
SEPE-SQED: SymbolicQuick Error Detection by Semantically
Equivalent Program Execution

1,2
Yufeng Li,

2
Qiusong Yang

∗
,
2
Yiwei Ci,

1,2
Enyuan Tian

Institute of Software, Chinese Academy of Sciences, Beijing, China
1

University of Chinese Academy of Sciences, Beijing, China
2

crazybinary494@gmail.com,{qiusong,yiwei}@iscas.ac.cn,tianenyuan@nfs.iscas.ac.cn

ABSTRACT
Symbolic quick error detection (SQED) has greatly improved efficiency

in formal chip verification. However, it has a limitation in detect-

ing single-instruction bugs due to its reliance on the self-consistency
property. To address this, we propose a new variant called symbolic
quick error detection by semantically equivalent program execution
(SEPE-SQED), which utilizes program synthesis techniques to find

sequences with equivalent meanings to original instructions. SEPE-
SQED effectively detects single-instruction bugs by differentiating

their impact on the original instruction and its semantically equiv-

alent program (instruction sequence). To manage the search space

associated with program synthesis, we introduce the CEGIS based on
the highest priority first algorithm. The experimental results show

that our proposed CEGIS approach improves the speed of generating

the desired set of equivalent programs by 50% in time compared to

previous methods. Compared to SQED, SEPE-SQED offers a wider

variety of instruction combinations and can provide a shorter trace

for triggering bugs in certain scenarios.

CCS CONCEPTS
• Hardware→Model checking.

KEYWORDS
Formal Verification, SQED, Program Synthesis, CEGIS, Semantically

Equivalent Program Execution, SEPE-SQED

ACM Reference Format:
1,2
Yufeng Li,

2
Qiusong Yang,

2
Yiwei Ci,

1,2
Enyuan Tian. 2024. SEPE-SQED:

Symbolic Quick Error Detection by Semantically Equivalent Program Execu-

tion . In 61st ACM/IEEE Design Automation Conference (DAC ’24), June 23–27,
2024, San Francisco, CA, USA. ACM, New York, NY, USA, 6 pages.

1 INTRODUCTION
As technology advances and the chipmarket expands, there is a grow-

ing need for cost-effective and efficient chip verification methods.

However, ensuring the accuracy of a processor’s behavior becomes

more challenging due to aggressive microarchitectural optimiza-

tions and the daunting task of considering all possible instruction

interleavings.

Formal verification (FV), such as model checking [1], excels at

detecting corner cases through exhaustive design analysis. It con-

structs a mathematical representation of the system and formally

proves desired properties. Pioneering work includes symbolic model

checkers based on abstract models of microarchitecture design [2,

3]. However, abstract models often overlook elusive bugs that can

arise in RTL description. ISA-Formal [4] for ARM processors and

RISCV-Formal [5] for RISC-V processors verify designs directly from

∗
Corresponding author

This work was supported by Basic Research Projects from the Institute of Software,

Chinese Academy of Sciences (Grant No. ISCAS-JCZD-202307) and the National Natural

Science Foundation of China (Grant No. 62372438).

RTL descriptions, but the formulation of formal properties requires

significant manual effort and substantial expertise.

To address these issues, a groundbreaking formal verification ap-

proach called symbolic quick error detection (𝑆𝑄𝐸𝐷) [6, 7, 8] has

been proposed. 𝑆𝑄𝐸𝐷 utilizes model checking to prove that any

instruction sequence up to a certain bound produces a correct result.

It leverages the concept of design self-consistency to establish a sin-

gle universal property, which declares that the outcomes produced

by both original instructions and their duplicates are identical, re-

gardless of the specific microarchitectural design details. Therefore,

𝑆𝑄𝐸𝐷 does not require any manual property formulation. The logic

bugs that can induce changes in processor architectural states can be

categorized as either single-instruction or multiple-instruction bugs.
Single-instruction bugs refer to the erroneous behavior of a processor
when executing a specific individual instruction. These bugs are inde-

pendent of all previously executed instructions. Multiple-instruction
bugs refer to the erroneous behavior of a processor when executing

a sequence of multiple instructions consecutively. Practical exam-

ples have demonstrated that 𝑆𝑄𝐸𝐷 is capable of efficiently detecting

multiple-instruction bugs that are otherwise difficult to detect [6,

7]. However, it cannot detect single-instruction bugs [8] that affect
original and duplicate instructions uniformly. Therefore, the verifica-

tion process of the self-consistency property may yield false positive

results when dealing with bugs that occur within a single instruc-

tion. This motivated the work on 𝐶-𝑆2𝑄𝐸𝐷 [9] which formulates

single-instruction semantics by in-house metamodeling techniques

[10], but requires providing timing information about instruction in

the properties, making it not microarchitecture-independent.

In this paper, we present a novel variant for 𝑆𝑄𝐸𝐷 , named sym-
bolic quick error detection by semantically equivalent program exe-
cution (𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷). 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 determines the correctness of an

implementation by verifying whether the execution of the original

instruction produces consistent architectural states with the execu-

tion of its semantically equivalent program. 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 is capable

of addressing both single-instruction and multiple-instruction bugs of
the processor design. In the case of single-instruction bugs, their effect
on the original instruction and its semantically equivalent program

can vary, leading to a violation of consistency. On the other hand,

𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 offers a richer variety of instruction combinations com-

pared to the singular pattern of combining original and duplicate

instructions in 𝑆𝑄𝐸𝐷 . As a result, 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 provides greater flex-

ibility in triggering bugs, and in some scenarios, it can lead to shorter

bug traces. The component-based counterexample-guided inductive
synthesis (CEGIS) [11, 12] is employed to search for programs that

are semantically equivalent to the original instructions. To address

the vast search space associated with existing program synthesis

methods, we propose the CEGIS based on the highest priority first
(HPF-CEGIS) algorithm. The experimental results demonstrate the

effectiveness of our approach.

