
Dataset: Copy-based Reuse in Open Source Software
Mahmoud Jahanshahi
mjahansh@vols.utk.edu
University of Tennessee

Knoxville, USA

Audris Mockus
audris@utk.edu

University of Tennessee
Knoxville, USA

ABSTRACT
In Open Source Software, the source code and any other resources
available in a project can be viewed or reused by anyone subject to
often permissive licensing restrictions. In contrast to some studies
of dependency-based reuse supported via package managers, no
studies of OSS-wide copy-based reuse exist. This dataset seeks to
encourage the studies of OSS-wide copy-based reuse by providing
copying activity data that captures whole-file copying that captures
nearly all OSS. To accomplish that, we develop approaches to detect
copy-based reuse by developing an efficient algorithm that exploits
World of Code infrastructure: a curated and cross referenced col-
lection of nearly all open source repositories. We expect this data
will enable future research and tool development that support such
reuse and minimize associated risks.

KEYWORDS
Reuse, Open Source Software, Software Development, Copy-based
Reuse, Software Supply Chain, World of Code

1 INTRODUCTION
The cornerstone of Open Source Software (OSS) is its “openness”, in-
cluding the ability to access, examine, and copy any project artifact
subject to licensing restrictions that, in turn, often enforce openness
of the derived work. Such ability has a potential to bring dramatic
improvements in developer productivity, but it may also result in
the proliferation of, potentially, poor quality code in various states
of disrepair (e.g, orphan vulnerabilities [38]).

Furthermore, as such copying progresses from one project to
another, potentially with modifications, critical information about
the original design, authorship, copyright, and licensing may be
lost [37], thus impeding further improvements, bug fixing, reducing
attribution-related motivation for original authors and creating
legal problems for downstream users, not only of the copied code
but of software that depends on at least one package involving
copied code [5].

As OSS grows, the tasks of tracking the origins of source code,
finding good quality code suitable for reuse, or untangling paral-
lel evolution of code in multiple projects are ever more daunting.
Despite the longstanding interest, potentially massive benefits and
risks of copying activity, the precise extent, the prevailing practices,
and the potentially negative impacts of the source code copying at
the scale of the entire OSS have not been investigated mainly due
to the challenge of being able to track code over entire OSS.

A better understanding of code copying practices may suggest
future research on approaches or tools that make productivity im-
provements even greater while, at the same time, helping to min-
imize inherent risks of copying. Specifically, we aim to provide
a copy-based reuse dataset to enable further analysis of aspects
concerning the extent and the nature of reuse in OSS and to provide

information necessary to investigate approaches that support this
common activity, make it more efficient, and safer.

First, we create ameasurement framework that tracks all versions
of source code (we refer to a single version as a blob in keeping
with the terminology of the version control system git) across all
repositories. The timewhen each unique blob𝑏 was first committed
to each project 𝑃 is denoted as 𝑡𝑏 (𝑃). The first repository 𝑃𝑜 (𝑏) =
ArgMin𝑃 𝑡𝑏 (𝑃) is referred to as the the originating repository for
𝑏 (and the first author as the creator). Next, copy instances are
identified via projects pairs: a project with the originating commit
and the destination project with one of the subsequent commits
producing the same blob (𝑃𝑜 (𝑏), 𝑃𝑑 (𝑏)).

2 BACKGROUND
The term software reuse refers to the process of creating software
systems from existing software rather than building them from
scratch [26]. Coding from scratch may require more time and effort
than reusing already created source code that is suitable for the task
and is of good quality. Programmers, therefore, opportunistically
reuse code and do so frequently [24]. Programming of well-defined
problems often start by searching in code repositories followed by
judicious copying and pasting [41].

Open source software (OSS) development and platforms like
GitHub greatly expand opportunities to reuse by enabling the com-
munity of developers to curate software projects and by encourag-
ing and enhancing the process of opportunistic finding and reusing
artifacts. Much of OSS is specifically designed to be reused and to
provide resources or functionality to other software projects [16],
thus such reuse can be categorized as one of building blocks of
OSS. In fact, developers not only look for the opportunity to reuse,
but also advertise their own high quality artifacts for others to
reuse [12]. High reuse not only brings the software project and its
maintainers popularity and job prospects [39], but also may bring
maintainers and corporate support.

