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ABSTRACT

Successful data-driven science requires complex data engineering pipelines to clean, transform and
alter data in preparation for machine learning, and robust results can only be achieved when each
step in the pipeline can be justified, and its effect on the data explained. In this framework, our
aim is to provide data scientists with facilities to gain an in-depth understanding of how each step
in the pipeline affects the data, from the raw input to training sets ready to be used for learning.
Starting from an extensible set of data preparation operators commonly used within a data science
setting, in this work we present a provenance management infrastructure for generating, storing,
and querying very granular accounts of data transformations, at the level of individual elements
within datasets whenever possible. Then, from the formal definition of a core set of data science
preprocessing operators, we derive a provenance semantics embodied by a collection of templates
expressed in PROV, a standard model for data provenance. Using those templates as a reference, our
provenance generation algorithm generalises to any operator with observable input/output pairs. We
provide a prototype implementation of an application-level provenance capture library to produce, in
a semi-automatic way, complete provenance documents that account for the entire pipeline. We report
on that reference implementations ability to capture provenance in real ML benchmark pipelines and
over TCP-DI synthetic data. We finally show how the collected provenance can be used to answer a
suite of provenance benchmark queries that underpin some common pipeline inspection questions, as
expressed on the Data Science Stack Exchange.

Keywords Provenance, Data Science, Data Preparation, Preprocessing

1 Introduction

Dataset selection and data wrangling pipelines are integral to applied Data Science workflows. These typically culminate
in the generation of predictive models for a broad range of data types and application domains through training. A
number of critical choices are made when these pipelines are designed, starting with the choice of which datasets to
include or exclude, how these should be merged [1], and which transformations are required to produce a viable training
set, given a choice of target learning algorithms. The main intended consequence of these transformation pipelines is to
optimise the predictive performance and generalisation characteristics of the models that are derived from the ground
data. There are however also unintended consequences, as these transformations alter the representation of the domain
that the learning algorithms generalise from, and they may remove or inadvertently introduce new bias in the data [2].
In turn, this may reflect on non-performance properties of the models, such as their fairness. The term, formally defined
in terms of statistical properties of the model’s predictions [3], broadly refers to the capability of a model to ensure that
its predictions are not affected by an individual belonging to one of the groups defined by some sensitive attribute(s),
such as sex, ethnicity, income band, etc.
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Motivation. Models that are provably fair are also perceived as more trustworthy, an important feature at a time
when machine learning models are increasingly used to support and complement human expert judgment, in areas
where decisions have consequences on individuals as well as on businesses. Substantial recent research has produced
techniques for explanation using: counterfactuals [4], local explanations [5], data [6] and meta-models [7]. While
these techniques focus primarily on the model itself, relatively little work has been done into trying to explain models
in terms of the transformations that occur before the data is used for learning. The ultimate goal of this work is to
enable explanations of the effect of each transformation in a pre-processing pipeline on the data that is ultimately fed
into a model [8]. As an initial step in this direction, we have developed a formal model and practical techniques for
recording data derivations at the level of the atomic elements in the dataset, for a general class of data transformation
operators. These derivations are a form of data provenance and are expressed using the PROV data model [9], a standard
and widely adopted ontology. Data derivations form a corpus of graph-structured metadata that can be queried as a
preliminary step to support user questions about model properties.

Problem scope. In this paper we focus on data transformations that are commonly found in data science processing
pipelines and across application domains, and we further limit the scope to structured tabular data.1 These steps have
been systematically enumerated in multiple reviews (see e.g. [10, 11]) and include, among others: feature selection,
engineering of new features; imputation of missing values, or listwise deletion (excluding an entire record if data is
missing on any variable for that record); downsampling or upsampling of data subsets in order to achieve better balance,
typically on the class labels (for classification tasks) or on the distribution of the outcome variable (for regression tasks);
outlier detection and removal; smoothing and normalisation; de-duplication, as well as steps that preserve the original
information but are required by some algorithms, such as “one-hot” encoding of categorical variables. A complex
pipeline may include some or all of these steps, and different techniques, algorithms, and choice of algorithm-specific
parameters may be available for each of them. These are often grounded in established literature but variations can be
created by data scientists to suit specific needs. In this work we consider the space of all configured pipelines that can
potentially be composed out of these operators.

Regarding the data that these operate on, we focus on structured two-dimensional tabular data, namely dataframes,
which are commonly supported by R and python as well as by a dedicated Spark API, and excluding tensors and multi-
dimensional matrices. While this is done to simplify our proof-of-concept implementation, we observe that considering
higher-dimension tabular structures has practical implications as it increases the complexity of the derivations from
input to output elements, however the underpinning provenance templates are fundamentally the same.

Overview of the approach. Firstly, we provide a formalisation and categorisation of a core set of these operators. Then,
with each class of those operators, we associate a provenance template that describes the effect on the data of each
operator in the class at the appropriate level of detail, i.e., on individual data elements, columns, rows, or collections of
those. By mapping operators to these fundamental templates, we are then able to identify the transformation type based
on observation of the operator’s input and outputs alone. By abstracting to this level, we can automatically create the
appropriate provenance for an operator in a data science pipeline if it follows the pre-identified input-output patterns,
even if the operator itself has never been seen before.

Contributions. Our contributions can be summarised as follows.

• A formalisation and categorisation of a core set of operators for data reduction, augmentation, transformation,
and fusion that move beyond the relational algebra (Section 3), showing how common data pre-processing
pipelines can be expressed as a composition of these operators.

• The semantics of the provenance that is generated for white-box transformations, as reduced to the core set of
operators (Section 4).

• A method for capturing the provenance of a pipeline, based on observing the changes to the data, not the
operator that was applied (Section 5).

• An application-level provenance capture facility for Python, underpinned by the formal model, that (i) identifies
the operation under execution to capture its provenance and (ii) is backed by a Neo4J database used as a
provenance store (Section 6). This new approach almost entirely removes the older requirement for pipeline
designers to programmatically “drive” provenance generation, making most of the process transparent;

• Using a reference implementation, we report on: (i) the impact of adding provenance capture to real-world
pipelines (Section 7.1), (ii) the ability to capture provenance in real ML benchmark pipelines and over TCP-DI
synthetic data [12] (Section 7.2), (iii) a use case analysis showing that provenance queries can provide support
to data scientists in the development of real-world machine-learning pipelines (Section 7.3) (iv) how data

1However, we are not going to consider more specialised data pre-processing steps that may apply to data types such as video,
audio, images, etc.
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provenance collected with our approach can be inspected through user-friendly interfaces (Section 7.4), and
(v) a comparison to other similar provenance capture systems (Section 7.5).

2 Models and Problem statement

2.1 Data model

The data collected for ML tasks are usually represented as tables or statistical data matrices in which columns represent
specific features of a phenomenon being observed, and rows are records of data for those features describing observations
of the phenomenon. To capture both formats, we will refer to these generically as datasets, similar in spirit to notions of
ordered relations [13] and dataframes [14].

A (dataset) schema S is an array of distinct names called features (or attributes) S = [a1, . . . , an]. Each feature
is associated with a domain of atomic values (such as numbers, strings, and timestamps). With a little abuse of
notation, hereinafter we will compare schemas using set containment over their features. A dataset D over a schema
S = [a1, . . . , an] is an ordered collection of rows (or records) of the form: i : (di1, . . . , din) where i is the unique index
of the row and each element dij (for 1 ≤ j ≤ n) is either a value in the domain of the feature aj or the special symbol
⊥, denoting a missing value. Row indexes can be implemented in different ways (e.g., with RID annotations [15]). We
only assume here that a row of any dataset can be uniquely identified.

Given a dataset D over a schema S we denote by Dia the value for the feature a of S occurring in the i-th row of D.
We also denote by Di∗ the i-th row of D, and by D∗a the column of D associated with the feature a of S.

Example 2.1 A possible dataset D over the schema S = [CId,Gender,Age,Zip] is as follows:

CId Gender Age Zip
1 113 F 24 98567
2 241 M 28 ⊥
3 375 C ⊥ 32768
4 578 F 44 32768

D∗Age and D2∗ denote the third column and the second row of D, respectively.

Note that, as mentioned in the introduction, in this work we focus on dataframes, which are described by a schema.
Extensions to tensors and multidimensional matrices are left for future work.

2.2 Data manipulation model

A general classification.

As part of this work, we analyzed several packages that allow users to build data pre-processing pipelines. Table 1
contains an example overview of the available operators from the ML pipeline building tool Orange [16] and the popular
SciKit packages [17]. As indicated on the left-hand side of the table, all of them can be classified into four main classes,
according to the type of manipulation done on the input dataset(s) over a schema S:

• Data reductions: operations that take as input a dataset D on a schema S and reduce the size of D by
eliminating rows (without changing S) or columns (changing S to S′ ⊂ S) from D;

• Data augmentations: operations that take as input a dataset D on a schema S and increase the size of D by
adding rows (without changing S) or columns (changing S to S′ ⊃ S) to D;

• Data transformations: operations that take as input a dataset D on a schema S and, by applying suitable
functions, transform (some of) the elements in D without changing its size or its schema (up to possible
changes to the domain of the involved features of S)

• Data fusions: operations that take as input two datasets D1 and D2 on schema S1 and S2 respectively and
combine them into a new dataset D on a schema S involving the features of S1 and S2.

We now introduce a number of basic operators of data manipulation over datasets belonging to one of the above classes
of data manipulations, as indicated in the right-hand side of Table 1. This approach is in line with the observation that
most of the operations of current data exploration packages rely on a rather small subset of operators [14].

Data reductions. Two basic data reduction operators are defined over datasets. They are simple extensions of two
well-known relational operators.

3
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Table 1: Typical operations in ML pipelines of data preparation from Orange [18] and Scikit-Learn [17].
Orange3 Ex. ScikitLearn Ex. Category Operator Implementation

Feature Statistics Feature_selection

Data reduction

Feature Selection πC

Select Data by Index Dataframe op. Instance Selection σC

Select Columns Feature_selection Drop Columns πC

Select Rows Dataframe op. Drop Rows σC

Data Sampler Imbalanced-learn Undersampling σC

Impute SimpleImputer

Data transformation

Imputation τf(X)

Apply Domain FunctionTransformer Value Transformation τf(X)

Edit Domain Binarizer Binarization τf(X)

Preprocess Normalizer Normalization τf(X)

Discretize KBinDiscretizer Discretization τf(X)

Feature Constructor FunctionTransformer

Data augmentation

Space Transformation πZ ◦ α→
f(X):Y

Create Class FunctionTransformer Instance Generation α↓
X:f(Y )

Data Sampler Imbalanced-learn Oversampling α↓
X:f(X)

Corpus Label Encoder String Indexer α→
f(X):Y

Preprocess OneHotEncoder One-Hot Encoder α→
f(X):Y

Merge Hstack Data fusion Join ▷◁tC
Concatenate Vstack Append ⊎

πC: the (conditional) projection of D on a set of features of S that satisfy a boolean condition C over S, denoted by
πC(D), is the dataset obtained from D by including only the columns D∗a of D such that a is a feature of S
that satisfy C;

σC: the selection of D with respect to a boolean condition C over S, denoted by σC(D), is the dataset obtained from
D by including the rows Di∗ of D satisfying C.

