
NegotiaToR: Towards A Simple Yet Effective On-demand
Reconfigurable Datacenter Network

Cong Liang1, Xiangli Song1, Jing Cheng1, Mowei Wang2, Yashe Liu2,
Zhenhua Liu2, Shizhen Zhao3, Yong Cui1

1Tsinghua University 2Huawei Technologies Co., Ltd 3Shanghai Jiao Tong University

ABSTRACT
Recent advances in fast optical switching technology show promise
in meeting the high goodput and low latency requirements of dat-
acenter networks (DCN). We present NegotiaToR, a simple net-
work architecture for optical reconfigurable DCNs that utilizes on-
demand scheduling to handle dynamic traffic. In NegotiaToR, racks
exchange scheduling messages through an in-band control plane
and distributedly calculate non-conflicting paths from binary traffic
demand information. Optimized for incasts, it also provides op-
portunities to bypass scheduling delays. NegotiaToR is compatible
with prevalent flat topologies, and is tailored towards a minimalist
design for on-demand reconfigurable DCNs, enhancing practical-
ity. Through large-scale simulations, we show that NegotiaToR
achieves both small mice flow completion time (FCT) and high
goodput on two representative flat topologies, especially under
heavy loads. Particularly, the FCT of mice flows is one to two or-
ders of magnitude better than the state-of-the-art traffic-oblivious
reconfigurable DCN design.

CCS CONCEPTS
• Networks→ Data center networks; Network architectures.

KEYWORDS
Datacenter network; Optical switching
ACM Reference Format:
Cong Liang, Xiangli Song, Jing Cheng, Mowei Wang, Yashe Liu, Zhenhua
Liu, Shizhen Zhao, Yong Cui. 2024. NegotiaToR: Towards A Simple Yet Ef-
fective On-demand Reconfigurable Datacenter Network. In ACM SIGCOMM
2024 Conference (ACM SIGCOMM ’24), August 4–8, 2024, Sydney, NSW, Aus-
tralia. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/3651890.
3672222

1 INTRODUCTION
With more and more applications running in the cloud, traffic de-
mands in DCNs increase continuously [45]. Among the applications,
tasks like high performance computing (HPC) are greatly affected
by both goodput and latency, putting stringent requirements on the
network [27]. However, existing packet-switched DCNs struggle to
meet these requirements due to inadequate capacity of switching
chips [4] which will worsen with the slowdown of Moore’s Law

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0614-1/24/08
https://doi.org/10.1145/3651890.3672222

[35, 36]. To address this, the development of optical switching tech-
nology [11, 13, 14, 19, 24, 37, 42, 43] especially fast optical switching
[13, 14, 19, 43] has led researchers to turn to reconfigurable optical
DCNs [4, 5, 8, 10, 15, 21, 23, 28, 29, 32, 33, 38, 39, 47, 50, 51, 54],
which provide higher capacity as well as lower cost compared with
packet switching.

Unlike packet-switched networks that rely on buffers to absorb
conflicts, bufferless optical switching requires synchronous sched-
uling and reconfiguration to accommodate the dynamic traffic de-
mands including incasts [1, 6, 20, 53]. Recently, traffic-oblivious
reconfigurable DCNs [4, 33, 44] have drawn researchers’ attention
because of their simplicity. They schedule the network according to
predefined rules and use data relay to cope with dynamic traffic pat-
terns. However, despite their simplicity, the data-relay design can
lead to compromised performance in goodput and latency. Conse-
quently, there is a growing need for a new design that can effectively
handle dynamic traffic demands, ensuring both high goodput and
low latency while still maintaining feasibility.

We present NegotiaToR, an on-demand reconfigurable DCN
architecture with a simple design. With in-band distributed sched-
uling, it dynamically adapts the optical links among top-of-rack
(ToR) switches to traffic demands, and sends data directly to desti-
nations through one-hop paths. Beyond the scheduled connections,
NegotiaToR also provides unscheduled connections, mitigating the
impact of scheduling delays even under incasts. Utilizing existing
arrayed waveguide grating routers (AWGR) and fast-tunable lasers,
NegotiaToR is compatible with prevalent flat topologies, achiev-
ing a better performance than the state-of-the-art traffic-oblivious
scheme on the same hardware with similar complexity.

On-demand is an intuitive solution to handle the dynamic traf-
fic in DCNs, especially for unpredictable ToR-ToR traffic where
demand forecasting based on historical data is difficult [6]. When
put into the context of fast optical switching, previous on-demand
solutions [5, 10, 15, 23, 29, 38, 50] introduce excessive scheduling
complexity and raise practicality concerns. The key challenge of
NegotiaToR thus lies in realizing scalable on-demand scheduling
with high practicality.

First of all, scheduling often leads to reduced practicality due to
the scale of DCNs [41] and the dynamics of traffic demands [1, 6, 20,
53]. Measuring detailed traffic demands of all senders and then using
them as input to calculate non-conflicting paths often introduce
high complexity. In contrast, NegotiaToR’s demand information
is binary. No data size information is needed by the scheduling
algorithm. Meanwhile, NegotiaToR distributes the scheduling to
ToRs, where each ToR only accounts for the scheduling of ingoing
and outgoing traffic, achieving a comparable low complexity with
traffic-oblivious designs.

ar
X

iv
:2

40
7.

20
04

5v
1

 [
cs

.N
I]

 2
9

Ju
l 2

02
4

https://doi.org/10.1145/3651890.3672222
https://doi.org/10.1145/3651890.3672222
https://doi.org/10.1145/3651890.3672222

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

Then, it is usually expensive to build and maintain a robust
control plane for distributed scheduling in on-demand optical re-
configurable DCNs. Supporting a distributed scheduling algorithm
requires ToRs to frequently transmit scheduling messages while
avoiding conflicts with data transmission. An independent con-
trol network can solve the problem, but will introduce additional
deployment and maintenance costs. NegotiaToR implements an in-
band control plane, where all ToRs periodically establish all-to-all
connectivity with fast optical switching. The scheduling algorithm
runs on it in a pipelined manner. Senders can access the scheduling
results locally and tune lasers to the derived wavelength without
the need to deliver scheduling results.

Finally, ensuring low latency of mice flows, particularly when
incast happens, is challenging in scheduling. Mice flows that occupy
a large number of flows in DCNs [34] are latency-sensitive and usu-
ally arrive simultaneously as incasts due to the partition/aggregate
design pattern [1] of DCN applications. Other than lowering the
scheduling delay, NegotiaToR utilizes the periodical all-to-all con-
nectivity to piggyback a small volume of mice flow data along with
scheduling messages, providing opportunities to bypass schedul-
ing delays. This effectively manages incasts, promising application
performance even under concurrent traffic demands.

The design of NegotiaToR is guided by the principle of Occam’s
Razor. For deployment practicality, we hope to find a minimalist
design of on-demand reconfigurable DCNs. Possibilities are also
explored to trade off simplicity for better performance. We evaluate
NegotiaToR through simulations on two representative flat topolo-
gies. Results show that NegotiaToR outperforms the state-of-the-art
traffic-oblivious reconfigurable DCN design under comparable com-
plexity, both in FCT and goodput. Particularly, NegotiaToR’s mice
flow FCT is one to two orders of magnitude better.

To summarize, we make the following contributions:
• We present NegotiaToR, a simple reconfigurable DCN archi-
tecture with scalable on-demand scheduling for flat topolo-
gies with fast optical switching enabled (§3). It comprises
the distributed NegtotiaToR Matching scheduling algorithm
(§3.2), the two-phase epoch serving as in-band control plane
and data plane (§3.3), and a mechanism to bypass scheduling
delays even under incasts (§3.4).
• We explore the possibilities to trade off simplicity for bet-
ter performance, and show that extra complexity does not
necessarily translate into proportionate performance gains
(§3.5).
• We evaluate NegotiaToR through simulations (§4). Results
show that with similar complexity, NegotiaToR outperforms
the state-of-the-art traffic-oblivious design in both FCT and
goodput.

This work does not raise any ethical issues.

2 BACKGROUND & MOTIVATION
Optical switching technology has developed rapidly, and there has
been a great interest in using them in DCNs in recent years [4, 8, 10,
15, 21, 23, 28, 29, 32, 33, 38, 39, 42, 47, 50, 51, 54]. To fully utilize the
high capacity and power efficiency of optical switching, one trend is
to connect racks with optical switches directly [4, 10, 21, 32, 33, 51].
This poses two main considerations for optical switching hardware:

1 2

1 2 3 4

AWGR

ToR

(a) Parallel network topology built
with high port-count AWGRs

src ToR dst ToRAWGR
1

2

3

4

1

2

3

4

1

2

3

4

(b) Thin-clos topology built with low
port-count AWGRs

Figure 1: Flat topologies in AWGR-based optical DCNs.

supporting the large number of ToRs, and accommodating the
highly dynamic traffic demands among them.

Fast optical switching technology is ready for DCNs. Recent
advances in AWGR-based switching, mainly faster reconfiguration
(e.g., nanoseconds end-to-end reconfiguration delay [4]) and higher
port count (e.g., 270 [37], 400 [24], and 512 [11] ports), have enabled
it to meet the dynamic traffic demands of DCN. AWGR is a fully-
passive optical switch. By tuning the wavelength of the tunable
laser at the source, data can be forwarded to different destinations.
This makes it a fit for distributed scheduling, where the source can
tune the wavelength according to the scheduling results derived
locally. Flat topologies with one layer of AWGRs shown in Figure
1 are commonly used, due to the insertion loss and wavelength
limitation of AWGR cascading [40, 52].

Both high and low port-count AWGRs are capable of connecting
all ToRs in the DCN scale. Notably, for high port-count AWGRs,
a single AWGR can interconnect all ToRs, facilitating the imple-
mentation of the parallel network topology as shown in Figure
1(a). For more accessible low port count AWGRs that are insuf-
ficient to connect all ToRs alone, the thin-clos topology [40, 52]
illustrated in Figure 1(b) becomes a practical alternative. In this
topology, unlike the former one, each port of a ToR can only con-
nect to a subset of other ToRs, and all ports together can reach the
whole network. Meanwhile, recent advancements in fast-tunable
lasers [4, 13, 14, 16, 19, 43, 49] and time synchronization [4, 18]
have reduced the end-to-end reconfiguration delay to as low as
10 nanoseconds [4], which is sufficient to cope with the dynamic
traffic demands among ToRs.

Scheduling optical interconnections among ToRs with dy-
namic and unpredictable traffic demands is challenging. For
optical interconnections at higher switch levels, like the spine layer,
since the traffic pattern is typically predictable due to job placement
strategies, infrequent reconfiguration based on historical trace and
traffic engineering techniques are sufficient [8, 39] for performance.

However, regarding inter-ToR connections, they face the chal-
lenge of highly dynamic and unpredictable traffic which includes
bursty scenarios like incasts [1, 6, 20, 53]. The development of fast
switching technology has made it possible to reconfigure the net-
work on-demand to adapt to the dynamic traffic. A centralized
scheduler can do the job, but faces practicality concerns because
of the scheduler’s limited scalability. Recently, researchers have
turned to traffic-oblivious designs [4, 44]. The network reconfig-
ures itself regularly in a round-robin manner to provide all-to-all

NegotiaToR: Towards A Simple Yet Effective On-demand Reconfigurable Datacenter Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

connectivity, regardless of actual traffic patterns. To mitigate the
resulting mismatch of network connectivity and traffic demands,
they use Valiant’s Load Balancing (VLB) [9, 48] to adapt the traf-
fic to the network, uniforming the traffic pattern to all-to-all by
spreading data across the network before routing it to the final des-
tination, and thus utilizing all links. Such approaches are practical
but come at the expense of goodput and latency. Data relay doubles
the traffic volume, competing for receivers’ bandwidth, potentially
causing congestion and damaging goodput where worst-case good-
put can downgrade to 50%. Meanwhile, the detouring also damages
mice flow FCT, particularly when elephant flows are spread across
the network and block the mice ones at intermediate nodes. The
performance downgrade worsens under heavier loads, which is a
critical concern for HPC tasks like large-scale ML training where
large amounts of flows are synchronously released to the network
[25, 27, 47]. NegotiaToR is designed to meet these needs, offering
a practical solution that can accommodate the high-performance
requirements of modern DCNs where fast optical switching tech-
nology is ready.

3 NEGOTIATOR DESIGN
NegotiaToR is a simple network architecture for reconfigurable
DCNs where bufferless optical links connect buffered ToRs. With
minimal traffic demand information, it schedules traffic distribut-
edly on the ToRs via the in-band control plane in an on-demand
while scalable manner.

3.1 Design overview
NegotiaToR is compatible with prevalent flat topologies. As de-
picted in Figure 1, we choose two representative flat topologies to
demonstrate our design, the parallel network topology that necessi-
tates high port-count AWGRs, and the thin-clos topology that only
needs readily available low port-count AWGRs. In both topologies,
ToRs’ uplink ports are equipped with fast-tunable lasers and at-
tached to AWGR-based optical switches. One ToR maintains a FIFO
queue for each of the other ToRs in the network. Data are first sent
to this per-destination queue before being put into per-port queues
and heading for their destinations. For data transmission, ToRs
are time-synchronized1, and simultaneously send bits according to
non-conflicting port-level matches that the topology can provide.