2.1 Research that could be done using this
dataset

Not always is code reuse beneficial though. Although it may reduce
the development costs, it could pose some other risks that eventu-
ally would lead to increased overall costs. Security vulnerabilities,
licensing and copyright issues and code quality are just a few such
risks [10]. Our curated dataset can enable future research in many
potential areas including but not limited to the following:

Security. The relation between security and reuse can go both
ways: a system can become more secure by relying on mature de-
pendencies, or more insecure by exposing a larger attack surface
via exploitable dependencies [15]. Specifically, in copy-based reuse,
extensive code copying in OSS results in an extensive spread of

ar
X

iv
:2

31
2.

09
37

0v
1 

 [
cs

.S
E

] 
 1

4 
D

ec
 2

02
3



Mahmoud Jahanshahi and Audris Mockus

potentially vulnerable code not only in inactive projects that are
still publicly available for others to use that do spread the vulner-
ability further, but also in currently active and in highly popular
projects [38].

Licensing. As software systems evolve, so do licenses. Various
factors, such as changes in the legal landscape, commercial code
licensed as free and open source, or code reused from other open
source systems, lead to evolution of licensing, which may affect the
way a system or part thereof can be subsequently used and therefore,
it is crucial to monitor licensing evolution [4]. But monitoring the
huge amount of data in entire OSS is not an easy task to do and thus
many developers fail to adhere to licensing requirements [2, 11].

Quality. Code reuse is not only assumed to inflate maintenance
costs in certain circumstances, but also considered defect-prone
as inconsistent changes to code duplicates can lead to unexpected
behavior [24]. Also forgetting to modify identifiers (variables, func-
tions, types, etc.) consistently throughout the reused code will cause
errors that often slip through compile-time checks and become hid-
den bugs that are very hard to detect [27].

Other than the bugs introduced by this kind of reuse, the source
code itself could have bugs or be of low quality that can be spread in
the same way explained about security vulnerabilities earlier. The
future study using this dataset might suggest approaches to leverage
the information obtained from multiple projects containing reused
code to reduce these kind of risks.

While the described benefits and risks associated with reuse
appear to be real, the extent and the types of copying in the entire
OSS are not clear. In order to prioritize these risks/benefits and
investigate approaches to minimize/maximize them, we first need
to develop an approach to track copy-based reuse scalable to the
massive size of the entire OSS as investigations of convenience
samples presented in prior work do not capture the bulk of copying
activity.

2.2 Contribution
To the best of our knowledge no curation system exists at the level
of a blob, nor is there an easy way for anyone to determine the
extent of copy-based reuse at that level and the introduced reuse
identification methods (such as [25]) find reuse between given in-
put projects and are not easily scalable to find reuse across all OSS
repositories. The methods we use to identify reuse could, there-
fore, provide a basis for tools that expose these hard-to-obtain yet
potentially important phenomenon.

Our dataset has two important aspects. First, we present the
copying activity at the whole open source software ecosystem level.
Previous provided datasets normally focus on a specific program-
ming language (e.g. Java as in [22]) and the data used in previous
works investigating copying have as well mostly concentrated on a
small subset of a specific community (e.g. Java language, Android
apps, etc.) [6, 16, 17, 20, 33, 42] or sampled from a single hosting
platform (e.g. GitHub) [12, 13]. Even research more comprehensive
in programming language coverage [28] considered only a subset of
programming languages and more importantly, used convenience
sampling by excluding less active repositories [18, 19]. Further-
more, almost all research only focuses on code reuse whereas our

dataset tracks all artifacts whether they are code or other reusable
development resources, such as images or documentation.

Second, copy-based reuse has not been as extensively investigated
as the dependency-based reuse, e.g., [3, 8, 36]. Copy-based reuse is,
potentially, no less important, but much less understood form of
reuse. In fact, most of the efforts in copy-based reuse domain are
focused on clone detection1 tools and techniques [1, 17, 23, 40, 44],
not on the properties of files that are being reused. Clone detection
tools and techniques usually take a snippet of code as input and
then try to find similar code snippets in a target directory or an
specific domain [21, 43] whereas in our dataset, we are finding all
instances of reuse in nearly entirety of OSS.

