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Figure 1: Wheeler input device and its usage in the wild. (a) shows a 3D-printed implementation of Wheeler having three

wheels and two push buttons (primary and secondary) on the side; (b) shows a blind user holding the device, placing three

central fingers on the three wheels, and the thumb over the two side buttons; (c) shows how a blind user can navigate the

multi-level, hierarchical menu (e.g., Microsoft Word’s ribbon menu) using Wheeler’s H-nav mode. The pale green rectangle at

the top shows the first level menu in the app, with the numbers 1-6 each representing individual menu items (e.g., File, Home,

Insert). The user is using Wheel 1 with their index finger. By rotating the wheel, the user can move the focus in the menu. The

other two wheels are used for navigating the second ((e.g., Font) and third-level menu items (e.g., Boldface, Italic).

ABSTRACT

Blind users rely on keyboards and assistive technologies like screen
readers to interact with user interface (UI) elements. In modern
applications with complex UI hierarchies, navigating to different
UI elements poses a significant accessibility challenge. Users must
listen to screen reader audio descriptions and press relevant key-
board keys one at a time. This paper introduces Wheeler, a novel
three-wheeled, mouse-shaped stationary input device, to address
this issue. Informed by participatory sessions, Wheeler enables
blind users to navigate up to three hierarchical levels in an app
independently using three wheels instead of navigating just one

∗Equal Contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0628-8/24/10. . . $15.00
https://doi.org/10.1145/3654777.3676396

level at a time using a keyboard. The three wheels also offer ver-
satility, allowing users to repurpose them for other tasks, such as
2D cursor manipulation. A study with 12 blind users indicates a
significant reduction (40%) in navigation time compared to using a
keyboard. Further, a diary study with our blind co-author highlights
Wheeler’s additional benefits, such as accessing UI elements with
partial metadata and facilitating mixed-ability collaboration.
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1 INTRODUCTION

Blind users rely on assistive technologies (AT) like screen read-
ers to interact with application user interfaces (UIs). On desktops,
popular screen readers are NVDA [8], JAWS [7], VoiceOver [15],
which offer numerous keyboard shortcuts. A keyboard serves as
the primary input device for blind users on desktops. Utilizing the
operating systems’ built-in accessibility support, commonly known
as accessible APIs [14, 48, 50], screen readers (SR) create a DOM tree-
like textual meta-representation of an application [73]. Navigating
an app using SR and keyboard shortcuts is akin to navigating this
underlying meta-representation. Most screen readers allow blind
users to navigate either serially, from left to right and top to bottom,
using the TAB and directional Arrow keys, or hierarchically, starting
from the root node and proceeding to its children and grandchil-
dren, using a combination of shortcuts. For example, users can
press Control+Option+Shift+Down or Up Arrow to move into or out
of a parent node in VoiceOver. However, both navigation strategies
are slow and tedious, as blind users can go to only one of the four
possible neighboring elements (left, right, up, down) at a time un-
til they reach the target element. Moreover, Recent studies have
shown that apps requiring a higher average number of keystrokes
for navigation are perceived as less accessible [35]. For this reason,
non-visual interaction can take up to three times longer than visual
interaction [52, 59].

To address the challenge of complex hierarchy navigation for
blind users, we propose and design a mouse-shaped, three-wheel,
stationary input device named Wheeler. The design of Wheeler
is informed by both prior works and based on the findings from
multiple participatory design sessions with four blind individuals.
Figures 1a and 1b show the Wheeler prototype. Wheeler’s first
mode of operation is the hierarchical navigation mode, or in short,
the H-navmode. In H-navmode, shown in Figure 2, the three wheels
of the device are assigned to the top three levels of hierarchy in an
app. The user places three fingers on the three wheels and can rotate
each wheel individually using a single finger or multiple fingers
simultaneously. The H-nav mode allows blind users to navigate
complex multi-level UI hierarchies efficiently, using one wheel for
each hierarchy level. There are also two buttons on the device that
the user’s thumb can access. The big button, which is larger, serves
as the primary button, similar to the Left-click button of a mouse,
and is expected to be used frequently. On the other hand, the small
button serves as the secondary or Right-click button. Additionally,
Wheeler has haptic feedback that notifies users when they have
reached a boundary condition, such as the end of a list of menu
items.

The ideation and design of Wheeler draw inspiration from pre-
vious research that proposed rotary input devices to improve the
speed of website and app navigation. Two such devices, Speed-
Dial [18] and NVMouse [41], were particularly influential. In Speed-
Dial [18], Billah et al. used a rotary input device (e.g., a Surface
Dial [49]) to interact with web pages, demonstrating that blind
participants performed data tasks significantly faster using the ro-
tary input compared to screen-reader-provided keyboard-based

navigation. Lee et al. reported similar findings with their NVMouse
prototype [41, 42]. While the improvements by these approaches
are noteworthy, Speed-Dial or NVMouse does not solve the diffi-
culty of navigating user interface elements that belong to different
sub-trees, such as c.2 and c.3 in Figure 2c. Users are still required to
navigate through the parent nodes one by one until they reach the
grandparent node that contains the target node. Wheeler’s three-
wheel design overcomes this limitation by allowing blind users to
navigate three different levels of hierarchy independently, with
each wheel dedicated to a different level.

The three-wheel design of Wheeler also offers versatility, al-
lowing users to repurpose them for other tasks, such as 2D cursor
manipulation, which is a feature that is available in certain screen
readers such as JAWS. JAWS allows users to explore UI elements
flatly, from left to right, top to bottom. Moreover, our blind co-
author in this paper mentioned using Windows Mouse Keys (MKs)
to move the cursor when a keyboard alone is insufficient. However,
MKs are uncomfortable with long-distance cursor movement and
lack precise speed control. Additionally, they do not offer helpful
cursor localization feedback, only emitting beeps. To address this is-
sue, we create a second mode for Wheeler, the 2d navigation mode,
or in short, the 2d-nav mode. The illustration of 2d-nav mode is
shown in Figure 5. In this mode, the user uses Wheel-1 and Wheel-2

to move the cursor horizontally and vertically, respectively. Wheel-3
is used to change the speed of the cursor movement. At any time,
the user can probe the cursor’s location with respect to the top-left
corner of the screen using the CTRL button.

A user study with 12 blind participants showed that they needed
40% less time doing hierarchy navigation tasks using Wheeler’s
H-nav mode compared to using the combination of keyboard and
SR. In addition, they moved the cursor around the screen to acquire
targets using Wheeler’s 2d-nav mode, as instructed by a sighted
confederate, enabling them to participate in mixed-ability collabo-
rations. This study, accompanied by a diary study with our blind
co-author (Section 7) also revealed that Wheeler is easy to learn
and easy to use; and it offers serendipitous benefits, such as col-
laborating with sighted users on a shared screen and clicking on
partially accessible UI elements that are otherwise unreachable via
a keyboard.

We summarize our contributions as follows:
• We design and develop a multi-wheel input device named
Wheeler that offers numerous benefits over typical keyboard-
SR based non-visual interactions (Sections 3, 4, and 5).
• Wheeler’s H-nav mode allows blind users to navigate hier-
archies in significantly less time than keyboard-SR-based
navigation (Sections 3.1 and 6.5.1).
• Wheeler’s 2d-nav mode enables mixed-ability collaboration,
allowing blind users to follow the commands issued by a
sighted confederate and locate targets accurately in 2D space
(Sections 3.2 and 6.5.2).
• Through a diary study with our blind co-author in this paper,
we identify how Wheeler provides solutions to unique prob-
lems, such as exploring graphical content without proper
accessibility labels (Section 7).

https://doi.org/10.1145/3654777.3676396
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2 BACKGROUND AND RELATEDWORK

In this section, we first provide background on the inner workings of
screen readers and the abstract UI tree. Next, we position our work
in the large literature on input devices and non-visual interaction.

2.1 Construction of Abstract UI Tree for Screen

Readers

User interfaces (UIs) are typically designedwith the assumption that
the users have no perceptual and cognitive impairments and use a
typical set of input and output devices [29]. Thus, any mismatch
between users’ effective abilities and the underlying assumptions
hampers the effectiveness of user interface design. Often, this diver-
sity of needs is either ignored; or addressed via a manual redesign
of the application UI; or via external assistive technologies (ATs),
such as screen readers for blind computer users. Although a manual
redesign is arguably the best [29], it is neither feasible nor scalable
because users’ abilities and preferences vary, which can be hard to
anticipate by the designers [17].

As a result, users’ ability-specific adaptations are carried out
by ATs. For example, screen readers adapt application UIs by cre-
ating a manifest interface for users with vision impairments [60].
These screen readers (e.g., NVDA [8], JAWS [7], and VoiceOver [15])
rely on the Operating System’s accessibility support, a set of well-
defined functions, commonly known as Accessibility APIs [1, 5, 12,
14], to extract a DOM-like hierarchical meta-representation of all
UI elements in an app. Each node in this tree contains a textual
meta-representation (e.g., name, states) of the UI element it repre-
sents. This DOM-like abstract UI tree is invisible to sighted users
but accessible via screen readers’ keyboard shortcuts—when a blind
user selects a node in this tree, the screen reader reads out the tex-
tual description of the corresponding UI element (e.g., "OK Button")
loudly. In short, the abstract UI tree and screen readers compensate
for the inability of users to see a graphical user interface and im-
plement keyboard shortcuts for users as an alternative to using a
mouse to point-and-click graphical elements.