The condition of both the projection and the selection operators can refer to the values in D, as shown in the following
example that uses an intuitive syntax for the condition.

Example 2.2 Consider the dataset D in Example 2.1. The result of the expression π{features without nulls}(σAge<30(D))
is the following dataset:

CId Gender Age
1 113 F 24
2 241 M 28

Data augmentations. Two basic data augmentation operators are defined over datasets. They allow the addition of
columns and rows to a dataset, respectively.

α→
f(X):Y : the vertical augmentation of D to Y using a function f over a set X = [a1 . . . ak] ⊆ S of features, is

obtained by adding to D a new set of features Y = [a′
1 . . . a′l] whose new values dia′1 . . . dia′l for the i-th row

are obtained by applying f to dia1 . . . diak ;

α↓
X:f(Y ): the horizontal augmentation of D using an aggregative function f is obtained by adding one or more new

rows to D obtained by first grouping over the features in X and then, for each group, by applying f to πY (D)
(extending the result to S with nulls if needed). Note that horizontal augmentation generates new rows based
on grouping, i.e., by X , followed by an aggregation f(Y ) applied to the values for Y in each group.

Example 2.3 Consider again the dataset D in Example 2.1 and the following functions: (i) f1, which associates the
string young when age is less than 25 and the string adult otherwise, and (ii) f2, which computes the average of a set of
numbers. Then, the expression α→

f1(Age):ageRange(D) produces the following dataset:

CId Gender Age Zip ageRange
1 113 F 24 98567 young
2 241 M 28 ⊥ adult
3 375 C ⊥ 32768 ⊥
4 578 F 44 32768 adult

In expression E2 = α↓
Gender:avg(Age)(D) first group by Gender is computed, yielding two groups (for M and F), then

avg(Age) is executed on each group, resulting in the new rows 5,6 in the dataframe below:

4
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CId Gender Age Zip
1 113 F 24 98567
2 241 M 28 ⊥
3 375 C ⊥ 32768
4 578 F 44 32768
5 ⊥ F 34 ⊥
6 ⊥ M 28 ⊥

Note that new data can be added to a dataset using a horizontal augmentation where X = ∅, Y = S, and f denote
the procedure for adding records (e.g., by asking them to the user). Note also that horizontal augmentation allows us
to combine, in the same dataset, entities at different levels of granularity, a feature that can be very useful to a data
scientist (e.g., to compute, in the example above, the mean deviation).

Data transformation. One basic data transformation operator is defined over datasets:

τf(X): the transformation of a set of features X of D using a function f is obtained by substituting each value dia with
f(d∗a), for each feature a occurring in X .

Example 2.4 Let D be the dataset in Example 2.1 and f be an imputation function that associates to the ⊥’s occurring
in a feature a the most frequent value occurring in D∗a. Then, the result of the expression τf(Zip)(D) is the following
dataset:

CId Gender Age Zip
1 113 F 24 98567
2 241 M 28 32768
3 375 C ⊥ 32768
4 578 F 44 32768

Data fusion. Given DL and DR on schemas SL and SR respectively, the two basic data fusion operators join and
append allow the combination of a pair of datasets.

• the join DL ▷◁tC DR of DL and DR based on a boolean condition C is the dataset over SL ∪ SR obtained by
applying standard join operation of type t (where t can be equal to inner, (left/right/full) outer) based on the
condition C;

• the append DL⊎DR of DL to DR is the dataset over SL∪SR obtained by appending DL to DR and possibly
extending the result with nulls on the mismatching columns (SL ∪ SR) \ (SL ∩ SR).

Example 2.5 Let DL be the dataset in Example 2.1 (which we report here for convenience) and DR the dataset that
follows.

DL:

CId Gender Age Zip
1 113 F 24 98567
2 241 M 28 ⊥
3 375 C ⊥ 32768
4 578 F 44 32768

DR:
CId name

1 241 Jim
2 578 Mary

Then, the result of the expression DL ▷◁innerDL.CId=DR.CId DR is the following dataset:

CId Gender Age Zip Name
1 241 M 28 ⊥ Jim
2 578 F 44 32768 Mary

On the other hand, the result of the expression DL ⊎DR is the following dataset:

CId Gender Age Zip Name
1 113 F 24 98567 ⊥
2 241 M 28 ⊥ ⊥
3 375 C ⊥ 32768 ⊥
4 578 F 44 32768 ⊥
5 241 ⊥ ⊥ ⊥ Jim
6 578 ⊥ ⊥ ⊥ Mary

5
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We note that the data manipulation model presented here has some similarities with the Dataframe algebra [14]. The
main difference is that we have focused on a restricted set of core operators (with some of that in [14] missing and
others combined in one) with the specific goal of providing a solid basis to an effective technique for capturing data
provenance of classical preprocessing operators. We point out that our algebra can be easily extended to include
operators implementing other ETL/ELT-like transformations whose fine-grained provenance capture has been described
elsewhere [19].

2.3 Data provenance model

The purpose of data provenance, in this setting, is to support the generation of simple explanations for the existence
(or the absence) of some piece of data in the result of complex data manipulations. Along this line, we adopt as the
provenance model a subset of the PROV model [20] from the W3C, a widely adopted ontology that formalises the
notion of provenance document and which admits RDF and other serialisation formats to facilitate interoperability. The
minimal elements of the model are graphically described as shown in Figure 1.

EntityActivity used

wasGeneratedBy

wasInvalidatedBy wasDerivedFrom

Figure 1: The core W3C PROV model.

In PROV an entity represents an element d of a dataset D and is uniquely identified by D and the coordinates of d in
D (i.e., the corresponding row index and feature). An activity represents any pre-processing data manipulation that
operates over datasets. For each element d in a dataset D′ generated by an operation o over a dataset D we represent
the facts that: (i) d wasGeneratedBy o, and (ii) d wasDerivedFrom a set of elements in D. In addition, we represent:
(iii) all the elements d of D such that d was used by o and (iv) all the elements d of D such that d wasInvalidatedBy
(i.e., deleted by) o (if any). Note that in PROV derivation implies usage, but the inverse is not true and this is why this
notation is not redundant.

Example 2.6 Let E be the first expression in Example 2.3 and D′ = E(D). A fragment of the data provenance
generated by this operation, for two of the dataset elements, is reported in Figure 2.

Figure 2: A fragment of provenance data for the operation in Example 2.6.

2.4 Limitations and possible extensions

The models for data representation, manipulation, and provenance generation introduced in the previous sections cover
a large body of data preparation pipelines, but they are clearly not exhaustive. In particular, we have assumed that the
input data is in a bi-dimensional, tabular format (e.g., csv files), with rows representing observations of some phenomena
and columns representing interesting features of the observations. However, multi-dimensional data, including tensors
and matrices, are common in many machine learning applications. Our model can be extended by assuming that each
value is indeed a measure for a combination of features, possibly at different levels of aggregation, similar to logical
multidimensional data models that have been proposed in the literature for data warehousing and OLAP (e.g., [21]).

6
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This would also make it possible to include multi-level aggregation operations (roll-up, drill-down, slicing, and dicing)
by extending the data model as described e.g. in [21]. These extensions add complexity to the resulting provenance
graphs, as the derivations must be traced through multiple aggregations, however, this would not add to our conceptual
framework, as these simply extend the fundamental provenance patterns used for standard one-level aggregations (see
Sec.4.2.4). Supporting such extensions is therefore currently beyond the scope of our proof-of-concept implementation.

2.5 Problem Statement

We consider compositions of the operators introduced in Section 2.2 into pipelines that take as input a collection
of datasets D1, . . . , Dn and produce a dataset D′, denoted D′ = p(D1, . . . , Dn), by applying a (partially ordered)
sequence of operators. Note that E can be represented as a tree, where the internal nodes are operators and leaves
are datasets. Note also that although in principle any combination is possible, in practice there are constraints on the
ordering of the operators, because some operators may alter the dataset schema.

The performance of the model learned from p(D) is dependent upon the operators involved in p. As the data scientist
iterates over versions of the models, they may wish to inspect and understand exactly what happened at each step within
the pipeline. This can be a complex manual task for any realistic pipeline.

The provenance collected by the system presented here is intended to allow the data scientist to review, understand, and
debug what happened in past runs of any given pipeline. Depending on the granularity of the provenance, this can be
as coarse-grained as a dataset, p was used with transformations T1, T2, ... to a very fine-grained version which allows
users to track individual data items as described previously.

Classic provenance queries include: Why [22], How [23] and Why Not [24]. Instances of each of these queries are
shown in Table 2 as Queries 2, 3, and 7-9 respectively. In addition to these classic provenance queries, we have analyzed
questions posed to the Data Science Stack Exchange (DSSE) about problems posed by users, encountered when trying
to understand and debug the pipelines. An explanation of the use cases and the provenance queries in Table 2 that
they relate to can be found in Table 7. Through this analysis, we have identified an additional 6 provenance queries
based on the use cases from DSSE: All Transformations (1); Dataset-level Feature Operation (4); Record Operation
(5); Item-level Feature Operation (6); Impact on Feature Spread (12) and Impact on Dataset Spread (13). Queries 1,
4, and 5 are similar to How-provenance but are focused only on the transformations. The difference between them is
the granularity of focus - dataset, feature, record, or individual value. Queries 10 and 11 have been implemented to
emphasize how provenance can help when developing a pipeline. They show what an item was and what it will be,
highlighting potential errors or imperfections. Queries 12 and 13, however, present a new usage of provenance, and
thus a distinctly new provenance query type.

In the DSSE use cases, it became clear that a question being asked was “what operations were performed to the data and
how did those change the data profile”. This is a reasonable question as these transformations may entail unintended
consequences, as they alter the representation of the domain that the learning algorithms generalize from, and they may
remove or inadvertently introduce new bias in the data [2]. In turn, this may reflect on non-performance properties of the
models, such as their fairness. Fairness, formally defined in terms of statistical properties of the model’s predictions [3],
broadly refers to the capability of a model to ensure that its predictions are not affected by an individual belonging to
one of the groups defined by some sensitive attribute(s), such as sex, ethnicity, income band, etc. Queries 12 and 13
provide a mechanism that computes the statistical properties of the data before and after an operation to identify when
there are major shifts in distributions.