The description and the curation methods of this dataset has not
been published before. Furthermore, although the dataset is now
publicly available through WoC 2, to the best of our knowledge,
the data has not been used by authors or others in any published
paper yet.

3 METHODOLOGY
We start by briefly outlining World of Code infrastructure we em-
ployed to create our dataset and then present the methods used to
identify instances of copying.

3.1 World of Code Infrastructure
Finding duplicate pieces of code and all revisions of that code across
all open source projects is a data and computation intensive task due
to the vast number of OSS projects hosted on numerous platforms.
Previous research on code reuse has, therefore, typically looked at a
relatively small subset of open source software potentially missing
the full extent of copying that could only be obtained with a nearly
complete collection. World of Code (WoC) [31, 32] infrastructure
attempts to remedy this by, on a regular basis, discovering publicly
available new and updated version control repositories, retrieving
complete information (or updates) in them, indexing and cross-
referencing retrieved objects, conducting auto-curation involving
author aliasing [9] and repository deforking [34], and provides shell,
Python and web APIs to support creation of various research work-
flows. The source code version control systems inWoC are collected
from hundreds of forges and, after complete deduplication, takes
approximately 300TB of disk space for the most recent snapshot we
use for our dataset 3. The specific objective of WoC is to support
research on three kinds of software supply chains [30]: technical
dependency (traditional dependency-based package reuse), copy-
based reuse, and knowledge flows [14, 29, 45] (developers working
on, and learning about, projects and then using that knowledge in
their work on other projects).

WoC’s operationalization of copy-based supply chains is based
on mapping blobs (versions of the source code) to all commits and
projects where they have been created. This implies that copy is
detected only if the entire file is copied intact without any modifi-
cations. Because of that, our dataset includes only the whole-file

1identification of, often, relatively small snippets of code within a single or a limited
number of projects
2It has been made available only recently
3version V



Dataset: Copy-based Reuse in Open Source Software

copying activity. This also means that different versions of the orig-
inally same file will be considered different objects since they are
different blobs.

Furthermore, to discriminate copy-based reuse from forking (a
commit uniquely identifies modified blobs, and forked projects
share commits), we use project deforking (p2P map) provided in
WoC [34]. Throughout the paper, even if we only use the word
project, we mean deforked project with the explained definition.

Specifically, WoC uses git object indexing via sha1 signature so
that each association has to store only the sha1 of the object (in this
case blob), and the actual content of each object is stored exactly
once. When objects are extracted from a repository, WoC associates
all extracted commits with that repository (the so called c2p map).
Since a commit points to a tree and to its parent commit objects, the
remaining objects in a repository can be easily derived by traversing
versions and trees. WoC also computes the association between
commits and blobs created by a commit (new versions of existing
files or entirely new files) and makes it available via c2fbb map. The
map lists all the instances where a blob corresponding to one of
the files in the repository changed or a new file was created. In the
former case, the blob corresponding to an earlier version of the file
is also provided, making it possible to trace back or forth for earlier
or newer versions of a blob.

Commits have attributes, such as time of the commit and author
of the commit and these attributes can be accessed via c2dat map in
WoC. A few more maps provided by WoC are also used in creating
this dataset.

Figure 1: Schematic Architecture of Reuse Identification

3.2 Identification of reused blobs
Despite the key relationships available in WoC, we have to resolve
several critical obstacles. We first need to identify the first time
𝑡𝑏 (𝑃) each of the nearly 16B blobs landed in each of the almost
108M projects. We aim to minimize memory use and be able to