Unfortunately, these adaptations come at the expense of user
experience. Prior work [31] has shown that when the output modal-
ity of a UI-rich application is manifested from its original form to
another modality, i.e., consuming an application aurally instead of
visually, the adaptation introduces undesired side effects, such as
the application may become partially accessible and the task com-
pletion time may increase rapidly. For instance, Billah et al. [18]
reported that filling out an online form on a travel-booking website
could take 224𝑠 for blind users. On the other hand, the sighted
authors of this paper performed a similar task for less than 60𝑠 ,
which indicates that the task completion time for blind users, in
this case, is 3× more than that of a sighted individual.

2.2 Pointing Devices for Interaction

Pointing devices, such as computer mouses (or mice), were first
conceptualized in the sixties [26, 27] and had become an effective
input device to interact with graphical user interfaces (UIs) on
two-dimensional (2D) screens. In early prototypes, users needed
to move the mouse pointer (i.e., cursor) along 𝑋 and 𝑌 axes on
the screen by rotating a pair of wheels. These wheels were later

replaced by buttons [66] in optical mice [58]. The current genera-
tion of mice still have a single wheel but for a different purpose,
scrolling [32]. Pointing devices are commonly evaluated by two
metrics: performance and comfort [25]. Below, we describe these
two metrics.

2.2.1 Performance Measure of Pointing Devices. Fitts’ law [28] is
commonly used to measure the performance of pointing devices,
which include several metrics, such as movement time (i.e., the time
required to get to a UI object from another), error rate (i.e., % of
mistakes made during a specific task), and throughput (a metric
combining both movement time and accuracy). Fitts’ law states that
whenmoving a cursor from a source UI to a destination UI, the index
of difficulty (ID, in bits), or in short, the difficulty, is proportionate to
the distance between the source and the destination and inversely
proportional to the width (or area) of the destination. Its initial
formulation was for 1D, which Mackenzie et al. [46] extended to
2D by replacing the width with the target’s height if the height is
smaller or calculating the width along the direction of approach
to the target. For UI elements having the same height and width
(e.g., icons), considering only the width of the target is sufficient.
Mackenzie et al. [47] also propose two extended static measures,
orthogonal direction change, and movement direction change; two
dynamic measures, movement variability, and movement error, to
make the comparisons more comprehensive for individuals with no
vision impairments. In our evaluation, we found that staticmeasures
are relevant to evaluateWheeler’s performance, especially in 2d-nav

mode with staircase-like 2D movements.

2.2.2 Comfort of Pointing Devices. The comfort of pointing devices
is subjective and measured by asking questions on rating different
aspects, such as users’ physical effort, fatigue and comfort (e.g.,
hand/wrist posture comfort, clicking comfort), speed and accuracy,
and overall usability [22, 24, 25]. However, having too many ques-
tions can be confusing to users. Therefore, we evaluatedWheeler on
three aspects: clicking comfort, satisfaction, and overall usability.

2.3 Adaptation of Pointing Devices for

Non-Visual Interaction

Pointing devices like mice are hardly used by blind users because
the pointer (or the mouse cursor) only provides visual feedback [18],
which blind users cannot perceive. Therefore, researchers attempted
to replace this visual feedback with an alternative, such as 2D trans-
lational force, vibration, skin stretch, and thermal feedback to con-
vey kinesthetic and tactile information regarding the object under
the cursor [40, 75]. Often, this alternative feedback is presented on a
small tactile display on one side of the mouse. However, the spatial
resolution of this display is coarse due to the small display size. Kim
et al. [37] designed an inflatable mouse that uses an air balloon,
which senses the pressure from users’ hands and thus acts as an
input device. Nevertheless, this device is tiring for tasks requiring
high finger pressure and precision.

A large body of literature on haptic feedback is devoted to Braille
displays, auditory feedback, and tactile pin arrays [10, 38, 39, 56,
57, 62, 69–71, 74, 76]. Some of the work proposed guidelines for
designing appropriate haptic sensations for blind users [38]. Soviak
et al. [69–71] explored an alternative, glove-like input device to
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convey UI elements’ boundaries via audio-haptic feedback. These
prototypes demonstrated the benefits of haptic feedback for non-
visual interaction in obtaining an overview of a web page; however,
the unrestrained freedom of movement within the page hinders
precise navigation and information finding. Unlike the above pro-
totypes, Wheeler uses haptic feedback to inform user actions and
announce screen or UI boundaries only.

2.4 Rotary Input for Interaction

Another line ofwork represents UI elements on the two-dimensional
(2D) screen into a one-dimensional (1D) circular list, then uses ro-
tary devices (e.g., dials, wheels) to rapidly navigate through the
list [18, 41, 42]. Because rotary input (e.g., rotate clockwise/anti-
clockwise) is inherently one-dimensional, this mode of interaction
is more fitting and efficient for blind users when navigating a list.
In fact, sighted users also benefit from rotary input with a mouse
wheel for scrolling [32]. Lee et al. [43] extended the rotary input for
sighted users from a single mouse wheel to three wheels by placing
two virtual wheels on both sides of the physical wheel. Their experi-
ment revealed that users performed certain operations (e.g., volume
up or volume down in a media player) up to two times faster than a
single wheel. In addition, the users get better with more iterations
of the same tasks. These encouraging findings inspired us to design
Wheeler with multi-wheels.

2.5 Accommodations for Mouse and Virtual

Cursors

Operating Systems (OSes) often support accommodations formouse-
based interaction. For example, Windows OS allows users to move
the mouse cursor by pressing Num keys [4], commonly known as
Mouse Keys; MacOS supports controlling the native VoiceOver [13]
screen reader through trackpad inputs [3]. However, during our par-
ticipatory design sessions, we found that blind participants rarely
use these accommodations due to usability issues.

Screen readers usually provide multiple cursors. For example,
JAWS [7] screen reader offers three cursors: PC cursor, which is the
caret in Word/text documents; JAWS cursor, which is the mouse
pointer; and virtual PC cursor, which simulates an invisible caret in
webpages. NVDA [54] also supports similar cursors (e.g., NVDA’s
review cursor is similar to JAWS’s virtual PC cursor). In addition,
screen readers can be configured to report the textual content di-
rectly beneath the mouse cursor as the user moves the cursor [53].
Multiple cursors are useful for different applications and tasks, as in-
dicated by our participants. Wheeler design aligns with this notion
of multiple cursors.

3 OVERVIEW OFWHEELER

Wheeler is a mouse-shaped input device with three wheels and two
push buttons on the side, as shown in Figure 1. All three wheels
are identical in size. However, the primary button is slightly bigger
than the secondary one. The bigger button’s role is similar to that
of the left click or the primary button of a typical mouse. Likewise,
the smaller button acts as the right-click button of a mouse. A user
can grip the device with their right hand so that their index finger
rests on the first wheel, the middle finger on the second wheel, the
ring finger on the third wheel, and the thumb over the two buttons,

as shown in Figure 1. When assembled, Wheeler measures 103 mm
in length, 60 mm in width, and 33mm in height, meeting the ANSI
standard range [33] for mouse dimensions: 120 mm in length, 40-70
mm in width, and 25-40 mm in height.

Unlike a mouse, Wheeler is stationary, i.e., users do not move
it on the surface when using it. Instead, they rotate wheels to
maneuver the cursor. In our current design, Wheeler is connected
to a computer via a USB cable. However, a Bluetooth-based wireless
connection is feasible.

Wheeler provides various audio-haptic feedback to communi-
cate the current context of the cursor. Wheeler has a buzzer and
haptic motor on its motherboard. The buzzer emits a beep during
significant events, while the haptic motor creates a gentle vibra-
tion with each rotation—none interfere with the audio output from
screen readers.

Wheeler primarily operates in two modes: (i) a hierarchical nav-
igation (H-nav) mode and (ii) a two-dimensional or flat navigation
(2d-nav) mode. Based on the feedback from a diary study with
our blind co-author (Section 7), we later introduced another mode
named 2d-T-nav, which is a special case of 2d-navmode facilitating
the teleportation of the mouse cursor.

Table 1 provides an overview of various input methods and
their corresponding results when using Wheeler, considering the
device’s current operating mode. It is worth noting that we have
strategically incorporated the keyboard CTRL button as an input
modifier in three different scenarios. This approach simplifies user
interaction by requiring them to remember just one key on the
keyboard.

3.1 Interaction Using Wheeler: Hierarchical

Navigation (H-nav Mode)

In H-nav mode, Wheeler navigates the abstract UI tree of an app, as
shown in Figure 2. By default, three wheels of Wheeler point to the
top three levels in an app’s DOM. Each wheel maintains its own
cursor—making a total of three independent cursors. Further, each
wheel maintains its own state. For example, a wheel remembers
the last UI object a user had focused on the last time in a level and
resumes interacting from that element when the user focuses back.
Thus, it eliminates the need to explore elements from the beginning
in a hierarchy.

The rotate action (e.g., clockwise or counterclockwise) selects
an element bidirectionally at a level. While wheel 1 can select
any element in the 1𝑠𝑡 level, wheel 2 only selects the immediate
children of the element currently selected by wheel 1. Recursively,
wheel 3 only selects the immediate children of the element selected
by wheel 2. When Wheel-1’s cursor moves to a certain node in the
UI tree, Wheel-2’s cursor automatically moves to the first child of the
node selected by Wheel-1. Similarly, Wheel-3’c cursor automatically
moves to the first child of the node selected by Wheel-2. Figure 2c
demonstrates how the menus and ribbons of two applications can
be organized in a tree hierarchy and mapped in Wheeler.

