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ABSTRACT

Code comments provide important information for understanding
the source code. They can help developers understand the overall
purpose of a function or class, as well as identify bugs and technical
debt. However, an overabundance of comments is meaningless and
counterproductive. As a result, it is critical to automatically filter
out these comments for specific purposes. In this paper, we present
Dopamin, a Transformer-based tool for dealing with this issue. Our
model excels not only in presenting knowledge sharing of common
categories across multiple languages, but also in achieving robust
performance in comment classification by improving comment
representation. As a result, it outperforms the STACC baseline by 3%
on the NLBSE’24 Tool Competition dataset in terms of average F1-
score, while maintaining a comparable inference time for practical
use. The source code is publicity available at https://github.com/
FSoft- Al4Code/Dopamin.
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1 INTRODUCTION

In the intricate world of software development, source code com-
ments play a crucial role, serving as the backbone of applications
by elucidating the functionality and intent behind code segments.
These comments vary widely in their utility, ranging from summa-
rizing the purpose of functions or classes, aiding in code mainte-
nance, to identifying instances of technical debt, as highlighted in
studies like [7, 9, 12]. However, not all code comments are equally
beneficial, or different information in comments can be used for
different development tasks. With the increasing complexity of
software projects, the task of discerning valuable comments from
the less pertinent ones has become more critical.
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Table 1: NLBSE’24 Tool Competition dataset properties

Language Number of categories Number of data per category

Java 7 10.555
Python 5 2.555
Pharo 7 1.765

Current tools for comment classification, as discussed in refer-
ences like [1, 10, 11], predominantly focus on categorizing com-
ments based on their apparent utility in the coding workflow. De-
spite their effectiveness, these tools often lack the nuanced un-
derstanding needed to differentiate between subtly different types
of comments, limiting their practical utility. Recognizing this gap,
this paper introduces Dopamin - a Transformer-based Comment
Classifier that utilizes a code language model for an enhanced clas-
sification process.

Dopamin takes a novel approach, relying on domain post-training
on diverse comment types across various coding environments, and
adopting a multi-level layer aggregation strategy inspired by Karimi
et al. [5]. The post-training procedure incorporates data from all
programming languages, facilitating knowledge transfer across dif-
ferent languages and leveraging the high-resource language (Java)
to improve the less resource-intensive languages (Python). Mean-
while, layer aggregation methodology enables Dopamin to not only
classify comments but also understand the nuanced semantic in-
formation they carry, as the higher layers in BERT are adept at
capturing intricate semantic features, a concept supported by Jawa-
har et al. [3]. By doing so, Dopamin significantly improves the
relevance and accuracy of comment classification, catering to the
evolving complexity of software development.

The efficacy of Dopamin is evident in our experimental results,
where it achieves an F1-score of 0.74, surpassing the 0.71 F1-score
of the existing STACC [1] baseline. Through Dopamin, we aim to
redefine the standards in code comment classification, providing a
tool that is effective in distinguishing various types of comments
on multiple programming languages.

2 DATA PREPARATION

In this section, we illustrate the NLBSE’24 Tool Competition dataset
introduced by Kallis et al. [4], detailing our approach to processing
comments and splitting the training data for model selection.

2.1 Dataset statistic

The competition provided binary comment classification data of
three languages (Python, Java, and Pharo). In total, there are 19
categories corresponding to 19 classifiers required to build. Overall
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Table 2: Different model results on Validation set

Model Precision Recall F1

CodeBERT 0.7921 0.8438 0.8133
RoBERTa 0.7900 0.8304 0.8063
ALBERT 0.6695 0.7769 0.7108

information of the dataset is shown in Table 1 and details on the
competition repository!.

2.2 Data preprocess

Input feature: Follow Al-Kaswan et al. [1], we concatenate the
class name and comment sentence to serve as the input to the model,
employing "</s>" as the separator between them.

Data spliting: The training data is divided into a training set and
a validation set for refining the optimal model. Instead of employ-
ing the validation set for hyperparameter tuning, it is utilized to
choose the best checkpoint during the training process. Due to the
modest amount of data, we select only 10% of the training set of
each category to serve as the validation set. We employ stratified
sampling to maintain the label distribution in both sets.