run computations in parallel. First, we join c2fbb map 4 (that lists
for each commit all the blobs it creates) with c2dat map (to obtain
the date and time of the commit) and then with the c2P (which
itself is the result of joining c2p with p2P maps) map to identify
all projects containing that commit. WoC has each of the three
maps split into 128 partitions5 requiring us to run a sequence of
two Unix join commands (first to join c2fbb and c2dat and then the
result of that join with the c2P map) on each of the 128 partitions
in parallel. The result is a new c2Ptb (commit, project, time, and
blob) map stored in 128 partitions (𝑐𝑖 , 𝑃, 𝑡, 𝑏) : 𝑖 = 0, . . . , 127. To
create the timeline for each blob we need to sort all that data by
blob, time, and project. The list has hundreds of billions of rows
(20B blobs often occurring in multiple commits and commits some-
times residing in multiple projects). We thus needed to break down
the problem into smaller pieces to solve within a reasonable time
frame. Specifically, we first split each partition (𝑐𝑖 , 𝑃, 𝑡, 𝑏) based on
the blob into 128 sub-partitions, thus obtaining 128x128 partitions
resulting from the original partitioning by commits and the sec-
ondary one by blobs (𝑏 𝑗 , 𝑡, 𝑃, 𝑐𝑖 ) : 𝑖, 𝑗 = 0, . . . , 127. We then sort
each of the 128x128 files by blob, time, and project (using Unix
sort parameterized to handle extremely large files) and drop all but
the first commit creating the blob for each project6. In the next
step we merge 128 commit-based partitions for each blob-based
partition using Unix sort with a merge option and drop all but
the first commit of the blob to a project. Resulting in 128 blob-
based partitions (b2tP map) (𝑏 𝑗 , 𝑡, 𝑃) : 𝑗 = 0, . . . , 127 where we
have only blob, time, and the deforked project that contain our
desired timeline 𝑡𝑏 (𝑃). Finally, the blob timelines are used to iden-
tify instances of copying (𝑡𝑏 (𝑃𝑜 ), 𝑡𝑏 (𝑃𝑑 )) (or, in the terminology
of WoC, Ptb2Pt maps where the first project is originating7 and
the second project copied the blob – the blob was created at a later
time). To accomplish this we first create a list of blob origination
projects and times. A sweep over b2tP by keeping only the first
time and the project associated with each 𝑏 and excluding blobs
associated with a single project8 produces (𝑏 𝑗 , 𝑡, 𝑃𝑜 ) : 𝑗 = 0, . . . , 127.
We also store never reused blobs (𝑏 𝑗𝑛𝑐 , 𝑡, 𝑃𝑜 ) : 𝑗 = 0, . . . , 127 (ones
that are associated with only one project as identified during the
sweep mentioned above). (𝑏 𝑗 , 𝑡, 𝑃𝑜 ) partitions containing only orig-
inating project are then joined with (𝑏 𝑗 , 𝑡, 𝑃) to obtain the cross-
product ((𝑏 𝑗 , 𝑡𝑜 , 𝑃𝑜 , 𝑡𝑑 , 𝑃𝑑 ) : 𝑗 = 0, . . . , 127, 𝑃𝑜 ≠ 𝑃𝑑 ). Each of the
resulting 128 partitions are then split via project name9, into 128
sub-partitions and each sub-partition is then sorted by the origi-
nating project: ((𝑃𝑖𝑜 , 𝑡𝑜 , 𝑃𝑑 , 𝑡𝑑 , 𝑏 𝑗 ) : 𝑖, 𝑗 = 0, . . . , 127), then merging
over blob-based partitions belonging to a single project-based par-
tition. Resulting Ptb2Pt map contains all instances of blob copying:
(𝑡𝑏 (𝑃𝑖𝑜 ), 𝑡𝑏 (𝑃𝑑 )) and is stored in 128 partitions 𝑖 = 0, . . . , 127 with

4see https://github.com/woc-hack/tutorial for more information about WoC map nam-
ing convention
5Partitions are enumerated using the first seven bits of the sha1 representing the key
— in this case commit — in order to obtain partitions of similar size. Each partition is a
file sorted by the key and compressed.
6A blob is often copied within a repository.
7See section 5 for the limitations in identifying the originating project.
8Over 90% of the blobs belong to a single project, so excluding them reduces storage
of the relations created downstream.
9We use the first seven bits of the name’s FNV digest [35] as it is faster and randomizes
better short strings than sha1.