To perform a left-/right-click operation, the user presses the
primary/secondary side buttons. Users can define the rotation res-
olution (in degrees) to adjust a wheel’s sensitivity. Upon rotation,
Wheeler provides audio-haptic feedback to affirm a valid operation
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No. Mode Input/Action Outcome

1

H-nav

Wheel-1 scroll Navigate hierarchy level currently mapped to Wheel-1

2 Wheel-2 scroll Navigate hierarchy level currently mapped to Wheel-2

3 Wheel-3 scroll Navigate hierarchy level currently mapped to Wheel-3

4 CTRL + Primary button
press

Move all three wheel’s assignments one level down in the
app hierarchy

5 CTRL + Secondary
button press

Move all three wheel’s assignments one level up in the app
hierarchy

6

2d-nav

Wheel-1 scroll Move cursor horizontally
7 Wheel-2 scroll Move cursor vertically
8 Wheel-3 scroll Adjust cursor speed

9 Secondary button press
and hold for 300ms Turn on or off 2d-T-nav mode

10 CTRL press Announce the cursor’s location on the screen
11

H-nav or 2d-nav

Primary button press Simulate a mouse left click
12 Secondary button press Simulate a mouse right click

13 CTRL + Both Button
Press Switch between H-nav and 2d-nav modes

Table 1: Summary of Wheeler’s inputs and outcomes in different modes.

a.1

b.1

c.1 c.2

b.2

c.3 c.4

a.2

b.3

c.5 c.6

b.4

c.7 c.8

wheel 1 for navigating a.* elements

wheel 2 for navigating b.* elements

wheel 3 for navigating c.* elements

…

a b

c

Figure 2: Demonstration of Wheeler’s H-nav mode. (a) Multi-level menus in NetBeans; (b) nested structures in ribbons in MS

Word; (c) a sample 3-level tree hierarchy to represent menus in either (a) or (b). For example, 1𝑠𝑡 -level elements, {a.1, a.2, ...}

could represent the top-level menu items like {File, Edit, View, ... Profile} in (a) or {Home, Insert, ..., Help} in (b). Assuming

a.1 equals Home, the 2𝑛𝑑 -level menu items, {b.1, b.2, ...} will be {Clipboard, Font, ...} in (b). Similarly, assuming b.1 equals

Clipboard, the 3𝑟𝑑 -level menu items, {c.1, c.2, ...} will be {Paste, Cut, ...} in (b). In H-nav mode, Wheel-1 is always mapped to

1𝑠𝑡 -level menu items (i.e., a.*), Wheel-2 is mapped to 2𝑛𝑑 -level menu items (i.e., b.*), and Wheel-3 is mapped to 3𝑟𝑑 -level menu

items (i.e., c.*).

and sometimes to convey spatial information, such as whether a UI
element is the last (or first) among its siblings.

3.1.1 H-navMode vs. Using Keyboard and Screen Reader. To demon-
strate the advantage of H-nav mode over using a keyboard and a
screen reader combo, suppose a user wants to move from node c.2

(source) to node c.8 (destination) in Figure 2c.
Fig. 3 shows the navigation steps when the user is using a key-

board and a screen reader. Note that it would require at least six
operations (i.e., TAB or [SHIFT+TAB] key press) in total.

Fig. 4a- 4d shows the navigation steps when the user is using
Wheeler for the same navigation task. Notice how the user can
complete the task in three rotations.

3.1.2 Traversing Apps with More than 3 Levels. If an application
has more than 3 levels, the user can move all three cursors one
level down in the app hierarchy by pressing Wheeler’s Primary
button while holding the CTRL key. Likewise, to move all three
cursors upward, they can do so by holding the CTRL key and press-
ing Wheeler’s Secondary button. These actions are also shown in
Table 1.
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a.1

b.1

c.1 c.2

b.2

c.3 c.4

a.2

b.3

c.5 c.6

b.4

c.7 c.8
Source Destination

Figure 3: The red arrows highlight the path (c.2 -> b.1 -> a.1

-> a.2 -> b.4 -> c.7 -> c.8) a blind user would have to take using

a combination of keyboard and screen reader when going

from c.2 to c.8 in the hierarchy from Fig. 2c. There are six

steps in total, and at least six keystrokes would be required.

3.2 Interaction Using Wheeler:

Two-Dimensional Navigation (2d-nav and

2d-T-nav Modes)

In 2d-nav mode, the wheels have different roles: Wheel-1 moves the
cursor along the X-axis, Wheel-2 moves it along the Y-axis, and
Wheel-3 is used to control the speed of the cursor movement. 2d-nav
mode is demonstrated in Figure 5, which depicts a scenario of a
blind user moving the cursor on a 2D screen from the lower-left
corner to the upper-right corner. While moving the cursor, the user
can rotate Wheel-3 to change the speed of the cursor movement.
Users can scroll both Wheel-1 and Wheel-2 simultaneously and it
would result in diagonal cursor movement.

Loss of context is a prominent issue for users with visual im-
pairment while navigating in 2d space [34]. To address this, users
can probe the cursor location anytime by pressing the CTRL key in
2d-nav mode. When CTRL is pressed, Wheeler reads out the cursor
location as a percentage of X and Y coordinates with respect to the
screen width and height. For instance, if the user’s cursor is above
item B in Figure 5,Wheeler would read out something like “30% from
the left and 10% from the top”. On cursor-hover, Wheeler’s built-in
TTS engine automatically reads out the name of a UI element.

3.2.1 2d-T-nav Mode. 2d-T-nav is a special case of 2d-nav mode,
where Wheeler teleports the mouse cursor to the closest neighbor-
ing UI along the direction of the cursor movement. This is faster
than 2d-nav to move from one element to another.

3.3 Toggling Modes

To toggle between H-nav and 2d-nav modes, users have to hold the
CTRL button and press both the primary and secondary buttons of
Wheeler at the same time. If Wheeler is in 2d-nav mode, the users
can turn on or off the 2d-T-nav mode by pressing and holding the
secondary (i.e., the small) button for some time (e.g., 300 ms).

4 IDEATION OF WHEELER

The initial design of Wheeler is informed by the literature. Below,
we synthesize relevant prior work and describe how it inspired our
design.

4.1 Three Rotary inputs

We observed that certain desktop screen readers (SRs), such as
VoiceOver and ChromeVox, allow users to navigate application UIs
hierarchically, similar to traversing an HTML DOM tree. These SRs

let users go to a UI’s immediate parent, child, or siblings one at
a time. Often, UI elements next to each other visually belong to
different parents, i.e., sub-trees, in the DOM. It creates a challenge
for blind users because they must traverse different sub-trees to
navigate those elements. This observation led us to design an input
device that lets blind users traverse different sub-trees indepen-
dently.

We were also inspired by Speed-Dial [18], where Billah et al.
demonstrated that a rotary input device could emulate mouse-like
functions for blind users. However, Speed-Dial does not address
the challenge of navigating UI elements in different sub-trees—
users still need to go to the parent nodes individually until they
find the grandparent whose child is the target node. Therefore,
we conceptualized a hypothetical device with three rotary inputs,
where each rotor is mapped to a level to reduce the number of times
users need to go up in the parents. Moreover, developers often
organize their apps hierarchically using a standard template—at the
high level, there are menus, toolbars, sidebars, status bars, and client
areas, each of which can have a second level, e.g., sub-menus, split
toolbars, and containers/groups; and the most interactive elements
(e.g., buttons, text areas) appear at the third level. This template
inspired us to use three wheels, one for each level, to maximize
coverage.

However, we found that the UI hierarchy of most applications
spans more than three levels. We considered adding another wheel
(under the pinky), but in our design mock-up, we found rotating this
wheel difficult. This is due to the connection between the intrinsic
muscles of human hands and innervation—the pinky and medial
half of the ring finger are connected with the ulnar nerve (for gross
hand movement). In contrast, the index, middle, and lateral half of
the ring finger are connected by the median nerve (for more precise
hand movement). As such, we kept the number of wheels to three,
assigning the most frequently used wheel under the index and the
least frequently used wheel under the ring.

For a similar reason, we placed the wheels vertically so that a fin-
ger only requires flexion/extension movement, for which maximum
biomechanical advantage is available (e.g., more muscle groups are
involved). Placing the wheel horizontally will require a finger ab-
duction/adduction movement, for which fewer muscle groups are
involved.

4.2 Flat 2D Navigation Mode

We also observed that certain screen readers (e.g., JAWS) allow
users to explore UI elements flatly, from left to right, top to bottom.
Further, the blind co-author of this paper stated that he occasionally
uses Windows Mouse Keys (MKs) to manipulate the cursor when
an element is not reachable by the keyboard. However, MKs are
hard to use— pressing these arrow keys for long-distance cursor
movement is uncomfortable. In addition, MKs lack a fine-grained
cursor pace control. Moreover, MKs do not provide useful feedback
to localize the cursor; it only beeps. These pieces of information
motivated us to devise a separate mode in our device that can act
as a usable mouse for blind users.



Wheeler: A Three-Wheeled Input Device UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA

a.1

b.1

c.1 c.2

b.2

c.3 c.4

a.2

b.3

c.5 c.6

b.4

c.7 c.8

wh-1 cursor
wh-2 cursor
wh-3 cursor

Source Destination

(a) The cursors for the three wheels at their initial position.

a.1

b.1

c.1 c.2

b.2

c.3 c.4

a.2

b.3

c.5 c.6

b.4

c.7 c.8

Input

Source Destination

wh-1 cursor
wh-2 cursor
wh-3 cursor
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Figure 4: Navigating from c.2 to c.8 in the hierarchy from Fig. 2c using Wheeler’s H-nav mode. (a)-(d) shows the positions of the

three Wheeler cursors mapped to its three wheels at different stages of the navigation. Only three rotations are required in

total.
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Figure 5: Illustrations of Wheeler’s 2d-nav mode. (Top) A blind user moves the cursor from the lower-left corner to the upper-

right corner of a 2D screen with 12 UIs organized in a 3 × 4 grid. (Bottom) shows the sequence of wheel operations the user

performs at different steps to achieve this goal. Each step (i) is marked in both the top and the bottomfigures. The green-colored

wheel indicates which wheel the user rotated at step (i). The user rotates Wheel-1 or Wheel-2 to move the cursor horizontally or

vertically and adjusts the speed of the cursor by rotating Wheel-3. Note that the Euclidean distance between the source and the

destination is 𝑑 , which sighted users usually take using a mouse. In contrast, blind users take the Manhattan distance between

two nodes (e.g., 𝑑1 along X, plus 𝑑2 along Y) in 2d-nav mode.