Thus, the problem within this work is to: a) define the set of operations for data manipulation available within a pipeline;
b) establish a set of provenance templates that can be used to reason over and capture the provenance of these operations
over the data; c) show that our approach can support typical provenance queries in an effective and scalable way.

3 Data processing operators

In this section, we illustrate a number of common data pprocessing operators that are often used in data preparation
workflows, showing how they can be suitably expressed as a composition of the basic operators introduced in Section 2.2.

3.1 Data Reduction

Feature Selection. This operation consists of selecting a set of relevant features from a given dataset and dropping the
others, which are either redundant or irrelevant to the goal of the learning process.

7
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Table 2: Provenance queries of interest to a data scientist designing a pipeline of pre-processing operations.
Id Provenance Query Input Output

PQ1 All Transformations D Set of operations applied to D and the features they affect.
PQ2 Why-provenance dia The input data that influenced dia.
PQ3 How-provenance dia The input data and the operations that created dia.
PQ4 Dataset-level Feature Operation D∗a Set of operations that were applied to feature a.
PQ5 Record Operation Di∗ Set of operations that were applied to record Di∗.
PQ6 Item-level Feature Operation dia Set of operations that were applied to dia.
PQ7 Feature Invalidation D, a The operation that deleted the feature a.
PQ8 Record Invalidation D, i The operation that deleted the record Di∗.
PQ9 Item Invalidation D, i, a The operation that deleted the item dia.
PQ10 Item History dia All the elements derived and that will derive from dia.
PQ11 Record History Di∗ All the elements derived and that will derive from Di∗.
PQ12 Impact on Feature Spread D The change in feature spread of all operations over a feature

of D.
PQ13 Impact on Dataset Spread D The change in dataset spread of all operations applied to D.

Feature selection over a dataset D with a schema S can be expressed by means of a simple pipeline involving only the
projection operator with a condition that selects the set of features I ⊂ S of interest:

FS (D) = πC (D)

where C = {a ∈ I }.

A special case of feature selection is an operation that drops columns with a value rate of missing values higher than a
threshold t. In this case, the condition of the projection operator is more involved as it requires introspection of the
dataset:

C = {a ∈ S | count(Dia = ⊥, 1 ≤ i ≤ n) < t}.

Instance Selection. The aim of this operation is to reduce the original dataset to a manageable volume by removing
certain records with the goal of improving the accuracy (and efficiency) of classification problems.

Also in this case, instance selection over a dataset D with a schema S can be expressed by means of a simple pipeline
involving only the selection operator with a condition that identifies the set of relevant rows of D by means of a
predicate p: IS (D) = σC (D) where C = {Di∗ ∈ S | p(Di∗)}.
Similar to feature selection, a relevant case of instance selection drops rows with a value rate of missing values higher
than a threshold t. In this case,

C = {Di∗ ∈ D | count(Dij = ⊥, 1 ≤ j ≤ m) < t}

3.2 Data Transformations

By data transformation, we mean any operation on a given dataset that modifies its values with the goal of improving
the quality of D and/or making the process of information extraction from D more effective. The following operator is
meant to capture data transformation (DT in its generality:

DT (D) = τf(X)(D)

where f is any scalar function that generates a new value f(x) from values of feature set X of S. Several cases of
transformations are common in pre-processing pipelines, as illustrated in the following.

Data repair. It is the process of replacing inconsistent data items with new values. In this case, f is a simple function
that converts values and the data transformation possibly operates on the whole dataset.

Binarization. It is the process of converting numerical features to binary features. For instance, if a value for a given
feature is greater than a threshold it is changed a 1, if not to 0.

Normalization. It is a scaling technique that transforms all the values of a feature so that they fall in a smaller range,
such as from 0 to 1. There are many normalization techniques, such as Min-Max normalization, Z-score normalization,
and Decimal scaling normalization. This operation operates on a single feature at a time

Discretization. It consists of converting or partitioning continuous features into discrete or nominal features. It performs
a value transformation from categorical to numerical data.

8
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Imputation. It is the process of replacing missing data (nulls in our data model) with valid data using a variety of
statistical approaches that aim at identifying the values with the maximum likelihood.

3.3 Data augmentation

Space Transformation. This operation takes a set of features of an existing dataset and generates from them a new set
of features by combining the corresponding values. Usually, the goal is to represent (a subset of) the original set of
features in terms of others in order to increase the quality of learning.

The application of this operation to a dataset D over a schema S can be expressed by means of an expression involving
a vertical augmentation that operates on a subset X of the features in S and produces a new set of features Y , followed
by a projection operator that eliminates the features in X , thus maintaining those in Z = (S ∪ Y )−X:

ST (D) = π{features in Z}(α
→
f (X ):Y (D))

Instance Generation: These operators include grouping and aggregation, and their effect is to fill regions in the domain
of the problem, which does not have representative examples in original data, or to summarize large amounts of
instances in fewer examples. These are also denoted prototype generation methods, as the artificial examples created
tend to act as a representative of a region or of a subset of the original instances.

The application of this operation to a dataset D over a schema S can be expressed by means of an expression involving a
horizontal augmentation that, if needed, groups over a subset X of the features in S and then apply a summary function
f over another subset of S:

IG(D) = α↓
X :f (Y )(D).

This operation can be preceded by a data reduction operator (a projection or a selection) to isolate the portion of the
original dataset on which we intend to operate.

String Indexer. This operator encodes a feature involving strings into a feature of string indices. The indices are in
[0 ,numLabels). It is a special case of Space transformation.

One-Hot Encoder. This operation maps a feature involving strings to a set of boolean features. Specifically, it creates
one column for each possible value occurring in the feature. Each new feature gets a 1 if the row contained that value
and a 0 if not. It is a special case of space transformation.

3.4 Data fusion

Data preparation pipelines often require combining datasets coming from different data sources. For this reason,
packages for data pre-processing are usually equipped with facilities for combining datasets in two main ways, as
follows.

Data integration. It is the process of combining rows of two datasets on the basis of some common property. This can be
useful when, for instance, we need to extend the features of observations of a phenomenon or objects of interest stored
in a dataset D1 (e.g., the technical information of smartphones on sale) with further features of the same observations
or of the same objects gathered elsewhere stored in a dataset D2 (e.g., the ratings of the same smartphones available
on a review site). This activity can be supported by an expression involving the join operator over the datasets under
consideration and can be preceded by a data reduction operator to isolate the portion X of the original dataset on which
we intend to operate, as follows:

πX(D1 ▷◁leftC D2)
where C specifies the condition that rows of different datasets must satisfy to be combined (e.g., they share the same
standardized product identifier). The join operator can also be equipped with some sophisticated techniques for joining
rows, such as one based on entity resolution.

Data expansion. It is the process of putting together rows of two datasets that contain data referring to different
observations of the same phenomenon or to different objects of the same type. This can be useful when, for instance, a
training set is built by accumulating data coming from diverse data sources, say D1, D2 and D3 (e.g., experimental data
of a medical treatment produced by three different laboratories). The append operator ⊎ can be used in such scenarios
possibly preceded by some data reduction operators, for example as follows:

D1 ⊎ πC1
(D2) ⊎ σC2

(D3)

. As shown in Example 2.5, this operator also accounts for situations in which we need to merge datasets that involve
different features of the same phenomena.

9
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4 Abstract analysis of provenance capture

In order to capture the provenance of a pipeline p of a combination of pre-processing operations o1, . . . , on forming
a tree, we introduce an abstract provenance-generating function (prov-gen), and associate it with each operation ok
occurring in p.

In accordance with the provenance model presented in Section 2.3, each element dij of a dataset D produced during the
execution of p is represented by a PROV entity in the provenance document. The properties of this entity include the
row index i and feature j in D, and an identifier k denoting the fact that dij is in the result of the operation ok in p.

Similarly, each operation ok in p is represented by a PROV activity in the provenance document, whose properties
specify the operator(s) illustrated in Section 2.2 that implement(s) ok, and the list of the features on which ok operates.

4.1 Provenance templates

We now present example instances of provenance-generating (prov-gen) functions for the main types of operations
observed in data science pipelines, discussed in Section 3. To recall, these are: (i) data reduction: D′ = πC(D),
D′ = σC(D); (ii) Data augmentations: α→

f(X):Y , α↓
X:f(Y ); (iii) Data transformations: τf(X); and (iv) Data fusion.

A prov-gen function takes as inputs the sets of input and output values D,D′ for the operator, and produces a PROV
document that describes the transformation produced by the operator on each element of D, as reflected in D′. Note
that for binary operators, namely join and append, D includes inputs from both operands.

Take for example the case of Vertical Augmentation (VA): α→
f1(Age):ageRange(D) which we used in Example 2.3, where

attribute Age is binarised into {young, adult} based on a pre-defined cutoff, defined as part of f(). The prov-gen function
for VA will have to produce a collection of small PROV documents, one for each input-output pair ⟨Di,Age, D

′
i,AgeRange⟩

as shown in the example.

As these documents all share the same structure, we define a common PROV template which is then instantiated
multiple times, once for each input/output pair. A template is simply a PROV document that may contain variables,
indicated by the namespace var:, which are used as placeholders for values. Here templates are designed to capture the
transformation at the level of individual elements of D, or its rows or columns, as appropriate. Thus a template will
have a used set of entities, which refer to the subset of data items in D which have been used by o, and a generated set
of new entities, corresponding to new elements in D′ (for projection and selection, it will have an invalidated set of
entities instead, as these operators remove data from D).

The PROV template for (VA) is shown in Figure 3, where we use the generic attribute names X,Y to indicate the old
and new feature names. One or more binding generators are associated with each template: they determine how values
found in D, D′ upon execution of the operator are substituted for the variables. Each variable substitution results in a
small PROV document, which represents all derivations through a single operator. In the following we are going to
refer informally to these documents as provlets, to indicate that a complete PROV document representing a complex
derivation chain can be produced by joining multiple such provlets on their data identifiers, as described in Sec 6.3
below.

In the VA example, the transformation between D and D′ is 1:1 and thus a new provlet is created from each value
D∗,Age of column Age and the corresponding value in AgeRange.

Using a list comprehension notation, the binding generator for the variables used in the template in Figure 3 are defined
as:

[⟨F = Age, I = i, V = Di,Age, F
′ = AgeRange, J = i, V ′ = f(Di,Age)⟩|i : 1 . . . n]

These are the new entities for the newly created data elements in the new column D∗,AgeRange ∈ {young, adult}. Two
of the n PROV documents for this specific example are shown in Figure 3.

4.2 Template binding rules

We define templates for each of the five core operators, shown in Figure 4 and the corresponding binding generators for
used, generated, and invalidated sets of entities.

Note that we do not need to create complete provlets for all entities in any given output dataset. If f(D) does not
change dij , then no provenance record needs to be generated. However if f(D) discards elements of D, then a provlet
containing an invalidation relationship is required. Whenever a new entity is generated, i.e. when f(D) creates a new

10
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Figure 3: Example of PROV template for Vertical Augmentation and corresponding instances.

