Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Bayesian Optimisation for Constrained Problems

Published: 08 April 2024 Publication History

Abstract

Many real-world optimisation problems such as hyperparameter tuning in machine learning or simulation-based optimisation can be formulated as expensive-to-evaluate black-box functions. A popular approach to tackle such problems is Bayesian optimisation, which builds a response surface model based on the data collected so far, and uses the mean and uncertainty predicted by the model to decide what information to collect next. In this article, we propose a generalisation of the well-known Knowledge Gradient acquisition function that allows it to handle constraints. We empirically compare the new algorithm with four other state-of-the-art constrained Bayesian optimisation algorithms and demonstrate its superior performance. We also prove theoretical convergence in the infinite budget limit.

References

[1]
Mauricio A. Álvarez, Lorenzo Rosasco, and Neil D. Lawrence. 2012. Kernels for vector-valued functions: A review. Foundations and Trends® in Machine Learning 4, 3 (March 2012), 195–266. DOI:
[2]
Satyajith Amaran, Nikolaos V. Sahinidis, Bikram Sharda, and Scott J. Bury. 2016. Simulation optimization: A review of algorithms and applications. Annals of Operations Research 240, 1 (2016), 351–380.
[3]
Samineh Bagheri, Wolfgang Konen, Richard Allmendinger, Juergen Branke, Kalyanmoy Deb, Jonathan Fieldsend, Domenico Quagliarella, and Karthik Sindhya. 2017. Constraint handing in efficient global optimization. In Proceedings of the Genetic and Evolutionary Computation Conference. ACM, 673–680.
[4]
Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2020. BoTorch: A framework for efficient Monte-Carlo Bayesian optimization. In Advances in Neural Information Processing Systems 33. http://arxiv.org/abs/1910.06403
[5]
Felix Berkenkamp, Andreas Krause, and Angela P. Schoellig. 2016. Bayesian optimization with safety constraints: Safe and automatic parameter tuning in robotics. arXiv abs/1602.04450 (2016).
[6]
Felix Berkenkamp, Andreas Krause, and Angela P. Schoellig. 2023. Bayesian optimization with safety constraints: Safe and automatic parameter tuning in robotics. Machine Learning 112 (2023), 3713–3747.
[7]
Antonio Candelieri. 2019. Sequential model based optimization of partially defined functions under unknown constraints. Journal of Global Optimization 79 (2019), 281–303.
[8]
Wenjie Chen, Shengcai Liu, and Ke Tang. 2021. A new knowledge gradient-based method for constrained Bayesian optimization. arXiv:2101.08743 [cs.LG] (2021).
[9]
Erhan Cinlar. 2011. Probability and Stochastics. Graduate Texts in Mathematics, Vol. 261. Springer.
[10]
David Eriksson and Matthias Poloczek. 2021. Scalable constrained Bayesian optimization. In Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, Arindam Banerjee and Kenji Fukumizu (Eds.). Proceedings of Machine Learning Research, Vol. 130. PMLR, 730–738. https://proceedings.mlr.press/v130/eriksson21a.html
[11]
Alexander I. J. Forrester, Andras Sobester, and Andy J. Keane. 2008. Engineering Design via Surrogate Modelling. Wiley.
[12]
Peter I. Frazier. 2018. A tutorial on Bayesian optimization. arXiv:1807.02811 [stat.ML] (2008).
[13]
Jacob Gardner, Matt Kusner, Eddie Xu, Kilian Weinberger, and John Cunningham. 2014. Bayesian optimization with inequality constraints. In Proceedings of the 31st International Conference on Machine Learning (ICML’14). 3.
[14]
Robert B. Gramacy, Genetha A. Gray, Sébastien Le Digabel, Herbert K. H. Lee, Pritam Ranjan, Garth Wells, and Stefan M. Wild. 2016. Modeling an augmented Lagrangian for blackbox constrained optimization. Technometrics 58, 1 (2016), 1–11. DOI:
[15]
José Miguel Hernández-Lobato, Michael A. Gelbart, Ryan P. Adams, Matthew W. Hoffman, and Zoubin Ghahramani. 2016. A general framework for constrained Bayesian optimization using information-based search. Journal of Machine Learning Research 17, 1 (Jan.2016), 5549–5601.
[16]
Jose Miguel Hernandez-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. 2014. Predictive entropy search for efficient global optimization of black-box functions. In Proceedings of the 27th International Conference on Neural Information Processing Systems—Volume 1 (NIPS’14). MIT Press, Cambridge, MA, 918–926.
[17]
Donald R. Jones, Matthias Schonlau, and William J. Welch. 1998. Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13 (Jan.1998), 455–492. DOI:
[18]
Kristian Kersting, Christian Plagemann, Patrick Pfaff, and Wolfram Burgard. 2007. Most likely heteroscedastic Gaussian process regression. In Proceedings of the 24th International Conference on Machine Learning(ICML’07). ACM, 393–400. DOI:
[19]
Jack P. C. Kleijnen, Inneke Van Nieuwenhuyse, and Wim van Beers. 2021. Constrained Optimization in Simulation: Efficient Global Optimization and Karush-Kuhn-Tucker Conditions. CentER Discussion Paper Series No. 2021-031. CentER, Cenber for Economic Research. DOI:
[20]
Remi R. Lam and Karen E. Willcox. 2017. Lookahead Bayesian optimization with inequality constraints. In Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS’17). 1888–1898.
[21]
Benjamin Letham, Brian Karrer, Guilherme Ottoni, and Eytan Bakshy. 2017. Constrained Bayesian optimization with noisy experiments. Bayesian Analysis 14, 2 (2017), 495–519. DOI:
[22]
Michael Pearce and Juergen Branke. 2018. Continuous multi-task Bayesian optimisation with correlation. European Journal of Operational Research 270, 3 (2018), 1074–1085.
[23]
Michael Pearce, Janis Klaise, and Matthew Groves. 2020. Practical Bayesian optimization of objectives with conditioning variables. arXiv:2002.09996 [stat.ML] (2020).
[24]
Michael Pearce, Matthias Poloczek, and Juergen Branke. 2019. Bayesian simulation optimization with common random numbers. In Proceedings of the Winter Simulation Conference(WSC’19). IEEE, 3492–3503.
[25]
Julien Pelamatti, Rodolphe Le Riche, Céline Helbert, and Christophette Blanchet-Scalliet. 2022. Coupling and selecting constraints in Bayesian optimization under uncertainties. arXiv:2204.00527 (2022). DOI:
[26]
Victor Picheny. 2014. A stepwise uncertainty reduction approach to constrained global optimization. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, Samuel Kaski and Jukka Corander (Eds.). Proceedings of Machine Learning Research, Vol. 33. PMLR, 787–795. http://proceedings.mlr.press/v33/picheny14.html
[27]
Victor Picheny, Robert B. Gramacy, Stefan Wild, and Sebastien Le Digabel. 2016. Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian. In Advances in Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, 1435–1443. http://papers.nips.cc/paper/6439-bayesian-optimization-under-mixed-constraints-with-a-slack-variable-augmented-lagrangian.pdf
[28]
Victor Picheny, Tobias Wagner, and David Ginsbourger. 2013. A benchmark of kriging-based infill criteria for noisy optimization. Structural and Multidisciplinary Optimization 48 (2013), 607–626. DOI:
[29]
Matthias Poloczek, Jialei Wang, and Peter Frazier. 2017. Multi-information source optimization. In Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, 1–11.https://proceedings.neurips.cc/paper/2017/file/df1f1d20ee86704251795841e6a9405a-Paper.pdf
[30]
Carl E. Rasmussen and Christopher K. I. Williams. 2006. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA.
[31]
Michael Sasena. 2002. Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations. Ph. D. Dissertation. University of Michigan.
[32]
Matthias Schonlau, William Welch, and Donald Jones. 1998. Global versus local search in constrained optimization of computer models. IMS Lecture Notes Monogram Series 34 (1998), 11–25. DOI:
[33]
Warren Scott, Peter Frazier, and Warren Powell. 2011. The correlated knowledge gradient for simulation optimization of continuous parameters using Gaussian process regression. SIAM Journal on Optimization 21, 3 (2011), 996–1026. DOI:
[34]
Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. 2016. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE 104, 1 (2016), 148–175.
[35]
Jian Wu and Peter I. Frazier. 2017. Discretization-free knowledge gradient methods for Bayesian optimization. arXiv:1707.06541 [stat.ML] (2017).
[36]
Yunxiang Zhang, Xiangyu Zhang, and Peter Frazier. 2021. Constrained two-step look-ahead Bayesian optimization. In Proceedings of the 35th Conference on Neural Information Processing Systems (NeurIPS’21). 1–13.

