 2.8885. The error in fitting is 219.3640. (b) For C = 19.7710, X-distribution is

calculated. Its linear fitting (on log-log scale) is done to calculate the power-law exponent, γ = 4.68. The

error in fitting is 58.9. (c) Error in linear-fitting of X-distribution (on a log-log scale) of a real-world network

(Supreme court) (in blue dots) is plotted for different considered values of C = 0.001 : 0.01 : 50. The minima

of the pattern (pink dot) is identified to get the value ofC , which is expected to produce the best linear fitting

(on log-log scale) of X-distribution, which is shown in subfigure (b).

network for a value of constant C (Box B(II) in Algorithm 1), let C = 4.9610. Next, we calculate

X-distribution (in Box B(III)), then we perform the linear fitting (on log-log scale) of the obtained

X-distribution (in Box B(IV), fitting is shown in Figure 3(a)) and calculate the error in the fitting.

Repeat the explained process Process for different considered values of C = 0.001 : 0.01 : 50. In

B(IV) (lines 15–18) stores the values of error and corresponding power-law exponent if the error

corresponding to the current value of C is less than previously explored values of C . Finally, after

the completion of the execution of Algorithm 1, we obtain the power-law exponent γ = 4.68 corre-

sponding to the best linear fitting (on log-log scale) of X-distribution (shown in Figure 3(b)). The

errors in the linear fitting of X-distributions corresponding to different values of C are plotted in

Figure 3(c).

3 SIMULATION AND RESULTS

3.1 Data

Here, we consider the following network models to verify the superiority of X-distribution over de-

gree distribution in calculating power-law exponent γ (Table 1): CPM [16], NRM [24], RefOrCite2

[25], BA [3], CDPAM [23], and DMS [10]. These are the state-of-the-art network models utilized

for the structural reconstruction of real-world networks, in which at each time-step a new node

appears and get attached to the older nodes according to the predefined rules of the respective

models. The way to compute Xi for a growing network model is in Algorithm 1. We also consider

various real-world networks, for example, Biomedical, Supreme court, ArxivTH, ArxivPH, Patent,

and Facebook (refer to Table 2), and power-law exponents are calculated using X-distributions

and respective degree distributions. The experimental computations are performed on Intel Xeon

Gold 5120 dual CPU equipped with 128 GB RAM configuration system. Furthermore, Matlab im-

plementations (using MATLAB R2022b software) of diverse network models are used to generate

networks for experimental analysis.

3.2 Effectiveness of X-Distribution

This section discusses the experimental analysis of X-distribution through Algorithm 1 for vari-

ous considered network models to show the effectiveness of the proposed X-distribution. For the
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X-distribution: Retraceable Power-law Exponent of Complex Networks 117:7

Table 1. Networks of Size 105 Nodes Under CPM, NRM, RefOrCite2, BA, CDPAM,

and DMS Models Are Considered

γ γ (X ) γ (D)