To this end, NegotiaToR employs a distributed scheduling mech-
anism on a per-epoch basis, where an epoch is a fixed-length time
interval. Each epoch comprises two phases, working as the in-band
control plane and data plane (§3.3). All packets are transmitted
directly to their destinations through one-hop paths. We present
the design of one epoch in Figure 2. In the predefined phase, ToRs
exchange scheduling messages through the all-to-all connectivity
provided by round-robin via fast wavelength switching, enabling
distributed scheduling. Note that network reconfiguration only
happens in this phase, lowering reconfiguration overhead. In the
subsequent scheduled phase, ToRs set the wavelengths to the locally
derived scheduling results and send data packets. To mitigate the
impact of scheduling delays, especially under incasts, NegotiaToR
also piggybacks a small volume of data with scheduling messages

1There is no need for AWGRs to be time synchronized since they are entirely passive.

Predefined Phase Scheduled Phase

round-robin connections scheduled connections
timeslot 1

src dst

timeslot 2

src dst dstsrc

…

reconfiguration delay
scheduling messages

datadata
(bypass scheduling delay)

Figure 2: Each epoch in NegotiaToR comprises two phases,
and reconfiguration only happens in the predefined phase.

utilizing the unscheduled connections in the predefined phase, by-
passing the scheduling delay especially for latency-sensitive mice
flows (§3.4).

Utilizing the in-band control plane, ToRs distributedly run a sim-
ple on-demand scheduling algorithm, NegotiaToR Matching (§3.2),
which accounts for both network performance and scalability. The
algorithm does not require traffic forecasting and utilizes a non-
iterative approach, making it suitable for the DCN scenario where
ToR-ToR traffic is highly dynamic and the round-trip time (RTT)
between ToRs is often long (e.g., several microseconds) compared
with nanoseconds reconfiguration delay. Consequently, iterative
distributed scheduling would result in long scheduling delays, ad-
versely affecting mice flow performance that could otherwise bene-
fit from fast optical switching. Each ToR functions like a negotiator.
ToRs get simplified binary local traffic demands from their per-
destination queues, exchange scheduling messages regularly with
each other, and make scheduling decisions locally according to their
incoming and outgoing traffic needs. A new scheduling process
starts at the beginning of each epoch. One process lasts for three
epochs, and the scheduling for consecutive epochs is performed in
a pipelined manner. This way, NegotiaToR distributes on-demand
scheduling computation to each ToR and adapts the network to
real-time traffic, realizing feasibility and high performance.

Guided by the principle of Occam’s Razor, we carefully orches-
trate NegotiaToR’s design to be simple yet effective, especially the
scheduling algorithm. We believe this is essential when it comes to
industrial deployment. One may wonder whether the minimalist
algorithm is sufficient and whether a slightly more complexity can
significantly improve NegotiaToR’s performance. To demonstrate
the rationality of our design choices, we investigate several po-
tential variants of NegotiaToR (§3.5), which are meant to trade off
complexity for possible performance gains. This exploration reveals
that our minimalist design is sufficient, and additional complexity
may not proportionately enhance performance as expected.

3.2 On-demand distributed scheduling
We designed a simple matching algorithm, NegotiaToR Matching,
for scalable on-demand scheduling, which requires only three steps
and no iteration. We first show the design of the algorithm itself

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

src

dst

to ToR 2 to ToR 2
to ToR 4

Traffic Demands

ToR 2

ToR 1 ToR 3

ToR 4

ToR-level REQUEST

from ToR 1
from ToR 3 from ToR 3

re
qu

es
t

bi
na

ry
requests of equal needs

ToR 2

ToR 1 ToR 3

ToR 4

Port-level GRANT

gr
an

t

to
 To

R
2

fo
r T

oR
 2

to
 To

R
4

to
 To

R
4

to
 To

R
2,4

to
 To

R
2,4

allocate all ports to requests with RRM

fo
r T

oR
 1

fo
r T

oR
 3

fo
r T

oR
 1

fo
r T

oR
 3

fo
r T

oR
 3

fo
r T

oR
 3

fo
r T

oR
 3

fo
r T

oR
 31

2
3

45
6

8
7

ToR 2’s
GRANT ring

1
2
3

45
6

8
7

ToR 4’s
GRANT ring

to
 To

R
2

ToR 2

ToR 1 ToR 3

ToR 4

Port-level ACCEPT

to
 To

R
2

to
 To

R
4

to
 To

R
4

to
 To

R
4

to
 To

R
2

pick one grant for each port with RRM

per-port
ACCEPT ring

da
ta

ac
ce

pt
&

(a) An example on the parallel network topology. REQUEST: sources send binary requests representing traffic demands to their
destinations. GRANT: conflict elimination at the destinations’ side (i.e., many-to-one). ACCEPT: conflict elimination at the sources’ side
(i.e., one-to-many). The accepted grants indicate a set of non-conflicting matches

1
2
3

45
6

8
7

ToR

① ② ③ ④

(b) Per-ToR GRANT ring on the par-
allel network topology

ToR

6 5 8 74 32 1

① ② ③ ④

(c) Per-port GRANT rings on the thin-
clos topology

Figure 3: NegotiaToR Matching’s workflow. (a) shows the workflow on the parallel network topology. (b) and (c) illustrate the
variance in the GRANT step across two topologies, attributable to differing connection capabilities. On the parallel network
topology, port 1○- 4○’s grant priority is determined by a shared ring, whereas on thin-clos it’s determined by port-specific rings.
Once granted, the pointer is updated to prioritize the next source.

before going into the big picture of how the algorithm runs on
NegotiaToR’s fabric and how NegotiaToR sends traffic according to
locally derived scheduling results.

3.2.1 NegotiaToRMatching algorithm. The algorithm runs on ToRs.
From real-time binary traffic demand information, ToRs distribut-
edly generate non-conflicting matches for all uplink ports2 so that
ToR pairs with traffic demands will get connected. No traffic fore-
casting is needed. Each ToR is only responsible for traffic flows
in and out of it, thus distributing the computational complexity.
The scheduling process for one epoch is composed of three steps:
REQUEST, GRANT, and ACCEPT. These steps distributedly assign
links to source-destination port pairs, resolving conflicts at the des-
tinations’ and sources’ ports, thereby ensuring collision-free data
transmission for all ports.

We present the pseudo-code of NegotiaToR Matching in Algo-
rithm 1. An illustrative example of its workflow is given in Figure
3. The example network consists of eight 4-port ToRs, where the
parallel network topology connects them with four 8-port AWGRs,
and the thin-clos topology with eight 2-port AWGRs. Only four
ToRs are shown for simplicity. Note that the algorithm can be used
in various flat topologies, including both the parallel network and
the thin-clos topology presented in Figure 1 once the GRANT step
is modified according to the topology’s connection capabilities.

ToR-level REQUEST. Each ToR maintains per-destination FIFOs
for all ToRs, and data are pushed into the corresponding queue
first before heading for their destinations. By checking if the queue
has pending data or not, ToRs thus know local traffic demands and
notify the destinations by sending requests to them. The requests
are ToR-level and are not bound to any specific port. The requests
are binary and contain no size or flow-level information, and thus
2Unless specified, we refer to ToR’s uplink port as port in this paper.

all requests indicate an equal need for link resources. This simpli-
fication facilitates subsequent rapid distributed calculation while
being sufficient for DCN performance, as we will see later.

Port-level GRANT. Now, each destination ToR is aware of the
requests from multiple ToRs. To avoid collisions at the destinations’
side, the ToR will pick one request for each port in turn. To this end,
inspired by RRM [31] used in the scope of crossbar packet switch
port scheduling, the destination ToR employs round-robin rings to
allocate ports to these requests. The position of the ring’s pointer
denotes the highest priority source, with priority diminishing in a
clockwise direction. After granting one source, the pointer is incre-
mented to the next source of the round-robin schedule. This way,
we prioritize the source ToR that’s least recently granted, effectively
ensuring fairness and avoiding starvation in port allocation.

Depending on the connection capabilities the topology provides,
the implementation of this ring differs. As shown in Figure 3(b),
there is only one GRANT ring per ToR in the parallel network
topology since one port can receive data from any other ToRs. Shar-
ing scheduling states among ports of the ToR thus helps improve
scheduling fairness further. In contrast, in the thin-clos topology,
each destination ToR has multiple smaller GRANT rings like in
Figure 3(c), one for each port. This is because one port in thin-clos
can only receive data from a subset of source ToRs [40, 52]. As a
result, grants for a specific port can only be chosen from a subset
of requests indicated by the ring.

Port-level ACCEPT. After destinations send the grants back, there
are possibilities that one port gets multiple grants from different
destinations. To resolve this conflict and ensure that only one desti-
nation is assigned to one port, the source ToR accepts one grant for
each port from received port-level grants, using a per-port ACCEPT
round-robin ring for fairness.

NegotiaToR: Towards A Simple Yet Effective On-demand Reconfigurable Datacenter Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Algorithm 1: NegotiaToR Matching Algorithm
function REQUEST(per-destination queues)

foreach 𝑞𝑢𝑒𝑢𝑒𝑖 in per-destination queues do
// 𝑞𝑢𝑒𝑢𝑒𝑖’s destination is 𝑇𝑜𝑅𝑖

if 𝑞𝑢𝑒𝑢𝑒𝑖 .ℎ𝑎𝑠_𝑝𝑒𝑛𝑑𝑖𝑛𝑔_𝑑𝑎𝑡𝑎 then
send a request to 𝑇𝑜𝑅𝑖 ;

function GRANT(received requests)
// allocate ports with round-robin rings

𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑟𝑖𝑛𝑔𝑠 ;
foreach 𝑝𝑜𝑟𝑡𝑖 do

// get the highest-priority request with per-ToR or

per-port GRANT ring

𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑥 ← 𝑟𝑖𝑛𝑔𝑔𝑟𝑎𝑛𝑡 .𝑔𝑒𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ;
𝑝𝑜𝑟𝑡𝑖 .𝑔𝑟𝑎𝑛𝑡 ← 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑥 ;
𝑟𝑖𝑛𝑔𝑔𝑟𝑎𝑛𝑡 .𝑝𝑜𝑖𝑛𝑡𝑒𝑟_𝑢𝑝𝑑𝑎𝑡𝑒 ;
send 𝑝𝑜𝑟𝑡𝑖 .𝑔𝑟𝑎𝑛𝑡 back to 𝑇𝑜𝑅𝑥 ;

function ACCEPT(received grants)
// accept grants with round-robin rings

𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑟𝑖𝑛𝑔𝑠 ;
foreach 𝑝𝑜𝑟𝑡𝑖 do

// get the highest-priority grant with per-port ACCEPT

ring

𝑔𝑟𝑎𝑛𝑡𝑥 ← 𝑟𝑖𝑛𝑔𝑎𝑐𝑐𝑒𝑝𝑡 .𝑔𝑒𝑡_𝑔𝑟𝑎𝑛𝑡 ;
𝑝𝑜𝑟𝑡𝑖 .𝑎𝑐𝑐𝑒𝑝𝑡 ← 𝑔𝑟𝑎𝑛𝑡𝑥 ;
𝑟𝑖𝑛𝑔𝑎𝑐𝑐𝑒𝑝𝑡 .𝑝𝑜𝑖𝑛𝑡𝑒𝑟_𝑢𝑝𝑑𝑎𝑡𝑒 ;
send traffic to 𝑇𝑜𝑅𝑥 through 𝑝𝑜𝑟𝑡𝑖 ;

After these three steps, all ToRs are aware of a set of non-
conflicting matches indicated by ACCEPT that’s derived locally.
NegotiaToR Matching enables scalable on-demand coordination
among ToRs in a distributed manner. It has a comparable scheduling
complexity to traffic-oblivious solutions [4, 33, 44], which require
congestion control to avoid buffer overflow at intermediate ToRs,
similar to NegotiaToR Matching’s minimalist request-grant mecha-
nism. Following the derived scheduling, NegotiaToR can achieve
collision-free data transmission through bufferless links.

3.2.2 Matching efficiency. We demonstrate NegotiaToRMatching’s
efficiency in theory with a simplified model, showing that the al-
gorithm has a matching efficiency of 63% even under high loads
where conflicts are frequent.