The contributions of this paper are as follows:

ar
X

iv
:2

40
4.

03
17

2v
2

 [
cs

.S
E

]
 6

 A
pr

 2
02

4

DAC ’24, June 23–27, 2024, San Francisco, CA, USA 1,2Yufeng Li, 2Qiusong Yang∗ , 2Yiwei Ci, 1,2Enyuan Tian

• We improve 𝑆𝑄𝐸𝐷 by incorporating program synthesis tech-

niques, and propose 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 , which can detect all types

of logic bugs that can induce changes in processor architec-

tural states.

• We introduce the HPF-CEGIS algorithm, which, compared to

the previous CEGIS algorithm, synthesizes the desired pro-

gram with an average reduction of 50% in time overhead.

• We verified the capability of 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 to detect two types

of logic bugs through mutation testing on a real open-source

high-performance processor, and the experiments demon-

strated that 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 can generate bug traces shorter than

𝑆𝑄𝐸𝐷 for certain multiple-instruction bugs.

2 BACKGROUND AND RELATEDWORK
In this section, we provide an introduction to the background knowl-

edge of 𝑄𝐸𝐷 and 𝑆𝑄𝐸𝐷 used for formal verification and program

synthesis techniques. Along the way, we present the related work.

2.1 QED and SQED
Quick Error Detection (𝑄𝐸𝐷) [13] is a testing technique that auto-

matically transforms an existing test, which consists of a sequence

of instructions, into a new test using various transformations (𝑄𝐸𝐷

transformation). These transformations, such as Error Detection using
Duplicated Instructions for Validation (EDDI-V) and Proactive Load
and Check (𝑃𝐿𝐶), enhance coverage and reduce error detection la-

tency. The EDDI-V transformation is particularly relevant to this

paper as it involves the duplication of instructions in an existing

instruction sequence using shadow registers and memory. The de-
sign under verification (DUV) has its registers and memory space

divided into two halves, each mapped to the other through a bijective

mapping. The original and duplicate instructions exclusively refer to

their respective parts. In the EDDI-V transformation, every original

instruction is replicated as a duplicate instruction, with the register

and memory locations mapped to their corresponding values. During

a 𝑄𝐸𝐷 test, both the original and duplicate instruction sequences

are executed from a 𝑄𝐸𝐷-𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡 state, where values in corre-

sponding registers and memory locations are identical. Duplicated

instructions execute in the same relative order as the originals but

may be interleaved [8]. Mismatched values between original and

duplicate registers or memory locations indicate the presence of a

bug trace.

Symbolic quick error detection (𝑆𝑄𝐸𝐷) [6, 8] utilizes 𝑄𝐸𝐷 princi-

ples and bounded model checking (BMC) [14] to detect and localize

logic bugs in RTL. 𝑆𝑄𝐸𝐷 systematically explores all possible instruc-

tion sequences of increasing length in a symbolic manner. 𝑄𝐸𝐷

transformations are then applied to these enumerated instruction se-

quences. It automates the process of property formulation, a known

challenging task, by checking a universal property (i.e., a property

that is design-independent) based on 𝑄𝐸𝐷 testing. For the EDDI-V

transformation, this property is referred to as self-consistency, and

it can be expressed as follows:

𝑄𝐸𝐷-ready⇒ 𝑄𝐸𝐷-consistent (1)

The 𝑄𝐸𝐷-ready flag serves as an indicator of the successful com-

mitment of both the original and duplicated instructions. In the

context of a processor core equipped with 32 general-purpose reg-

isters, a state is deemed to be 𝑄𝐸𝐷-consistent when the equality∧
15

𝑖=0 𝑟𝑒𝑔𝑠 [𝑖] == 𝑟𝑒𝑔𝑠 [𝑖 + 16] (where 𝑟𝑒𝑔𝑠 represents the register file)
holds. It is important to note that registers 0 to 15 correspond to

the original registers, while registers 16 to 31 are their respective

duplicates, following a mapping scheme where register 𝑟𝑒𝑔𝑠 [𝑖] is
associated with register 𝑟𝑒𝑔𝑠 [𝑖 + 16].

𝑆𝑄𝐸𝐷 with EDDI-V transformation is unable to detect single-
instruction bugs that affect both the original and duplicate instruc-

tions in a uniform manner during a 𝑄𝐸𝐷 test. Consequently, the

original and duplicate registers always hold the same value, leading

to 𝑄𝐸𝐷-consistent states.

2.2 Program Synthesis
The program synthesis aims to find a program that satisfies a given

specification represented as a bit-vector formula in satisfiability

modulo theories (SMT) [15]. The problem is an exists-forall problem
expressed as follows:

∃𝑃 : ∀®𝐼 ,𝑂 :

(
𝑃 (®𝐼) == 𝑂

)
⇒ 𝜙𝑠𝑝𝑒𝑐 (®𝐼 ,𝑂) (2)

(2) indicates that if the program is executed with inputs ®𝐼 and pro-

duces output 𝑂 , then the specification 𝜙𝑠𝑝𝑒𝑐 is satisfied. If a satisfi-

able result of (2) is obtained through the SMT solver query, then a

program 𝑃 is synthesized.