UIST ’24, October 13–16, 2024, Pittsburgh, PA, USA MT Islam, N Sojib, I Kabir, AR Amit, M Ruhul Amin, and SM Billah

A Microsoft 
Surface Dial

3-wheels stacked
vertically

3-wheels stacked 
horizontally

Mouse 
Wheel

A traditional mouse 
with 1 wheel A standalone touchpad 

with 3x3 raised grid lines

Raised line

Figure 6: Several low-fidelity prototypes during ideation.

4.3 Initial Design

After conceptualizing the design, we organized a participatory
design session with four blind individuals. The session aimed to
brainstorm the design of a device capable of embodying our navi-
gational paradigm. We presented several low-fidelity prototypes
(shown in Figure 6) with a different number of rotary inputs as well
as existing input devices that sighted users use. These include a
Surface Dial, a 3-wheel vertical device, a 3-wheel horizontal device,
a mouse, and a touchpad that supports multi-touch.

We explained our design idea to them and asked their opinion
about a usable device. Participants preferred the form factor of the
Surface Dial and mentioned that a 3-wheel vertical device could
be an extension to Surface Dial but reported difficulty in rotating
multiple wheels all at the same time. All participants preferred the
3-wheel horizontal device because they could comfortably place
3 fingers over 3 wheels. However, they mentioned that rotating
the wheels without supporting their palm was difficult. When one
participant pointed out the idea of combining a mouse with the 3-
wheel horizontal device, all participants were elated; they remarked
that it could be a viable prototype. When asked about the touch-
pad supporting multi-finger inputs, everyone was firmly against
it. They contended that employing three fingers simultaneously
would lead to a highly counter-intuitive experience, as moving one
finger in one direction and the others in another direction would
be confusing. Essentially, they believed they had to swipe all three
fingers either upward or downward, which did not align with our
intended concept of three independent cursors.

Once we established the initial design, we asked the participants
where to place the two mouse buttons. Three participants proposed
making both buttons easily accessible by the thumb, suggesting
placing them on the left side. Other participants initially recom-
mended placing one button on each side, but they soon recognized
that pressing the right button with the pinky finger would be chal-
lenging. In conclusion, the most promising design that emerged
was a 3-wheel horizontal device resembling a mouse, featuring two
buttons that were easily accessible by the thumb.

4.4 Design Iterations

The version of Wheeler we presented in this paper resulted from
three major design iterations. As one of the authors of this paper is
a blind power user, we had the privilege to discuss, update, and eval-
uate mini-iterations of Wheeler in-house. In each major iteration,
we invited the same four blind individuals to collect their feedback
and recommendations and to ensure that we incorporated their
earlier feedback into the current iteration of the design. Appendix A
contains more details on these design iterations.

Figure 7: A high-level rendering of Wheeler putting individ-

ual 3D parts together.

Figure 8: Individual 3D components of Wheeler with dimen-

sions in millimeters: (i) wheelbase, (ii) encoder holder, (iii)

wheel, (iv) connector, (v) main base, (vi) button stand, (vii)

top shell, and (viii) button covers.

5 WHEELER IMPLEMENTATION

This section discusses Wheeler’s hardware implementation, electri-
cal components, and firmware design.

5.1 Hardware Components

We designed the 3D components in modules using OpenSCAD [2].
The modular parts were printed using a Prusa i3 3D printer with
white PLA filament. Figure 7 shows a high-level rendering of the
device putting all individual 3D parts together, and Figure 8 shows
a rendering of its eight distinct 3D parts: wheelbase, encoder holder,
wheel, connector, main base, button stand, top shell, and button
covers. Important dimensions are given in millimeters (mm). For
example, the radius of each wheel is 12 mm, and the width is 10
mm. We plan to release our design on public repositories for wider
adoption.
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Figure 9: A high-level block diagram of the major electrical

components of Wheeler. The microcontroller measures the

rotation of each of the three wheels and captures each button

press to generate an appropriate system-level event.

5.2 Electrical Components

We used an Arduino Pro Micro as the main controller and three
rotary encoders to detect rotation in three wheels. To provide audio-
haptic feedback, we used a buzzer and a pager motor. The buzzer
alerts the user with beep feedback, and the pager motor provides
haptic feedback when instructed. These electronic components are
assembled within the 3D printed parts. Figure 9 shows a schematic
diagram of these components put together—all of which cost less
than $30 USD in total. We will publicly release the model, part
number of all electrical components, and the 3D design.

5.3 Wheeler Firmware

Our firmware was developed on the Arduino platform. Since Ar-
duino ProMicro works as a Human Interface Device (HID),Wheeler
does not require an additional device driver to recognize it as a
mouse-like device on a computer when connected through a serial
port. Each rotary encoder has twelve slots—each of which provides
a clicking effect (mild haptic feedback) in the finger when rotat-
ing the wheel. In 2d-nav mode, the firmware detects the rotation
direction for each wheel, calculates each rotation step, encodes
this information into a mouse event, and sends it to the computer,
which interprets it as a regular mouse event.

However, in H-nav mode, Wheeler’s firmware is integrated with
NVDA, an open-source screen reader. The firmware appears as an
NVDA add-on and has access to the UI hierarchy of any app from
the NVDA APIs, which internally consume Windows’ native UI
Automation API [50] to extract the UI tree and relay the rotational
input on the tree.

In 2d-T-nav mode, the firmware issues a mouse event. It con-
sumes an accessibility API call (AccessibleObjectFromPoint) to check
the closest neighboring UI along the direction of the cursor move-
ment.

6 EVALUATION OF WHEELER

We recruited 12 blind participants and conducted two lab studies
to evaluate Wheeler. To ensure fair evaluation, we did not invite

the four participants who took part in our early design iterations
(Sec. 4.4).

First, we evaluated the effectiveness of Wheeler’s H-nav mode
in Study 1, described in Section 6.3. This study was completed in
a single session. Second, we evaluated Wheeler’s 2d-nav mode in
Study 2, described in Section 6.4. This study was completed in six
sessions and occurred on six different days over a month. All studies
were IRB-approved. Table 3 presents an overview of two studies,
including tasks, conditions, related hypotheses, and the number of
sessions or duration. Next, we describe participants’ demographics
and common study procedure, followed by Study 1 and Study 2,
and finally, the findings (Sec. 6.5).

6.1 Participants

12 blind participants (8 male, 4 female) were recruited with an
average age of 31.33 (𝑆𝐷 = 5.48, 𝑅𝑎𝑛𝑔𝑒 = 22 − 39) through an in-
stitution that provides services to people with vision impairments.
All of them were familiar with Windows desktop screen readers
(e.g., JAWS and NVDA). None had any motor impairments. Some
participants had light perception. Participants came from a diverse
background; most of them were students. Table 2 presents partic-
ipant demographics and individuals’ self-reported expertise with
screen readers.

6.2 Study Procedure

This section describes the procedure that was common in both
studies. In addition, study-specific procedures are described in the
respective study sections.

The lab studies were conducted in an office environment by two
authors. After verbal consent, the conductors asked participants
to introduce themselves, their history of blindness, their expertise
in screen readers (self-disclosed), and their use of point devices
and screen reader cursors. The experiment was set up on a Win-
dows 10 laptop with 1366 × 768 screen resolution. This laptop had
the following software installed: two screen readers (JAWS and
NVDA), a video conferencing software (Zoom), a remote desktop
software (TeamViewer), and the device driver for Wheeler, which
was connected via a USB port.

Of the two authors who administered the study, one was blind
and interacted with the participants in person, following social-
distancing guidelines. The other author was sighted and assisted in
setting up the study environment and trials over TeamViewer and
supervised each session remotely over Zoom video conferencing
software. The participants were given sufficient instructions and
time (10−30 minutes) to familiarize themselves with Wheeler. Each
session lasted an hour and was video-recorded and later transcribed
for further analysis. Each participant was compensated with an
hourly rate of USD $10.

Upon completing each study, the experimenters engaged in an
open-ended discussion, seeking subjective feedback, recommen-
dations, and ratings on different aspects of Wheeler, such as the
placement of wheels, ease of use, the dynamic pace control feature,
and perceived challenges in learning this new interaction paradigm
and potential of using this device in everyday technology use.
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ID

Age/

Sex

Expertise

Light Per-

ception?

History of

Blindness

Profession Screen Readers

P1 35/M Expert No Advantageous Student JAWS, NVDA
P2 25/F Beginner No Congenital College Student JAWS, NVDA
P3 32/F Beginner Yes Advantageous Undergrad student JAWS, NVDA
P4 38/M Beginner No Advantageous Undergrad student JAWS, NVDA
P5 31/F Beginner No Advantageous Graduate student JAWS
P6 31/M Beginner No Advantageous Education JAWS
P7 28/F Beginner No Congential Special Ed. Trainee JAWS
P8 22/F Beginner No Congential NGO Worker JAWS, NVDA
P9 32/M Beginner Yes Congential Sales JAWS, NVDA
P10 30/M Beginner Yes Congential Communication support NVDA, Magnifier
P11 26/M Expert No Congential IT program officer JAWS, NVDA
P12 39/M Expert No Advantageous Small business owner NVDA, JAWS

Table 2: Participants’ demographics, history of blindness, and self-reported expertise with screen readers.