Mahmoud Jahanshahi and Audris Mockus

each workflow step described above capable of being run as 128
parallel processes.

4 DATASET
The created tables are stored on WoC servers and can be found at
/da?_data/basemaps/gz/Ptb2PtFullVX.s with X ranging from 0 to
127 based on the 7 bits in the first byte of the blob sha1. The "V"
in the name indicates that this dataset is based on WoC version
V10(the latest at the time of this work). The format of each file
is encoded in its name, that is, each line of this dataset includes
the originating repository (deforked repository), the timestamp of
first commit including the blob in originating project, blob sha1,
destination project (deforked repository) and the timestamp of first
commit including the blob in destination project, all separated by
semicolon.

fo rmat :
o r i g i n a t i n g repo ; t imestamp ; b l ob ;
d e s t i n a t i o n repo ; t imestamp

example :
MeigeJ ia_ECE − 3 6 4 ; 1 5 1 4 0 9 8 6 6 6 ;
010000001 b 5 0 2d c b 0 f c 8 e 8 9 d 4 f 8 5 4 9 7 9 c 9 3 5 0 3 f 8 ;
HaoboChen1887_Purdue ; 1 5 9 8 0 2 4 6 0 5

This means blob 010000001b502dcb0fc8e89d4f854979c93503f8
was first seen in MeigeJia_ECE-36411 repository at 1466402956 (Jun
20 2016) and was reused by HaoboChen1887_Purdue at 1551632725
(Mar 03 2019).

5 LIMITATIONS
Blob-level reuse. Our dataset is at entire blob reuse granularity

and does not capture the reuse of pieces of code that form only a
part of the file. Thus blob-level reuse (despite being common) does
not represent the full extent of all code reuse.

Notably, different versions of the same file would have different
blobs as even if two versions differ by only one character, they
still produce different file hashes (are different blobs). Thus blob
reuse is not the same as file reuse. File reuse is, however, difficult
to define precisely as it is not clear what files should be considered
equivalent in distinct projects.

Commit time. The reuse timeline (and identifying the first oc-
currence) of a blob is based on the commit timestamp. This time is
not always accurate as it depends on the user’s system time. We
used suggestions by [7] and other methods to eliminate incorrect
or questionable timestamps. We also used version history informa-
tion to ensure time of parent commits do not postdate that of child
commits.

Originating repository. The accuracy of origination estimates can
be increased by the completeness of data. Even if we assume that the
WoC collection is complete, some blobs may have been originated

10https://bitbucket.com/swsc/overview
11Slash symbols are substituted with underscores in WoC repository naming conven-
tion, that is, MeigeJia_ECE-364 means github.com/MeigeJia/ECE-364. Furthermore,
the project is hosted on Github unless the domain is mentioned at the beginning of
project name.

in a private repository and then copied to a public repository, i.e.,
the originating repository in WoC may not be the actual creator of
the blob. For example, a 3D cannon pack asset12 was committed
by 38 projects indexed by WoC. That asset, however, was created
earlier in Unity Asset Store.

Copy instance. A unique combination of blob, originating project
and destination project may not always reflect the actual copy pat-
tern because some destination projects may have copied the blob
not from the originating project (e.g., for projects O, A, and B in
blob creation order, project B may copy either from project O or A).
Also, some blobs are not copied but are created independently in
each repository, e.g, an empty string, or a standard template auto-
matically created by a common tool. We use the list of such blobs
provided by WoC [31] to exclude them from all our calculations.

As was described in each paragraph, we took all the necessary
steps to minimize the potential negative impact of these limitations
and validated the curated data extensively to ensure its reliability
within the boundaries of limitations.

6 FUTUREWORK
Dependency-based reuse. In this dataset we only introduce the

network of copy-based reuse. To better understand reuse in general,
it is of great importance to draw a complete picture by creating the
reuse network of copy-based alongside dependency-based reuse as
one is not telling the complete story without the other.

Code-snippet granularity. Another expansion area to better un-
derstand reuse is setting the granularity to code snippet level. That
will produce a much more complex network of reuse that poten-
tially offers a great opportunity to have a more in-depth analysis
of reuse.