Consider the following scenario, where we assume𝑛 ToRs (𝑛 > 1)
are sending traffic to each other, each having𝑚 uplink ports. ToRs
are connected by the parallel network topology in Figure 1(a). In
this model, grants and accepts are randomly and uniformly given.
In the GRANT step, on average, a source ToR receives grants from
𝑛 ToRs, and a destination ToR allocates 𝑚

𝑛 ports per request. The
chance that one port is granted by one destination ToR is thus
𝑚
𝑛 /𝑚 = 1

𝑛 . Focusing on a specific port (𝑝𝑜𝑟𝑡0) at the source side,
the probability of 𝑝𝑜𝑟𝑡0 being included in a specific grant (𝑔𝑟𝑎𝑛𝑡0)
is thus 1

𝑛 . Let 𝑋 be the number of competing grants for 𝑝𝑜𝑟𝑡0,
excluding 𝑔𝑟𝑎𝑛𝑡0. 𝑋 thus follows a binomial distribution 𝑋 ∼ 𝐵(𝑛−
1, 1𝑛). The acceptance probability of 𝑔𝑟𝑎𝑛𝑡0 by 𝑝𝑜𝑟𝑡0 is 𝑌 = 1

𝑋+1 .
The expected value of 𝑌 is thus 𝐸 (1

𝑋+1) =
∑𝑛−1
𝑘=0

1
𝑘+1𝑃 (𝑋 = 𝑘),

which is 1 − (1 − 1
𝑛)

𝑛 .

time
Epoch n Epoch n+1 Epoch n+2

requestn
grantn-1
acceptn-2

requestn+1
grantn
acceptn-1

requestn+2
grantn+1
acceptn

Figure 4: Scheduling for different epochs is performed in a
pipelined manner.

As 𝑛 increases, 𝐸 [𝑌] monotonically decreases and approaches
1− 1

𝑒 . This indicates that when the competition is intense,𝑔𝑟𝑎𝑛𝑡0 still
has a 63% chance to be accepted, and thus 𝑝𝑜𝑟𝑡0 at the destination
side will get matched. Otherwise, 𝑝𝑜𝑟𝑡0 at the destination side
will be wasted due to the destination’s port being reserved but
not accepted by the source ToR. When the same set of ToRs are
connected by the thin-clos topology, the matching efficiency itself
is typically higher. This is because the number of competing grants
for 𝑝𝑜𝑟𝑡0 will be smaller due to limited connectivity offered by the
topology, leading to a larger value of 𝐸 [𝑌].

This conclusion applies symmetrically to all ports, presenting
the matching efficiency of NegotiaToR Matching, including at scale.
We compare the theoretical results with the simulation results in
Appendix A.1, validating their consistency.

NegotiaToR Matching is carefully orchestrated to keep simple
while fitting in the DCN scenario, like long RTT and high traffic
dynamics. Later in §3.5, we delve into the rationality of our design
choices of NegotiaToR Matching, i.e., the minimalist approach like
binary requests and no iteration. In §4, we give comprehensive
evaluation results conducted on both the parallel network and thin-
clos topology, showing that NegotiaToR Matching achieves high
performance in both goodput and FCT across these topologies.

3.3 Network stack design of control and data
planes

There are two expectations for NegotiaToR’s network stack. First,
it should provide high-frequency connection opportunities among
all ToRs to ensure timely exchanges of NegotiaToR Matching sched-
uling messages. Second, it should provide most of the connection
opportunities for the source-destination pairs with traffic demand
to ensure high network goodput. To this end, as we presented
in Figure 2, each NegotiaToR epoch is split into two phases, the
predefined phase and the scheduled phase.

3.3.1 In-band pipelined scheduling. The first phase of each epoch
frequently reconfigures its connections based on predefinedmatches
and provides all-to-all connectivity. Due to the reconfiguration de-
lay introduced by hardware and time synchronization error, each
reconfiguration will take a while to finish, during which no bits
can be sent. For this reason, NegotiaToR inserts guardbands be-
tween two timeslots in the predefined phase. Note that there is
no reconfiguration in the scheduled phase, limiting the impact of
guardbands on goodput.

The first phase comprises several short timeslots of equal length,
and all source-destination pairs will get connected once. At the
beginning of each timeslot, ToRs reconfigure the wavelengths of

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

their tunable lasers simultaneously according to predefined round-
robin matches, establishing all-to-all connections for scheduling
message exchange. To provide one round of all-to-all connection
among 𝑁 𝑆-port ToRs, when forming a parallel network topology,
it takes ⌈𝑁−1

𝑆
⌉ timeslots with the use of 𝑆 AWGRs, each having

𝑁 ports. When forming a thin-clos topology, it takes𝑊 timeslots
using ⌈𝑁𝑆

𝑊
⌉ AWGRs, each having𝑊 (𝑊 ≥ ⌈𝑁

𝑆
⌉) ports.

Utilizing the all-to-all connectivity, ToRs get to exchange schedul-
ing messages periodically. To this end, one approach is to finish one
scheduling process and get the final scheduling results inside the
same epoch. However, the strict front-back dependencies of each
scheduling’s REQUEST, GRANT, and ACCEPT steps require three
rounds of round-robins to finish one scheduling process. Mean-
while, a step can start only after the scheduling messages from
the previous step are received, thus introducing one-way delay
(half RTT) between two consecutive steps. These factors together
lead to an extremely long predefined phase, making the network
degenerate into a traffic-oblivious design, thus damaging goodput.

Instead, NegotiaToR distributes one scheduling process’s 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 ,
𝑔𝑟𝑎𝑛𝑡 , and𝑎𝑐𝑐𝑒𝑝𝑡 into three epochs. Figure 4 illustrates this pipelined
workflow. This way, only one round of all-to-all connections is
needed in each epoch, shortening the predefined phase. Since we
set the scheduled phase to be long to provide enough on-demand
sending opportunities, scheduling messages can reach destinations
and get processed before the next epoch3. Each scheduling thus
takes a minimum of around two epochs, facilitating a low schedul-
ing delay. After the predefined phase, NegotiaToR can send data
according to its non-conflicting scheduling results.

3.3.2 One-hop data transmission. The second phase establishes
connections based on calculated matches, adapting the network to
actual traffic demands. ToRs set the wavelengths of tunable lasers
according to NegotiaToR Matching’s scheduling results calculated
in the first phase for data transmission.

In this phase, data in the corresponding per-destination queue
is sent until the epoch ends or the queue empties, satisfying the
traffic demands and contributing to a high goodput. Regarding
latency, because of NegotiaToR’s conflict-free scheduling, even
though we aimed to design a low-latency algorithm and employ no
iteration, a scheduling delay of at least two epochs is inevitable for
a previously empty source-destination pair that has newly arrived
data. Moreover, extra waiting delay will be introduced if this request
is not granted. For elephant flows, this is acceptable. However, for
mice flows that require low latency, this will essentially damage
their FCT. FCT-oriented optimizations are needed.

3.4 Incast-optimized scheduling delay bypass
In DCNs, other than bandwidth-sensitive elephant flows, there are
also latency-sensitive mice flows, which occupy a small portion of
the total traffic volume but represent a large portion when mea-
sured by the number of flows [34]. These mice flows often appear
as incasts where multiple mice flows arrive simultaneously in burst
and compete for the limited scheduling opportunities. They re-
quire small FCT for good application performance, which is hard

3Note that the one-way delay between ToRs and the processing delay together may
be longer than one epoch. In this case, the pipelined scheduling still works, only to
expand to more epochs.

flow arrival

request grant accept

scheduling messages data

… … …

w/o bypassing

w/ bypassing
Epoch n Epoch n+1 Epoch n+2

… … …

time

Figure 5: Bypassing scheduling delaywith unscheduled trans-
mission in the predefined phase.

to achieve considering scheduling delays. The performance degra-
dation worsens when incast happens.

3.4.1 Data piggybacking in the predefined phase. To optimize mice
flows’ FCT especially under incast, NegotiaToR offers unscheduled
transmission opportunities that bypass the scheduling delay. In the
first phase, NegotiaToR piggybacks one small data packet along
with scheduling messages utilizing the predefined all-to-all con-
nectivity, as we showed in Figure 5. Therefore, each ToR pair is
guaranteed the transmission of at least one packet in every epoch,
regardless of scheduling results.

We limit the size of piggybacked data to be small so that the
predefined phase can still be short, ensuring that the majority of
connections in one epoch are established in the scheduled phase
based on actual traffic demands for high goodput. This is sufficient
for mice flows considering their small size. Mice flows thus can be
sent promptly via one-hop paths without suffering from scheduling
delays, even under incasts, contributing to their small FCTs.

After deploying such a piggybacking mechanism, we apply a
slight adjustment to NegotiaToR Matching—requests can only be
sent when the queued data in per-destination queues exceeds three
piggybacked packets instead of zero. This is because, during the
scheduling delay, three packets are guaranteed to be sent in prede-
fined phases of three consecutive epochs, regardless of the schedul-
ing result. Raising the request threshold thus can avoid providing
connections to source-destination pairs with no traffic demand,
reducing bandwidth waste.

3.4.2 Priority queue for mice flow prioritization. Note that elephant
flows in source ToRs, whose FCT is not our concern, may block mice
flow data and occupy precious unscheduled transmission opportu-
nities. In order to maximize the benefits of the piggybacked packet
and mitigate such head-of-line blocking, NegotiaToR deploys mice
flow priority mechanism in ToRs. We adopted an existing solution—
the information-agnostic mice flow priority mechanism, PIAS [3].
By utilizing multi-level feedback queues, it can send mice flow data
first without requiring prior knowledge of flow sizes, maintaining
the practicality of NegotiaToR’s design. This facilitates mice flows’
timely transmission in both the predefined and scheduled phases.

With data piggybacking in the predefined phase and mice flow
priority queues in ToRs, mice flow FCT is reduced, most of which is
even below the scheduling delay. We evaluate the effectiveness of
these two design elements through microbenchmarks, detailed in
§4.2. So far, we have presented the design of NegotiaToR’s network
stack. We summarize the role of the two phases in Table 1.

NegotiaToR: Towards A Simple Yet Effective On-demand Reconfigurable Datacenter Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Predefined Phase Scheduled Phase
In-band

Control Plane
on-demand

distributed scheduling /

One-hop
Data Transmission

unscheduled transmission
(bypass scheduling delay)

scheduled
transmission

Table 1: Two phases’ role as the control plane and data plane
in one NegotiaToR epoch.

3.5 The rationality of NegotiaToR’s design
choices

When designing the on-demand scheduling algorithm, we are com-
mitted to ensuring performance while reducing complexity for
deployment practicality. This leads to our design choices towards
a minimalist design, like binary requests and no iteration. This
subsection delves into a common question: could a more complex
design significantly improve NegotiaToR’s performance? We exam-
ine this possibility, analyzing the reasoning behind our minimalist
design, and demonstrate that extra complexity does not necessarily
translate into proportionate performance gains. Note that we do
not claim that our design is the ultimate solution. It remains an
open problem to optimally balance complexity with performance,
inviting further investigation and potential enhancements.

No iteration. NegotiaToR adopts a non-iterative design, distin-
guishing it from traditional iterative matching algorithms like PIM
[2], RRM [31] and iSLIP [30]. Iteration can potentially improve
matching efficiency and goodput, but also increases complexity
and scheduling delays, especially in DCNs where the RTT between
ToRs is long when put into the context of nanoseconds reconfigu-
ration delay. With longer scheduling delays, the scheduling result
is more likely to be outdated, since previous epochs may have al-
ready sent all the data during the long scheduling process, leaving
the scheduled links empty, wasting bandwidth and thus adversely
affecting performance.

We design an iterative version of NegotiaToR Matching, and
investigate the impact of iteration through simulations. Details can
be found in Appendix A.2.1. Simulation results confirm that using
iteration is not a good idea to improve goodput for NegotiaToR. The
iterative approach yields minimal or even negative improvements
in goodput due to the outdated scheduling results, and consistently
exhibits worse FCT due to longer scheduling delays. In contrast,
simply using a 2× link rate speedup (i.e., the bandwidth ratio be-
tween uplinks and downlinks for each ToR is 2:1) upon the original
non-iterative scheduling, which is a common practice in optical
switching, achieves high goodput and superior FCT, making the
iteration process unnecessary. As a result, we use 2× speedup in
the following exploration.

No data relay. NegotiaToR chooses direct one-hop paths for all
data, instead of traffic-oblivious relay [4, 33, 44]. There exists a third
design choice, traffic-aware selective relay, which only enables data
relay for elephant flows under light loads [8]. This avoids goodput
damages of the traffic-oblivious one under heavy loads as well as
mice flow FCT damages caused by more hops. By fully utilizing the
empty links, it may potentially improve goodput for the thin-clos
topology (Figure 1(b)) where the connectivity is limited.

To figure out if the performance gain is worth the added com-
plexity, like intermediate ToR selection and congestion control for
the relayed traffic, we carefully design a traffic-aware selective re-
lay algorithm and conduct simulations on the thin-clos topology.
Details can be found in Appendix A.2.2. Results show minor or
no goodput gain, because NegotiaToR’s goodput is already good at
light loads, while the data relay barely helps at heavy loads. Con-
sidering the complexity of implementing data relay, we conclude
that relay is not a good fit for NegotiaToR.

Binary requests. Another potential improvement is to include
more information in the requests indicating priorities, instead of
using binary demand information and simply prioritizing the least
recently allocated pair with round-robin rings. We explore two
approaches: one goodput-oriented approach that prioritizes the
pairs with more pending data to improve link utilization, and one
FCT-oriented approach that prioritizes the pairs with longer head-
of-line packet waiting delays to reduce tail FCT.