Study Task Conditions Associated Design Sessions/

Hypotheses Duration

Study 1: Evaluation
of H-nav mode T1 C0, C1 H1 Within-subject 1 Session

Study 2: Evaluation
of 2d-nav mode T2 C2 H2, H3 Repeated

measures 6 Sessions

Table 3: An overview of two studies, including tasks, conditions, related hypotheses, and duration.

6.3 Study 1: Evaluation of H-nav Mode

In this study, we aim to validate the following hypothesis:
• H1: Participants will navigate hierarchical structures more
efficiently with Wheeler’s H-nav mode than with a keyboard
and a screen reader.

6.3.1 StudyDesign. We choseMicrosoft Office Suite’s ribbon-based
multi-level menu as the representative hierarchical structure. As
reported in prior studies [41, 42], navigating ribbon items is par-
ticularly challenging for blind users. As such, any improvement in
navigating ribbons is important to the blind community.

The participants performed the following navigation task (T1)
using two study conditions (described below).
Task T1: In a multi-level hierarchical menu, navigate to a sub-

menu item, given its path in the hierarchy. For example, in
Figure 2, a representative task could be “go to Home tab, then
Alignment group, then Wrap Text item”. Here, Wrap Text is the
target and its path starting from the top, Home> Alignment>
Wrap Text, was given to the participants.

The two conditions are described as follows:
Condition C0: Keyboard with Screen Reader. The participants must

use a screen reader and basic navigational keys, includ-
ing ARROW keys (e.g., ↑, ↓, ←, →) and other modifier
keys (e.g., TAB, Alt, and ESC). This was our baseline.

Condition C1: Wheeler in H-nav mode with TTS. The participants
must use Wheeler’s H-nav mode with a Text-to-Speech
(TTS) synthesizer. They were not allowed to use a
screen reader or its keyboard shortcuts.

We recorded the task completion times. Five trials were performed
in each condition.

6.3.2 Procedure Specific to Study 1. For task T1, we chose ribbon
tabs from two commonly used apps in MS Office Suite: MS Word
and MS Excel. In addition, we selected the ribbon items that blind
users use less frequently. For instance, our blind author informed
us that other blind users are less likely to use References, Review,
and Mailings ribbon tabs in MS Word and Draw, Formula, Data tabs
in MS Excel. We, therefore, included the target from those tabs. A
sample of task T1 was as follows: (i) go to References> Footnotes>
Insert Endnote; (ii) go to Review> Comments> Show Comments; and
(iii) go to Formulas> Formula Auditing> Show Formulas.

The participants practiced H-nav mode on a different hierarchy
(e.g., the tree-view of Windows Explorer) to familiarize themselves
with the three wheels. In each trial, the experimenter randomly
drew a target (without replacement) from a predefined list of 30
targets. Then, the experimenter read out the target and its path and
asked the participant to go to that target using a study condition.
The experimenter could repeat this information during a trial if
asked.

By default, the Home ribbon tab was expanded. Participants were
instructed (but not enforced) to start from a ribbon pane they were
currently in, as they completed the previous trial. A trial was com-
pleted when a participant focused on the target and declared it
verbally. We counterbalanced the order of conditions across par-
ticipants. The experimenter took notes during the session. The
experimenters allocated 3 minutes for each trial and recorded 120
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data-points (=12 participants × 5 trials × 2 study conditions) for
task T1.

6.4 Study 2: Evaluation of 2d-nav Mode

Evaluating 2d-nav mode was less straightforward than H-nav be-
cause 2d-nav is not directly comparable to a typical mouse. For
example, sighted users can acquire the target visually with a mouse
cursor, whereas blind users must be given the target’s location
(e.g., x, y coordinates) on the screen to acquire with 2d-nav mode.
Similarly, 2d-nav is not comparable to a keyboard either because
keyboard-based navigation acquires the target based on its relative
position in the abstract UI tree, not its spatial location on the screen.

Therefore, we created a real-world scenario in which a blind
participant and a sighted confederate collaborated remotely on
a shared screen. The sighted confederate asked the blind peer to
move their mouse cursor over a target UI element on the screen.
The confederate additionally provided a rough estimation of the
target’s screen location. For example, in a remote desktop session
shown in Figure 17.c, the confederate asked the blind peer to move
the cursor over Google Chrome icon, which is roughly 5% from the
left edge and 60% from the top edge.

Based on the above scenario, we defined the following two hy-
potheses:
• H2: Given the spatial coordinate of the target, participants
can independently acquire the target with the mouse cursor
using 2d-nav.
• H3: 2d-nav is easy to learn and use.

6.4.1 Study Design. 2d-nav mode is a novel interaction technique
to manipulate the mouse cursor. As such, we conducted the study
in multiple sessions to measure how well participants’s perfor-
mance increased in each session. More specifically, the study was a
repeated-measure design, where each participant performed the fol-
lowing task (T2) using 2d-nav mode in six sessions on six different
days over a month.
Task T2: Target acquisition. Move the mouse cursor to a target

point, given its coordinates, as shown in Figure 5 and Fig-
ure 17.c. For example, on Windows Desktop, take the mouse
cursor over This PC icon, which is 𝑥% from the left and 𝑦%
from the top of the screen.

To the best of our knowledge, current screen readers or mouse keys
do not allow one to perform the above task. Therefore, we had only
one condition (C2) for 2d-nav mode and no baseline. Participants
performed T2 in 6 different sessions; thus the session being the
independent variable. Each session had 6 trials.

Moreover, using percentage coordinates in 2d-nav mode, instead
of pixels or inches, makes the location of a UI element agnostic to
different screen sizes or resolutions. It also helps sighted collabo-
rators estimate and provide the UI location on the screen to their
blind counterparts.
Condition C2: Wheeler in 2d-navmode with TTS. The participants

must use Wheeler’s 2d-nav mode.
Recall that we measured how well participants’s performances

improved over sessions (i.e., learning rate) and how well they
adopted 2d-navmode (i.e., user behavior). Towards that, we recorded
the following measures: (i) task completion time for all trials; (ii)
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number of times cursor-location is probed; (iii) number of times
cursor speed is changed; and (iv) the mean cursor speed.

6.4.2 Procedure specific to Study 2. In each session, the participants
were given sufficient instructions and time (10 minutes) to recap
2d-nav mode. They practiced on a webpage containing 12 buttons,
organized in 3𝑥4 grids, as shown in Figure 5.

For each trial in T2, the sighted experimenter (i.e., the confed-
erate) reoriented 35 icons on the study laptop’s desktop screen
and randomly chose the target icon. In addition, the experimenter
placed the mouse cursor in the top-left corner of the desktop. Each
icon was a square with dimensions 36𝑝𝑥 × 36𝑝𝑥 . The experimenter
read out the name of the target icon and the coordinate of its center
in percentages from the left and top edges of the screen and asked
the participants to bring the mouse cursor over this target using
Wheeler’s 2d-nav mode.

A trial was completed when a participant brought the cursor
over the target icon, and the TTS read out its name. For each trial,
the experimenters allocated 3 minutes. If a participant failed to
complete a trial within the stipulated time limit, it was recorded
as incomplete. It was removed from the evaluation because of a
lack of valid completion time. In sum, out of 432 data-points (=12
participants × 6 trials × 1 condition × 6 sessions), 336 were valid
for T2.

The failure cases were primarily due to timeouts, i.e., when a
trial exceeded 3 minutes. It happened when the target location was
non-trivial to estimate or its size was small. For example, estimating
77% from the left is more challenging than estimating 50% or 80%
from the left. In these scenarios, participants often overshot or
undershot the target, became more cautious, and decreased the
cursor movement speed (Wheel-3)—all contributing to increased
trial time.

6.5 Findings from Study-1 and Study-2

We analyzed the recorded video data, observations, transcriptions,
and experimenters’ notes to report our findings. Findings from
Study 1 appear first, followed by the Study 2.
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6.5.1 Completion Time for Navigating Hierarchical Structure (Study
1). The participants took 40% less time with Wheeler’s H-nav mode
(𝑀𝑒𝑎𝑛 = 43.41𝑠, 𝑆𝐷 = 16.31𝑠), compared to the baseline (𝑀𝑒𝑎𝑛 =

73.94𝑠, 𝑆𝐷 = 42.04𝑠), which is statistically significant, as reported
by a paired-t test (𝑡 = 2.303, 𝑝 < .042). Figure 10 shows the mean
completion time for task T1. Recall that the three wheels in H-nav

mode are mapped to three different hierarchies in the UI tree, and
each wheel maintains its state independently of the others. For this
reason, participants could jump from one sub-tree to another (e.g.,
between cousin nodes) by simply rotating the first or second wheel.
In contrast, to make a similar jump with the baseline, they needed
to go to the parent node first, then the parent’s siblings (uncles), and
finally their (uncles’) children, which was cumbersome and time-
consuming. Thus, the reduction in completion time in navigating
multi-level hierarchies with H-nav was expected and unsurprising.
This validates our hypothesis H1.

6.5.2 Completion Time in Acquiring Known Targets with the Mouse
Cursor (Study 2). The task completion time in 2d-nav mode gener-
ally follows a decreasing trend over sessions. For example, in session
1, the average completion timewas 120𝑠 (shown in Figure 11), which
went down to 56.12𝑠 in session 6 (shown in Figure 11 and Figure 10).
These decrements are statistically significant, as indicated by a one-
way within-subject ANOVA test, 𝐹 (5, 60) = 622.4, 𝑝 ≈ 0. Although
we noticed minor increments in sessions 4 and 5, these could be
attributed to a longer interval (e.g., 14 days) between session 3
and session 4, whereas other intervals were 5 to 6 days. Overall,
the decreasing trend indicates that the task completion time can
decrease even further as someone uses 2d-nav consistently.