Figure 4: PROV templates used by the prov-gen functions for data augmentation, transformation, and reduction.

or updated value in dij , a complete provlet is also required. In other words, we only require provenance statements that
capture different versions between elements in the dataset.

4.2.1 Data reduction, selection

Data reduction invalidates existing entities. For selection: D′ = σC(D), the bindings specify that an entire row i is
invalidated whenever condition C is False when evaluated on that row. This affects all features X ∈ S:

[⟨F = X, I = i⟩|X ∈ S, i : 1 . . . n, C(Di,∗ = False)]

A wasInvalidatedBy relationship is established between each of these entities and a single Activity, representing the
selection.

4.2.2 Data reduction, projection

Conditional projection D′ = πC(D) invalidates all elements in column X ∈ S whenever C returns True when evaluated
on elements of X:

[⟨F = X, I = i⟩|X ∈ S, i : 1 . . . n, C(D∗,X = True)]

Similar to the selection, here too a wasInvalidatedBy relationship is established between each of these entities and a
single Activity, representing the projection.

11
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4.2.3 Vertical augmentation

α→
f(X):Y ) takes a set X ⊂ S of features and adds a new set Y of features, Y ∩ S = ∅ to D′ as shown in Ex. 2.3.

The provenance consists of n PROV documents, one for each row i of D, and in each such document entities for
Di,Xm

, Xm ∈ X are used to generate entities for the new features Yh ∈ Y . Thus, the bindings are defined as follows:

For i : 1 . . . n :

used entity:[⟨F = Xm, I = i, V = Di,Xm
⟩|Xm ∈ X]

generated entity:[⟨F ′ = Yh, J = i, v = f(Di,X)⟩|Yh ∈ Y ]

These entities are then connected to a single Activity, as shown in Figure 4 and in the examples (Figg. 3, 14), using
Used and wasGeneratedBy relationship. For each pair of used, generated entities having the same index on each side
(i.e., where var:I = var:J after template instantiation), a wasDerivedFrom relationship is also added, to assert a stronger
relationship (derivation occurs through the Activity that connects the entities).

4.2.4 Horizontal augmentation, grouping and aggregation

The α↓
X:f(Y ) operator groups records according to columns X ⊂ S, producing a list G = [g1 . . . gh] of h groups. Then

for each gi ∈ G it computes f(Y ) from the records in the group, producing a new record containing the aggregated
value in column A, the values that define the group in each column Xm ∈ X , which we denote val(Xm , gi), and
null in all other columns (see Ex. 2.3 in Section 2.2). Thus, the operator produces h records, and let rows(G) =
[n+ 1, n+ 2, ...n+ h] denote their new row indexes in the dataset.

The corresponding provenance template and binding rules are similar to those for Vertical Augmentation (Figure 4),
but with some differences, and are best illustrated initially using an example. Consider the following dataframe:

X1 A B
1 x1 10 b1
2 x2 30 b2
3 x1 20 b3
4 x2 40 b4
5 x1 30 ⊥
6 x2 70 ⊥

and grouping operator α↓
X:f(Y ) where X = [X1], f(Y ) =

∑
A, where the sum on A values occurs for each group.

The set of provlets that represent the derivations of the elements in the new rows 5, 6 are depicted in Fig. 5. Values
x1, x2 in rows 5,6 identify the groups and are derived from the corresponding values in rows 1,3 and 2,4, respectively.
Similarly, the two values in column A are obtained by adding up the corresponding A values in the same groups of rows
(1,3 and 2,4). Finally, the null values in column B are generated by the operator, but their values are not derived from
any inputs.

Generating these provlets requires maintaining the association between each group: group 1 in row 5, and group 2 in
row 6, and the corresponding input rows (1,3 and 2,4). Implementations can achieve this in different ways. Formally,
we assume that each group gi ∈ G maps to a set of “group input” rows, i.e., ginput(gi). In our example, we have
ginputs(g1) = {1, 3}, ginput(g2) = {2, 4}.

Then, the binding rule for group gi in row i and elements in each of the columns C ∈ X can be written as follows. For
generated entities:

⟨F = C, I = i, V = Di,C⟩
For used entities:

[⟨F = C, I = j, V = Di,C⟩|j ∈ ginput(gi)]

Similarly, for the values in columns C ′ ∈ Y , the rule for generated entities is:

⟨F = C ′, I = i, V = Di,C′⟩
and for used entities:

[⟨F = C ′, I = j, V = Di,C′⟩|j ∈ ginput(gi)]

Finally, the rule for the null values applies to values in columns C” = S \ Y \X , and they only have the generatedBy
side:

⟨F = C, I = i, V = Null⟩

12
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F = X1, I = 1, V = ’x1’
F = X1, I = 5, V = ‘x1’
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GroupBy = [X]
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used
wasGeneratedBy

F = X1, I = 3, V = ’x1’

F = X1, I = 2, V = ’x2’ HA
GroupBy = [X]
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F = X1, I = 4, V = ’x2’
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F = A, I = 3, V = 20

F = X1, I = 6, V = ‘x2’
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Aggr = [A]

used
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F = A, I = 5, V = 40
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GroupBy = [X]
Aggr = [A]

wasGeneratedBy

F = B, I = 6, V = Null
HA

GroupBy = [X]
Aggr = [A]

wasGeneratedBy

Figure 5: Provlets describing grouping and aggregation from Example in Sec.4.2.4

df1 groupBy(X).sum(Y) grouped
rows opY

opX df2

df3

fine-grained

coarse-grained

Figure 6: Aggregation pattern and loss of provenance granularity

Note that aggregation operators reduce the granularity of the derivations. Typical Value Transformation operators, for
instance a normaliser, would map each input element to a corresponding output element. Aggregations, on the other
hand, produce a “provenance bottleneck” where n rows are mapped to m < n rows, where m is the number of groups,
because the provenance of any “downstream” dataframe that makes use of the groups will have to include one of the
group rows. In practice, aggregations may produce a pipeline pattern as shown in Fig. 6, where some of the operators
(opY) use the aggregations, and the provenance of new dataframe elements produced by these operators will map to
grouped rows and not to the upstream un-aggregated dataframes, leading to some loss of granularity. In the Figure, the
bottom provenance dependencies (thick dotted lines) for elements of df3 must include some of the group rows, and
those in turn are derived from each of the inputs. Note also, however, that the loss of granularity depends on the number
of groups. In the extreme case where the grouping operator produces a single group consisting of all input rows, for
instance, the result is a provenance graph where all inputs contribute to the grouping, and all outputs depend on the
grouping, producing a complete bottleneck.

4.2.5 Data transformation

τf(X) takes features X ⊂ S and computes derived values, which are used to update elements of D, but without
generating new elements. The bindings reflect such in-place update, but as the new value for each element is defined
by f(), we assume for simplicity that all values are updated, although, in reality, some will stay the same, as shown
for instance in Ex. 2.4 (imputation). The resulting bindings reflect this many-many relationship, where (potentially)
all values in a column Xm ∈ X are used to update (potentially) all values in that same column (and this applies to
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f_name = var:F
Index = 
var:NDX

value = var:V

f_name = var:F
index = var:H
value = var: V’

Join
Condition = C

used wasGeneratedBy

f_name = var:F
Index = var:NDX

value = var:V

f_name = var:F
index = var:H
value = var: V’

Join
Condition = C

used
wasGeneratedBy

wasDerivedFrom

<latexit sha1_base64="iLmUGhAPOU+y8qhkLcXp/zGTHl4="></latexit>

Pattern 2: applies to pairs:

hDL
i,f , D0

h,f i where f 2 SL, hDR
j,f , D0

h,f i where f 2 SR

<latexit sha1_base64="Olk8TTr0isQkV5vsLMNCqLW5CRs="></latexit>

Pattern 1: applies to all triples hDL
i,f , DR

j,f , D0
h,f i where f 2 F

Figure 7: PROV templates for joins.

each column). Thus, the provenance document consists of |X| provlets, one for each column, with bindings defined as
follows. Used entities:

[⟨F = Xm, V = Di,Xm
, I = i⟩|i : 1 . . . n]

Generated entities:
[⟨F ′ = Xm, V ′ = f(D∗,Xm), J = i⟩|i : 1 . . . n]

Used and wasGeneratedBy relationships, mediated by an Activity, are created between each Generated entity and all of
the Used entities having the same Xm, along with the corresponding wasDerivedFrom relationships.

It is worth clarifying one potential limitation that occurs when the data derivation operator contains parameters whose
values are set by inspecting the input dataframe. In our approach, these values are not “used” by the operator, despite
the fact that, in reality, the operator is input-dependent. As an example, consider a Scaling operator, which scales each
value in column X using a range that is defined by the min and max values found in X . According to the template just
defined, this operator produces a set of 1-1 derivations, namely from each output value in X , back to its corresponding
input value. However, in the current approach the fact that the Scaler depends on the input values of X , which it has
inspected, is not captured.

4.2.6 Join

In Section 2.1 we introduced a join operator: D′ = DL ▷◁tC DR where condition C may involve any columns
F ⊂ SL ∪SR. As an example, consider SL = [A,B,C], SR = [A,C,D,E] and C ≡ DL.A = DR.A andDL.B =
DR.D, thus F = {DL.A,DR.A,DL.B,DR.D}.

Let DL
i = [x, y, c1], D

R
j = [x, c2, y, e] be two tuples that contribute a result tuple D′

h = DL
i ▷◁tC DR

j =
[x, y, c1, x, c2, y, e].