Upstream repository. As was mentioned in the limitations sec-
tion, we still do not exactly know where a repository copied the
blob from and consider it to be the originating repository in all
copy instances. But to better understand how developers find a
repository to reuse code from, meta heuristic algorithms or artifi-
cial intelligence techniques could be utilized to predict where the
code was copied from in each copy instance.

12https://assetstore.unity.com/packages/3d/props/weapons/stylish-cannon-pack-
174145



Dataset: Copy-based Reuse in Open Source Software

REFERENCES
[1] Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque Azam,

and Bilal Maqbool. 2019. A systematic review on code clone detection. IEEE
access 7 (2019), 86121–86144.

[2] Le An, OnsMlouki, Foutse Khomh, and Giuliano Antoniol. 2017. Stack overflow: a
code laundering platform?. In 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 283–293.

[3] Russ Cox. 2019. Surviving Software Dependencies: Software reuse is finally here
but comes with risks. Queue 17, 2 (2019), 24–47.

[4] Massimiliano Di Penta, Daniel M German, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2010. An exploratory study of the evolution of software licensing. In
2010 ACM/IEEE 32nd International Conference on Software Engineering, Vol. 1.
IEEE, 145–154.

[5] Muyue Feng, Weixuan Mao, Zimu Yuan, Yang Xiao, Gu Ban, Wei Wang, Shiyang
Wang, Qian Tang, Jiahuan Xu, He Su, Binghong Liu, and Wei Huo. 2019. Open-
Source License Violations of Binary Software at Large Scale. In 2019 IEEE 26th In-
ternational Conference on Software Analysis, Evolution and Reengineering (SANER).
564–568. https://doi.org/10.1109/SANER.2019.8667977

[6] Felix Fischer, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin
Acar, Michael Backes, and Sascha Fahl. 2017. Stack Overflow Considered Harm-
ful? The Impact of Copy&Paste on Android Application Security. In 2017 IEEE
Symposium on Security and Privacy (SP). 121–136. https://doi.org/10.1109/SP.
2017.31

[7] Samuel W. Flint, Jigyasa Chauhan, and Robert Dyer. 2021. Escaping the Time
Pit: Pitfalls and Guidelines for Using Time-Based Git Data. In 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR).

[8] William B Frakes and Giancarlo Succi. 2001. An industrial study of reuse, quality,
and productivity. Journal of Systems and Software 57, 2 (2001), 99–106.

[9] Tanner Fry, Tapajit Dey, Andrey Karnauch, and Audris Mockus. 2020. A dataset
and an approach for identity resolution of 38 million author ids extracted from
2b git commits. In Proceedings of the 17th international conference on mining
software repositories. 518–522.

[10] Daniel M German, Massimiliano Di Penta, Yann-Gael Gueheneuc, and Giuliano
Antoniol. 2009. Code siblings: Technical and legal implications of copying
code between applications. In 2009 6th IEEE International Working Conference on
Mining Software Repositories. IEEE, 81–90.

[11] Daniel M German and Ahmed E Hassan. 2009. License integration patterns:
Addressing license mismatches in component-based development. In 2009 IEEE
31st international conference on software engineering. IEEE, 188–198.

[12] Mohammad Gharehyazie, Baishakhi Ray, and Vladimir Filkov. 2017. Some from
here, some from there: Cross-project code reuse in github. In 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, 291–301.

[13] Mohammad Gharehyazie, Baishakhi Ray, Mehdi Keshani, Masoumeh Soleimani
Zavosht, Abbas Heydarnoori, and Vladimir Filkov. 2019. Cross-project code
clones in GitHub. Empirical Software Engineering 24, 3 (2019), 1538–1573.

[14] Shahla Ghobadi. 2015. What drives knowledge sharing in software develop-
ment teams: A literature review and classification framework. Information &
Management 52, 1 (2015), 82–97.

[15] Antonios Gkortzis, Daniel Feitosa, and Diomidis Spinellis. 2021. Software reuse
cuts both ways: An empirical analysis of its relationship with security vulnera-
bilities. Journal of Systems and Software 172 (2021), 110653.