An effective approach for solving satisfiability problems in second-

order logic (∃∀) is to employ CEGIS [16] to eliminate the universal

quantifier. CEGIS involves two SMT solver calls: one to construct

a candidate program and another to verify its validity for all pos-

sible inputs. Gulwani et al. [11] have utilized this technique for

component-based loop-free program synthesis. They introduced first-

order location variables 𝐿 to establish component connections. Lo-

cation variables determine the parameters of components based on

their linear order. Hence, the synthesis problem is equivalent to

solving the following constraint:

∃𝐿 :

(
𝜓𝑤𝑓 𝑝 (𝐿) ∧ ∀®𝐼 ,𝑂,𝑄, 𝑅 : 𝜙𝑙𝑖𝑏 (𝑄, 𝑅) ∧𝜓𝑐𝑜𝑛𝑛 (®𝐼 ,𝑂,𝑄, 𝑅, 𝐿) ⇒ 𝜙𝑠𝑝𝑒𝑐 (®𝐼 ,𝑂)

)
𝑤ℎ𝑒𝑟𝑒 𝑄 ::=

𝑁⋃
𝑗=1

®𝐼 𝑗 𝑅 ::=

𝑁⋃
𝑗=1

𝑂 𝑗 𝐿 ::=
{
𝑙𝑥 |𝑥 ∈ 𝑄

⋃
𝑅
⋃
®𝐼
⋃

𝑂
}

Here 𝑄 and 𝑅 collectively denote the formal inputs and outputs of

𝑁 components. 𝜙𝑙𝑖𝑏 encapsulates the formula of the components,

𝜙𝑙𝑖𝑏 ::=
∧𝑁

𝑗 𝜙 𝑗 (®𝐼 𝑗 ,𝑂 𝑗). 𝑙𝑥 denotes the location of each variable 𝑥 .

The well-formed program constraint 𝜓𝑤𝑓 𝑝 (𝐿) mandates that the in-

puts of each component must be either the program inputs (®𝐼) or the
outputs of its preceding component, while also ensuring that the

outputs of each component are distinct. Furthermore, the constraint

𝜓𝑐𝑜𝑛𝑛 guarantees that variables sharing the same location possess

identical assignments.

However, the classical CEGIS necessitates multiple instances of

each component in the library, resulting in a substantial performance

overhead due to the excessive number of components. To address this,

Buchwald et al. [12] proposed an iterative CEGIS algorithm, which

involves using the combinations with replacement algorithm to select

subsets of components from the library and form increasingly longer

multisets. Each multiset allows for the repetition of components, and

each iteration involves synthesizing the specification using the small-

sized multiset. Since the goal is not to find all programs that satisfy

the specification, this approach can yield shorter programs that

satisfy the specification while significantly reducing the synthesis

time overhead. However, the excessive number of components can

lead to a large number of multisets (

((𝑁
𝑛

))
=
(𝑁+𝑛−1

𝑛

)
). For instance,

if there are 𝑁 = 29 components and 𝑛 = 6 are chosen each time

to form a multiset, it would result in 1344904 multisets. Moreover,

many of these multisets actually cannot synthesize the specification,

SEPE-SQED: Symbolic Quick Error Detection by Semantically Equivalent Program Execution DAC ’24, June 23–27, 2024, San Francisco, CA, USA

Original Instruction Formal Semantic

Component Formal Semantic ...
1Multiset Multisetn

Original Instruction:
 SUB rd rs1 rs2

Equivalent Program:
 XORI t1 rs1 0xfff

ADD t2 t1 rs2
 XORI rd t2 0xfff

QED Module：
EDSEP-V

Transformation

DUV

Model Checker

Bug Trace

QED Module：
EDSEP-V

Transformation

DUV

HPF-CEGIS

Intermediate
Format

Synthesis

Processor Vrification with SEPE-SQED

Figure 1: Workflow

O r i g i n a l i n s t r u c t i o n # S eman t i c a l l y e q u i v a l e n t program

SUB rd r s 1 r s 2 XORI t 1 r s 1 0 x f f f

ADD t2 t 1 r s 2

XORI rd t 2 0 x f f f

Listing 1: SUB instruction and its semantically equivalent
program

leading to numerous invalid solver calls. Therefore, in this paper, we

propose the HPF-CEGIS algorithm (see Section 4.2).

3 OVERVIEW
This section provides an overview of our approach, which involves

two primary processes: synthesizing programs that are semantically

equivalent to the original instructions and verifying the processor

using 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 . The workflow is illustrated in Figure 1.

The upper half of Figure 1 illustrates the process of program

synthesis, where the semantic models of original instructions and

components defined by us (see Section 4.1), are input into the pro-

gram synthesizer. Subsequently, the program synthesizer invokes

HPF-CEGIS algorithm (described in Section 4.2) to generate programs

from the components that are semantically equivalent to the given

original instructions. Once the instruction sequences that are se-

mantically equivalent to the original instruction are identified, the

second process involves utilizing this equivalent relation (as shown

in Listing 1) to construct transformations.