During a task, the participants did not ask for assistance on the
whereabouts of their cursor. They controlled the cursor pace by
using Wheel-3 (see Figures 13 and 14) and probed the cursor location
from time to time by pressing CTRL (see Figure 12). All validate our
hypothesis H2.

We noticed that the average completion time of 56.12𝑠 was still
longer than the time sighted users spend acquiring a visual target
using a mouse. This issue also emerged from the diary study find-
ings with our blind co-author (Section 7). Per our blind co-author’s
recommendation, we created 2d-T-nav, a special case of 2d-nav

mode, to teleport the mouse cursor to the closest neighboring UI
along the direction of the cursor movement.

Participants probed the cursor location from time to time (using
the CTRL key) to update the corresponding cursor location in their
mental map. This increased the mental workload for some partici-
pants at the beginning. However, as they progressed through the
study, they increasingly became more comfortable and confident
with this mapping, which is evident in Figures 11—14.

6.5.3 Learnability in 2d-nav mode. A key insight gleaned from
the data is that in 2d-nav mode, the average task completion time
correlated well (𝑅2 = 0.83) with the power law of practice [68],
as shown in Figure 11), and learning occurred in the last session,
suggesting that the participants are more likely to take less time
as they practice more. Another key insight is that the participants
oriented themselves with the two-tone audio feedback conveying
the cursor’s current coordinates, as indicated by the decreasing
liner trendline (𝑅2 = .883) in Figure 12. In addition, they became
more comfortable using 2d-nav after multiple sessions and learned
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Figure 11: Average task completion time per session for T2

in 2d-nav mode, fitted to a decreasing power trendline, 𝑦 =

124.28 ∗ 𝑥−0.42, 𝑅2 = .83.

Sessions

654321

22.50

20.00

17.50

15.00

12.50

10.00

Number of Times Cursor Location is Probed

Linear
Observed

Page 1

Figure 12: Average number of times cursor location is probed

during T2 with 2d-nav, fitted to a linear, decreasing trendline

(𝑅2 = .883).

how to operate it more efficiently. For instance, most participants
figured out a preferable speed (e.g., 7.0 pixel/rotation) after the first
3 sessions, as shown in Figures 13 and Figures 14. These findings
suggest that Wheeler is easy to learn and easy to use. Thus, our
hypothesis H3 is validated.

6.5.4 Movement Trajectories in 2d-nav Mode (Study 2). We recre-
ated the paths or trajectories that participants followed to move
their cursor in 2d-nav mode from a source UI to a destination UI
(the target). Figure 15 shows four such paths (’a’ to ’d’), where a red
circle (marked with the number 1) is the source, the green circle
(marked with the highest number in a path) is the destination, and
the blue circles indicate a cursor probe (by pressing CTRL) at that
location. These trajectories reveal the following insights:

First, participants could get confused about moving left or right
(or up or down) at the beginning (shown in paths a and c), but they
quickly figured it out. For example, in path a, the target was on
the right side of the source, but a participant initially moved left,
realizing the two-tone feedback sounded wrong, then probed the
cursor to be certain, and changed the course to the right side (i.e.,
the correct direction).

Second, most participants moved along the X-axis or Y-axis in a
long, continuous stride (e.g., path a) instead of moving in a staircase
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Figure 13: Average number of times cursor speed is changed

during T2 with 2d-nav. The plot shows that most participants

had settled on a preferable speed after the first 3 sessions.
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Figure 15: Four dominant paths or trajectories that partici-

pants followed to move their cursor in 2d-nav mode from a

source UI to a destination UI (the target). A red circle (marked

with the number 1) is the source, the green circle (marked

with the highest number in a path) is the destination, and

the blue circles indicate a cursor probe (by pressing CTRL) at

that location.

pattern (along both axes). This was surprising because we antic-
ipated staircase patterns to be dominant. This also indicates that

the participants had developed some notion of spatial awareness of
their cursor based on various audio-haptic feedback provided by
Wheeler.

Third, as participants approached the target or a turn, they
probed the cursor more to be ascertained. Although this behav-
ior was unsurprising, we were surprised by the caution participants
took not to overshoot the target.
These are encouraging insights that indicate the potential of 2d-nav
for blind users.

It is evident from the above discussion that locating targets in 2D
space using Wheeler’s 2d-nav mode can yield trajectories different
from what a sighted user would take when locating targets using a
mouse. Although the movement time/target locating time can be
higher to start with, we show in Appendix B.4 how blind users can
achieve sighted user-like performance by changing the cursor pace
using wheel-3 in 2d-nav mode. The idea presented in Appendix B.4
is mostly theoretical but can offer intriguing insights into possible
improvements blind users can achieve through the long-term use
of Wheeler.

Figure 16: Participants ratings (1 to 5) on the use of comfort

of Wheeler in three categories: usability, clicking comfort of

the buttons, and overall comfort or satisfaction. One (1) is

very negative, and five (5) is very positive. The shade of a cell

indicates the frequency of responses, which is also shown

numerically within a cell. Note that 4 (i.e., positive) is the
most frequent response.

6.6 Observations and Subjective Feedback

6.6.1 Feedback on Comfort. Participants rated the use of comfort
on a Likert scale of 1 to 5 (1: very negative, 5: very positive) under
three categories: usability, clicking comfort of the buttons, and the
overall comfort or satisfaction of using the device. Most participants
rated 4, i.e., positive, on all three categories, as shown in Figure
16. The mean scores for usability, clicking comfort, and overall
comfort were 4.0, 3.5, and 4.0. We noted that some participants had
difficulty clicking the secondary (small) button. When we asked,
they mentioned that the two buttons were placed too closely on
the same side. Their suggestions and feedback on improving the
design are presented in Section 6.6 below.

Eight participants reported that they found the device very useful.
Notably, they liked the idea of moving the cursor with three wheels.
Four of them mentioned that they faced difficulties while using
it for the first time. However, they remained confident that their
experience of using the device would improve over time.

6.6.2 Feedback onWheeler Design. Six participants suggested mak-
ing the wheels and buttons smoother to grip the device firmly and
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perform operations more comfortably. Four participants mentioned
that they found it challenging to use the two buttons under the
thumb. They suggested increasing the space between the two but-
tons. On the contrary, two participants suggested that placing the
secondary button on the other side of the device would be more
convenient. One participant wished to switch the modes (between
H-nav and 2d-nav) from the context menu of the secondary button.
Another participant (P9), who had light perception, suggested that
a bright-colored cursor could benefit people with low vision. Two
participants (P6, P8) suggested placing one wheel that moves the
cursor along the X-axis horizontally in order to make it more re-
latable. However, we argue that placing a wheel horizontally will
make it difficult to rotate, thus raising a usability concern.

6.6.3 H-nav vs. 2d-navmode. All of our participants mentioned that
both modes are useful, complementary, and have distinct use cases.
For example, 3 participants who frequently use different software in
MS Office Suite (e.g., Word, PowerPoint, and Excel) for employment
were enthusiastic about H-nav mode. They mentioned that they
would never use a keyboard to navigate ribbon menus in MS Of-
fice Suite. Two other participants mentioned that changing mouse
pointer speed, probing the cursor, and two-tone audio feedback
helped them picture the spatial layout of the desktop. They were
surprised to discover that the ’Window Start’ menu was located
in the bottom-left corner for the first time. P12 provided several
use cases where he must need 2d-nav mode: editing an image and
working with graphical objects in Unity. A very different use case
was echoed in P11’s comment:

“... you know many applications and websites
have ‘blindspots’ wheremy keyboard cannot reach,
and my screen reader does not talk. I think I can
access those blind spots with Wheeler [2d-nav
mode]” .

7 LONG TERM USABILITY OF WHEELER: A

DIARY STUDY

Background. After conducting two studies, the blind author (BA)
of this paper decided to use Wheeler on his laptop for everyday
technology access. BA is a 40-year-old Asian male who runs an
institution that provides IT services to blind and low-vision users.
He is blind by birth and has no light perception. Also, he is a “power”
user and comfortable with multiple screen readers (e.g., JAWS,
NVDA). Although BA does not have a background in computer
programming, he understands how screen readers work.

BA journaled his experience of using Wheeler and met other
(sighted) authors over Zoom (a teleconferencing software) period-
ically, e.g., every two weeks for six months. In each meeting, BA
updates his usage pattern and issues (if any) with the device. Below,
we briefly summarize the findings from these meetings.

Usage ofWheeler. BAmentioned that he uses H-navmode exten-
sively, every day, for his job. For example, he accesses the hierarchi-
cal structures (e.g., ribbon, multi-layer menus) in Word documents,
Excel spreadsheets, and Outlook email clients with H-nav. Therefore,
H-nav works as envisioned.

BA also mentioned how he used 2d-nav recently to overcome
accessibility issues in several scenarios, some of which are shown
in Figure 17:

Scenario 1. When the COVID-19 vaccine was available in his
country, he needed to make a reservation by registering online.
On the registration website, there was a mandatory drop-down
(shown in Figure 17.b.1) to select his identity type (e.g., passport,
birth certificate), which was not reachable to keyboards. Still, he
managed to access it using 2d-navmode. He described that moment
as follows: “No one else was there to help. Everyone was registering for
themselves. But luckily, Wheeler worked!” When we investigated the
website, we found that the drop-down had an incorrect ARIA label,
aria-hidden = “true”, making it hidden from the screen reader
(shown in Figure 17.b.2).