C
P

M

1.11 1.108 ±±± 0.0335 1.2533 ± 0.0264

1.25 1.1918 ±±± 0.0111 1.3406 ± 0.0264

1.43 1.3633 ± 0.0181 1.4938 ±±± 0.0295

1.67 1.5739 ± 0.0253 1.6930 ±±± 0.0200

2.00 1.8918 ±±± 0.0418 1.8559 ± 0.0309

2.50 2.3679 ±±± 0.0771 2.2452 ± 0.0959

3.30 3.1549 ±±± 0.1362 2.7707 ± 0.1593

5.00 4.6118 ±±± 0.4223 3.5281 ±0.2973

6.67 6.349 ±±± 0.9251 4.1296 ± 0.4066

8.33 7.5686 ±±± 1.5666 4.4651 ± 0.4232

10.00 9.1658 ±±± 1.7703 4.8878 ± 0.5612

N
R

M

1.33 1.4103 ±±± 0.8030 0.8707 ± 0.2851

1.72 1.9124 ±±± 0.0588 2.1771 ± 0.0499

2.27 2.3436 ± 0.0746 2.3249 ±±± 0.0895

3.57 3.8684 ± 0.3082 3.2931 ±±± 0.1313

5.26 5.6594 ±±± 0.5490 4.0311 ± 0.3263

10.26 11.6199 ±±± 3.1616 5.5043 ± 0.7103

R
e
fO

rC
it

e
2

1.11 1.3226 ±±± 0.0024 0.6909 ± 0.0492

1.25 1.3762±±± 0.0124 1.0242 ± 0.0638

1.43 1.4581 ±±± 0.0103 1.3097 ± 0.0637

1.67 1.5833 ±±± 0.0165 1.5627 ± 0.0645

2.00 1.9729 ±±± 0.0321 1.8303 ± 0.0855

2.50 2.5095 ±±± 0.0303 2.1749 ± 0.1282

3.30 3.4217 ±±± 0.1190 2.6272 ± 0.1875

5.00 5.2578 ±±± 0.4249 3.2503 ± 0.3531

6.67 6.7698 ±±± 0.7115 3.6699 ± 0.4457

8.33 8.3429 ±±± 1.1467 4.1082 ± 0.5815

10.00 9.9375 ±±± 1.9204 4.1476 ± 0.5886

γ γ (X , 10) γ (D, 10) γ (X , 20) γ (D, 20)

B
A 2.0 1.942 1.914 ±±± 0.0116 1.9629 1.8985 ±±± 0.0033

C
D

P
A

M

1.00 1.4144 ± 0.0775 1.3601 ± 0.5103 0.7845 ±±± 0.05 2.4621 ± 0.1468

1.33 1.0478 ± 0.0477 1.0417 ±±± 0.0774 0.9 ±±± 0.005 0.8898 ±±± 0.0436

1.60 1.4927 ±±± 0.0250 1.8979 ± 0.0039 1.5227 ±±± 0.015 2.2263 ± 0.0818

1.82 1.7552 ± 0.005 1.8143 ± 0.0158 1.8059 ±±± 0.003 1.8665 ± 0.0073

1.91 1.8292 ± 0.005 1.8744 ±±± 0.0078 1.8934 ± 0.005 1.9078 ±±± 0.0046

1.99 1.9186 ± 0.005 1.9329 ±±± 0.0108 1.9579 ±±± 0.005 1.9229 ± 0.0050

γ γ (X , 10) γ (D, 10) γ γ (X , 20) γ (D, 20)

D
M

S

2.01 1.9456 ±±± 0.0175 1.9405 ±±± 0.0114 2.01 1.9715 ± 0.012 2.2384 ± 0.0756

3.00 2.8710 ±±± 0.0175 2.2702 ± 0.0267 2.50 2.3641 ±±± 0.001 1.8979 ± 0.0031

4.00 3.9326 ±±± 0.0175 2.4381 ± 0.0288 3.00 2.87 ±±± 0.01 1.8996 ± 0.0032

12.00 7.65 ±±± 0.0175 2.8706 ± 0.0363 7.00 5.001 ±±± 0.010 1.9120 ± 0.0026

The values in γ (X ) column are calculated using the X-distribution and the values in γ (D) column are

calculated using the Degree distribution.

simulation purpose and to cover the wide range of γ , we set the parameter values of different mod-

els: parameter p in CPM is set to 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.15, 0.12, 0.1, (p, β) in NRM are

set to (0.5, 0.5), (0.3, 0.4), (0.2, 0.3), (0.1, 0.2), (0.1, 0.1), (0.05, 0.05), in RefOrCite2, p = 0.4 and q is

set to 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.15, 0.12, 0.1.