To implement 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 , a special 𝑄𝐸𝐷 module [13] is inte-

grated with the DUV. The module is only used for pre-silicon ver-

ification and is not added to the manufactured integrated circuit.

The module takes an original instruction as input and outputs an

instruction sequence that is semantically equivalent to it. Both the

original and the semantically equivalent instruction sequences are

fed into the DUV. Once the𝑄𝐸𝐷-ready signal is activated, indicating

the successful submission of both the original and its semantically

equivalent instruction sequence, the model checker checks whether

the universal property (formula (1)) holds. In this paper, we refer to

this transformation as Error Detection using Semantically Equivalent
Program for Validation, EDSEP-V (described in Section 5).

4 SYNTHESIS
We first present the formal semantic model of instructions (Sec-

tion 4.1), followed by an introduction to our HPF-CEGIS algorithm
(Section 4.2).

4.1 Formal Semantic Model
The synthesizer takes the semantic models of original instructions

and components as inputs and utilizes these components to synthe-

size the original instructions that serve as the specifications (refer

to formula (2)) [11, 12]. The semantic models are represented as bit-

vector formulas that precisely describe the input-output behavior of

the instructions. In this paper, we use a portion of the RV32IM [17]

instruction set as the illustrative example.

The input and output parameters of an instruction semantic model

represent register or immediate operands. They are all of the bit-

vector type, but the inputs may have different bit widths. Some

instructions in the library components have internal attributeswhose
values are determined during synthesis. For instance, the 𝐴𝐷𝐷𝐼

instruction has two forms as components. The first form takes both

register and immediate operands as input parameters, while the

second form takes only the register operand as input parameter,

with the immediate operand being treated as an internal attribute.
When this component is selected, the immediate operand is assigned

a specific value.

The formal semantics of the instruction is expressed as:

𝜙𝑖𝑛𝑠𝑡𝑟 (®𝐼 , 𝐴,𝑂)

where the tuple of input parameters ®𝐼 , the internal attribute parame-

ter 𝐴 and the output parameter 𝑂 form the instruction’s interface.

For example, the semantic of ADD rd rs1 rs2 is:

𝜙𝐴𝐷𝐷 (𝐼1, 𝐼2,𝑂) ::= (𝑂 = 𝐼1 + 𝐼2)
A library is formed by a set of specifications of components, which

are expressed as:{
⟨
−→
𝐼 𝑗 ,
−→
𝐴 𝑗 ,𝑂 𝑗 ,Φ𝑗 (

−→
𝐼 𝑗 ,
−→
𝐴 𝑗 ,𝑂 𝑗)⟩| 𝑗 = 1, ..., 𝑁

}
where all variables

−→
𝐼 𝑗 ,𝑂 𝑗

are distinct, and Φ𝑗 (
−→
𝐼 𝑗 ,
−→
𝐴 𝑗 ,𝑂 𝑗) is a seman-

tic model for one component that belongs to one of three classes

• Native Instruction Class (NIC): The semantics of the compo-

nent are equivalent to the chosen instruction. For example,

for the 𝐴𝐷𝐷 instruction:

Φ(𝐼1, 𝐼2,𝑂) ::= 𝜙𝐴𝐷𝐷 (𝐼1, 𝐼2,𝑂)
• Derived Instruction Class (DIC): Derived versions of instruc-

tions can be constructed as components, where the immediate

operands are treated as internal attributes rather than being

taken as inputs. For example, an ADDI instruction with a

specific immediate operand can be derived as follows:

Φ(𝐼1, 𝐴,𝑂) ::= 𝜙𝐴𝐷𝐷𝐼 (𝐼1, 𝐴,𝑂) ::=
(
𝑂 = 𝐼1 + 𝑠𝑒𝑥𝑡 (𝐴)

)
where 𝐴 is a specific 12-bit immediate operand and 𝑠𝑒𝑥𝑡 (𝐴)
denotes sign-extension of 𝐴 to 32bits.

• Composite Instruction Class (CIC): To extend the coverage

of 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 to include instructions that are difficult to

synthesize under bit-vector theory, such as multiplication

of two 32-bit variables, which is hard for SMT solvers, we

construct the CIC in this paper. CIC is designed to represent

the semantics of a specific instruction sequence:

Φ(®𝐼 , ®𝐴,𝑂) ::= 𝜙1 (
−→
𝐼1, 𝐴1,𝑂1) ≺ ... ≺ 𝜙𝑁 (

−→
𝐼𝑁 , 𝐴𝑁 ,𝑂𝑁)

DAC ’24, June 23–27, 2024, San Francisco, CA, USA 1,2Yufeng Li, 2Qiusong Yang† , 2Yiwei Ci, 1,2Enyuan Tian

where ≺ denotes the ordered sequence between instructions,

each variable in

−→
𝐼 𝑗 is either an input variable from ®𝐼 , or a

temporary output 𝑂𝑘
such that 𝑘 < 𝑗 . The output of the

last instruction serves as the output of the entire sequence

of instructions, i.e., 𝑂 = 𝑂𝑁
. In this way, we can relax the

conditions for solving. For example, to include multiplication

instructions, we can allow operations that involve multiplying

a 32-bit variable with a 32-bit constant:

Φ(𝐼1, 𝐴,𝑂) ::= 𝜙𝐴𝐷𝐷𝐼 (𝐴,𝑂1) ≺ 𝜙𝑀𝑈𝐿 (𝐼1,𝑂1,𝑂) ⇔

Φ(𝐼1, 𝐴,𝑂) ::=
(
𝑂 = 𝐼1 ×

(
0 + 𝑠𝑒𝑥𝑡 (𝐴)

))
To ensure that input parameters of components with different

bit widths are restricted to sources of the same width, we refer to

Buchwald et al.’s𝜓𝑤𝑓 𝑝 (𝐿) [12]. In addition, we introduce an input
constraint to eliminate cases where the synthesized program is iden-

tical to the original instruction 𝑔. The constraint can be defined as

follows:(
𝑁𝑎𝑚𝑒

(
𝜙𝑔 (®𝐼 ,𝑂)

)
== 𝑁𝑎𝑚𝑒

(
Φ𝑗 (
−→
𝐼 𝑗 ,𝑂 𝑗)

))
⇒ 𝐿(®𝐼) ≠ 𝐿(

−→
𝐼 𝑗)

This constraint ensures that the synthesized program is not identical

to itself, as self-equivalence would degrade into 𝑆𝑄𝐸𝐷 .

4.2 CEGIS Based on the Highest Priority First
For the classical CEGIS [11], the number of components can cause

considerable performance issues. The iterative CEGIS algorithm [12]

can produce a large number of multisets through combinations with
replacement algorithm (refer to Section 2.2), rendering it impractical

to exhaustively enumerate them within a reasonable time frame.

Therefore, we propose HPF-CEGIS (Algorithm 1).

InHPF-CEGIS, each component 𝑗 is assigned a priority determined

by choice weight 𝑐 𝑗 and exclusion weight 𝑒 𝑗 . A higher 𝑐 𝑗 indicates

a higher priority, while a higher 𝑒 𝑗 value indicates a lower priority.

Initially, the weights of all components are recorded in a global

dictionary (line 2). Selecting the multiset with the highest priority
(line 9, 10) before synthesis based on two factors:

• If a multiset contains some components with the same name

as the original instruction, its priority is reduced to minimize

the overlap between the data paths covered by the original

instruction and its semantically equivalent program. For in-

stance, we prefer using {SUB t1 rs1 rs1, SUB t2 t1 rs2, SUB rd
rs1 t2} instead of {SRAI t1 rs1 0x0, ADD t2 rs2 t1, SRAI rd t2
0x0} to represent ADD rd rs1 rs2.
• If a multiset can synthesize the original instruction, the prior-

ities of its components are increased due to their significant

semantic similarity to the original instruction. Conversely,

the priorities of its components are decreased.

The calculation of the priority for a multiset with 𝑛 components is

as follows:

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 =
Σ𝑛
𝑗=1
(𝑐 𝑗 − 𝛼 × 𝜒 𝑗)
Σ𝑛
𝑗=1

𝑒 𝑗
𝜒 𝑗 =

{
1 𝑁𝑎𝑚𝑒 (𝑗) == 𝑁𝑎𝑚𝑒 (𝑔)
0 𝑁𝑎𝑚𝑒 (𝑗) ≠ 𝑁𝑎𝑚𝑒 (𝑔)

Here 𝜒 𝑗 is a characteristic function indicating whether the type of

the component 𝑗 matches the original instruction 𝑔, and 𝛼 is the

influencing factor.

If the synthesis fails (CEGIS returns𝑁𝑜𝑛𝑒 , line 12), the priorities of

all components in the current multiset are reduced by increasing the

values of their exclusion weights (line 13). Otherwise, the priorities

of that multiset’s components are enhanced by increasing the values

Algorithm 1 HPF-CEGIS

1: procedure PRIORITYITERATION(𝐺 : {Original instruction}, 𝐵: {Component})

2: 𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌𝐷𝐼𝐶𝑇 ←
{
𝑐𝑜𝑚𝑝1 :[𝑐1, 𝑒1], ... ,𝑐𝑜𝑚𝑝𝑁 :[𝑐𝑁 , 𝑒𝑁]

}
⊲ Initializing the

weights of the components

3: 𝑅 ← ∅
4: for each 𝑔 ∈ 𝐺 do
5: 𝑀𝑈𝐿𝑇𝐼𝑆𝐸𝑇𝑆 ← COMBINATIONSWITHREPLACEMENT(𝐵,𝑛) ⊲ The

combinations with replacement algorithm

6: 𝑀 ← ∅
7: stop← False
8: while not stop do
9: SORTED(𝑀𝑈𝐿𝑇𝐼𝑆𝐸𝑇𝑆, 𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌𝐷𝐼𝐶𝑇,𝑔) ⊲ Sorting in descending

order of priority

10: 𝑆 ← 𝑀𝑈𝐿𝑇𝐼𝑆𝐸𝑇𝑆 [0] ⊲ The highest priority first

11: 𝑃 ← CEGIS(𝑔, 𝑆) ⊲ Generating semantically equivalent program

12: if 𝑃 == 𝑁𝑜𝑛𝑒 then
13: Increasing the exclusion weight of components in 𝑆

14: else
15: 𝑀 ← 𝑀 ∪ {𝑃 }
16: Increasing the choice weight of components in 𝑆

17: end if
18: if LEN(𝑀) > 𝑘 then
19: stop← True
20: end if
21: end while
22: 𝑅 ← 𝑅 ∪ { (𝑔,𝑀) }
23: end for
24: end procedure

of their choice weights (line 16). The iteration stops once the number

of synthesized programs reaches a predefined threshold (line 19).