Scenario 2. He could click on the playback speed, seek, and pause
audio in the VLC Media Player app. These buttons have no text
labels and are confusing to navigate with a screen reader (shown
in Figure 17.a).

Scenario 3. He mentioned that inserting and resizing videos in
PowerPoint slides is difficult with keyboard shortcuts, but he found
a workaround with 2d-nav.

Scenario 4.He shared an incident on how he troubleshot a client’s
computer remotely via Zoom screen sharing. His client was unable
to access an image button on their computer. BA asked the client to
grant him remote control permission and then used 2d-nav mode
to click on that button for him. In his comment, “It took some time
to figure out where that button was on the screen. But I found it. It
felt so good!”

Feature Request. BA mentioned that he often explores the spa-
tial layout of an app or website using 2d-nav. However, he found it
“too slow” to move from one element to another, especially when
two elements have a large gap. So, he suggested an option to jump
from one element to another if they are in close proximity. Based
on this request, we implemented 2d-T-nav mode, which teleports
the cursor, as described in Section 3.2. After implementing this
feature, BA mentioned that he enjoys using Wheeler in 2d-T-nav

mode to explore the spatial layout of different apps and teaches
his clients and fellow blind users about the basic layout of popular
apps/websites.

In sum, our findings from the diary study indicate that Wheeler
can substantially improve the non-visual interaction experience for
blind users.

8 DISCUSSION

Our findings show that Wheeler can improve the hierarchical menu
navigation in applications with its H-nav mode and allows blind
users to locate location-known targets in 2D space with its 2d-nav
mode. Here, we discuss the broader implications, limitations, and
future directions of Wheeler.

8.1 Need for a Pointing Device in Non-Visual

Interaction

For sighted users, interacting with a graphical interface using a
mouse is independent of whether individual UI elements contain
underlying textual metadata. However, this is not the case for
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Figure 17: Examples of partially accessible application and website. (a) On the VLC media player in OSX, two image buttons,

Play Next and Play Previous, lack proper labels. As such, the screen reader only reads “button”. (b.1) On a COVID-19 vaccine

registration page, Select Type drop-down list is inaccessible (i.e., hidden) to screen readers because of its incorrect ARIA label,

aria-hidden = “true”, as highlighted by a thick red line in its DOM tree shown in (b.2). (c) A screenshot of a virtual desktop,

which is not accessible to OSX’s native screen reader, VoiceOver.

blind users because screen readers rely on the metadata to gen-
erate audio feedback on the focused element. Therefore, if an ele-
ment does not have sufficient textual metadata (e.g., empty label,

alt-text attributes [20, 30, 61]) or has incorrect attribute value (e.g.,
aria-hidden = “true” to an otherwise visible web element), the
element becomes inaccessible or unreachable to screen readers. Un-
fortunately, these inaccessible UI elements pose a major challenge
for blind users [51], for which they seek sighted assistance (e.g., ask-
ing sighted family members or calling remote sighted agents [44]
in services like AIRA [11], Be My Eyes [6]) or search for a screen
reader plug-in [51]. As indicated in the diary study (Section 7),
the blind author (BA) of this paper often encountered inaccessible
UI elements; he successfully interacted with those elements using
Wheeler with limited or no sighted assistance. This highlights the
need for a pointing device in non-visual interaction and Wheeler’s
potential to fulfill that need.

8.2 An Augmentation to Keyboard and Screen

Reader-based Interaction

While Wheeler provides advantages over traditional non-visual
interaction methods like keyboard and screen readers, its purpose
is to augment the existing methods, not to replace them. A notable
advantage of screen reader-based interaction would appear when
the user knows most shortcuts for navigating an application’s items.
Blind users often rely on application shortcuts, but studies indi-
cate limited shortcut knowledge even among experienced blind
users [35]. When shortcuts are unknown, unavailable, or hard to re-
member, Wheeler still facilitates faster hierarchy navigation. Thus,
Wheeler complements existing methods without aiming to replace
them, offering a proficient alternative for efficient non-visual inter-
action.

8.3 Increasing Productivity of Blind Users

For blind users, the inefficiency in operating commonly used office
software is a major hindrance to employment [21]. To attain basic
proficiency with productivity software (e.g., Microsoft Office Suite),
blind users typically go through social services and federal- or state-
funded specialized training programs [16]. Their training process
can be summarized as memorizing numerous keyboard shortcuts
and practicing to build muscle memory [19]. Wheeler, as indicated
in our findings, can lessen this burden by making access to multi-
layer menus fast and structured.

8.4 Enabling Technology

Our data suggest that Wheeler can enable mixed-ability, blind-
sighted remote collaboration. For example, a blind user can acquire
the target on a shared screen like a sighted user if the target’s
location is roughly estimated. This is important for blind users
because the increased acceptance of remote work and improved
connectivity software may open new employment opportunities for
them [64]. However, the lack of accessibility to remote collaboration
tools is a known issue [19, 20, 23, 72], which can hinder those
opportunities [45]. Wheeler can offer an alternative to circumvent
these accessibility issues with remote collaboration tools.

Our findings also suggest that Wheeler can enable working with
graphical data, such as editing an image, interacting with online
data visualization tools (e.g., Plotly [9]), and 3Dmodeling with CAD
software. Although employment opportunities in these areas are
increasing, these are largely inaccessible to blind users [63, 65, 67].
Nevertheless, Wheeler-like devices make them workable for blind
users.

8.5 Potential Application in Virtual Reality

Wheeler can be repurposed to be used as an input device in vir-
tual reality (VR). The current input mechanisms in VR are mostly
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limited to handheld controllers and gestures—although gesture-
based control is still in its infancy for platforms such as Oculus.
Handheld controllers, on the other hand, cannot provide any 3D
orientation feedback but provide basic haptics support for events
such as boundary hits. Additionally, there is limited keyboard ac-
cess and no notion of screen readers in any VR platform, making
VR an exclusive domain to sighted users. With wheeler’s 2d-nav
mode, accompanied by its feedback mechanism, navigation in the
3D world could be possible for blind users— especially in menu
navigation, which is mostly 2D yet lacks any keyboard or screen
reader support, something blind users get on desktop platforms
such as Windows.

8.6 Potential Application in Data Visualization

Our study findings indicate that H-nav mode relies on blind users’
ability to conceptualize and navigate hierarchical structures without
visual cues. This mental mapping enables them to systematically
anticipate and traverse different information levels, similar to how
sighted users might visually scan and interpret hierarchical data
representations. We believe any data visualization that can be rep-
resented as a graph or tree-like form can be traversed conveniently
using Wheeler’s three wheels. For instance, if the visualization is
encoded as a graph, one way to create a hierarchy is to consider the
current node as the root, and nodes one hop away from the root are
at level 1, two hops away are at level 2, and so on. Thus, Wheeler’s
3-wheel architecture provides a versatile framework for navigating
various hierarchical data visualizations such as dendrograms, social
networks, and organizational charts.

In dendrograms used for hierarchical clustering, Wheel-1 would
allow users to select the root cluster, while Wheel-2 would facil-
itate exploration of immediate clusters and Wheel-3 wouls help
dive deeper into sub-clusters. For social networks, Wheeler would
enable users to start from a central node (e.g., an influencer or or-
ganization) using Wheel-1. Wheel-2 then would allow exploration
of immediate connections (e.g., friends or followers), while Wheel-3

would extend exploration to secondary connections, providing in-
sights into community structures and information flow across the
network. In organizational charts, users can begin with the CEO
or top-level executive using Wheel-1. Wheel-2 then would enable
exploration of direct reports and major departments, while Wheel-3
would allow deeper dives into teams and divisions within each
department. This structured navigation aids in understanding re-
porting relationships, departmental structures, and organizational
hierarchies.

8.7 Limitations and Future Work

The findings from our diary study (Sec. 7) indicate Wheeler’s room
for improvement, particularly regarding hardware design, such as
the placement of the two side buttons. In future work, we plan to
experiment with different placements and sizes of the primary and
secondary buttons. Another limitation of Wheeler’s 2d-nav mode
is the assumption that users have prior knowledge of their desired
target location within the UI, either from experience or from a
sighted confederate. One potential solution is integrating an AI
assistant capable of receiving spoken instructions from the user
and providing tentative screen coordinates for the desired target.

In the future, we plan to write a separate device driver for
Wheeler to broadcast rotational events system-wide so that ap-
plications can consume these events directly, similar to standard
mouse/keyboard events, thus augmenting the input space for non-
visual interaction. This can also eliminate writing the application-
specific adaptation for rotational inputs. Moreover, we plan to
integrate Wheeler with an open-source screen reader, such as
NVDA [55], to make the transition between keyboard-based in-
teraction to Wheeler-based interaction seamless. Finally, we will
make Wheeler prototype open source by releasing the 3D design,
schematic diagram, and part numbers of various electrical compo-
nents for wide adoption.

9 CONCLUSION

This paper presents a three-wheel mouse-shaped stationary input
device, Wheeler, to make non-visual interaction efficient and versa-
tile. This device adopts a rotational input paradigm that prior work
has found helpful for blind users. Informed by prior work, the de-
sign of Wheeler is refined by participatory design sessions and the
experience of a blind co-author in this paper. The prototype is made
of 3D-printed components and commercially available electrical
components. Wheeler is evaluated by 12 blind participants in two
user studies. The study findings suggest that Wheeler can take up
to 40% less time navigating dense, hierarchical UI structures. More-
over, blind participants can maneuver the mouse cursor to acquire
a target on the screen given its location. Further, Wheeler is easy
to use and learn, and users’ performance can improve over time. A
diary study with our blind co-author indicates that the device works
as envisioned by large. It can increase the productivity of blind users
in using office software and offer several serendipitous benefits, in-
cluding remote collaboration, interacting with partially inaccessible
applications and websites, and promoting independence.
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A WHEELER’S DESIGN ITERATIONS

As mentioned in Section 3, the version of Wheeler we presented
in this paper has been a result of three major design iterations.
In each iteration, we mirrored the workshop’s setup. We briefed
participants on the device’s objective, notes from previous meetings,
and the device’s current status. We handed them the in-progress
prototype and asked them to navigate the Windows Directory Tree
on a computer, first with a screen reader, and then with the device.