Note that DL
i , D

R
j correspond precisely to the witness tuples in the why-provenance of D′

h,f , for some attribute f ∈ F ,
as defined in [22]. The why-provenance of D′

h,f can be expressed formally in terms of the two contributing tuples, i.e.,
using the polynomial notation proposed in [25]. However, here we are interested in the more granular derivations at the
level of the single values, rather than of the entire tuple. To express the fine-grained provenance of a value D′

h,f in the
result, we first consider the values DL

i,f , DR
j,f , f ∈ F , used by the join operator to evaluate C:

used = {DL
i,f ∪DR

j,f |f ∈ F} = [DL
i,A = x,DL

i,B = y,DR
j,A = x,DR

j,D = y]

We apply template (1) in Fig. 7 to assert that each value in D′
h,f was generated by the join operator and that the operator

used all the values in the used set.
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Figure 8: Instantiated PROV templates for the example in the text

This is achieved using the following binding generator:

for f ∈ F :

if f ∈ SL : ⟨F = f,NDX = i,H = h, V = DL
i,f , V

′ = D′
h,f ⟩

if f ∈ SR : ⟨F = f,NDX = j,H = h, V = DR
j,f , V

′ = D′
h,f ⟩

Secondly, we express that each value in the result was derived from the corresponding value in one of the two operands,
and that the derivation is supported by a usage/generation pair as shown in template (2) in Fig. 7. Note that this template
covers both the case where a feature is used as part of an equijoin condition, such as A in the example, and also the
case where null values are generated as part of an outer join. Template 2 is instantiated using the following bindings
generator:

for f ∈ SL : ⟨F = f,NDX = i,H = h, V = DL
i,f , V

′ = D′
h,f ⟩

for f ∈ SR : ⟨F = f,NDX = j,H = h, V = DR
j,f , V

′ = D′
h,f ⟩

Each of the two templates generates a PROV fragment, and these are then combined by virtue of their common entities
and activity (the join operator). Fig. 8 (where the actual values of D′

h,f are only shown in the first provlet, to avoid
overloading the Figure) shows the provenance fragments for values D′

h,f for a generic tuple h and for each f . Note
in particular that the generation relationships in templates 1 and 2 do not result in multiple generation arcs in the
final provenance, as those have identical source and sink nodes (i.e. the entity representing the value and the activity
representing the join).
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f_name = var:F
Index = var:I
value = var:V

f_name = var:F
index = var:I

value = var: V
append

used wasGeneratedBy

wasDerivedFrom(1) Values copied from operands:

(2) New null values: f_name = var:F
index = var:I
value = null

append
wasGeneratedBy

Figure 9: PROV template for append

4.2.7 Append

Consider again Example 2.5 in Section 2.1 (page 3), where a dataset DL with schema SL = [CId,Name] is appended to
DR with schema SR = [CId,Gender,Age,Zip,Name]: D′ = DL ⊎DR. Let n,m be the number of rows in DL, DR,
respectively. Observing that the order of the rows in the operands is preserved in the result, we identify four types of
output values D′

i,f : (1) values derived from a corresponding DL
i,f , when i < n1 and f ∈ SL; (2) values derived from a

corresponding DR
i,f , when i ≥ n1 and f ∈ SR; (3) Null values when i < n1 and f /∈ SL; (4) Null values when i ≥ n1

and f /∈ SR.

A derivation relationship is created for cases (1) and (2), which is supported by a corresponding generation-usage pair
of relationships, with the operator as the mediating activity; while for cases (3) and (4), only a generation relationship is
created. Fig. 9 shows the PROV template for this pattern.

The binding generator function for derivations, generation, and usage of copied values is defined as follows:

for i : 0 . . . n1 − 1 : if f ∈ SL then ⟨F = f,NDX = i, V = D′
i,f ⟩ # template (1) applies

for i : n1 . . . n2 − 1 : if f ∈ SR then ⟨F = f,NDX = i⟩ # template (2) applies

5 Provenance generation

The combination of provenance templates and corresponding binding rules, embodied by the prov-gen functions, which
we just presented, provide a formal description of the provenance semantics associated with each of the core operator
classes: data reduction, augmentation, transformation, and fusion. In this section, we present a concrete approach to
provenance generation that is grounded in this formalisation.

5.1 The approach

Provenance generation operates by (i) observing the execution of operators that consume and generate datasets, (ii)
analysing the value and structural changes between the input(s) and output datasets for that command, and (iii) based
on the observed change pattern, select one or more of the templates described in the previous section, to capture the
dependencies between the elements of the datasets that have changed. This approach ensures that the topology of the
resulting provenance graph is consistent with the templates, but it also broadens the scope of the operators for which
provenance is generated, namely to any operator that transforms an input into an output dataset.

As a simple example, consider an imputation operation that causes some previously null values to be set to 0, in some
(or all) of the columns. This values change pattern is easily recognised and is used to trigger provlet generation using
the appropriate template, in this case data transformation (cf. 4.2.5).

More general transformation patterns can be captured using more than one template, and by composing the resulting
provlets. For example, consider a pipeline like the following, in which Da, Db, and Dc are the input datasets and f is
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Figure 10: Template selection for shape change.

an imputation function over a feature K of Da:

D1 = τf(K)(Da)
D2 = Db ▷◁

outer
K1=K2

Dc

D3 = D1 ⊎D2

Its execution results in a collection of three provlets, each accounting for the dependencies between elements of the
datasets (1) D1 and Da; (2) D2 and Db, Dc; and (3) D3 and D1, D2, respectively. At the end of the execution, these
provlets are consolidated into a single, final provenance document that accounts for all transformations across the entire
pipeline. In this example, this will create a graph of dependencies where elements of D3 are linked through derivation
relationships to elements of Da, Db, Dc.

In the cases above, the change analysis identifies the appropriate template without the need for syntactic analysis of
the source code. In particular, these examples illustrate simple provenance generation, so called because provlets are
independently generated for each input/output datasets pair. More complex composite provenance generation can also
be achieved, which captures the provenance of an operation implemented by a sequence of commands. We illustrate
this in the next Section for the case of one-hot encoding transformation.

5.2 Change analysis algorithm

We now present the dataset change analysis algorithm that is responsible for generating each of the provlets. The
algorithm considers unary and binary operators separately, with help from lightweight code instrumentation. In the
following, we only discuss the case of unary operators, as a complete example of join and append provenance has been
provided earlier. Implementing join provenance efficiently presents new challenges, however, and these are discussed
separately below (Section 6.4). Details of the code instrumentation required to support provenance generation are
provided in the next Section, along with details of the Observer pattern [26] used to monitor changes in datasets through
execution. The algorithm looks at changes in either shape or values between the input and output datasets, denoted
D and D′, respectively. The cases listed below are summarised in Figures 10 and 11. Shape changes are detected
simply by comparing the number of rows m,m′ or the number of columns n, n′ in D,D′. Value changes are detected
by reviewing values within each column.

Shape changes. When m′ < m or m′ > m, the horizontal augmentation (cf. 4.2.4) or reduction by selection
(cf. 4.2.1) templates are applied, respectively. Adding columns is interpreted similarly, i.e., n′ > n triggers the
application of the Vertical Augmentation template (4.2.3). However, this condition also causes a list to be created which
contains the added columns. If D′ is then used as input to the next command, producing D′′, and it is the case that
n′′ < n′ when the list of added columns is non-empty, then this is interpreted as a sequence where first a set of columns
are added, and then other columns are removed. This enables the provenance generator to infer dependencies between
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Figure 12: One-hot encoding transformation

such columns. Derivation relationships are thus added accordingly to the provlet that represents the provenance for D,
D′, and D′′.

This composite behavior makes it possible to detect patterns like one-hot encoding, which both adds and removes
columns but does so using more than one operator as shown in Figure 12.

The following sequence of operations, in which an input dataset D is first extended by encoding with the function h the
values occurring in the feature B and then the such feature is deleted, is routinely used to achieve the result.

Example 5.1 (one-hot encoding)
D1 = α→

h(B)(D)

D2 = π{A and the features not occurring in D}(D1)

After the first operation, the generator would only know that a number of columns have been added (one for each value
in column B) but would be unable to determine any other dependencies. A list is created with these column names,
which will only exist within the scope of the next command. Executing the second operation results in column B being
removed. Rather than two connected provlets, here a single provlet is generated, which accounts for the change in
dataset structure, and where derivation relationships are added between each new column and column B (which is then
itself invalidated in the provlet). In Fig. 10 we refer to this as the composite data transformation template.

Example 5.2 (Provenance of one-hot encoding) Consider the transformation in Fig. 12 implemented by the opera-
tions in Ex. 5.1. After execution of the first operation, a VerticalAugmentation activity is created to account for the
generation of the new features. However at this stage, we do not know which elements of the input have been used, thus
we are also unable to add derivation relationships. After executing the second operation, feature B has been removed,
and in the provlet this is recorded by introducing a new ConditionalProjection activity that invalidates B. Additionally,
however, the composite variant of data transformation mentioned above is applied, resulting in a new relationship:
VerticalAugmentation used B
as well as derivations:
B0 wasDerivedFrom B,
B1 wasDerivedFrom B.
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The complete provlet includes the statements:
B wasInvalidatedBy ConditionalProjection
B0 wasDerivedFrom B
B1 wasDerivedFrom B

Value changes. This analysis considers one column at a time. If some or all of the values have changed in a column
C, the data transformation template is applied, with the assumption that there is a one-to-one dependency between each
new value d′ij od D′ and the corresponding original value dij of D, and this is mediated by the function represented by
the operator, as described in Section 4.2.5. The case of value imputation is handled separately. This is detected simply
by comparing the number of null values in D (identified by NaN) to those in D′. Imputation has occurred when the
nulls have been reduced. In this case, the data transformation template is used (4.2.5), where by default each value in
an imputed column C in D′ are assumed to be derived from all values in the same column C in D. Notice that the
generator does not have further information to make the derivation more granular. Also, when multiple columns have
been imputed, each of those is considered independently from the others. This may miss derivations, again for lack
of information. For instance, using the MICE algorithm [27] will impute multiple columns, where each new value is
derived from values in multiple source columns. This generalisation is not captured by the algorithm.

5.3 Benefits and limitations of the change analysis approach

The approach of using dataset change as the trigger to choose the provenance template and to apply and generate
provenance information has two main advantages. Firstly, it makes it possible to capture provenance when the internal
logic of the operators is not accessible to the observer. This has been referred to as the “black-box” problem by
the provenance community [28]. Secondly, it enables capturing the provenance of operator compositions. In the
presentation of this work, we mainly describe the provenance generated for a single operator execution. However, by
looking only at dataset change, we can allow multiple operators to execute and generate the provenance record for this
group of operators. An example is the “stateful” shape change analysis above, which keeps track of data transformations
across more than one operator, in order to accurately infer derivation dependencies.

One limitation that is intrinsic to this approach is in complex cases such as when UDFs are employed. In this case,
while the algorithm can detect which tuples have changed, it cannot identify which inputs caused the change, thus it
must assume that all inputs were used by default.

The ability to group operators is beneficial for many reasons. Provenance is often unwieldy, capturing interactions and
relationships meaningless for later use. Past works utilize variations in “Composite” to help with various tasks. ZOOM
[29] used the concept of composite step-classes to develop a notion of user views, allowing a user to more easily view
and understand a provenance graph. More recently, Ursprung [30] contains provenance at different composite levels
based on the capture mechanism able to be deployed in a given situation. In our work, the developer can choose a
composite that is correct for their ultimate end needs by having the provenance observer wait for other commands to
complete and only look at the final dataset.

6 Implementation and Architecture

In this section, we provide details on (i) the data architecture used in the implementation, (ii) the code instrumentation
required for the provenance generator to operate, and (iii) the efficient implementation of provenance capture and
provlet composition.