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 5, Article 117. Publication date: February 2024.
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Table 2. Brief Descriptions of Datasets with Nodes and Edges

Networks Description Nodes Edges Ref

Biomedical Consists of biomedical papers indexed in NCBI (2001–2008) 43,937 162,404 [25]

Supreme Court US Supreme Court cases (1754–2002). Judgements refer to previous judgements 25,417 446,490 [11]

ArxivTH High Energy Physics—Theory papers from arXiv.org (1992–2002) 27,770 352,807 [17]

ArxivPH High Energy Physics—Phenomenology papers from arXiv.org (1992–2002) 34,546 421,578 [17]

Patent Citation network among U.S. Patents 3,774,768 16,518,948 [17]

Facebook Network of posts to other user’s wall on Facebook 46,952 876,993 [27]

Table 3. Power-law Exponent (γ ) of Different State-of-the-art Network Models

Model CPM NRM RefOrCite2 BA CDPAM DMS

γ
1

p

1

β + (1 − β)p

1

q
2

2β

β + 0.5
2 +

β

k

In BA, CDPAM, and DMS models, the average degree (k) is also an input parameter. We set k ∈

{10, 20} for experimental simulations. γ (X , 10) represents value of γ at k = 10 for X-distribution.

The CDPAM model set parameter β to 0.5, 1, 2, 5, 10, 1000 and k ∈ {10, 20}, in DMS model

parameter β set to 0.1, 10, 20, 100 and k ∈ {10, 20}.

For the given settings of parameter values of different models, 100 networks are simulated of the

size of 105 nodes. Then, power-law exponents γ (X ) and γ (D) are calculated using X-distributions

and degree distributions, respectively. The mean values with standard deviation are reported in

Table 1. In Table 1, γ is the theoretical value corresponding to input parameters. The mathematical

formulation for computing γ is given in Table 3. Furthermore, the numerically simulated values

(γ (X ) or γ (D)) close to theoretical γ correspond to a more accurate estimation of the power-law

exponent. Values written in bold are closer to theoretical γ . From Table 1, it is observed that X-

distribution outperforms in most of the cases. The improvement is marginal whenever degree

distribution exhibits improved results, but significant improvements are noticed in the case of

X-distribution.

For pictorial verification, degree distributions and X-distributions of considered models are plot-

ted in Figure 4 on log-log scale. X-distributions plots (in dark green hexagon) are more linear than

respective degree distributions (plots in pink color squares). The extensive experimental results

support the claim that X-distribution can estimate power-law exponent more accurately compared

to respective degree distribution.

We also calculate goodness of fit (GoF) using cost function Mean-squared Error (MSE),

and Two-sample Kolmogorov-Smirnov Test (K2) [20] to evaluate the quality of fitting of X-

distribution and degree distribution of networks obtained under different network models (consid-

ered in Figure 4) and real-world networks (in Table 2), and noted in Table 4. Lower values (values

in bold in Table 4) of GoF and K2 signify better curve fitting. From Table 4, it is observed that

X-distribution of networks exhibit better curve fitting with lower values of GoF and K2 than cor-

responding degree distributions.

3.3 Consistency of X-distribution

In this section, we discuss the stability and consistency of the proposed algorithm for calculating

γ . It has already been mentioned that most of the models follow the power law in their tail (for

higher values of degree). Thus, the size of the network plays a critical role in the estimation of γ .

Here, two networks of different sizes (having 105 and 106 nodes) are generated using CPM, NRM,

RefOrCite2, BA, CDPAM, and DMS models, and their X-distribution and degree distributions are

plotted in Figure 5. The degree distribution of a model network follows the power law in its tail,
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Fig. 4. (Best viewed in color.) X-distributions (X-dist) and Degree distributions (D-dist) for (a) CPM (p = 0.7),

(b) NRM (p = 0.4, β = 0.2), (c) RefOrCite2 (p = 0.4, q = 0.2), (d) BA (p = 5), (e) CDPAM (β = 5,k = 5), and

(f) DMS (β = 10,k = 5) models.