5 PROCESSOR VERIFICATIONWITH
SEPE-SQED

The correspondences between the original instructions and their

semantically equivalent programs are stored in 𝑅 (Algorithm 1 line

22). These correspondences (as shown in Listing 1) guide us in im-

plementing the EDSEP-V transformation.

Following the 𝑄𝐸𝐷 consistency comparison principle, the input

and output registers of the original instructions are mapped to cor-

responding registers in the semantically equivalent instruction se-

quences. Additionally, some intermediate inputs and outputs of se-

mantically equivalent instruction sequences also require register

allocation. To keep the triggering logic of the𝑄𝐸𝐷-𝑟𝑒𝑎𝑑𝑦 signal sim-

ple, i.e., the number of register writebacks in the original instruction

sequence is equal to the number of register writebacks in the seman-

tically equivalent instruction sequence, we divided the register file

into three parts. For a processor with 32 general-purpose registers,

the segmentation is as follows:

𝑂 ::= {𝑟𝑒𝑔𝑠 [0], ..., 𝑟𝑒𝑔𝑠 [12]}
𝐸 ::= {𝑟𝑒𝑔𝑠 [13], ..., 𝑟𝑒𝑔𝑠 [25]} ∀𝑜 ∈ 𝑂 : ∃𝑒 ∈ 𝐸 : 𝑜 ↦→ 𝑒

𝑇 ::= {𝑟𝑒𝑔𝑠 [26], ..., 𝑟𝑒𝑔𝑠 [31]}

The register allocation scheme assigns the register set𝑂 to the origi-

nal instructions, while the register sets 𝐸 and 𝑇 are allocated to the

semantically equivalent instruction sequences. Registers in 𝑂 are

paired one-to-one with registers in 𝐸, while registers in𝑇 serve as in-

termediate inputs and outputs. To maintain the data dependencies of

the original instructions, the allocation of registers in𝑇 must adhere

to the read-after-write principle. According to the correspondences

in Listing 1, the transformation of SUB rd rs1 rs2 is depicted in Listing
2.

Figure 2 illustrates the integration of the EDSEP-Vmodule into the

DUV’s RTL during verification. The solver symbolically enumerates

the original instructions under the ISA for execution, while concur-

rently the EDSEP-V module transforms them into corresponding

SEPE-SQED: Symbolic Quick Error Detection by Semantically Equivalent Program Execution DAC ’24, June 23–27, 2024, San Francisco, CA, USA

O r i g i n a l i n s t r u c t i o n

SUB reg s [1] (rd) r e g s [2] (r s 1) r e g s [3] (r s 2)

S eman t i c a l l y e q u i v a l e n t i n s t r u c t i o n sequence

XORI r eg s [2 6] (t 1) r e g s [1 5] (r s 1) 0 x f f f

ADD reg s [2 7] (t 2) r e g s [2 6] (t 1) r e g s [1 6] (r s 2)

XORI r eg s [1 4] (rd) r e g s [2 7] (t 2) 0 x f f f

Listing 2: EDSEP-V transformation

...

BMC

...instr2instr1

ADD_E1 ADD_E2 ... ADD_Ej

Equivalent Program: ADD

SUB_E1 SUB_E2 ... SUB_Ek

Equivalent Program: SUB

SLL_E1 SLL_E2 ... SLL_Em

Equivalent Program: SLL

SRA_E1 SRA_E2 ... SRA_En

Equivalent Program: SRA

opcode

Enqueue

Decode Execution Writebackor || eq

original_instr

instr

EDSEP-V Module

regs[0]==regs[13]
regs[1]==regs[14]

...

regs[12]==regs[25]Check

QED Consistent?Pipeline

Figure 2: 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 verification model

semantically equivalent instruction sequences. These semantically

equivalent instruction sequences are stored in a queue. Based on a

selection signal (𝑜𝑟 | |𝑒𝑞), choose to dispatch the original instruction

or semantically equivalent instruction into the pipeline. When the

number of committed original instructions and their semantically

equivalent counterparts is the same (determined by the number of

register write-backs belonging to 𝑂 or 𝐸), the model checker checks

whether the state is 𝑄𝐸𝐷-consistent:

𝑄𝐸𝐷-ready⇒
12∧
𝑖=0

𝑟𝑒𝑔𝑠 [𝑖] == 𝑟𝑒𝑔𝑠 [𝑖 + 13]

𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 can detect all types of logic bugs that can induce

changes in processor architectural states in pre-silicon verification.

On one hand, it shares the capability of 𝑆𝑄𝐸𝐷 to systematically

enumerate different combinations of instructions, effectively con-

structing various conditions that trigger multiple-instruction bugs.
On the other hand, the original instructions and their semantically

equivalent counterparts have the same functionality but different

structures, thereby avoiding a single instruction bug simultaneously

affecting both the original instructions and semantically equivalent

sequences, leading to false positives.

6 EVALUATION
Our experimental evaluation consists of two parts. The first part

involves comparing the time overhead of synthesizing the desired

instruction sequences between HPF-CEGIS and two previous CEGIS

approaches. The second part tests the bug discovery capabilities

of 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 . The experiments were conducted on an Intel(R)

Core(TM) i9-10900K CPU with 64 GB RAM running at 3.70 GHz.