6.1 System architecture

We have created a reference implementation of the approach to provenance generation illustrated in Section 5 using the
pandas/python library, representing datasets as pandas dataframes2. The overall architecture for provenance capture,
storage, query, and visualisation is shown in Fig. 13. The Provenance-Tracker automates the process of detecting and
tracking the provenance of a user-defined pipeline of data preparation. It includes a Prov-generator that produces the
provenance of each operator in the pipeline by analyzing its effect on the underlying dataset. This is done at execution
time by: (i) identifying the operator under execution on the basis of a series of comparisons between the input and
the output datasets, (ii) executing the prov-gen function of the core operation that captures the identified operator by
suitably instantiating the function template, and (iii) storing the provenance data produced by the prov-gen function
on an underlying repository. Since provenance data have a natural graphical representation, Neo4j, a world-leading,

2https://pandas.pydata.org/
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industry-grade, scalable graph database management system, is used for this purpose. Note that while provenance
graphs are written to the database at runtime, i.e., while the script is executing, those writes can happen asynchronously,
as the graph will only be queried “post mortem” after the script has finished executing. This also removes the need to
consider a high-performance back end such as an in-memory database.

Provenance Tracker

Data provenance repository

Query generator

GUI

Prov-generator Dataset 
repository

Data Preparation
Pipeline

Figure 13: System architecture

The Query-generator allows the user to perform several types of analyses of the data provenance collected for a given
data preparation pipeline, by translating a specific data-provenance exploration chosen from a menu of a graphical
interface into a query expressed in Cypher, the query language of Neo4j, as it will be illustrated in Section 7.4.

With the current reference implementation we have made several upgrades to the earlier version [31]: (1) the data
representation format; (2) the storage method, as we now use the Neo4J graph database to store the final provenance
graph natively in contrast to [31], where all provenance was serialized in PROV-JSON [9, 20] (an interoperability
format for the PROV data model); and (3) observing provenance from dataframes instead of specifically coding each
pandas operator. We have chosen to represent provenance graph using the standard PROV data model, to ensure
some degree of interoperability across applications that want to use the provenance graphs. However, we are also
aware that the standard PROV serialisations documented as part of the W3C specification are not concerned with space
utilisation and query performance. Thus, our prototype implementation aims to strike a balance between performance
and interoperability goals. In particular, all framework elements that have changed through an operator are materialised
in the provenance (but no new entities are introduced to represent data items that have not changed). As all required
entities are manifested in the graph, new provenance queries can be written simply using standard Cypher, with minimal
knowledge of the internal representation. In a future implementation, one may introduce entities that represent entire
tuples or columns, but with the understanding that queries must be aware of these optimisations.

6.2 Code instrumentation

A number of different approaches for capturing provenance from a running process have been documented in the
literature. These range from intentionally placing capture calls within the notebook, to utilizing libraries to compare
dataframes for automatic detection, to engaging interactively with the user. A key distinction concerns how much
burden can be placed upon the user. Works such as [32] or [33] insist on no-human involvement, while others believe
that users should be invested in the process of improving their scripts, specifically [34] or [35] allow users to enter
provenance capture calls at appropriate places. Other contemporary systems, such as MLInspect [36], require the
development of specialised add-ons to the code (using a visitor pattern) to create observers. The level of developer
involvement is still an open research question for the data science community.

In this work we aim to implement the strategy described in Section 5.2 while minimising user intervention. This
is achieved using an Observer software pattern that acts as a wrapper for dataframes and relies on a Provenance
Tracker object for deriving the provenance of a transformation based on the inspection of the dataframes in input and
output. From an operational standpoint, the Provenance Tracker is equipped with a subscribe() function that allows
users to subscribe to one or multiple dataframes for tracking their provenance. Basically, the invocation of this function
returns the corresponding wrapped dataframes as objects that encapsulate nearly all of the methods inherited from the
pandas DataFrame class, enabling provenance generation in a transparent way during dataframe transformations. The
only required instrumentation is the following:
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tracker = ProvenanceTracker()
df, df2 = tracker.subscribe([df, df2])

After this, the signature and syntax of methods that operate on a dataframe remain unchanged, as in the examples that
follow. However, they now operate on the wrapped dataframes and invoke the internal provenance-capture functionality
through the Provenance Tracker.

# Imputation
df = df.fillna(’Imputation’)
# Feature transformation of column D
df[’D’] = df[’D’].apply(lambda x: x * 2)

Similarly, provenance generation for the join operation can be done without the need to invoke additional auxiliary
functions, as follows.

df = df.merge(right=df2, on=[’key1’,’key2’], how=’left’)

The activity of the Provenance Tracker can be temporarily disabled to capture the provenance of an operation made of
several basic data transformations. This is done by using the dataframe_tracking property as in the example that
follows, which implements the provenance capture of the one-hot encoding sequence illustrated in Example 5.1.

tracker.dataframe_tracking = false
dummies = pd.get_dummies(df[’B’])
df = df.concat(dummies.add_prefix(’B’+’_’))
tracker.dataframe_tracking = true
df = df.drop([c], axis=1)

In this example, the changes made by the horizontal augmentation on the original dataframe are produced but taken into
account only during the subsequent operation, when the dataframe_tracking property is set to ‘true’.

6.3 Composing provlets into a complete provenance document

A complete provenance document is produced by combining the collection of provlets that results from each instance of
change analysis. Specifically, one provlet is generated for every transformation and every element in the dataframe
that is affected by that transformation. The final document is composed of such a collection of provlets, where entity
identifiers match across provlets, and never needs to be fully materialised, as explained shortly.

Consider for instance the following pipeline:

σC(α
→
f1(Age):ageRange(D))

where C = {AgeRange ̸= ‘Young’} and D is the dataset of Example 2.3. The corresponding provenance document is
represented in Figure 14. Applying vertical augmentation produces one provlet for each record in the input dataframe,
showing the derivation from Age to AgeRange. The second step, selecting records for ‘not young’ people, produces the
new set of provlets on the right, to indicate invalidation of the first record, as per the template at the bottom of Figure 4.
Note that the “used” side on the left refers to existing entities, which are created either in the pipeline from the input
dataset, or by an upstream data generation operator.

Provlet composition requires looking up the set of entities already produced, whenever a new provlet is added to the
document. One simple way to accomplish this is by eagerly keeping the entire document in memory, along with an
index for all entities, and by mapping each entity to the corresponding data element it represents. While this can
be accomplished using readily available Python PROV libraries [37], it does not scale well to the volume of entities
required to represent large dataframes in cases where more than a handful of transformation operators are involved.
Instead, we have followed a continual append approach for provenance composition in which each p-gen function
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Figure 14: Provlet composition.

generates a set of provlets (in the worst case one for each element in the dataframe) that are just collected in a partial
document and stored in the underlying repository. This allows the provenance to be collected quickly at the execution
of each script, and be assembled later, minimizing execution dependencies and possible bottlenecks during the actual
execution of the pipeline.

6.4 Efficient provenance generation

The overhead for provenance collection and composition described above can be minimised by using Python’s
multiprocessing library to parallelise the most expensive operations, observing that (i) dataframes can be split into
chunks and provenance entities generated independently for each chunk, and (ii) the provlets generated by each parallel
process can be independently written to disk, and then asynchronously inserted into Neo4J. Assuming that provenance
graphs are only queried after the end of script execution, this provides a scalable back-end solution despite the potential
limitations of Neo4J’s centralised architecture.

Using parallel processes to write provlets to disk is straightforward, as there are no dependencies amongst these
processes. As an example, for one-hot encoding provenance consisting of about 2M entities, we observe a stable 70%
improvement in writing times using 12 processes, relative to a sequential baseline. In practice, at most one chunk is
created for each available CPU thread and allocated to one process. One slight complication is that assigning each
generated entity to its corresponding dataframe element requires keeping track of the relative order of the chunks in the
dataframe. This is accomplished using a queue (further details omitted). Unlike for write operations, here performance
gains depend on the complexity of the specific operator, i.e., of the template used. Empirical results indicate an average
of 60% improvement relative to the sequential baseline. Performance figures from our comprehensive evaluation are
reported in the next section.

Joins present an interesting implementation twist to provenance generation mechanism. A naive implementation of
join provenance that creates instances similar to template in Section 4.2.6, would simply link each row of the output
dataframe to the two input DataFrames using rules to infer the derivations for every single item in a row. Unfortunately,
joins expose one of the problems of our approach which looks at the input/output datasets and not the operator itself.
Because we are not linked directly to the join operator, which may or may not have the standard guarantees of a database
system, re-creating which rows in the input dataframes and their relationship to the output row in the dataframe takes
effort.

Consider the naive implementation of creating join provenance records using our data-observation approach. For
every row in the output dataframe, the join key(s) must be identified within the data, and the actual data values in the
remaining features noted. Then, the input dataframes must be scanned to locate the key(s), and the row examined to
determine if it contains the appropriate data values to match the output dataframe row. Initial experiments indicate that
the scan operation takes 0.07s per row.
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To overcome this problem, a more efficient implementation makes use of hash tables. Specifically, two hash tables with
the same structure are generated, one for each input dataframe, having, as key, a hash obtained from each row and, as
value, the original index of the row (Fig. 15). To derive the provenance, the output dataframe D is then decomposed
into two dataframes obtained by projecting D on the columns of the input ones. Then, the two dataframes so obtained
are hashed using the same function above (Fig. 16). This allows us to derive easily the provenance of each row of the
join as shown in Fig. 17.

7 Evaluation

All experiments illustrated in this section were performed on a MacBook Pro with 2.6 GHz Intel Core i7 6 core and
32GB RAM 2400MHz. We focus our evaluation on pandas operators for data cleaning and pre-processing, and can
theoretically accommodate ML libraries such as scikit-learn as shown in Table 1 although our reference implementation
does not explore using their libraries. Given the reference prototype nature of the implementation, the evaluation does
not address scalability and performance requirements of a production-grade system.

7.1 Analysis with real world pipelines

Datasets. In Table 2 reported at page 8 we have shown classic provenance queries in terms of data input and output.
In order to evaluate if we can answer those queries, we have captured data provenance in three real world pipelines
involving different types of preprocessing steps. The datasets are described in Table 3.

Table 3: Datasets used for evaluation.

German Compas Census
Credit Score

Records 1000 7214 32561
Features 21 53 15
# Operations 4 7 5
Output Records 1000 6907 32561
Output Features 60 8 104
Provenance Entities 85000 349970 3874264
Provenance Activities 26 7 20
Provenance Relations 255000 451412 9703396

The goal of the German Credit pipeline is to predict whether an individual is a good lending candidate. On the other
hand, the Compas Score pipeline is aimed at predicting the recidivism risk of an individual, whereas the goal of the
Census pipeline is to predict whether annual income for an individual exceeds $50K. Table 4 shows the preprocessing
steps for each of these machine learning pipelines.