Table 4. Goodness of Fit Values3(GoF) Using MSE (Mean-squared Error)

Cost Function, and K2 Represents Test Statistic of Two-sample

Kolmogorov-Smirnov Test 4[20] that Measures the Maximum Absolute

Difference between the Cdfs of Two Input Distributions

Data/Model X-distribution Degree distribution

GoF K2 GoF K2

Biomedical 0.0084 0.0452 0.0235 0.0480

Supreme Court 0.0026 0.0166 0.1212 0.0651

ArxivTH 0.0029 0.0273 0.0210 0.0336

ArxivPH 0.0085 0.0466 0.0554 0.0362

Patent 0.0066 0.0614 0.0110 0.0375

Facebook 0.0018 0.0307 0.1579 0.0791

CPM 0.0227 0.0183 0.0060 0.0240

NRM 0.0028 0.0603 0.0184 0.0339

RefOrCite2 0.0036 0.0250 0.0617 0.0500

BA 0.0118 0.0193 0.0237 0.0433

CDPAM 0.0485 0.0697 0.0159 0.0254

DMS 0.0034 0.0125 0.0302 0.0368

Values in bold (lower values of GoF or K2) represent better performance.

and maximum deviation is observed in the tail. It may result in inaccurate computation of γ . From

the figure, it is observed that X-distribution is more stable and consistent with the growth of the

network until the model changes its parameters.

3https://in.mathworks.com/help/ident/ref/goodnessoffit.html
4https://in.mathworks.com/help/stats/kstest2.html#btno0gd-ks2stat
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Fig. 5. Consistency of Degree distribution and X-distribution with the growth of networks generated using

(a) CPM (p = 0.7), (b) NRM (p = 0.4, β = 0.2), (c) RefOrCite2 (p = 0.4, q = 0.2), (d) BA (k = 5), (e) CDPAM

(β = 5, k = 5), and (f) DMS (β = 10, k = 5) network reconstruction models.

3.4 Verification on Real-world Networks

We also applied Algorithm 1 over several real-world networks, for example, Biomedical, Supreme

court, ArxivTH, ArxivPH, Patent, and Facebook real-world networks (for descriptions refer to

Table 2) and reported power-law exponents evaluated using X-distribution and degree distribution.

The plots of distributions are available in Figure 6. We can clearly observe that the linearity (low

values of GoF andK2 in Table 4) in the plots of X-distributions is better than the linearity observed

in degree distribution plots. From Table 4, it is observed that X-distributions exhibit more linearity

(low values of GoF andK2) on the log-log scale than degree distributions in most of the cases. Thus,

X-distribution is more suitable for the evaluation of power-law exponent using linear fitting (on

the log-log scale).

4 CONCLUSION

In this article, the problem of retraceability of microdynamics of a growing network is consid-

ered, which has importance in network reconstruction. We propose the X-distribution to compute

the model parameters more accurately compared to the networks’ associated degree distribution.

Retracing the parameter values using X-distribution is successfully applied over the networks ob-

tained under the BA, CP, NRM, RefOrCite2, CDPAM, and DMS models. The experimental results

show that the X-distribution is more consistent with the growth of a network than the degree dis-

tribution. We also verified the effectiveness of X-distribution over degree distribution on various

real-world networks.

In future, X-distribution would be applied to real-world data to analyze the universality of power

law and reconstruction of real-world networks. One can further explore to propose better network

reconstruction models using X-distribution. To retrace their microdynamics, we will further study

the applicability of X-distribution for other real-world networks, including weighted networks,

ACM Trans. Knowl. Discov. Data., Vol. 18, No. 5, Article 117. Publication date: February 2024.
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Fig. 6. (Best viewed in color.) X-distributions and Degree distributions for (a) Biomedical, (b) Supreme Court,

(c) ArxivTH, (d) ArxivPH, (e) Patent, and (f) Facebook real-world datasets.

signed networks, and multi-layer networks. Additionally, we will investigate effectiveness of X-

distribution in temporal and dynamic environment where node degree and connections change

over time. Such investigations can provide insights of structural dynamics of real-world networks.

Furthermore, the relation among X-distribution and community structure of the network is still

left unexplored. Hence, we also keep this for our future work.
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