3 METHODOLOGY

This section describes the Dopamin methodology, including model
selection, the methodology for obtaining the optimal checkpoint,
domain post-training procedures, and layer aggregation techniques.

3.1 Model selection

We investigate several candidates as the backbone model. Since the
primary source of classification information comes from comments,
which are in natural language form, we choose RoBERTa [8] and
ALBERT [6] as candidates. Additionally, the comments primarily
contain syntax related to the coding domain. Therefore, we are also
considering CodeBERT [2], which is a language model pretrained
on large code corpus, as an option. We opt for these architectures
because they are based on Transformer encoders, commonly em-
ployed for classification tasks. Additionally, the base versions of
these models share the same size as the baseline (STACC), resulting
in fair comparison and no additional overhead in inference time,
which is a key consideration for evaluation score. The performance
of each model on the validation set is presented in Table 2. As a
result, we select CodeBERT - the model that achieves the best F1
score on the validation set, as the backbone model.

3.2 Domain post-training

Table 1 shows that Python and Pharo have much fewer examples
compared to Java. Besides, some categories are contained in both
Java and Python languages such as Expand, Summary, and Usage.
Therefore, we combined the data of all languages to finetune the
CodeBERT backbone model in the data domain (post-training), facil-
itating the transfer of knowledge across languages before individual
training of models for each category in the target domain.

Ihttps://github.com/nlbse2024/code- comment-classification
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Figure 1: Hierarchical aggregation

During the post-training procedure, we did not concatenate
the class name and comment sentence as input to the model as
mentioned in Section 2.2. Instead, we concatenate the category to
the comment sentence since the model is required to predict for all
categories, necessitating the inclusion of category information in
the input.

Following the post-training of the model in the target domain, we
utilize it as the initial state for the model to be trained individually
for each category using the procedure in Section 3.4 and input
feature in Section 2.2.

3.3 Multi-level layer aggregation

Jawahar et al. [3] previously showed that the upper layers in BERT
yield rich semantic features of linguistic information and distinct
layers can exhibit distinct capabilities in encoding semantic infor-
mation. Hence, combining these layers can obtain a more compre-
hensive representation for the input text. Therefore, we adopt the
Hierarchical aggregation (HSUM) introduced by Karimi et al. [5]
to enrich the comment representation. The illustration of HSUM is
shown in Figure 1. Specifically, we combined the top four layers of
the model to obtain the final representation for comment.

3.4 Optimal checkpoint

Given the high cost of hyperparameter search for 19 categories, we
choose to keep the hyperparameters constant throughout the
training process for each category. Instead, we use the validation
set to determine the best checkpoint step. This strategy is similar to
early stopping, which aims to prevent the model from overfitting.
We employ it as a heuristic to determine the optimal step for the
stage of training the model on the original training set without
validation. Specifically, there are two stages in the training process.

e Stage 1: the model is trained on the training set and the best
checkpoint (optimal_step) is obtained based on the F1-score of
the validation set.

e Stage 2: Considering the limited amount of data, training the
model on the entire original training set is essential. After obtain-
ing the optimal_step in stage 1, we train the model on the original
training set and acquire the final model at step optimal_step +
extra_steps. The extra_steps represents the additional steps due
to the incorporation of more data during training.

For example, after stage 1 the model for the Java - Deprecation

category attains its highest F1 score at step 200. The extra_steps is
set to 100, thus after training on the full original dataset in stage
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2, we obtain the checkpoint at step 300 as the final model for the
Deprecation category of Java.

4 EXPERIMENT SETUP

4.1 Training hyperparameters

For reproducibility, we set the random seed as 0. The hyperparam-
eters are selected based on references from prior studies [2, 6, 8]
that involved fine-tuning models on downstream tasks.

o Post-training stage: In this stage, we train the backbone model
during 10 epochs with the learning rate of 2e — 5, batch size of
64, and evaluation step of 500.