Capturing provenance. Our work focuses on fine-grained provenance and, as such, it turned out that all provenance
queries in Table 2 were answerable.

Figure 18 shows the impact of adding provenance capture to a pipeline. The percentage of overhead of capturing
provenance is large compared to executing the system without any provenance at all. However, the actual time to
capture the provenance itself is rather low: 1.8s for German Credit, 1.4s for COMPAS, and 28s for Census. These
results are 10x faster than the times required for the generation of the same provenance in [31]. This improvement is
mainly due to the new format used to represent the provenance, and the backend used to store the data, as described in
Section 6. As expected, provenance capture adds computational time to any pipeline execution. However, we note that
there are certain complex operations that have a larger impact than others. For instance, in the Census pipeline, the
generation of the provenance for operation C2 (One Hot encoding of 7 different columns) requires 22ms. However, this
operation introduces 90 new features while the number of records remains unchanged (32,561). Therefore, it generates
32, 561× 90 new provenance entities. Similarly, operation A3 in the German Credit pipeline is a One-Hot encoding
that operates over 11 different columns and creates 38 new features. It follows that this operation creates 1, 000× 38
new provenance records. Operation B0 in the Compass Score pipeline, which selects 9 columns of data and removes
44 features, is also costly as it generates 7, 214× 44 provenance records. Basically, all the other operations generate
a limited amount of data provenance and for this reason, they introduce a limited overhead. The size of provenance
generated for the various pipelines is as follows: German Credit 20 MB; Compas Score 71 MB; Census 1.04 GB.
3

3
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Figure 15: Hashing of the input dataframes

Figure 16: Hashing of output dataframe

Figure 17: Provenance derivation for the join
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Table 4: The preprocessing operations included in the machine learning pipelines used in the evaluation.

German Credit
Op Description
A0 Value transformation of

13 distinct columns from
codes to interpretable
terms.

A1 Generation of two new
columns from the column
personal_status.

A2 The column per-
sonal_status was deleted.

A3 11 categorical columns
were OneHot encoded.

Compas Score
Op Description
B0 Selection of 9 relevant

columns.
B1 Missing values were

deleted.
B2 The column race was bi-

narized.
B3 Value transformation of

the label column for con-
sistency.

B4 Conversion of c_jail_in
and c_jail_out columns to
days.

B5 Drop jail_in and jail_out
dates.

B6 Value transformation of
column c_charge_degree.

Census
Op Description
C0 Remove whitespace from

9 columns.
C1 Replace ’?’ charater for

NaN value.
C2 7 categorical columns

were OneHot encoded.
C3 Two columns were bina-

rized.
C4 fnlwgt column was

deleted.

Figure 18: Comparison of cumulative provenance capture times, broken down by individual operator.
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Figure 19: The provenance query times for each type of provenance query are shown in Table 2.

Table 5: Datasets created with the DIGen generator
For Test Dataset Scale Factor Records Features Size

Basic
Dataset 1 3 390978 45 5.2 GB
Dataset 2 5 650412 45 8.6 GB
Dataset 3 9 1171107 45 16 GB

Join
Dataset 4 3 390978/362342 14/5 349 MB/117 MB
Dataset 5 5 650412/602956 14/5 582 MB/195 MB
Dataset 6 9 1171107/1085239 14/5 1,05 GB/342 MB

Append
Dataset 7 3 31581/66689 17/17 38 MB/81 MB
Dataset 8 5 55650/138889 17/17 68 MB/170 MB
Dataset 9 9 109034/283298 17/17 134 MB/348 MB

Querying Provenance. Provenance would be useless without the ability to query it efficiently. For this, we run all the
types of queries reported in Table 2 over the Census dataset, expressing them in Cypher, the query language of Neo4j.
Each query was run three times and the resulting time is the average of the three runs. Queries 2 through 6 operate over
a single item, a single record, or a single feature, while the others operate over the entire dataset. For the former type of
query, data items, records, and features have been chosen randomly from the output dataset each time the query is run.

As shown in Figure 19, the basic provenance queries, particularly those that find or trace paths, are fast. The high-cost
queries, such as Query 11, require additional processing beyond graph traversal. Recall from Section 2.5 that queries 10
and 11 traverse the provenance graph and search for all future and past derivations of an element. Obviously, depending
on the complexity of the operations, the operation can require longer time.

7.2 A closer look at operators

We use the TPC-DI benchmark [12] and used DIGen, the data generator provided by TPC, for creating source data
and audit information in order to create a known dataset at a larger scale to characterize the behaviour of the reference
implementation across a wider range of operators, including Joins and Appends. Specifically, we have created datasets
of increasing sizes as described in Table 5: the datasets 1, 2, and 3 involve the trade fact table and the account dimension
table, and have been used to measure the effect of unary operators in Table 6 (DR, FT, ST, IG, VT). Datasets 4, 5, and 6
involve the trade.txt and HoldingHistory.txt files and were used to measure the effect of the join operator (JO in Table 6).
Datasets 7,8,9 involve the FINWIRE files and were used to measure the effect of the append operator (AP in Table 6).
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Table 6: The operations performed on the TCI-DI datasets to test each provenance template.
Op. ID Operation Description

DR Dimensionality Reduction A column (D∗j) is removed from the initial dataset.
FT Feature Transformation Transformation on C_GNDR column. Values of gender

column are corrected.
I Imputation Imputation on T_COMM column. Null values of trade

price column are filled with the average value of the
column.

ST Space Transformation A new column with boolean values is added. 0 if com-
mission value is null, 1 otherwise.

IG Instance Generation Generation of one new record.
VT Value Transformation Value transformation on C_DOB column. Invalid date

of birth are replaced with NaN values.
JO JOin Left outer join between Trade table and Holding History

on Trade ID
AP APpend FINWIRE files from 1967 to 1993 and from 1994 to

2017 were concatenated and then used to perform an
append

Operation Dataset 1 Dataset 2 Dataset 3
Dimensionality Reduction 10 MB 17 MB 31 MB

Feature Transformation 70 MB 120 MB 218 MB
Imputation 15 MB 25 MB 46 MB

Space Transformation 60 MB 101 MB 183 MB
Instance Generation 10 MB 17 MB 31 MB

Value Transformation 110 KB 400 KB 550 KB
Join 1.02 GB 1,78 GB 3.04 GB

Append 390 MB 779 MB 1,6 GB

Figure 20: Capture time (in seconds) and storage space for each operation
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Figure 21: Capture time (in seconds) by varying the size of a fixed dataset

Figure 20 shows how long and how much space it takes to capture and record provenance for each operation. The
capture mechanism scales rather well with the size of the dataset and it turns out that pre-processing operations that only
affect a small number of data values, such as Instance Generation (IG), are fast. Value Transform (VT) and Imputation
(I), in this particular evaluation setup, are also fast as they only operate over a small number of items. On the other
hand, the operations that generate more provenance, such as Feature Transformation (FT), Space Transformation (ST),
and Dimensionality Reduction (DR), take more time. In particular, ST needs to create provenance data for every new
value in the new column. Join (JO) and Append (AP) operations require more time as they need to generate a quite
large quantity of provenance. In addition, JO is more costly as it operates over two input tables.

The fact that provenance capture scales gracefully with the dataset size is confirmed by another experiment, whose
results are reported in Figure 21, in which we have executed the same types of operations in Table 6 by just varying
the number of records of a fixed input (the Census dataset). Since the evaluation setup here is different, the various
operators exhibit a different behavior in terms of relative performances, but their computational time remains quite low
and grows linearly with the dataset size.

28



Supporting Better Insights of Data Science Pipelines with Fine-grained Provenance

Table 7: Issues identified in real Machine Learning pipelines and provenance queries that can provide support to them.
Id Data Science Stack Exchange Use Cases Prov. query id

UC1 When applying the Predictions widget on the same train-
ing dataset, the results (i.e. probability scores) are different:
https://datascience.stackexchange.com/questions/32382/
orange-predictions-widget-on-same-data-gives-different-results

PQ1

UC2 Differences in the predictions and goodness-of-fit of R2 met-
ric for the linear regression model on Orange and Scikit-learn:
https://datascience.stackexchange.com/questions/32678/
orange-linear-regression-and-scikit-learn-linear-regression-gives-different-resu

PQ2

UC3 After performing image classification using an ML model, prediction proba-
bilities are constant on test images https://datascience.stackexchange.
com/questions/38320/orange3-image-classification

PQ3

UC4 From a constructed workflow using image classification (add-on wid-
gets) ascertain whether the workflow performs transfer learning:
https://datascience.stackexchange.com/questions/19240/
using-orange3-to-predict-image-class

PQ3

UC5 Application of the Test and Score and Predictions widget on the
same data utilising the same ML model; produces differing results:
https://datascience.stackexchange.com/questions/20572/
why-orange-predictions-and-test-score-produce-different-results-on-the-sam

PQ3

UC6 When applying the Impute widget during preprocessing on the
train/test dataset, the same values are predicted for all rows:
https://datascience.stackexchange.com//questions/15264/
orange-3-same-prediction-for-all-of-my-data-when-using-impute-widget

PQ4, PQ5, PQ6,
PQ11, PQ12

UC7 Inaccuracy in the prediction of target variable using k-NN
and linear regression ML models in an Orange workflow:
https://datascience.stackexchange.com/questions/36537/
how-to-properly-predict-date-using-orange-3

PQ7, PQ8, PQ9,
PQ10

UC8 Disproportionate allocation of labels after performing data
analysis and modeling (inaccurate classification accuracy):
https://datascience.stackexchange.com/questions/37471/
dataset-with-disproportionately-more-of-a-single-label-than-any-other

PQ11, PQ12

7.3 Use Case Analysis

Table 7 contains a collection of real-world scenarios in which data scientists try to understand what is happening within
a machine-learning pipeline. These use cases have been gathered from the Data Science Stack Exchange4 (DSSE) by
selecting questions about the construction of a data preparation pipeline using the Orange framework. The provenance
queries that can provide support to these issues refer to those in Table 2 (Page 8), in which, for each query, it is reported
the input data and the expected output that can help the developer to debug the pipeline.

To highlight how the fine-grained provenance captured with our approach can be used to answer one of these questions
consider, for instance, the UC8 use case. In this scenario, the user is struggling with an incorrect high accuracy of a
model. Ultimately, this is because of an imbalanced input dataset. Using the Provenance Query Impact on Feature
Spread from Table 2 on the input dataset, it is possible to identify the change of feature spread after a pre-processing
operator that rebalances the dataset.

7.4 Provenance Exploration

Unlike many provenance systems, which focus on the presentation and navigation of the provenance graph, we have
developed a tool5 in which the provenance graph is mainly used as a backbone to explore and identify problems within
the pipeline through a user-friendly interface, which does not require the specification of complex queries over the data
provenance. This is done by automatically extracting, from the provenance and other metadata, useful information on
the changes operated by the individual operations on the input dataset(s).