To study if the benefits outweigh the additional complexities
of size measurement, delay logging, and sorting, we evaluate the
two approaches through simulations. We attach the details in Ap-
pendix A.2.3. Results indicate that for both approaches, the per-
formance improvements are relatively modest compared with the
added complexity. We thus conclude that binary requests are simple
and effective enough for NegotiaToR.

Stateless scheduling. In our design, ToRs send requests solely
according to real-time demands, without tracking ongoing requests
from previous epochs. This can lead to over-scheduling the same
source-destination pair, potentially resulting in under-utilized links
and hurting goodput when all data has already been sent at the
time of acceptance. Incorporating a stateful traffic matrix can mit-
igate this, but will introduce the complexity of maintaining the
states, which reduces the robustness of the system especially under
failures. Moreover, for lightly loaded scenarios, the impact of du-
plicate requests is negligible since the wasted links are not needed
otherwise. For heavily loaded scenarios, since the data arrive at the
sources continuously, whenever scheduled, the sources can always
fully utilize the links, which can even decrease FCTs. The impact
of stateless scheduling is thus minor.

To validate this, we designed and simulated a stateful version
of NegotiaToR Matching, as detailed in Appendix A.2.4. The re-
sults confirm our analysis, showing a negligible difference between
stateful and stateless scheduling. This justifies our design choice.

For now, we have found that the possibilities discussed above
do not yield significant performance gains, and the added complex-
ity is not worth the cost. Therefore, NegotiaToR converges to its
present form, which is orchestrated towards a minimalist design.
We acknowledge that our exploration has not covered the entire
design spectrum. As DCN applications continue to develop, we
believe there are opportunities for further optimizing NegotiaToR.
We leave this as future work.

3.6 Practical considerations
When deploying NegotiaToR in real-world DCNs, it’s crucial to
address practical concerns such as link failure handling. This section
delves into how NegotiaToR manages these practical problems.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

3.6.1 Fault tolerance. NegotiaToR incorporates a mechanism for
handling link failures. In the predefined phase, even when there is
no scheduling message to send, we intentionally let each ToR send
a dummy message to distinguish between link failures and lack of
traffic. The loss of messages in the first phase indicates possible
link failures. ToRs also employ this message to give feedback on
whether they have received any bits in the reverse direction, along
with port information if applicable.

This way, a ToR can effectively determine whether one port’s
egress or ingress link has failed4. In the predefined phase, each port
in one ToR is expected to receive bits frommultiple source ToRs. An
ingress link failure may have happened if a ToR consistently fails to
receive bits through a particular port. Similarly, on the sender side,
repeated feedbacks of undelivered data originating from a specific
port indicate an egress link fault. Upon detecting a link failure, ToRs
will alert the maintainers and broadcast the detected failures to
update their scheduling rules. This involves excluding the affected
egress links and ingress links from data transmission. Once the
faulty links are repaired, the transmission of scheduling messages
can resume, and the corresponding links can be included in the
scheduling again. ToRs can resume data transmission through them.
As for the recovery of lost packets during handling the failure, Nego-
tiaToR relies on upper-layer protocols, like TCP, for retransmission.

To further reduce link waste, for the parallel network topology,
we also periodically change the round-robin rule in the predefined
phase. This approach allows a pair of ToRs to exchange scheduling
messages through multiple port-to-port links, instead of a specific
one. Consequently, if one link experiences a failure, the exchange
of scheduling messages with the corresponding subset of ToRs can
still proceed through other links in subsequent epochs, guarantee-
ing all-to-all connectivity in the predefined phase. This ensures that
the affected ToR pairs can still transmit data through the remaining
functional links in the scheduled phase. For the connection-limited
thin-clos topology where one source-destination pair can only com-
municate through identical ports, the same goal can be achieved
by relaying scheduling messages and data to an intermediate ToR
through ports that function normally. We test this fault detection
and recovery mechanism on the parallel network topology in our
evaluation (§4.3).

3.6.2 Scalable scheduling logic implementation. Since NegotiaToR
Matching draws inspiration from RRM [31] that focuses on port
matching inside crossbar packet switches, which is a well-mined
area, it can benefit from applying proven implementation strate-
gies in this field regarding hardware implementation, especially
for the GRANT and ACCEPT rings. Switch port matching algo-
rithms [30, 31] use programmable priority encoders [22] to con-
struct round-robin arbiters to function as priority rings. One itera-
tion of matching can be done in several clock cycles for a switch
of hundreds of ports [26]. For the GRANT and ACCEPT rings in
NegotiaToR Matching, the implementation is similar, but with a re-
duced complexity as the transition from the individual-switch scale
to the DCN scale—this transition decentralizes the scheduling logic
of ports from one single chip to multiple ToRs, and also extends the

4We detect faults of egress and ingress separately to prevent overreaction and simplify
maintenance tasks.

scheduling time budget compared to that inside switches. These fac-
tors collectively underscore the high practicality of implementing
NegotiaToR Matching logic at scale.

3.6.3 End-to-end reconfiguration delay. NegotiaToR employs fre-
quent network reconfigurations to serve the dynamic traffic de-
mands among ToRs, thus preferring a shorter end-to-end recon-
figuration delay to reduce guardband overhead. This calls for fast
wavelength tuning hardware, fast clock and data recovery (CDR),
and precise time synchronization so that a smaller guardband is
sufficient to absorb the reconfiguration delay. Recent advancements
in tunable lasers and CDR mechanisms have lowered the tuning
delay to 10s of nanoseconds [4, 16, 49]. In particular, [4] employs
disaggregated tunable lasers [43], along with amplitude caching
[19] and clock phase caching [13, 14]5, and can limit tuning and
CDR delays to under 10 nanoseconds.

As for time synchronization, recent studies have lowered syn-
chronization errors to a few 10s of nanoseconds for a conventional
packet-switchedDCN [18]. For architectures like NegotiaToRwhere
the AWGR is passive and no retiming or queueing latency jitter is in-
volved, synchronization error can be further reduced. For example,
[4] leverages round-robin all-to-all connections for synchronization,
achieving errors within picoseconds. A primary clock is chosen,
and ToRs periodically synchronize their local clocks and times with
this primary. Similar mechanisms can be applied to NegotiaToR
using the round-robin connections in the predefined phase. After
synchronization, the clocks will slowly drift [18], and a guardband
of several nanoseconds is adequate to absorb the drift till the next
synchronization in the next predefined phase.

Together, current technologies can facilitate an end-to-end recon-
figuration delay of 10 nanoseconds as demonstrated in [4], leading
to our main reconfiguration delay setting in §4. Note that even if
the guardband is enlarged to 100 nanoseconds, NegotiaToR remains
effective with appropriate parameter modifications. We evaluate
the influence of different guardbands in §4.2.

3.6.4 Epoch length setting considerations. We discuss the length
settings of the two phases of one NegotiaToR epoch. First of all, we
do not want the predefined phase to dominate, as the connections
are irrelevant to current traffic demands and will downgrade to pure
round-robin, resulting in a huge performance drop. Conversely, an
extremely short predefined phase limits opportunities for schedul-
ing delay bypassing, adversely affecting mice flows. Meanwhile, a
scheduled phase shorter than one-way delay between ToRs is also
undesirable due to increased scheduling delay. Furthermore, for a
low scheduling delay and high scheduling frequency, the epoch
length should not be excessively long, which leads to increased FCT
and possible link waste due to outdated scheduling results.

To minimize overhead, guardbands before wavelength tunings
are desired to account for 10% or less of all time. For a low wave-
length tuning delay of 10 nanoseconds [4], it’s rather easy to reach
this goal. For longer guardbands, extending the scheduled phase
proportionally, which does not involve reconfigurations, also meets
this target. This leads to our default epoch length settings in eval-
uation (§4.1). We conduct simulations to show the influence of

5For NegotiaToR, ToRs read the 𝑎𝑐𝑐𝑒𝑝𝑡 packets to access the connections to be estab-
lished, so that they can directly use the cached parameters for fast CDR.

NegotiaToR: Towards A Simple Yet Effective On-demand Reconfigurable Datacenter Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

different guardbands in §4.2. In §4.4, parameter sensitivity experi-
ments are also conducted to further understand the impact of epoch
length settings on performance.

3.6.5 Traffic management below ToRs. Our design focused on the
interconnections above ToRs. Here, we discuss possible methods
to do traffic control below ToRs. Traffic from hosts to ToRs is
buffered at the ToR before transmission through the optical fabric.
Backpressure-based or credit-based flow control can help to avoid
packet drops, which stop corresponding data transmission when
the buffer is full. On the receiver side, data arriving at destination
ToRs are buffered before transmission to hosts. Since we introduce
speedup in the optical fabric, and data destined for the same host
may arrive synchronously at the ToR through multiple ports, the
corresponding queue in the receiver side ToR may accumulate and
cause packet drops. To cope with this, ToRs should monitor the
length of this queue and only allow data transmission when buffer
space is enough. This slight modification thus reduces packet drops.

To ensure reliability, we can run TCP-like protocols over Ne-
gotiaToR, which typically involve reordering at the receiver side.
NegotiaToR’s design inherently results in fewer out-of-order pack-
ets. For one source-destination pair, as long as the packets are
moved from the per-destination queue to per-port queues in order
at the source ToR (e.g., moving to lower-index port first if there are
multiple available ports), and then consumed in the same order at
the destination ToR, the order of packets will be preserved.

4 EVALUATION
We investigate the effectiveness of NegotiaToR’s design elements,
and evaluate its performance through large-scale simulations using
a packet-level simulator, YAPS [17]. Simulations on the parallel
network topology and the thin-clos topology are done, validating
the generality of NegotiaToR on flat topologies.

4.1 Evaluation setup
Network setup. The network consists of 128 8-port ToRs, meaning
each ToR connects to the optical fabric through 8 ports. We connect
the same set of ToRs with the parallel network topology (Figure
1(a)) with 8 128-port AWGRs, and the thin-clos topology (Figure
1(b)) with 64 16-port AWGRs, respectively. One-way propagation
delay between ToRs is 2𝜇𝑠 . The hosts under the same ToR have an
aggregated bandwidth of 400 Gbps, and we provide a 2× link rate
speedup to ToR uplink ports (i.e., 100 Gbps per port, and 8 × 100
Gbps total), as discussed in §3.5. Focusing on ToR interconnections,
we consider ToRs as endpoints. FCT and goodput measurements
are taken from the ToRs’ perspective, marking the start and end of
flows at the ToRs. Unless specified, data piggybacking (PB) in the
predefined phase for scheduling delay bypass and priority queues
(PQ) at sources for mice flow prioritization (§3.4) are both enabled.
For PQ, we set three priorities: the first 1𝐾𝐵 of flow data will be
sent first, then the following 9𝐾𝐵, and then the rest of the bits.

Baseline.We compare the performance of NegotiaToR with traffic-
oblivious proposals on the same scale network (i.e., 128 8-port ToRs),
following Sirius [4] to implement the state-of-the-art benchmark on
the same simulator. Note that while NegotiaToR can be customized
for different flat topologies, Sirius is specifically designed for the

thin-clos topology. Its relay-enabled round-robin scheduling cannot
utilize the sufficient connectivity of the parallel networks, result-
ing in identical performance on both topologies. Therefore, for
brevity, we only show the results on the thin-clos topology
for the traffic-oblivious scheme. 2× speedup and priority queue
for mice flow prioritization are also enabled. Since the multi-level-
feedback-queue based prioritization [3] does not apply to data at
intermediate nodes, we only enable it at sources.

Epoch settings. Based on [4], the guardband for reconfiguration
in NegotiaToR is also set to 10𝑛𝑠 unless specified. By default, in
the predefined phase, each timeslot takes 60𝑛𝑠 , comprising a 10𝑛𝑠
guardband and 50𝑛𝑠 for transmitting NegotiaToR Matching sched-
uling messages along with data packet header (30𝐵 each, including
𝑟𝑒𝑞𝑢𝑒𝑠𝑡 , 𝑔𝑟𝑎𝑛𝑡 , and 𝑎𝑐𝑐𝑒𝑝𝑡) plus a data payload (595𝐵). During the
scheduled phase, no reconfiguration or guardband is required, with
each timeslot lasting 90𝑛𝑠 for sending one data packet (including a
10𝐵 header). We set the length of the scheduled phase to 30 times-
lots to balance goodput and FCT unless specified. Consequently, for
both topologies, the predefined phase takes 16 ∗ 60𝑛𝑠 = 0.96𝜇𝑠 , and
the scheduled phase takes 30 ∗ 90𝑛𝑠 = 2.7𝜇𝑠 . This leads to an epoch
size of 3.66𝜇𝑠 , where the guardbands account for 4.37%. We assume
that the one-way delay between ToRs (2𝜇𝑠) and the calculation
delay together is lower than one epoch, leading to a scheduling
delay of around two epochs.