Invidual classifier training stage: Each model is trained for
10 epochs for Java categories and 20 epochs for Python or Pharo
categories. We assign a lower number of epochs to Java due to
its higher volume of training examples, resulting in a greater
number of training steps within a single epoch. The learning rate
is set to le-5, the batch size is 64, and the evaluation step is 50.
We use the extra_steps of 100 for all categories.

4.2 Implementation

We use the HuggingFace transformers® and PyTorch packages®
to implement Dopamin. All experiments are conducted using two
Nvidia A100 GPUs with 80GB of VRAM. During the evaluation on
the provided test set, we utilize Google Colab T4, adhering to the
competition’s specifications, to acquire the inference time.

4.3 Metrics

For evaluation, we employ the metrics outlined by the competition,
considering a category c. Specifically, we calculate the recall R,
precision P, and F1 score F1. for each category. These metrics are
defined as follows:

TP R = TP, Pc.R;
T TP.+FP., ¢ TP.+FN, ‘P +R.

in which, TP, FP., and FN¢ are the true positives, false positives,
and false negatives for a category c, correspondingly.

Finally, the submission score of the competition using both the
average F1-score and the inference time is defined as:

P

Fl. =2

submission_score

ax_avg_runtime — measured_avg_runtime

m
=0.75(avg.F1) + 0.25 -
max_avg_runtime

5 EXPERIMENTAL RESULTS

In this section, we present the performance comparison of Dopamin
against the STACC baseline. Table 4 shows the performance com-
parison between Dopamin and STACC across various categories
and languages demonstrates Dopamin’s enhanced capabilities in
comment classification. Below is a summary of the key findings
from the table.

5.0.1 Overall Performance. Dopamin attains a comprehensive F1-
score of 0.74, balancing Precision at 0.73 and Recall at 0.75. This
marks an enhancement compared to STACC’s overall F1-score of

Zhttps://huggingface.co/docs/transformers/index
3https://pytorch.org/
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Table 3: Ablation study on our proposed components: Do-
main Post-training (PoT) and Layer aggregation (LA). All the
models use CodeBERT as the backbone.

PoT LA | Validation set | Test set

| Precision  Recall F1 | Precision  Recall F1
v v 0.844 0.905 0.869 0.735 0.745 0.738
v X 0.851 0.892 0.866 0.712 0.729 0.717
X v 0.820 0.824 0.820 0.727 0.720 0.719
X X 0.792 0.844 0.813 0.728 0.713 0.714

0.71. Moreover, Dopamin incurs no additional inference time over-
head compared to STACC. Consequently, the submission score
reaches 0.703 compare to 0.675 of STACC baseline. Overall, the
result indicates a consistent and significant enhancement in classi-
fication effectiveness.

5.0.2  Performance by Language.

e Java: Dopamin performs better in categories like Pointer, Sum-
mary, Ownership, Rational, and Usage, with notable improve-
ments in F1-scores. For instance, Dopamin achieves F1-score at
0.90 compared to STACC’s 0.78 in the Summary category.

e Pharo: Dopamin shows improved performance in categories like
Classreferences, Collaborators, and Example. For example, in the
Classreferences category, Dopamin’s F1-score is 0.68 compared to
STACC'’s 0.52. However, Dopamin exhibits a weakness in 4 out
of 7 categories when compared to STACC in this language. The
explanation might stem from Pharo being the language with the
lowest data volume per category (under 2000). Given the limited
data, the few-shot approach (STACC) appears more effective than
fine-tuning with classification loss (Dopamin). Moreover, the
absence of overlap categories between Pharo and other languages
could restrict the advantages of the Post-training stage.

Python: Dopamin also outperforms STACC in the Python cate-

gory, particularly in Parameters, Summary, and Usage categories.

These categories overlap with those in Java, suggesting the effec-

tiveness of knowledge transfer during our Post-training process.

5.0.3 Category-Specific Performance. Dopamin excels particularly
in categories where understanding the context and semantics is
crucial, like Summary, Usage, and Ownership. In some categories,
like Java - Expand and Pharo - Keyimplementationpoints, Dopamin’s
performance is lower than STACC. This suggests room for further
optimization in certain specific categories.