Toward the end of the session, we discussed any issues observed
and queried the reasoning behind their actions. We also asked for
general feedback about the device’s current state. We then prior-
itized the next steps based on the gathered information, making
adjustments to the design and adding/removing electronic compo-
nents.

In the first iteration, we incorporated 3 wheels, 2 buttons, and
a buzzer into the base device. In the second iteration, we added
haptic feedback and replaced the Arduino Uno with the Arduino
Micro, as the former could not issue a mouse hardware event. In
the 3rd iteration, we included the 2d-nav mode, a toggle event to
switch between H-nav and 2d-nav modes, text-to-speech readout of
the mouse cursor’s (x,y) location upon pressing the CTRL button on
the keyboard, and a two-tone audible to indicate the mouse cursor’s
current position relative to width and height of the screen.

B MOVEMENT TIME MATHEMATICAL

FORMULATIONS

B.1 Acquiring Targets Using the Shortest

Distance

Let us consider the scenario presented in Figure 18; where the user
is trying to move the cursor from the source to the target object.
Here, A is the distance between the source and the target, and W is
the width of the target. Jagacinski et al. [36] presented a derivation
of the required time for such a move using the first-order lag system
of Control Theory. Here is what the formulation looks like:

𝑡 =
ln (2)
𝑘

log2 (
2𝐴
𝑊
) (1)

Where, k is called the gain factor, which determines the speed
at which the target is acquired [36].

Equation 1 is indeed another formulation of the Fitts’ law [28].
According to Fitts’ law:

𝑡 = 𝑎 + 𝑏 ∗ 𝐼𝐷 (2)
Where ID stands for Index of Difficulty and,

𝐼𝐷 = log2 (
2𝐴
𝑊
) (3)

B.2 Acquiring Targets Using Rectilinear

Distances

In Wheeler’s 2d-nav mode, users use rectilinear movements to go
from source (𝑋0, 𝑌0) to target (𝑋1, 𝑌1). For example, In Figure 19,
the users would travel the distances𝐴1 and then𝐴2, instead of only
𝐴 like sighted users usually do. In this section, we try to formulate
an equation for movement time using such movements.

In this scenario, we can derive the movement times for 𝐴1 and
𝐴2 separately using Equation 1. If 𝑡1 and 𝑡2 unit times are needed
for traversing distances 𝐴1 and 𝐴2 respectively, we can write:

𝑡1 =
ln (2)
𝑘

log2 (
2𝐴1
𝑊
) (4)

and,

𝑡2 =
ln (2)
𝑘

log2 (
2𝐴2
𝑊
) (5)

If total movement time in this case is 𝑇𝑟𝑒𝑐 , then,

𝑇𝑟𝑒𝑐 = 𝑡1 + 𝑡2

=
ln (2)
𝑘
[log2 (

2𝐴1
𝑊
) + log2 (

2𝐴2
𝑊
)]

=
ln (2)
𝑘
[log2 (

4𝐴1𝐴2
𝑊 2 )]

(6)

Where, 𝐴1 = |𝑋1 − 𝑋0 | and 𝐴2 = |𝑌1 − 𝑌0 |.

B.3 Rectilinear Vs. Shortest Path Travel

In Figure 19, If path 𝐴 was taken instead of {𝐴1, 𝐴2} to reach the
target, then the movement time 𝑇𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 would be:

𝑇𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 =
ln (2)
𝑘

log2 (
2𝐴
𝑊
) (7)
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Figure 19: Acquiring Targets Using Rectilinear

Movements.

From Figure 19, it is easy to see that 𝑇𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 is smaller than
𝑇𝑟𝑒𝑐 . The following calculation shows the difference between 𝑇𝑟𝑒𝑐
and 𝑇𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 :

Δ𝑇 = 𝑇𝑟𝑒𝑐 −𝑇𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡

=
ln (2)
𝑘
[log2 (

4𝐴1 ∗𝐴2
𝑊 2 )] − ln (2)

𝑘
log2 (

2𝐴
𝑊
)

=
ln (2)
𝑘
[log2 (

4𝐴1 ∗𝐴2
𝑊 2 ) − log2 (

2𝐴
𝑊
)]

=
ln (2)
𝑘
[log2 (

4𝐴1 ∗𝐴2
𝑊 2 ∗ 𝑊

2𝐴
)]

=
ln (2)
𝑘
[log2 (

2𝐴1 ∗𝐴2
𝐴𝑊

)]

(8)

Using the Pythagorean theorem, 𝐴 can be written in terms of
𝐴1 and 𝐴2 as follows:

√︃
𝐴2
1 +𝐴

2
2. Therefore, Eq. 8 can be written as

below:

Δ𝑇 = 𝑇𝑟𝑒𝑐 −𝑇𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡

=
ln (2)
𝑘
[log2 (

𝐴1 ∗𝐴2
𝐴

∗ 2
𝑊
)]

=
ln (2)
𝑘
[log2 (

𝐴1 ∗𝐴2√︃
𝐴2
1 +𝐴

2
2

∗ 2
𝑊
)]

=
ln (2)
𝑘
[log2 (

1√︃
1
𝐴2
1
+ 1

𝐴2
2

∗ 2
𝑊
)]

(9)

One can interpret the above Eq. 9 as follows:
• If 𝐴1 → 0 or 𝐴2 → 0, i.e., both the source and the target are
parallel to X- or Y-axis, the difference in time for rectilinear
and shortest movements reduces to zero (Δ𝑇 → 0).
• If 𝐴1 → 𝐴2 or 𝐴2 → 𝐴1, indicating the angle between X-
or Y-axis and the line connecting the source and the target
becomes 45 degrees, Δ𝑇 reaches its maximum value, i.e.,
ln (2)
𝑘
[log2 (

𝐴1√
2
∗ 2
𝑊
)] or ln (2)

𝑘
[log2 (

𝐴2√
2
∗ 2
𝑊
)].

• If one component is significantly larger than other, 𝐴1 >>

𝐴2, Δ𝑇 depends on the smaller component
(Δ𝑇 ≈ ln (2)

𝑘
[log2 (𝐴2 ∗ 2

𝑊
)], assuming 1

𝐴2
1
→ 0).

B.4 Rectilinear Travel at different Speeds

Wheeler has the option to modify the cursor speed (via the third
wheel) in 2d-nav mode. This would enable the users to speed up
the movements in rectilinear motions if they want to. If the user
speeds up the cursor movement by a factor of 𝑠 (assuming s>1),
then the effective distances they have to travel become 𝐴1

𝑠 and 𝐴2
𝑠

instead of 𝐴1 and 𝐴2 respectively. If we call the movement time
𝑇𝑟𝑒𝑐−𝑠𝑝𝑒𝑒𝑑 this time, Equation 6 becomes:

𝑇𝑟𝑒𝑐−𝑠𝑝𝑒𝑒𝑑 =
ln (2)
𝑘
[log2 (

2𝐴1
𝑠

𝑊
) + log2 (

2𝐴2
𝑠

𝑊
)]

=
ln (2)
𝑘
[log2 (

2𝐴1
𝑊𝑠
) + log2 (

2𝐴2
𝑊𝑠
)]

=
ln (2)
𝑘
[log2 (

4𝐴1𝐴2
𝑊 2𝑠2

)]

(10)

Now, let us consider that we pick 𝑠 in a way so that 𝑇𝑟𝑒𝑐−𝑠𝑝𝑒𝑒𝑑
and 𝑇𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 becomes equal. In other words, we want to see how
much we have to speed up (s) the movement to achieve the shortest
path (sighted) performance from the rectilinear path.

Hence,

𝑇𝑟𝑒𝑐−𝑠𝑝𝑒𝑒𝑑 = 𝑇𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡

=⇒ ln (2)
𝑘
[log2 (

4𝐴1𝐴2
𝑊 2𝑠2

) = ln (2)
𝑘

log2 (
2𝐴
𝑊
)

=⇒ 4𝐴1𝐴2
𝑊 2𝑠2

=
2𝐴
𝑊

=⇒ 𝐴𝑠2𝑊 = 2𝐴1𝐴2

=⇒ 𝑠 =

√︂
2𝐴1𝐴2
𝐴𝑊

(11)
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Where,
𝐴1 = |𝑋1 − 𝑋0 |, 𝐴2 = |𝑌1 − 𝑌0 |, and 𝐴 =

√︁
(𝑋1 − 𝑋0)2 + (𝑌1 − 𝑌0)2

Thus, if we have :
(1) the source (𝑋0, 𝑌0) and the target (𝑋1, 𝑌1) coordinates, and
(2) the width of the target (W),
we can determine how much speed increment in rectilinear

movements is necessary to achieve the same performance as that
of taking the shortest path.

When s<1: s=1 means we expect the speed in rectilinear move-
ments to be the same as the shortest path movement. However, with
some users, the conditions s=1 or s>1 may not be achievable. In
Wheeler’s 2d-navmode, the third wheel also allows the users to slow
down the cursor i.e., activate a scenario where s<1. When they do
so, the movement time will be higher as indicated by Equation 10.
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