Workload characteristics.Unless specified, we generate the work-
load after published DCN traces collected from Meta’s Hadoop
clusters [41]. The trace is highly tailed, where 60% of the flows are
less than 1𝐾𝐵, while more than 80% of the bits are from elephant
flows larger than 100𝐾𝐵. All the flows arrive based on a Poisson
process, with sources and destinations chosen uniformly at random.
We define the network load as 𝐿 = 𝐹

𝑅 ·𝑁 ·𝜏 . 𝐹 is the mean flow size, 𝑅
is the per-ToR bandwidth, 𝑁 is the number of ToRs, and 𝜏 is flows’
inter-arrival time. Since we view the network as starting from ToRs
instead of hosts, 𝑅 is the aggregated bandwidth of the hosts under
one ToR, which is 400 Gbps. We test the network’s goodput and
FCT under various loads, ranging from 10% to 100%. Other than
the Hadoop workload, NegotiaToR’s performance under various
workloads is also evaluated later in §4.4.

Evaluation metric. Unless noted, we simulate a real-world dura-
tion of 30𝑚𝑠 , and focus on 99th-percentile mice flow FCT, as well as
the average goodput of all ToRs. Flows less than 10𝐾𝐵 are regarded
as mice flows. If not stated otherwise, goodput is normalized to the
aggregated bandwidth of the hosts under one ToR (400 Gbps).

4.2 Microbenchmarks
Wefirst understand the advantages of NegotiaToR’s design elements
through microbenchmarks.

The effectiveness of NegotiaToR’s scheduling delay bypass-
ing designs. We conduct ablation studies on our designs for by-
passing scheduling delays, i.e., data piggybacking (§3.4.1) and mice
flow prioritization (§3.4.2). The results are presented in Table 2.
When data piggybacking is disabled, the timeslot in the predefined
phase is shortened with only reconfiguration delays and sched-
uling messages left, and the scheduled phase is enlarged to keep

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

Mice Flow FCT in Epochs (99p/Average)
Parallel Network Thin-Clos

- 732.4/42.1 1216.4/75.0
PB 418.5/19.9 847.9/45.3
PQ 21.0/5.7 26.4/5.7
PB and PQ 6.0/1.6 6.5/1.6

Table 2: NegotiaToR’s mice flow FCT at 100% load, with data
piggyback (PB) in the predefined phase and priority queues
(PQ) separately enabled and disabled.

0 20 40 60 80 100
FCT (s)

0.2
0.4
0.6
0.8
1.0

CD
F 1st epoch ends

2nd epoch ends

Parallel Network Thin-Clos

Figure 6: CDF of NegotiaToR’s mice flow FCT at 100% load.

NegotiaToR
Parallel Network

NegotiaToR
Thin-Clos

Traffic-Oblivious
Thin-Clos

NegotiaToR
Parallel Network

NegotiaToR
Thin-Clos

Traffic-Oblivious
Thin-Clos

1 10 20 30 40 50
Incast degree

0
5

10
15
20

Fi
ni

sh
 ti

m
e

(
s)

(a) Incast finish time

1 5 30 100 500
Flow Size (KB)

0
200
400
600

Go
od

pu
t (

Gb
ps

)

(b) Average goodput under all-to-
all

Figure 7: Performance under incast and all-to-all loads.

the epoch length the same, accordingly maintaining the reconfigu-
ration overhead ratio the same. At 100% load, enabling only data
piggybacking itself largely reduces the 99th percentile FCT of mice
flows compared to no optimization. When combined with priority
queues, the head-of-line blocking of elephant flows is mitigated,
allowing unscheduled piggybacking opportunities to be better uti-
lized by mice flows. For both topologies, mice flow is thus further
optimized, where the average FCT drops to 1.6 epochs, which is
even less than the roughly 2-epoch scheduling delay.

To delve deeper into NegotiaToR’s mice flow performance, we
show the CDF of mice flow FCT at 100% load with both PB and PQ
enabled in Figure 6. Both topologies provide identical connectivity
in the predefined phase, leading to the overlapping of two lines
for smaller FCTs. Across two topologies, over 80% of mice flows
successfully bypass the scheduling delay, finishing within 2 epochs
(the second turning point). This validates the effectiveness of our
designs of bypassing scheduling delays. Mice flow performance
thus can be guaranteed even under heavy loads.

Incast finish time.To further verify NegotiaToR’s incast-optimized
scheduling delay bypass design, we test incast workloads with vary-
ing incast degrees on NegotiaToR and the traffic-oblivious scheme,
where a set of ToRs synchronously send one 1𝐾𝐵 flow to the same
ToR, and the number of source ToRs is the degree. Results are shown
in Figure 7(a). Compared with the traffic-oblivious scheme, Nego-
tiaToR consistently finishes the incast earlier at roughly the same
time by piggybacking data in the predefined phase without schedul-
ing, regardless of the incast degree. Note that NegotiaToR achieves
almost the same incast finish time on two topologies. Again, this

10 20 50 100
Reconfiguration Delay (ns)

10 2

10 1

100

101

99
p

FC
T

(m
s)

FCT

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d)

Goodput

(a) Goodput and mice flow FCT on paral-
lel network

10 20 50 100
Reconfiguration Delay (ns)

10 2

10 1

100

101

99
p

FC
T

(m
s)

FCT

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d)

Goodput

(b) Goodput and mice flow FCT on thin-
clos

Figure 8: NegotiaToR under various reconfiguration delays
at 100% load.

is because both topologies provide identical connectivity in the
predefined phase. To gain further insights, we observe the goodput
at the receivers’ side, with results presented in Appendix A.3.

All-to-all goodput. NegotiaToR Matching can provide sufficient
connectivity for traffic in an on-demand manner, even at heavy
loads. We test all-to-all workloads with varying flow sizes to verify
this, where each ToR synchronously sends equal-sized flows to all
other ToRs. Average goodput during the transmission is shown
in Figure 7(b). For heavier loads, NegotiaToR fully employs the
2× speedup, achieving much higher goodput. Its goodput on the
parallel network is better than that on the thin-clos topology be-
cause of the latter’s limited connectivity: with flows completing, the
thin-clos topology experiences underutilization of links, whereas
links in the parallel network maintain higher utilization. In contrast,
even though with a 2× speedup, the goodput of the traffic-oblivious
scheme is limited since the network is flooded by relayed traffic,
which competes for receivers’ bandwidth, thus damaging goodput,
especially at heavy loads. We also make micro-observations, with
detailed results presented in Appendix A.3.

Adaptability to various reconfiguration delays. Despite 10𝑛𝑠
end-to-end reconfiguration delays already being realized [4], we
also evaluate NegotiaToR’s performance under longer reconfigu-
ration delays at 100% load. The length of the scheduled phase is
accordingly adjusted to control the reconfiguration overhead. The
findings, illustrated in Figure 8, reveal that with longer reconfig-
uration delays, NegotiaToR can still achieve good performance,
showing the good generality of its design.

4.3 Main results
Now that we have investigated NegotiaToR’s design elements, we
evaluate its overall performance.

FCT and goodput on both topologies.We compare NegotiaToR’s
mice flow FCT and goodput with the traffic-oblivious scheme on
both topologies. Considering real-world deployment practicality,
we also show the results when the priority queue for mice flow
prioritization is disabled.

NegotiaToR achieves better mice flow FCT at all loads regardless
of topologies, as in Figure 9(a). With priority queues enabled, Nego-
tiaToR’s FCT is consistently one to two orders of magnitude better.
Even without priority queues, such significant advantages still exist
at lighter loads. This is because, for the traffic-oblivious scheme,
the detouring of relayed traffic damages mice flow FCT, especially
when elephant flows are spread across the network and block mice
flows at intermediate nodes. While for NegotiaToR, the on-demand

NegotiaToR: Towards A Simple Yet Effective On-demand Reconfigurable Datacenter Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

NegotiaToR
Parallel Network
Parallel Network w/o PQ

NegotiaToR
Thin-Clos
Thin-Clos w/o PQ

Traffic-Oblivious
Thin-Clos
Thin-Clos w/o PQ

NegotiaToR
Parallel Network
Parallel Network w/o PQ

NegotiaToR
Thin-Clos
Thin-Clos w/o PQ

Traffic-Oblivious
Thin-Clos
Thin-Clos w/o PQ

10 25 50 75 100
Load (%)

10 2
10 1
100
101

 9
9p

 F
CT

 (m
s)

(a) Mice flow FCT

10 25 50 75 100
Load (%)

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d)

(b) Goodput

Figure 9: FCT and goodput at various loads. Results with
priority queues (PQ) for mice flow prioritization enabled and
disabled are both shown.

0.7 0.8 0.9 1.0
BWpost_failure/BWpre_failure

0.7

0.8

0.9

1.0

BW
pr

e_
re

co
v /

BW

po
st

_r
ec

ov

2%

4%

6%

8%

10%

Fa
ilu

re
 R

at
io

Figure 10: NegotiaToR’s bandwidth usage changes during
link failure and recovery.

scheduling together with the scheduling delay bypassing enables
prompt transmission of mice flows.

Regarding goodput, NegotiaToR remarkably outperforms the
traffic-oblivious scheme on both topologies at high loads, as in
Figure 9(b). Under low loads, the traffic-oblivious scheme achieves
high goodput by utilizing empty links to relay traffic. As the load
increases, relayed traffic saturates the network, competing for band-
width and becoming a bottleneck for goodput. In contrast, Nego-
tiaToR’s on-demand scheduling can better utilize the network’s
bandwidth and reduce bandwidth waste.

Through Figure 9, we also see that no matter which topology is
used, NegotiaToR maintains comparable performance under iden-
tical parameter settings, where the performance on the thin-clos
topology is marginally lower than on the parallel network due to
its limited connectivity. These results underscore that NegotiaToR
can adapt well to various flat topologies.

Fault tolerance. We test the effectiveness of NegotiaToR’s fault
tolerance mechanism. In the 30𝑚𝑠 real-world duration, we simulate
different levels of simultaneous link failures on the parallel network
topology, recover them, and show the bandwidth usage changes in
Figure 10. Since a single egress or ingress link failure will affect all
traffic passing through it, this will lead to disproportional bandwidth
reduction. With 1% of links failing, NegotiaToR’s bandwidth usage
drops to 98.9%, while a 10% failure rate leads to 75.3%. Upon link
recovery, the bandwidth usage returns to its pre-failure level. This
validates NegotiaToR’s robust fault tolerance capability. We also
make micro-observations to better understand its behavior under
link failures, with results shown in Appendix A.4.

4.4 Deep dive results
We further evaluate NegotiaToR under various scenarios to better
understand its performance.

NegotiaToR
Parallel Network
Parallel Network w/o PQ

NegotiaToR
Thin-Clos
Thin-Clos w/o PQ

Traffic-Oblivious
Thin-Clos
Thin-Clos w/o PQ

NegotiaToR
Parallel Network
Parallel Network w/o PQ

NegotiaToR
Thin-Clos
Thin-Clos w/o PQ

Traffic-Oblivious
Thin-Clos
Thin-Clos w/o PQ

10 25 50 75 100
Load (%)

10 2
10 1
100
101

 9
9p

 F
CT

 (m
s)

(a) Mice flow FCT

10 25 50 75 100
Load (%)

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d)

(b) Goodput

Figure 11: FCT and goodput at various loads with no speedup.

10 25 50 75 100
Load (%)

10
20
30
40

 9
9p

 F
CT

 (
s) 20ns

30ns
60ns

90ns
120ns

(a) Sensitivity of prede-
fined phase timeslot dura-
tion: mice flow FCT

10 25 50 75 100
Load (%)

10 2

10 1

100

 9
9p

 F
CT

 (m
s)

10
30
50

100
500

10 25 50 75 100
Load (%)

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d) 10

30
50

100
500

(b) Sensitivity of scheduled phase length (in timeslots):
mice flow FCT and goodput

Figure 12: FCT and goodput under various parameter settings
on the parallel network topology. Barsmarked in red indicate
the setting the evaluation uses by default.

Performance under constrained bandwidth. Previous evalu-
ations are conducted with a 2× speedup. Here we remove this
speedup, provide identical bandwidth to ToR uplinks and down-
links, and test NegotiaToR and the traffic-oblivious scheme’s per-
formance under the same workload with §4.3. Simulations are done
on both the parallel network and thin-clos topologies. Results il-
lustrated in Figure 11 align with previous findings. NegotiaToR’s
on-demand scheduling can better exploit the constrained band-
width and achieve good performance, highlighting its practicality.

Parameter sensitivity experiment.We investigate the impact
of the length of two phases in NegotiaToR by adjusting one at a
time. We show experiments conducted on the parallel network
under the workload used in §4.3 as an example. We first adjust the
duration of each timeslot in the predefined phase, which affects
the amount of data that can be piggybacked without scheduling,
ranging from 20ns to 120ns including a 10ns guardband. We show
the mice flow FCT in Figure 12(a), and the goodput is omitted
because the difference with Figure 9(b) is minor. Subsequently, we
adjust the length of the scheduled phase from 10 to 500 timeslots,
and present the performance in Figure 12(b). The results match
our analysis in §3.6.4 well. They also demonstrate that even when
the parameters are approximately set around their optimal values,
the impact on NegotiaToR’s performance is minor, showing its
robustness.