0100002000030000

HPF-CEGIS

case1
case2
case3
case4
case5
case6
case7
case8
case9

case10
case11
case12
case13
case14
case15
case16
case17
case18
case19
case20
case21
case22
case23
case24
case25
case26

0 10000 20000 30000

Iterative CEGIS

Runtime

Figure 3: The time overhead of instruction synthesis

6.1 Synthesis Algorithm
We evaluated the time performance of three CEGIS algorithms,

namely HPF-CEGIS, iterative CEGIS [12], and classical CEGIS [11],

in synthesizing programs with equivalent semantics. Our library con-

sists of 29 components, including 10 NICs, 10 DICs, and 9 CICs (see

Section 4.1). These components collectively provide functional cover-

age for RV32IM instruction classes. In HPF-CEGIS, we set the initial

values of each component’s weight [𝑐 𝑗 , 𝑒 𝑗] and influencing factor 𝛼

to 1 and incremented the weights by 1 with each update. For each

original instruction, if 20 semantically equivalent programs consist-

ing of at least three components have been successfully synthesized,

the synthesis process will terminate early. Otherwise, all possible

combinations of components will be systematically enumerated.

Classical CEGIS [11] failed to synthesize a single original instruc-

tion even after several weeks of experimentation with the library of

29 components. When comparing HPF-CEGIS with iterative CEGIS,

for the sake of fairness, we shuffle all multisets before synthesis to

prevent the clustering of similar data types. Figure 3 illustrates the

time overhead of synthesizing different cases using two algorithms,

indicating that HPF-CEGIS significantly reduces synthesis time, ex-

hibiting an average overall reduction in synthesis time of 50%, with

synthesis time reduced by up to 90% in certain cases.

6.2 Real RTL Verification
To assess the efficacy of 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 in detecting logic bugs, we

conducted mutation testing on RIDECORE, an advanced superscalar

and out-of-order processor core. The RTL code was converted into

the BTOR2 [18] intermediate format through Yosys [19], and Pono

[20] was employed as the model checking engine.

Our approach primarily focuses on enhancing 𝑆𝑄𝐸𝐷 to extend

its capability for checking single-instruction bugs. While it is also

feasible to develop specialized formal properties for single-instruction
bugs [4, 5, 9], as mentioned in the introduction (Section 1), these

DAC ’24, June 23–27, 2024, San Francisco, CA, USA 1,2Yufeng Li, 2Qiusong Yang‡ , 2Yiwei Ci, 1,2Enyuan Tian

Table 1: Injected single-instruction bugs

Type Function SEPE-SQED SQED
ADD Addition of two register types 3410.93s -

SUB Subtraction of two register types 1436.46s -

XOR Exclusive-OR 430.47s -

OR Bitwise OR of two register types 1765.66s -

AND Bitwise AND of two register types 777.79s -

SLT Set if Less Than 3306.27s -

SLTU Set if Less Than, Unsigned 2437.10s -

SRA Shift Right Arithmetic 76.50s -

MULH Multiply High 2837.13s -

XORI Exclusive-OR Immediate 627.45s -

SLLI Shift Left Logical Immediate 1837.11s -

SRAI Shift Right Arithmetic Immediate 85.44s -

SW Store Word 288.62s -

0

500

1000

1500

2000

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20
No.

R
un

ti
m

e
(s

ec
)

R
atio

R atio o f co u n terex am p le len g th SQED / SEPE-SQED (Counterexample length) SQED / SEPE-SQED (Runtime) Meth o d SQED SEPE-SQED

Figure 4: Detection results of multiple-instruction bugs

properties are non-universal and require much effort, we do not

require a performance comparison with them. Table 1 demonstrates

the detection results of 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 for injected single-instruction
bugs in RIDECORE.

The EDSEP-V module (𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷) is relatively more complex

compared to the EDDI-V module (𝑆𝑄𝐸𝐷). We also conducted tests

to determine if this complexity resulted in significant overhead in

detecting multiple-instruction bugs. The x-axis of Figure 4 represents
the bug identifier, while the red and blue bars depict the detection

time of 𝑆𝑄𝐸𝐷 and 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 . The blue curve represents the detec-

tion time ratio of 𝑆𝑄𝐸𝐷 to 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 for the same bug, while the

yellow curve represents the counterexample length ratio of 𝑆𝑄𝐸𝐷

to 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 for the same bug.

Bothmethods are capable of detecting injectedmultiple-instruction
bugs. 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 not only does not incur significant time overhead,

but in some cases, it exhibits shorter bug detection time and coun-

terexample traces compared to 𝑆𝑄𝐸𝐷 . We attribute this to the fact

that in contrast to the single pattern of matching original and dupli-

cated instructions in 𝑆𝑄𝐸𝐷 , 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 can trigger a more diverse

sequence of instructions that lead to bugs. As a result, in certain

scenarios, the solver can find a shorter bug trace.

7 CONCLUSION
In this paper, we propose 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷 for processor model check-

ing. The processor’s correctness is established by comparing the

consistency of its behavior with both original instructions and their

semantically equivalent instruction sequences. To achieve this, pro-

gram synthesis techniques are employed to discover programs that

exhibit semantic equivalence to the original instructions. To improve

the process of program synthesis, we present HPF-CEGIS, an efficient

CEGIS algorithm based on a highest-priority first approach. Experi-

mental results highlight the noteworthy enhancements in program

generation speed attained by HPF-CEGIS and confirm 𝑆𝐸𝑃𝐸-𝑆𝑄𝐸𝐷’s

ability to detect both single-instruction and multiple-instruction bugs
in an open-source processor.