Cited By

View all
  • (2025)Classification of microstructural defects in selective laser melted inconel 713C alloy using convolutional neural networksMaterials Science and Technology10.1177/02670836241308470Online publication date: 15-Jan-2025
  • (2025)Constrained Bayesian Optimization: A ReviewIEEE Access10.1109/ACCESS.2024.352287613(1581-1593)Online publication date: 2025
  • (2024)Industrial activated sludge model identification using hyperparameter-tuned metaheuristicsSwarm and Evolutionary Computation10.1016/j.swevo.2024.10173391(101733)Online publication date: Dec-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Modeling and Computer Simulation
ACM Transactions on Modeling and Computer Simulation  Volume 34, Issue 2
April 2024
178 pages
EISSN:1558-1195
DOI:10.1145/3613554
  • Editor:
  • Wentong Cai
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 April 2024
Online AM: 22 January 2024
Accepted: 31 December 2023
Revised: 01 August 2023
Received: 14 January 2022
Published in TOMACS Volume 34, Issue 2

Check for updates

Author Tags

  1. Simulation optimisation
  2. Gaussian processes
  3. Bayesian optimisation
  4. constraints

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)601
  • Downloads (Last 6 weeks)27
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Classification of microstructural defects in selective laser melted inconel 713C alloy using convolutional neural networksMaterials Science and Technology10.1177/02670836241308470Online publication date: 15-Jan-2025
  • (2025)Constrained Bayesian Optimization: A ReviewIEEE Access10.1109/ACCESS.2024.352287613(1581-1593)Online publication date: 2025
  • (2024)Industrial activated sludge model identification using hyperparameter-tuned metaheuristicsSwarm and Evolutionary Computation10.1016/j.swevo.2024.10173391(101733)Online publication date: Dec-2024

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media