Performance under various workloads. We further evaluate
NegotiaToR under various workloads while maintaining the same
epoch length setting as before. We first randomly mix incasts on
top of the workload used in §4.3 to mimic bursty traffic, where each
incast has a degree of 20 and a flow size of 1𝐾𝐵, and all incasts
take 2% of ToR’s aggregated downlink bandwidth. Performance of
background traffic and incasts are shown in Figure 13(a). Results

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

NegotiaToR
Parallel Network
Parallel Network w/o PQ

NegotiaToR
Thin-Clos
Thin-Clos w/o PQ

Traffic-Oblivious
Thin-Clos
Thin-Clos w/o PQ

NegotiaToR
Parallel Network
Parallel Network w/o PQ

NegotiaToR
Thin-Clos
Thin-Clos w/o PQ

Traffic-Oblivious
Thin-Clos
Thin-Clos w/o PQ

10 25 50 75100
Load (%)

10 2
10 1
100
101

 9
9p

 F
CT

 (m
s)

10 25 50 75 100
Load (%)

10 2
10 1
100
101

Fin
ish

 T
im

e
(m

s)
10 25 50 75100

Load (%)

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d)

(a) Performance under Hadoop [41] mixed with incast. From left to right is mice
flow FCT of the background traffic, average incast finish time, and overall goodput

10 25 50 75 100
Load (%)

10 2
10 1
100
101

 9
9p

 F
CT

 (m
s)

10 25 50 75 100
Load (%)

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d)

(b) Mice flow FCT and goodput under web search workload [1]

10 25 50 75 100
Load (%)

10 2
10 1
100
101

 9
9p

 F
CT

 (m
s)

10 25 50 75 100
Load (%)

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d)

(c) Mice flow FCT and goodput under the aggregated traffic from Google datacenter
[34, 46]

Figure 13: FCT and goodput under more workloads.

indicate that with the incast-optimized scheduling delay bypassing
mechanism, NegotiaToR can serve incasts well with minor impact
on the background traffic.

Additionally, we test NegotiaToR under two more workloads.
The heavier web search [1] workload where more than 80% flows
exceed 10𝐾𝐵, and the lighter workload from Google datacenter
[34, 46] where more than 80% flows are less than 1𝐾𝐵. Even though
without parameter fine-tuning, results in Figure 13(b) and Figure
13(c) show consistent FCT and goodput advantages of NegotiaToR
as before, emphasizing the efficiency of its on-demand scheduling.

5 RELATEDWORK
Matching algorithms. On-demand scheduling on reconfigurable
flat topologies can be viewed as a matching problem. Fast matching
algorithms such as PIM [2], RRM [31] and iSLIP [30] employ itera-
tions of request, grant, and accept for input-output port connection
scheduling in crossbar packet switches. Unlike the mesh connec-
tions of the scheduling logic for ports inside a switch, ToRs in
reconfigurable DCNs are multi-ported and interconnected through
various topologies, demanding topology-adaptive matching. Nego-
tiaToR draws inspiration from them and is uniquely tailored for ToR
matching. While maintaining feasibility, it can adapt to various flat
topologies. Pipelined scheduling and scheduling delay bypassing
are designed to accommodate the long RTT between ToRs.

There are also other practices for using request-grant based
or receiver-driven algorithms in DCNs. Packet-switched schemes,
like dcPIM [7], ExpressPass [12] and Homa [34] focus on single-
port host-level matching, aiming to control the congestion in the
network. They utilize over-commitment to optimize network uti-
lization, contrasting the conflict-free requirement of reconfigurable
DCNs. On-demand scheduling for reconfigurable DCNs has also
seen similar approaches. For example, ProjecToR [21] employs a
request-grant based algorithm to schedule optical links among ToRs.
However, it requests at a per-port granularity and leads to minor

scalability, and also adds complexity by measuring the waiting de-
lays of bundles of packets at sources for priority decision, whereas
NegotiaToR pursues a minimalist approach with binary per-ToR re-
quests and no need for delay measurement. Through experimental
explorations including ProjecToR (Appendix A.2.5), we highlight
the effectiveness of NegotiaToR’s design.

Connect ToRs with reconfigurable networks. The networks
need to accommodate both short FCT and high goodput with good
deployment practicality, serving the dynamic traffic demands be-
tween ToRs. When the reconfiguration delay of the switching hard-
ware is long (like milliseconds to microseconds) compared with
RTT, FCT is amain concern. Proposals use a hybrid packet-switched
network [15, 23, 29, 33, 50] or multi-hop routing [10, 21, 23, 32] to
optimize mice flow FCT. For instance, Opera [32] reconfigures its
topology to a set of pre-calculated expander graphs, enabling mice
flows to be immediately sent through multi-hop paths. This ap-
proach allows Opera to deliver low mice flow FCT in the order of
tens of microseconds with the optical network alone. However, due
to hardware reconfiguration delay limitations, its direct connec-
tions still mismatch the real-time traffic demands, posing challenges
in accommodating the dynamic traffic.

With recent advancements in fast switching hardware featur-
ing nanoseconds reconfiguration delay, opportunities have been
seen to serve the dynamic traffic. Previous on-demand scheduling
proposals like PULSE [5] ensure performance, but raise scalability
concerns due to complex scheduling logic. Sirius [4] utilizes the
traffic-oblivious method combined with data relay, which, although
simple, encounters difficulties in maintaining high goodput under
heavy loads due to bandwidth competition caused by relayed traffic,
and in providing short FCT due to the relay latency. In contrast, Ne-
gotiaToR aims to achieve on-demand scheduling over fast switching
hardware through a minimalist design. With distributed matching,
pipelined scheduling and incast-optimized scheduling delay by-
passing schemes, NegotiaToR offers short FCT and high goodput
through one-hop transmission while maintaining low complexity,
further exploiting the fast reconfiguration capability.

6 CONCLUSION
We presented NegotiaToR, an on-demand reconfigurable DCN ar-
chitecture with a simple design. With the two-phase epoch, it runs
NegotiaToR Matching distributedly in-band to reconfigure the net-
work according to dynamic real-time traffic demands. It also pro-
vides an incast-optimized scheduling delay bypassing scheme to
mitigate the impact of scheduling delays. NegotiaToR is compatible
with prevalent flat topologies, and is tailored towards a minimalist
design for on-demand reconfigurable DCNs, enhancing practicality.
By exploiting the fast optical switching technology to provide high
performance with low complexity, we hope that NegotiaToR can
facilitate the development of next-generation reconfigurable DCNs.

ACKNOWLEDGMENTS
We thank our shepherd, Alex Snoeren, and the anonymous SIG-
COMM reviewers for their useful feedback on this paper. Yong Cui
(cuiyong@tsinghua.edu.cn) is the corresponding author. This work
was supported by the National Natural Science Foundation of China
under Grants 62132009, 62221003 and 62272292.

NegotiaToR: Towards A Simple Yet Effective On-demand Reconfigurable Datacenter Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

REFERENCES
[1] Mohammad Alizadeh, Albert G. Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data center TCP (DCTCP). In Proceedings of SIGCOMM.

[2] Thomas E. Anderson, Susan S. Owicki, James B. Saxe, and Charles P. Thacker.
1993. High Speed Switch Scheduling for Local Area Networks. ACM Trans.
Comput. Syst. 11, 4 (1993).

[3] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2015.
Information-Agnostic Flow Scheduling for Commodity Data Centers. In Proceed-
ings of NSDI.

[4] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, István Haller,
Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and
HughWilliams. 2020. Sirius: A Flat Datacenter Network with Nanosecond Optical
Switching. In Proceedings of SIGCOMM.

[5] Joshua L. Benjamin, Thomas Gerard, Domaniç Lavery, Polina Bayvel, and Geor-
gios Zervas. 2020. PULSE: Optical Circuit Switched Data Center Architecture
Operating at Nanosecond Timescales. Journal of Lightwave Technology 38, 18
(2020), 4906–4921.

[6] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-
croTE: fine grained traffic engineering for data centers. In Proceedings of CoNEXT.

[7] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agarwal. 2022. dcPIM: near-
optimal proactive datacenter transport. In In Proceedings of SIGCOMM.

[8] Peirui Cao, Shizhen Zhao, Min Yee Teh, Yunzhuo Liu, and Xinbing Wang. 2021.
TROD: Evolving From Electrical Data Center to Optical Data Center. In Proceed-
ings of INFOCOM.

[9] Cheng-Shang Chang, Duan-Shin Lee, and Yi-Shean Jou. 2002. Load Balanced
Birkhoff-von Neumann Switches, Part I: One-Stage Buffering. Computer Com-
munications 25, 6 (2002).

[10] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping
Zhang, Xitao Wen, and Yan Chen. 2012. OSA: An Optical Switching Architecture
for Data Center Networks with Unprecedented Flexibility. In Proceedings of NSDI.

[11] Stanley Cheung, Tiehui Su, Katsunari Okamoto, and S. J. B. Yoo. 2014. Ultra-
Compact Silicon Photonic 512×512 25 GHz Arrayed Waveguide Grating Router.
IEEE Journal of Selected Topics in Quantum Electronics 20, 4 (2014).

[12] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters. In Proceedings of SIGCOMM.

[13] Kari Clark, Hitesh Ballani, Polina Bayvel, Daniel Cletheroe, Thomas Gerard,
Istvan Haller, Krzysztof Jozwik, Kai Shi, Benn Thomsen, Philip Watts, Hugh
Williams, Georgios Zervas, Paolo Costa, and Zhixin Liu. 2018. Sub-Nanosecond
Clock and Data Recovery in an Optically-Switched Data Centre Network. In
Proceedings of ECOC.

[14] Kari Clark, Daniel Cletheroe, Thomas Gerard, Istvan Haller, Krzysztof Jozwik,
Kai Shi, Benn Thomsen, Hugh Williams, Georgios Zervas, Hitesh Ballani, Polina
Bayvel, Paolo Costa, and Zhixin Liu. 2020. Synchronous subnanosecond clock
and data recovery for optically switched data centres using clock phase caching.
Nature Electronics (June 2020).

[15] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. 2010. Helios: a hybrid electrical/optical switch architecture for modular
data centers. In Proceedings of SIGCOMM.

[16] Alex Forencich, Valerija Kamchevska, Nicolas Dupuis, Benjamin G. Lee, Chris-
tian W. Baks, George Papen, and Laurent Schares. 2020. A Dynamically-
Reconfigurable Burst-Mode Link Using a Nanosecond Photonic Switch. Journal
of Lightwave Technology 38, 6 (2020), 1330–1340.

[17] Peter X Gao, Akshay Narayan, GautamKumar, Rachit Agarwal, and Scott Shenker.
2015. pHost: Distributed Near-Optimal Datacenter Transport Over Commodity
Network Fabric. In Proceedings of CoNEXT.

[18] Yilong Geng, Shiyu Liu, Zi Yin, Ashish Naik, Balaji Prabhakar, Mendel Rosenblum,
and Amin Vahdat. 2018. Exploiting a Natural Network Effect for Scalable, Fine-
grained Clock Synchronization. In Proceedings of NSDI.

[19] Thomas Gerard, Kari Clark, Adam Funnell, Kai Shi, Benn Thomsen, Philip Watts,
Krzysztof Jozwik, Istvan Haller, Hugh Williams, Paolo Costa, and Hitesh Ballani.
2021. Fast and Uniform Optically-Switched Data Centre Networks Enabled by
Amplitude Caching. In In Proceedings of OFC.

[20] Ehab Ghabashneh, Yimeng Zhao, Cristian Lumezanu, Neil Spring, Srikanth Sun-
daresan, and Sanjay Rao. 2022. A Microscopic View of Bursts, Buffer Contention,
and Loss in Data Centers. In In Proceddings of IMC.

[21] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. 2016. ProjecToR: Agile Reconfigurable Data
Center Interconnect. In Proceedings of SIGCOMM.

[22] P. Gupta and N. McKeown. 1999. Designing and implementing a fast crossbar
scheduler. IEEE Micro 19, 1 (1999), 20–28.

[23] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das,
Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. 2014. FireFly: A Reconfig-
urable Wireless Data Center Fabric Using Free-Space Optics. In Proceedings of
SIGCOMM.

[24] Y. Hida, Y. Hibino, T. Kitoh, Y. Inoue, M. Itoh, T. Shibata, A. Sugita, and A. Himeno.
2001. 400-channel 25-GHz spacing arrayed-waveguide grating covering a full
range of C- and L-bands. In Proceedings of Optical Fiber Communication Conference
and International Conference on Quantum Information.

[25] Torsten Hoefler, Duncan Roweth, Keith Underwood, Bob Alverson, Mark Gris-
wold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu, Siyuan Shen, Abdul
Kabbani, Moray McLaren, and Steve Scott. 2023. Datacenter Ethernet and RDMA:
Issues at Hyperscale. arXiv:2302.03337

[26] Chun Kit Hung, M. Hamdi, and Chi-Ying Tsui. 2003. Design and implementation
of high-speed arbiter for large scale VOQ crossbar switches. In Proceedings of
IEEE International Symposium on Circuits and Systems (ISCAS).