[16] Stefan Haefliger, Georg Von Krogh, and Sebastian Spaeth. 2008. Code reuse in
open source software. Management science 54, 1 (2008), 180–193.

[17] Steve Hanna, Ling Huang, Edward Wu, Saung Li, Charles Chen, and Dawn
Song. 2012. Juxtapp: A scalable system for detecting code reuse among android
applications. In International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 62–81.

[18] Hideaki Hata, Raula Gaikovina Kula, Takashi Ishio, and Christoph Treude.
2021. Research Artifact: The Potential of Meta-Maintenance on GitHub. In
2021 IEEE/ACM 43rd International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion). 192–193. https://doi.org/10.1109/ICSE-
Companion52605.2021.00084

[19] Hideaki Hata, Raula Gaikovina Kula, Takashi Ishio, and Christoph Treude. 2021.
Same File, Different Changes: The Potential of Meta-Maintenance on GitHub. In
Proceedings of the 43rd International Conference on Software Engineering (Madrid,
Spain) (ICSE ’21). IEEE Press, 773–784. https://doi.org/10.1109/ICSE43902.2021.
00076

[20] Lars Heinemann, Florian Deissenboeck, Mario Gleirscher, Benjamin Hummel,
and Maximilian Irlbeck. 2011. On the extent and nature of software reuse in
open source java projects. In International Conference on Software Reuse. Springer,
207–222.

[21] Katsuro Inoue, Yuya Miyamoto, Daniel M German, and Takashi Ishio. 2021.
Finding code-clone snippets in large source-code collection by CCgrep. In Open
Source Systems: 17th IFIP WG 2.13 International Conference, OSS 2021, Virtual
Event, May 12–13, 2021, Proceedings 17. Springer, 28–41.

[22] Werner Janjic, Oliver Hummel, Marcus Schumacher, and Colin Atkinson. 2013.
An unabridged source code dataset for research in software reuse. In 2013 10th

Working Conference on Mining Software Repositories (MSR). 339–342. https:
//doi.org/10.1109/MSR.2013.6624047

[23] Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In 29th
International Conference on Software Engineering (ICSE’07). IEEE, 96–105.

[24] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel, and Stefan Wagner.
2009. Do code clones matter?. In 2009 IEEE 31st International Conference on
Software Engineering. IEEE, 485–495.

[25] Naohiro Kawamitsu, Takashi Ishio, Tetsuya Kanda, Raula Gaikovina Kula, Coen
De Roover, and Katsuro Inoue. 2014. Identifying Source Code Reuse across
Repositories Using LCS-Based Source Code Similarity. In 2014 IEEE 14th Interna-
tional Working Conference on Source Code Analysis and Manipulation. 305–314.
https://doi.org/10.1109/SCAM.2014.17

[26] Charles W Krueger. 1992. Software reuse. ACM Computing Surveys (CSUR) 24, 2
(1992), 131–183.

[27] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2006. CP-Miner:
Finding copy-paste and related bugs in large-scale software code. IEEE Transac-
tions on software Engineering 32, 3 (2006), 176–192.

[28] Cristina V Lopes, Petr Maj, Pedro Martins, Vaibhav Saini, Di Yang, Jakub Zitny,
Hitesh Sajnani, and Jan Vitek. 2017. DéjàVu: a map of code duplicates on GitHub.
Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 1–28.

[29] Elena Lyulina and Mahmoud Jahanshahi. 2021. Building the Collaboration
Graph of Open-Source Software Ecosystem. In 2021 IEEE/ACM 18th International
Conference on Mining Software Repositories (MSR). 618–620. https://doi.org/10.
1109/MSR52588.2021.00086

[30] Yuxing Ma. 2018. Constructing supply chains in open source software. In 2018
IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). IEEE, 458–459.

[31] Yuxing Ma, Chris Bogart, Sadika Amreen, Russell Zaretzki, and Audris Mockus.
2019. World of code: an infrastructure for mining the universe of open source
VCS data. In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 143–154.