REFERENCES
[1] EdmundMClarke Jr, OrnaGrumberg, Daniel Kroening, Doron Peled, andHelmut

Veith. 2018. Model checking. MIT press.

[2] Werner Damm, Amir Pnueli, and Sitvanit Ruah. 1998. Herbrand automata for

hardware verification. In CONCUR’98 Concurrency Theory: 9th International
Conference Nice, France, September 8–11, 1998 Proceedings 9. Springer, 67–83.

[3] Sergey Berezin, Armin Biere, Edmund Clarke, and Yunshan Zhu. 1998. Com-

bining symbolic model checking with uninterpreted functions for out-of-order

processor verification. In FMCAD. Vol. 1522. Springer, 369–386.
[4] Alastair Reid et al. 2016. End-to-end verification of processors with isa-formal.

In International Conference on Computer Aided Verification. Springer, 42–58.
[5] Clifford Wolf. 2018. Risc-v formal verification framework. https://github.com/Yo

sysHQ/riscv-formal. (2018).

[6] Eshan Singh, David Lin, Clark Barrett, and Subhasish Mitra. 2018. Logic bug

detection and localization using symbolic quick error detection. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems.

[7] Eshan Singh et al. 2019. Symbolic qed pre-silicon verification for automotive

microcontroller cores: industrial case study. In 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 1000–1005.

[8] Florian Lonsing, Karthik Ganesan, Makai Mann, Srinivasa Shashank Nuthakki,

Eshan Singh, Mario Srouji, Yahan Yang, Subhasish Mitra, and Clark Barrett. 2019.

Unlocking the power of formal hardware verification with cosa and symbolic qed.

In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, 1–8.

[9] Keerthikumara Devarajegowda, Mohammad Rahmani Fadiheh, Eshan Singh,

Clark Barrett, Subhasish Mitra, Wolfgang Ecker, Dominik Stoffel, and Wolfgang

Kunz. 2020. Gap-free processor verification by s 2 qed and property generation.

In 2020 Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 526–531.

[10] Keerthikumara Devarajegowda andWolfgang Ecker. 2018. Meta-model based au-

tomation of properties for pre-silicon verification. In 2018 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC). IEEE, 231–236.

[11] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.

Synthesis of loop-free programs. ACM SIGPLAN Notices, 46, 6, 62–73.
[12] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. 2018. Synthesizing an

instruction selection rule library from semantic specifications. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization, 300–313.

[13] David Lin, Ted Hong, Yanjing Li, S. Eswaran, Sharad Kumar, Farzan Fallah, Nagib

Hakim, Donald S. Gardner, and Subhasish Mitra. 2014. Effective post-silicon

validation of system-on-chips using quick error detection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems.

[14] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. 1999. Sym-

bolic model checking without bdds. In Tools and Algorithms for the Construction
and Analysis of Systems: 5th International Conference, TACAS’99 Held as Part
of the Joint European Conferences on Theory and Practice of Software, ETAPS’99
Amsterdam, The Netherlands, March 22–28, 1999 Proceedings 5. Springer, 193–207.

[15] Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories:

introduction and applications. Communications of the ACM, 54, 9, 69–77.

[16] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay

Saraswat. 2006. Combinatorial sketching for finite programs. In Proceedings
of the 12th international conference on Architectural support for programming
languages and operating systems, 404–415.

[17] AndrewWaterman, Yunsup Lee, David Patterson, Krste Asanovic, Volume I User

level Isa, Andrew Waterman, Yunsup Lee, and David Patterson. 2014. The risc-v

instruction set manual. Volume I: User-Level ISA’, version, 2.
[18] Aina Niemetz, Mathias Preiner, Clifford Wolf, and Armin Biere. 2018. Btor2,

btormc and boolector 3.0. In Computer Aided Verification: 30th International
Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018,
Oxford, UK, July 14-17, 2018, Proceedings, Part I. Springer, 587–595.

[19] Clifford Wolf. 2016. Yosys open synthesis suite. (2016).

[20] Makai Mann, Ahmed Irfan, Florian Lonsing, Yahan Yang, Hongce Zhang, Kristo-

pher Brown, Aarti Gupta, and Clark W. Barrett. 2021. Pono: A flexible and

extensible smt-based model checker. In Computer Aided Verification - 33rd Inter-
national Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II
(Lecture Notes in Computer Science). Alexandra Silva and K. Rustan M. Leino,

(Eds.) Vol. 12760. Springer, 461–474. doi: 10.1007/978-3-030-81688-9_22.

https://github.com/YosysHQ/riscv-formal
https://github.com/YosysHQ/riscv-formal
https://doi.org/10.1007/978-3-030-81688-9_22

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 QED and SQED
	2.2 Program Synthesis

	3 Overview
	4 Synthesis
	4.1 Formal Semantic Model
	4.2 CEGIS Based on the Highest Priority First

	5 Processor Verification with SEPE-SQED
	6 Evaluation
	6.1 Synthesis Algorithm
	6.2 Real RTL Verification

	7 Conclusion