In summary, Dopamin generally exhibits a balanced improve-
ment in both precision (P.) and recall (R.) across various categories.
For example, in the Java - Usage category, Dopamin shows a preci-
sion of 0.87 and recall of 0.95, compared to STACC’s 0.64 and 0.92,
respectively. Dopamin also demonstrates a notable improvement
over STACC in most categories and languages, reflecting its ad-
vanced capability in understanding and classifying code comments.

6 ABLATION STUDY

In this section, we present the experimental outcomes obtained by
systematically trimming individual components within Dopamin,
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Table 4: Performance of Dopamin against the STACC baseline

Language  Category | STACC | Dopamin | AF1c
| Pc Rc F1. | Pc Rc F1. |
Java Deprecation 0.81 0.94 0.87 0.81 0.88 0.85 -0.02
Java Pointer 0.82 0.78 0.80 0.89 0.81 0.85 +0.05
Java Summary 093  0.67 0.78 094  0.87 0.90 +0.12
Java Expand 0.57 0.73 0.64 0.52 0.63 0.57 -0.07
Java Ownership 0.97 1.0 0.99 1.0 0.99 1.0 +0.01
Java Rational 0.49 0.51 0.5 0.49 0.59 0.54 +0.04
Java Usage 0.64 0.92 0.76 0.87 0.95 0.91 +0.15
Pharo Classreferences 047 057 052 | 076  0.62 0.68 +0.16
Pharo Example 0.93 0.89 0.91 0.93 0.93 0.93 +0.02
Pharo Keyimplementationpoints | 0.69  0.79  0.73 0.5 0.69  0.58 -0.15
Pharo Collaborators 036 091 051 | 057 064  0.60 +0.09
Pharo Intent 0.87 0.89 0.88 0.87 0.85 0.86 -0.02
Pharo Keymessages 0.79 091 0.85 0.86 081 0.83 -0.02
Pharo Responsibilities 0.67 063  0.65 | 0.59 0.62 0.61 -0.04
Python Developmentnotes 0.43 0.54 0.48 0.45 0.44 0.44 -0.04
Python Parameters 0.78  0.86 0.81 0.88  0.85 0.86 +0.05
Python Summary 0.62 0.64 0.63 0.8 0.69 0.74 +0.11
Python Expand 0.52 0.56 0.54 0.51 0.53 0.52 -0.02
Python Usage 0.69 0.77 0.73 0.72 0.79 0.76 +0.03
Overall | 0.69 0.76 0.71 0.73 0.75 0.74 +0.03
showcasing the efficacy of each element. The results of this study 28-31.
on Validation and Test sets are illustrated in Table 3. [2] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,

On the validation set, improvements are evident when adopting
Post-training or Layer Aggregation independently, as opposed to
fine-tuning the unmodified CodeBERT model. Especially, the post-
training method makes up significant enhancement (over 5% on F1
score). Meanwhile, on the test set, HSUM demonstrates its efficacy
in enhancing F1 score performance. This underscores the effective-
ness of each proposed component. Consequently, the combination
of these two methodologies, encapsulated in Dopamin, attains the
highest performance of F1 score on both evaluation sets.

7 CONCLUSION

We proposed Dopamin, a novel approach for code comment classi-
fication, which demonstrates notable advancements in the bench-
mark. By selecting CodeBERT as the backbone model and imple-
menting an optimal checkpoint process, we have optimized the clas-
sification accuracy across various programming languages. The do-
main post-training procedure significantly enhances performance
for low-resource languages, illustrating the model’s adaptability. Ad-
ditionally, the use of multi-level layer aggregation, specifically the
Hierarchical aggregation (HSUM) technique, enriches the semantic
representation of comments, contributing to Dopamin’s superior
performance over the STACC baseline in most categories. Overall,
Dopamin’s methodology and results mark a significant improve-
ment in the efficiency and precision of code comment classification,
offering valuable insights and tools for software communities.
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