An example of this kind of interaction is shown in the GUIs of our tool reported in Figures 22 and 23 respectively:
basically, depending on the type of operator that was applied, the data scientist can “zoom in” to a transformation of

4https://datascience.stackexchange.com/
5The code of this tool is publicly available on GitHub.
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Figure 22: Example of a GUI showing how data changes after a transformation process that operates locally, at the
feature level.

interest (bottom of the figures) and inspect the “before/after” effect of its execution either at the level of values within a
column, in the case of a local transformation, or at the level of the entire dataset, in the case of a global transformation.

A local type of transformation is illustrated in Figure 22, where a data transformation operation, which modifies values
in col3, is represented in the provenance fragment at the bottom. The user is then able to navigate through the retrieved
provenance, identify the pre- and post- states for col3, and visualise their differences in terms of summary statistics (top
right), values distribution (center), and optionally each value can be inspected (top middle).

In contrast, Figure 23 shows the effect of an imputation step that operates globally. As this may change more than one
column at a time (for instance, using Multiple Inference), here the GUI displays salient differences at the dataset level.
We can see for instance that the operation has not changed the number of rows and columns of the dataset (top left), but
the imputation has updated the content of several columns (col2, col4, col5, col6, see top middle), and has altered the
percentage of null values (bar chart). We can also see the changes in the correlation between each pair of columns in
the dataset before and after the operation is performed.

7.5 Comparison to other provenance collection systems

There are many provenance systems that can be deployed to capture provenance of workflow-like executions. In
this section, we look at some of the main players and compare them to the provenance in this work. Because the
implementation in this work was a reference implementation for exploration, not production deployment, we feel that
an execution benchmark between the systems is uninteresting.

Perm [43, 41]. Perm uses query rewrites to add and propagate provenance attributes to the output of the original query.
It can capture and propagate provenance for ASPJ queries and set operations. It is implemented on PostgreSQL and
tested against TPC-H with an overhead on TPC-H queries of 3-4x. The queries outside of this norm include very
complex queries with aggregation, such as an aggregation over a join on 8 tables with a grouping on a functional
expression. Perm allows lazy and eager computation of provenance, SQL query facilities, and support for external
provenance. Perm outperformed previous approaches by a factor of 30. While the execution of Perm is impressive, it
fundamentally relies on a technology that is not appropriate for the problem within notebooks focused on in this work.
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Figure 23: Example of a GUI showing how data changes at the dataset level, after an imputation operation over several
columns.

MLInspect [36, 38]. The MLInspect system uses Python’s inspect module or Monkey patch to identify function calls
within python scripts and build a DAG of relationships and interactions in the pre-processing pipeline. This run-time
representation is updated as the developer changes the scripts based on the standard dataframe operators. A user can
annotate tuples, and specify the inspections that need to occur (e.g. inspect for statistical parity of protected group).
As the script is executed, this DAG is stepped through, and the operator is passed for inspection. The focus of the
MLInspect is to analyze data distribution after operators based on the pre-specified inspections. Provenance at the tuple
level is supported through the adaptation of user annotations by recording the pre-assigned tuple-id and the operator
applied. Our work has a very different focus, and as such the provenance requirements are different. In MLInspect,
provenance can be added at the tuple level and used to support data distribution change analysis; our work provides a
much finer-grained provenance at the attribute level allowing for debugging specific value changes.

Vamsa [42]. The Vamsa system uses static analysis to build a syntax tree to identify inputs, parameters and libraries.
It then uses a knowledge base to provide semantic meaning to these items and log it in the provenance. However,
Vamsa relies upon a pre-populated knowledge base which maps the set of functions identified in the code to semantic
"operators". This approach restricts provenance generation to known operators. The Vamsa experimentation shows
that their coverage ranges between 74.48% - 97.08%. Our approach relies on inspection of the dataframe before
and after to identify the type of transformation that occurred (e.g. horizontal reduction) instead of relying upon a
pre-created knowledge base. In addition to this collection difference, Vamsa identifies and store provenance information
at the dataset level. For instance, it will identify entire rows retained or dropped; it can identify whether a column
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Table 8: Comparison of this work with other provenance capture systems
Provenance
System

Deployed on Capture Method Granularity

This work Jupyter Notebooks with
dataframes

Operator derived from comparison of before-
after dataframes; provenance templates associ-
ated with operator.

attribute

MLInspect
[36][38][39]

dataframes Python’s inspect module and Monkey patch to
identify operators at execution to build a DAG
of operators

tuple

Perm [40, 41] Relational databases Query rewrite to add and propagate provenance
attributes to the output of the original query.

tuple

Vamsa [42] python scrips with
dataframes

Static analysis of script to identify inputs, pa-
rameters and libraries; knowledge base to pro-
vide semantic meaning.

dataset

within a dataframe is used. However, it does not track individual changes to attributes. While these can be later
derived by understanding what operators were applied to which rows or columns, this information is not innately
stored. A combination of Vamsa and this work would be interesting future work, in which Vamsa is used to identify
the pre-stocked operators, and for the remainder, DPDS identifies what is happening in the via dataframe changes and
templates of provenance.

8 Related Work

This paper substantially advances previous work [31] by: (i) extending the set of core operations with methods for
combining different datasets to any operator that modifies a dataframe, (ii) replacing the manual instrumentation at the
script level required by the analysts with a method for the identification of provenance for most of the operators through
dataset change (iii) adopting a graph-based data management system for storing and querying in an effective and
efficient way the collected provenance, (iv) performing experiments for empirical validation and qualitative comparison
to previous work.

Established techniques and tools are available to generate provenance, and provenance polynomials through query
instrumentation. However, these operate in a relational database setting and assume that queries use relational
operators [44, 45, 41]. While we show how some of the pipeline operators considered in this work map to relational
algebra, this is not true for all of them, so we prefer to avoid techniques that are tightly linked to SQL or to first-order
queries [46] as these would preclude other types of operators from being included in the future. We, therefore, consider
this an unwise strategy in an “open world” of data pre-processing operators, consider e.g. one-hot and other kinds of
categorical data encodings. We also note that tools that operate on a database back-end, like GProm [44], Smoke [15]
and older ones like Post-it [47] for provenance capture cannot be used in our setting. Interestingly, extensions to the
polynomials approach have been proposed to describe the provenance of certain linear algebra operations, such as
matrix decomposition and tensor-product construction [48]. While these can potentially be useful, it is a partially
developed theory with limited and specialised applicability.

Moving beyond relational data provenance, capturing provenance within scripts is also not new, but efforts have mostly
focused on the provenance of script definition, deployment, and execution [49]. Specifically, a number of tools are
available to help developers build machine learning pipelines [50, 18, 51] or debug them [52], but these lack the ability
to explain the provenance of a certain data item in the processed dataset. Others link provenance to explainability in a
distributed machine learning setting [53] but without offering specific tools. Amazon identifies that there are common
and reusable components to a machine learning pipeline, but that there is no way to track the exploration of pipeline
construction effectively, and calls for metadata capture to support reasoning over pipeline design [54]. Vamsa [42]
attempts to tackle some of these problems by gathering the provenance of pipeline design. However, the resulting
provenance documents contain information such as the invocation of specific ML libraries, by way of automated script
analysis, rather than data derivations. Some systems are designed to help debug ML pipelines. BugDoc [55] looks at
changes in a pre-processing pipeline that cause the models to fail, where high-level script and orders are used to identify
bad configurations. Others provide quality assurance frameworks [56] or embedded simulators to estimate the fairness
impacts of a particular pipeline [57]. Again, however, these are not geared for deep data introspection. Priu [58], helps
users understand data changes, particularly deletions, that are used in regression models. Unfortunately, this work only
tracks deletions and not additions or updates to data.
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Recently, [8] have utilized provenance to understand the changes in data distribution in the ML pipeline using predefined
“inspections” that look at the data at specific operators within the pipeline, which supports the reason for undertaking
this work and which we expand by unobtrusively capturing provenance from any operator. Meanwhile, [30] combines
system level provenance information with application-level log files to recreate the provenance of data science pipelines
without impacting the pipeline developer. Other tools record the execution of generic (python) scripts, but fail to
capture detailed data provenance, like NoWorkflow [59, 33]. This has been combined with YesWorkflow [60, 35] which
provides a workflow-like description of scripts, but again without a focus on data derivations.

A further class of tools instrument scripts that are specifically designed for Big Data processing frameworks: [61]
(Hadoop), [62, 63, 64, 15] (Spark). They provide detailed information mostly for debugging purposes but are restricted
in their scope of applicability.

Recently, a method for fine-grained provenance capture that is application-agnostic has been proposed [30]. Here,
provenance from the low-level OS through to high-level application-specific logs is merged to create a provenance
record that contains the maximum information available for the minimum impact on developers. However, it is not
obvious what fine-grain provenance can be extracted from such an approach, while our work provides a firm basis for
the provenance information that should be captured. Interesting future work includes determining how much of the
provenance we specify can be collected by [30].

Finally, the method proposed within Section 5 in which the change of the data is observed instead of the operator is
similar to techniques discussed in [26]. While Blount describes the general setup of inferring the provenance record
based on identified changes in the data, our work provides a functioning implementation for a large class of operators.

9 Conclusions and Future Work

In this work, we focus on fine-grained data provenance for machine learning pipelines irrespective of the pipeline tool
used. Because a substantial effort goes into selecting and preparing data for use in modelling, and because changes
made during preparation can affect the ultimate model, it is important to be able to trace what is happening to the data
at a fine-grain level.

We highlight several real use cases to motivate the need for fine-grained provenance from the Data Science Stack
Exchange (DSSE)1. We identify the classic provenance queries that are needed to provide information to answer these
use cases. We then identify a set of provenance templates that can be deployed across a set of machine learning pipeline
operators and implement them.

We depart significantly in this work from previous implementations within python and ML environments, by using
observed changes in the data to determine the provenance. Based on observations of the changes between dataframes,
we choose the appropriate template for provenance generation. We have tested our implementation over real-world ML
benchmark pipelines for utility and basic performance with both classic ML pipelines and TCP-DI. Our results indicate
that we can collect fine-grained provenance that is both useful and performant.

Future investigation into optimization techniques that aim at reducing the provenance data, using composite generation,
to the minimum that is needed to support given provenance queries, as well as methods for taking advantage of collected
provenance data to support the design of new pipelines is required to continue making provenance more efficient and
useful. This work looks expressly at the pre-processing tools leading up to the machine learning black box, thus it does
not track provenance models for the trained data, e.g. between predictions and training data. However, this work has
been used by [65] to create an entire tracking of data from pre-processing through deep learning. Future work in this
area includes understanding the granularity of provenance required for users of deep learning systems.
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