[32] Yuxing Ma, Tapajit Dey, Chris Bogart, Sadika Amreen, Marat Valiev, Adam
Tutko, David Kennard, Russell Zaretzki, and Audris Mockus. 2021. World of
code: Enabling a research workflow for mining and analyzing the universe of
open source vcs data. Empirical Software Engineering 26, 2 (2021), 1–42.

[33] Audris Mockus. 2007. Large-scale code reuse in open source software. In First
International Workshop on Emerging Trends in FLOSS Research and Development
(FLOSS’07: ICSE Workshops 2007). IEEE, 7–7.

[34] Audris Mockus, Diomidis Spinellis, Zoe Kotti, and Gabriel John Dusing. 2020.
A complete set of related git repositories identified via community detection
approaches based on shared commits. In Proceedings of the 17th International
Conference on Mining Software Repositories. 513–517.

[35] Landon Curt Noll. 2012. Fowler/noll/vo (fnv) hash. Accessed Jan (2012).
[36] Joel Ossher, Sushil Bajracharya, and Cristina Lopes. 2010. Automated dependency

resolution for open source software. In 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010). IEEE, 130–140.

[37] Shi Qiu, Daniel M German, and Katsuro Inoue. 2021. Empirical study on
dependency-related license violation in the javascript package ecosystem. Jour-
nal of Information Processing 29 (2021), 296–304.

[38] David Reid, Mahmoud Jahanshahi, and Audris Mockus. 2022. The Extent of
Orphan Vulnerabilities from Code Reuse in Open Source Software. In 2022
IEEE/ACM 44th International Conference on Software Engineering (ICSE). 2104–
2115. https://doi.org/10.1145/3510003.3510216

[39] Jeffrey A. Roberts, Il-Horn Hann, and Sandra A. Slaughter. 2006. Understanding
the motivations, participation, and performance of open source software devel-
opers: A longitudinal study of the apache projects. Management Science 52, 7
(July 2006), 984–999.

[40] Chanchal K Roy, James R Cordy, and Rainer Koschke. 2009. Comparison and
evaluation of code clone detection techniques and tools: A qualitative approach.
Science of computer programming 74, 7 (2009), 470–495.

[41] Susan Elliott Sim, Charles LA Clarke, and Richard C Holt. 1998. Archetypal
source code searches: A survey of software developers and maintainers. In
Proceedings. 6th International Workshop on Program Comprehension. IWPC’98
(Cat. No. 98TB100242). IEEE, 180–187.

[42] Manuel Sojer and Joachim Henkel. 2010. Code reuse in open source software
development: Quantitative evidence, drivers, and impediments. Journal of the
Association for Information Systems 11, 12 (2010), 2.

[43] Jeffrey Svajlenko, Iman Keivanloo, and Chanchal K Roy. 2013. Scaling classical
clone detection tools for ultra-large datasets: An exploratory study. In 2013 7th
International Workshop on Software Clones (IWSC). IEEE, 16–22.

[44] Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk.
2016. Deep learning code fragments for code clone detection. In 2016 31st
IEEE/ACM International Conference on Automated Software Engineering (ASE).
IEEE, 87–98.

[45] Hai Zhuge. 2002. Knowledge flow management for distributed team software
development. Knowledge-Based Systems 15, 8 (2002), 465–471.

https://doi.org/10.1109/SANER.2019.8667977
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1109/SP.2017.31
https://doi.org/10.1109/ICSE-Companion52605.2021.00084
https://doi.org/10.1109/ICSE-Companion52605.2021.00084
https://doi.org/10.1109/ICSE43902.2021.00076
https://doi.org/10.1109/ICSE43902.2021.00076
https://doi.org/10.1109/MSR.2013.6624047
https://doi.org/10.1109/MSR.2013.6624047
https://doi.org/10.1109/SCAM.2014.17
https://doi.org/10.1109/MSR52588.2021.00086
https://doi.org/10.1109/MSR52588.2021.00086
https://doi.org/10.1145/3510003.3510216

	Abstract
	1 Introduction
	2 Background
	2.1 Research that could be done using this dataset
	2.2 Contribution

	3 Methodology
	3.1 World of Code Infrastructure
	3.2 Identification of reused blobs

	4 Dataset
	5 Limitations
	6 Future Work
	References