[27] Saurabh Jha, Archit Patke, Jim Brandt, Ann Gentile, Benjamin Lim, Mike Shower-
man, Greg Bauer, Larry Kaplan, Zbigniew Kalbarczyk, William Kramer, and Ravi
Iyer. 2020. Measuring Congestion in High-Performance Datacenter Interconnects.
In Proceedings of NSDI.

[28] Norm Jouppi, George Kurian, Sheng Li, Peter Ma, Rahul Nagarajan, Lifeng Nai,
Nishant Patil, Suvinay Subramanian, Andy Swing, Brian Towles, Clifford Young,
Xiang Zhou, Zongwei Zhou, and David A Patterson. 2023. TPU v4: An Optically
Reconfigurable Supercomputer for Machine Learning with Hardware Support
for Embeddings. In Proceedings of ISCA.

[29] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.
Voelker, George Papen, Alex C. Snoeren, and George Porter. 2014. Circuit Switch-
ing under the Radar with REACToR. In Proceedings of NSDI.

[30] Nick McKeown. 1999. The iSLIP scheduling algorithm for input-queued switches.
IEEE/ACM Transactions on Networking (ToN) 7, 2 (1999).

[31] Nicholas William McKeown. 1995. Scheduling algorithms for input-queued cell
switches. University of California, Berkeley.

[32] William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C Snoeren,
and George Porter. 2020. Expanding across time to deliver bandwidth efficiency
and low latency. In Proceedings of NSDI.

[33] William M Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen,
Alex C Snoeren, and George Porter. 2017. Rotornet: A scalable, low-complexity,
optical datacenter network. In Proceedings of SIGCOMM.

[34] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Pri-
orities. In Proceedings SIGCOMM.

[35] G.E. Moore. 1998. Cramming More Components Onto Integrated Circuits. Proc.
IEEE 11, 3 (1998).

[36] Samuel K. Moore. 2019. Another step toward the end of Moore’s law: Samsung
and TSMC move to 5-nanometer manufacturing - [News]. IEEE Spectrum (2019).

[37] TomonobuNiwa, Hiroshi Hasegawa, Ken-Ichi Sato, ToshioWatanabe, andHiroshi
Takahashi. 2012. Large Port CountWavelength RoutingOptical Switch Consisting
of Cascaded Small-Size Cyclic Arrayed Waveguide Gratings. IEEE Photonics
Technology Letters 24, 22 (2012).

[38] George Porter, Richard D. Strong, Nathan Farrington, Alex Forencich, Pang-Chen
Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. 2013.
Integrating microsecond circuit switching into the data center. In Proceedings of
SIGCOMM.

[39] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Muhammad Mukar-
ram Bin Tariq, Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner,
Steve D. Gribble, Rishi Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik
Nagaraj, Jason Ornstein, Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin
Yasumura, Shidong Zhang, Junlan Zhou, and Amin Vahdat. 2022. Jupiter evolv-
ing: transforming google’s datacenter network via optical circuit switches and
software-defined networking. In Proceedings of SIGCOMM.

[40] Roberto Proietti, Yawei Yin, Runxiang Yu, Christopher J. Nitta, Venkatesh Akella,
Christopher Mineo, and S. J. Ben Yoo. 2013. Scalable Optical Interconnect Ar-
chitecture Using AWGR-Based TONAK LION Switch With Limited Number of
Wavelengths. Journal of Lightwave Technology 31, 24 (2013).

[41] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of SIG-
COMM.

[42] Ken-Ichi Sato. 2023. Optical Switching will Innovate Intra Data Center Networks.
In In Proceedings of OFC.

[43] Kai Shi, Sophie Lange, Istvan Haller, Daniel Cletheroe, Raphael Behrendt, Benn
Thomsen, Fotini Karinou, Krzysztof Jozwik, Paolo Costa, and Hitesh Ballani. 2019.
System demonstration of nanosecond wavelength switching with burst-mode
PAM4 transceiver. In Proceedings of ECOC.

[44] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han
Wang, Rachit Agarwal, and Hakim Weatherspoon. 2019. Shoal: A Network
Architecture for Disaggregated Racks. In Proceedings of NSDI.

[45] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter Network. In Proceedings of
SIGCOMM.

https://arxiv.org/abs/2302.03337

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

[46] R. Sivaram. 2008. Some Measured Google Flow Sizes. Google internal memo,
available on request.

[47] Min Yee Teh, Zhenguo Wu, Madeleine Glick, Sebastien Rumley, Manya Ghobadi,
and Keren Bergman. 2022. Performance trade-offs in reconfigurable networks
for HPC. Journal of Optical Communications and Networking 14, 6 (2022).

[48] Leslie G. Valiant and Gordon J. Brebner. 1981. Universal Schemes for Parallel
Communication. In Proceedings of STOC.

[49] Théo Verolet, Sylvain Almonacil, Mijail Szczerban, José Manuel Estarán, Rajiv
Boddeda, Fabien Boitier, Jean-Guy Provost, Haik Mardoyan, Fabrice Blache, Jean
Decobert, Ségolène Olivier, Alexandre Shen, and Sébastien Bigo. 2020. Ultra-Fast
Tunable Laser Enabling 4 ns Coherent Slot Switching Beyond 100 Gbit/s. In
Proceedings of ECOC.

[50] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki,
T.S. Eugene Ng, Michael Kozuch, and Michael Ryan. 2010. C-Through: Part-Time
Optics in Data Centers. In Proceedings of SIGCOMM.

[51] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi, Zhihao Jia,
Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch. 2023. TopoOpt: Co-
optimizing Network Topology and Parallelization Strategy for Distributed Train-
ing Jobs. In Proceedings of NSDI.

[52] Yawei Yin, Roberto Proietti, Christopher J. Nitta, Venkatesh Akella, Christopher
Mineo, S.J.B. Yoo, and Ke Wen. 2013. AWGR-based all-to-all optical interconnects
using limited number of wavelengths. In Proceedings of Optical Interconnects
Conference.

[53] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In Proceedings of IMC.

[54] Shizhen Zhao, Peirui Cao, and Xinbing Wang. 2022. Understanding the Perfor-
mance Guarantee of Physical Topology Design for Optical Circuit Switched Data
Centers. In Proceedings of SIGMETRICS.

A APPENDIX
Appendices are supporting material that has not been peer-reviewed.

A.1 Efficiency analysis validation of
NegotiaToR Matching

To validate the theoretical results of NegotiaToR Matching’s effi-
ciency in §3.2.2, we examine the scheduling efficiency in our large-
scale simulations at 100% load in §4.3, since heavy-load scenarios
are closer to the intense-competition scenario we assumed in the
theoretical model. For each epoch, we record the ratio of accepts
and grants (we call it match ratio) and depict it in Figure 14. Results
show that the actual match ratio is consistent with our expecta-
tions, with thin-clos topology (𝑛 = 16, 𝐸 [𝑌] = 0.644) achieving
a slightly higher match ratio than the parallel network topology
(𝑛 = 128, 𝐸 [𝑌] = 0.634).

A.2 Details of the experimental exploration of
other design choices

NegotiaToR’s design is tailored towards simplicity for practicality.
To find out whether a little more complexity can bring a signif-
icant performance gain, we explored some other design choices.
In §3.5, we found that iterative scheduling, traffic-aware selective
relay, informative requests, and stateful scheduling may not pro-
vide proportionate performance gains. We give the details of our
exploration in this section. For simplicity, we only show the results
of the parallel network topology, except for traffic-aware selective
relay, which is designed for the thin-clos topology. Unless specified,
simulation follows the default settings in §4.1.

A.2.1 Iterative NegotiaToR Matching. The impact of introducing
iteration to NegotiaToRMatching is twofold. On one hand, iteration
could enhance matching efficiency by fully utilizing unmatched
ports, potentially improving goodput. However, in optical switch-
ing, lower goodput can often be effectively compensated by speedup
(i.e., providing more aggregated uplink bandwidth than aggregated
downlink bandwidth). On the other hand, introducing iteration
significantly increases the scheduling delay due to the long RTT be-
tween ToRs, and also adds complexity. Traffic demand information
is more likely to be outdated by the time the scheduling decision is
received, since data may have already been sent by previous epochs
during the long scheduling process, leading to link waste and thus
performance degradation. Therefore, although the scheduling re-
sult may be closer to a maximal match, FCT and goodput could be
adversely affected.

For investigation, we design an iterative version of NegotiaToR
Matching. After deriving the accept, instead of directly sending
data, new request is sent to destinations again along with indices
of unmatched ports for further iterations. Multiple rounds of itera-
tion also enlarge the scheduling delay. For one more iteration, the
scheduling delay is enlarged by three epochs.

Simulation results.We conduct simulations of both an iterative
and a non-iterative original version of NegotiaToR Matching on
the parallel network topology. For the non-iterative one, we set the
speedup factor to 2, as depicted in §4.1. For the iterative version,
we try 3 and 5 rounds of iterations with no speedup. We set the
size of scheduling messages (indicated by packet header size in

NegotiaToR: Towards A Simple Yet Effective On-demand Reconfigurable Datacenter Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

5 10 15 20 25
Time (ms)

0.2
0.4
0.6
0.8
1.0

M
at

ch
 R

at
io 0.63

(a) Parallel network

5 10 15 20 25
Time (ms)

0.2
0.4
0.6
0.8
1.0

M
at

ch
 R

at
io 0.63

(b) Thin-clos

Figure 14: NegotiaToR’s match ratio for epochs in both
topologies, recorded in the simulation at 100% load in §4.3.

Speedup 2× ITER_I ITER_III ITER_VSpeedup 2× ITER_I ITER_III ITER_V

10 25 50 75 100
Load (%)

10 2
10 1
100
101

 9
9p

 F
CT

 (m
s)

(a) Mice flow FCT

10 25 50 75 100
Load (%)

0.2
0.4
0.6
0.8
1.0

Go
od

pu
t

(n
or

m
al

ize
d)

(b) Goodput

Figure 15: FCT and goodput on the parallel network topology
at various loads, with 2× speedup or iteration enabled.

simulation) to be the same for fair comparison, even though the
iterative algorithm actually needs extra bits to transmit port-level
occupation information, which leads to extra overhead.

Results in Figure 15 show that, as we expected, iterative schedul-
ing adversely affects FCT at all loads because of the long scheduling
delay. Meanwhile, with more rounds of iteration, goodput starts
to decrease due to the outdated traffic demand information. No-
tably, at all loads, goodput is consistently equal to or lower than
the non-iterative version with 2× speedup. This implies that in-
stead of introducing iteration, it is more effective to increase the
speedup factor to compensate for the possibly low matching effi-
ciency, which also improves the FCT performance. Therefore, we
conclude that iteration is not an optimal choice for NegotiaToR
Matching.

A.2.2 Traffic-aware selective relay. In NegotiaToR, all data is sent
through one-hop paths. Avoiding traffic-oblivious relay helps Ne-
gotiaToR avoid goodput damages under heavy loads caused by the
doubling of data volume, as well as mice flow FCT damages caused
by more hops. Meanwhile, data relay requires congestion control
mechanisms to avoid buffer overflow at intermediate nodes, adding
complexity, which NegotiaToR does not need.

A third design choice that is potentially beneficial for goodput
also exists, where data relay is enabled only for elephant flows
under light loads [8]. In the parallel network topology (Figure 1(a)),
each ToR pair can transmit data through all ports, making relaying
unnecessary. However, consider the thin-clos topology (Figure 1(b)),
where each pair of ToRs is connected by a single port-to-port path.
By enabling data relay, the number of available paths between ToRs
is increased, and data transmission between ToRs could be done

src ToR dst ToRAWGR
1

2

3

4

1

2

3

4

1

2

3

4

direct traffic

data from ToR 4 to ToR 3,
if relayed by ToR 1
if relayed by ToR 2to ToR 3

(elephant flow data)

to ToR 4

Figure 16: Traffic-aware selective relay on the thin-clos topol-
ogy. Data relay is enabled for the large volume of data from
ToR 4 to ToR 3. When selecting the intermediate ToR, ToR
1 is excluded due to the high volume of direct traffic to ToR
4, which would result in bandwidth competition at ToR 1→
AWGR 3 link. In contrast, ToR 2 can be selected to relay the
data, avoiding potential goodput damage.

through multiple ports simultaneously, which could potentially
improve goodput.

To observe the impact of such data relay on NegotiaToR, we
extend NegotiaToR to support traffic-aware selective relay, aiming
to improve the link utilization of the thin-clos topology when empty
links are available, as we discussed in §3.5. For elephant flows,
in addition to direct data transmission, it also considers utilizing
lightly loaded ToRs to relay the data. The limit on flow size is to
protect mice flows from increased FCT, while the constraints of
the intermediate ToR are to avoid goodput reduction caused by
competition with directly transmitted data.

We integrate traffic-aware selective relay into NegotiaToRMatch-
ing, including selecting the data to be relayed, filtering out loaded
links using local direct traffic information, and preventing buffer
overflow at the intermediate ToR with congestion control. We give
an illustrative example in Figure 16.
1○ Before sending requests, source ToRs examine the data volume
in the per-destination queue, and determine potential intermediate
candidates.
• Co-designed with the mice flow prioritization mechanism
(§3.4.2), we disable relay for data in the highest-priority
queue (i.e., mice flow data), and only enable it for data in
the lowest-priority queue (i.e., elephant flow data) if the data
volume exceeds a certain threshold. This ensures that mice
flows are always sent directly without FCT concerns, while
elephant flows are relayed only when they have enough data
to fill extra links so that they can finish sooner than if they
were sent directly.
• Source ToRs then use local traffic information and find in-
termediate ToR candidates, excluding any that would cause
bandwidth competition due to shared linkswith high-volume
direct traffic. Requests for data relay are sent to the available
candidates.

2○ In the GRANT step, the candidates evaluate their intermediate
queue lengths and high-volume direct traffic conflicts on shared
links. If the queue still has spare capacity, and there exists no high-
volume concurrent direct traffic, then the candidates grant the
request, indicating the maximal data volume it can relay.
3○ Finally, in the ACCEPT step, the transmission of direct traffic
is prioritized over relayed traffic. After sending direct data first,

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

99p Mice Flow FCT (𝜇s) / Normalized Goodput
10% 25% 50% 75% 100%

Base 13.2/9.1% 13.4/22.5% 14.2/44.6% 17.3/66.0% 23.8/85.6%
Two-Hop 13.4/9.1% 14.0/22.6% 16.8/45.1% 19.2/66.9% 24.2/86.8%

Table 3: FCT and goodput on the thin-clos topology at various
loads, when the traffic-aware selective relay is enabled.

99p Mice Flow FCT (𝜇s) / Normalized Goodput
10% 25% 50% 75% 100%

Base 15.3/9.1% 15.4/22.6% 15.6/45.2% 16.3/67.5% 22.0/89.0%
Data-Size 15.6/9.1% 15.9/22.6% 16.4/45.2% 23.0/67.6% 44.2/89.8%
HoL-Delay 15.2/9.1% 15.2/22.6% 15.3/45.2% 15.3/67.6% 15.5/89.2%

Table 4: FCT and goodput on the parallel network topology
at various loads, when NegotiaToR is equipped with infor-
mative requests.

the source ToR then sends the data to be relayed from the lowest-
priority queue to the intermediate ToR.

Simulation results.We conduct simulations of NegotiaToR with
traffic-aware selective relay enabled on the thin-clos topology. We
show the results in Table 3 under the optimal relay setting we found.
When data relay is enabled, FCT is barely affected due to we only
selectively intermediating elephant flows. However, goodput is also
merely improved. This is because, at light loads, NegotiaToR, with
a 2× speedup, already achieves near-optimal goodput considering
the overhead introduced by guardbands and headers, leaving little
room for improvements. While at heavy loads where links are
already saturated, data relay does not help, and is turned off by our
traffic-aware relay scheme for most of the time. Therefore, we do
not employ data relay in NegotiaToR.

A.2.3 Informative requests. To further improve goodput and FCT
performance, we explore two approaches that utilize informative
requests. One goodput-oriented approach is to include aggregated
data size of the per-destination queue in requests, potentially im-
proving link utilization and goodput by first scheduling the pairs
with more demands. Another FCT-oriented approach involves in-
cluding the waiting time of the head-of-line packets from the per-
destination queues into requests, prioritizing the pairs with longer
waiting delays, potentially avoiding starvation, and reducing tail
FCT. Naturally, these improvements come at the cost of additional
complexities, such as accessing per-destination queue sizes, logging
per-packet delays, and implementing sorting mechanisms.

We implement the two strategies through simulations. For the
goodput-oriented data-size approach, we directly include the aggre-
gated data size in requests. While for the FCT-oriented HoL waiting
time approach, in the context of priority queues, we need to avoid
the long waiting time of elephant flows masking that of mice flows.
Therefore, we give the HoL waiting time of the highest-priority
queue a greater weight. For instance, based on the three-priority
queue case used in our evaluation (§4.1), here we set the weighted
HoL waiting time to be 𝐻𝑜𝐿 = (1 − 𝛼)𝐻𝑜𝐿𝑞𝑢𝑒𝑢𝑒0+𝐻𝑜𝐿𝑞𝑢𝑒𝑢𝑒1

2 + 𝛼 ·
𝐻𝑜𝐿𝑞𝑢𝑒𝑢𝑒2 , where 𝑞𝑢𝑒𝑢𝑒2 is the lowest-priority queue and stores

99p Mice Flow FCT (𝜇s) / Normalized Goodput
10% 25% 50% 75% 100%

Base 15.3/9.1% 15.4/22.6% 15.6/45.2% 16.3/67.5% 22.0/89.0%
Stateful 13.5/9.1% 13.7/22.6% 13.9/45.2% 16.3/67.5% 23.2/88.8%

Table 5: FCT and goodput on the parallel network topology
at various loads, when NegotiaToRmaintains trafficmatrices
for stateful scheduling.

99p Mice Flow FCT (𝜇s) / Normalized Goodput
10% 25% 50% 75% 100%

Base 15.3/9.1% 15.4/22.6% 15.6/45.2% 16.3/67.5% 22.0/89.0%
ProjecToR 16.3/9.1% 21.6/22.6% 40.8/45.0% 52.2/66.1% 54.4/84.7%

Table 6: FCT and goodput on the parallel network topology
at various loads, when we utilize ProjecToR’s [21] scheduling
algorithm.

the data of elephant flows. Our simulations find that the best per-
formance is attained when setting 𝛼 to a small, non-zero value such
as 0.001. This configuration allows for the prompt scheduling of
source-destination pairs with mice flows, while also indicating the
transmission needs of elephant flows.

Simulation results. We do simulations on the parallel network
topology, and show the results in Table 4. The data-size approach
attains extremely minor improvements in goodput, while adversely
affecting FCT. The HoL-delay approach reduces FCT by 29.9% at
100% load, but offers minor to zero improvements at other loads.
We thus conclude that the benefits of informative requests are
not significant enough to justify the additional complexity. Binary
requests, along with the scheduling delay bypassing mechanism,
are sufficient to achieve high performance.

A.2.4 Stateful scheduling. To explore the benefits of stateful sched-
uling, we maintain a stateful traffic matrix at each destination ToR
to track incoming traffic demands from all sources, thereby pre-
venting over-scheduling and reducing bandwidth waste. After data
arrives at the source, the source ToR sends requests to the destina-
tion ToR with the size of newly arrived data to update the matrix.
Grants are given only if the matrix indicates that the source still has
pending data to send, preventing unnecessary scheduling. After
giving grants, the size of the remaining data to send in the ma-
trix is decreased temporarily. After the source ToR gives accepts,
the accept result will be piggybacked to the destination, allowing
for matrix updates. If the source rejects the grant, the destination
will revert the temporary adjustment of the matrix to accurately
represent pending data for further scheduling.

Simulation results.We conduct simulations of NegotiaToR with
stateful scheduling enabled on the parallel network topology, and
present the results in Table 5. The results verify our expectations.
With stateful scheduling, NegotiaToR’s overall performance roughly
remains the same. Therefore, we keep the design that the sources
will send requests to the destinations, as long as currently there is
pending data to send.

NegotiaToR: Towards A Simple Yet Effective On-demand Reconfigurable Datacenter Network ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia

Figure 17: Incast workload: receiver bandwidth observation
of incast degree 15. From upper to lower is the bandwidth of
NegotiaToR on parallel network, NegotiaToR on thin-clos,
and traffic-oblivious scheme on thin-clos.

A.2.5 Other design choices. We also explore other design choices,
including the distributed scheduling algorithm used in ProjecToR
[21]. ProjecToR also aims to schedule the optical links among multi-
ported ToRs in an on-demand manner. Even though it works in a
free-space optical switching setting, it is still instructive to trans-
fer its scheduling algorithm to our scenario and compare it with
NegotiaToR Matching.

ProjecToR utilizes iterative request-grant based scheduling. It
requires measuring and logging data’s waiting delays at sources
to determine the scheduling priority. Data is grouped into bundles,
where each bundle is the unit of scheduling 6. Bundles with higher
waiting delays are scheduled first. Meanwhile, requests are per-port
level, which means, unlike NegotiaToR, when sending requests, the
sending port of corresponding data is already chosen. We transfer
it to NegotiaToR, replacing NegotiaToR Matching, and evaluate
its performance through simulations. For comparison, we set the
bundle size to be the same with the amount of data sent in one
epoch, and only run one round of iteration. Other designs, like
NegotiaToR’s incast-optimized scheduling delay bypassing scheme,
including the priority queue for mice flow prioritization, remain
the same.

Simulation results. We show the results in Table 6. Even though
introducing more complexity, like measuring and logging data’s
waiting delays, ProjecToR’s performance is still inferior to Negotia-
ToR, both in FCT and goodput. Adding iterations back to ProjecToR
can potentially improve goodput, but will also increase the schedul-
ing delay and thus further enlarge mice flow FCT. This highlights
the effectiveness of NegotiaToR’s minimalist design.

A.3 Micro-observation of NegotiaToR’s
performance under incast and all-to-all
workloads

Micro-observation of the incast workload. In the microbench-
mark in §4.2, we tested the performance of incast workloads. To
gain further insights, here we sample the bandwidth usage of incast
degree 15 at the destination side, as shown in Figure 17. Flows
are injected at 10 𝜇𝑠 . For traffic-oblivious designs, a long interval
exists before the destination receives data, because the data needs
6In our context, this is the amount of data that can be sent in one epoch.

Figure 18: All-to-all workload: receiver bandwidth observa-
tion of all-to-all flow size 30𝐾𝐵. From upper to lower is the
bandwidth of NegotiaToR on parallel network, NegotiaToR
on thin-clos, and traffic-oblivious scheme on thin-clos.

Figure 19: Fault tolerance micro-observation: bandwidth oc-
cupation after link failures.

to be relayed to a third ToR first. Whereas for NegotiaToR, due to
the incast-optimized scheduling delay bypassing scheme, data can
be promptly sent in the predefined phase, so that the destination
receives data shortly after the injection, contributing to a short
incast finish time. NegotiaToR performs identically across the par-
allel network and the thin-clos topology, because both topologies
provide the same predefined phases.

Micro-observation of the all-to-all workload. For the all-to-all
workload in §4.2, at a randomly chosen destination, we sample the
bandwidth usage when the flow size 30 KB, as shown in Figure
18. Flows are also injected at 10 𝜇𝑠 . For traffic-oblivious solutions,
different from the case of incast workloads, other than the data
destined to it, it also receives intermediate traffic (plotted as light-
grey dots) that needs to be forwarded, which competes for the
receiver bandwidth and does not contribute to goodput of this
receiver. Meanwhile, for NegotiaToR, all received traffic is desired
by this destination. As a result, with NegotiaToR Matching’s on-
demand scheduling, the destination in NegotiaToR continuously
receives data at a high bandwidth, leading to high overall goodput.

ACM SIGCOMM ’24, August 4–8, 2024, Sydney, NSW, Australia Liang et al.

A.4 Micro-observation of NegotiaToR’s
behavior under link failures

To better understand NegotiaToR’s behavior under link failures,
we let a source-destination pair continuously transmit data, and
observe the changes of the receiver side bandwidth occupation after
link failure happens on the parallel network topology, as shown in
Figure 19.

When all links work, the bandwidth occupation shows an on-off
shape, indicating different epochs. With links failing, the bandwidth
occupation drops to the level of the remaining links. Meanwhile,

note that there are epochs with zero bandwidth occupation. This is
because of the loss of scheduling messages caused by link failures.

When the source-destination pair happens to rely on one of
the failed links to send scheduling messages, the source will not
receive any grants, and thus data transmission will be suspended
(i.e., all epoch’s bandwidth occupation is zero), leading to severe
goodput reduction. However, since we regularly change the round-
robin rule of the predefined phase, each source-destination pair will
send scheduling messages through different links consecutively,
mitigating the risk of over-reliance on a single link. As a result, this
source-destination pair can still transmit data through other links,
and the bandwidth occupation is not continuously zero.

	Abstract
	1 Introduction
	2 Background & Motivation
	3 NegotiaToR Design
	3.1 Design overview
	3.2 On-demand distributed scheduling
	3.3 Network stack design of control and data planes
	3.4 Incast-optimized scheduling delay bypass
	3.5 The rationality of NegotiaToR's design choices
	3.6 Practical considerations

	4 Evaluation
	4.1 Evaluation setup
	4.2 Microbenchmarks
	4.3 Main results
	4.4 Deep dive results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Efficiency analysis validation of NegotiaToR Matching
	A.2 Details of the experimental exploration of other design choices
	A.3 Micro-observation of NegotiaToR's performance under incast and all-to-all workloads
	A.4 Micro-observation of NegotiaToR's behavior under link failures

