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ABSTRACT

The importance of mobile apps in people’s lives places a respon-
sibility on app developers to ensure that their software is reliable.
Despite the widespread use of mobile analytics tools to support this
task, there is limited understanding of their use in industrial app
development contexts. This paper reports on industry experiences
of using mobile analytics tools through a case study based approach.
The key findings highlight four main factors that affect developers’
practice and identify ways of improving the effectiveness of mobile
analytics to help developers make their apps more reliable.
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1 INTRODUCTION

Billions of people use mobile apps on two main mobile platforms,
Google Android and Apple iOS, and their related operating sys-
tems. These users rely on these apps for many aspects of their lives,
including managing their finances, communicating, tracking their
health and well-being, and education. The importance of mobile
apps in the lives of so many people means app developers should
ensure their software is of high quality, particularly in terms of reli-
ability. This requires that they pay particular attention to problems
that can cause their apps to crash or become nonresponsive [1] and
users stop using apps that crash [11, 17].

Failures in production software are often transient [10] and log-
ging failures in production can help devs address them [5]. While
some quality issues can be identified through pre-release testing,
many factors limit developers’ ability to assure the reliability of
their app when deployed on users’ devices; e.g., one limitation is the
paucity of input and usage conditions that developers can establish,
create, or recreate (even if they wanted to do so).
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Figure 1: Mobile Analytics in Context

Therefore, measurements must be sourced from the field and
mobile analytics has become an established and endemic approach
to do this. App developers choose to incorporate mobile analytics
into their apps, and most apps on Google Play include at least one in-
app mobile analytics SDK; Firebase is the most popular and installed
in over 70% of apps [2]. And yet, the accuracy and effectiveness of
these analytics SDKs and tools for mobile app development teams
is not well understood. Even recent research, e.g. when Zhu et al.
studied app stores from a software engineering perspective, left
software analytics as an area for future work [6].

A typical mobile app comprises the platform APIs, SDKs, and
the app’s source code, with each of these having a primary owner
who is responsible for maintaining them. As shown in Figure 1,
when an app moves from development to deployment and use, the
main actors involved change from developers to owners of the app
store and finally to users of the application. App developers often
update the app and make new releases, here numbered 1, 2, ..., n,
which percolate via the app store’s approval and rollout processes
and are eventually deployed on some of the userbase’s devices [4].

When developers release apps to the app store platform analytics
records activity generated by pre-launch reports; and when apps
are installed on user’s devices it tracks the installation, usage, and
eventual uninstallation. In-app analytics can track usage of the app;
and often does so in greater detail than the platform-level analytics.

This study discusses the use of mobile analytics tools in app
development projects based on the experience of the lead author and
doctoral research [14]. Through observations from various projects,
it offers case studies that illustrate industrial practices, highlighting
mobile analytics’ strengths, weaknesses, and challenges, along with
suggestions for enhancement.

2 METHODOLOGY

The study focused on mobile analytics tools within industry. It
adopted a ’knowledge-seeking’ approach to understand their use
and a ’solution-seeking’ perspective to explore enhancements in
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their functionality and in the ways in which these tools are used
by app developers in real-world contexts [20, p. 11-4].

This research is intended to augment and complement more
granular research such as investigations of various characteristics
of mobile SDKs in terms of auditing and privacy [3] and security [7],
as these studies did not investigate the experience of developers
using analytics tools in practice.

Case studies were the primary mechanism for this research and
were chosen because they have proven to be an effective method
to understand software qualities and are recommended where the
research includes multiple data sources. Also, case studies are well
suited for exploratory research, for which they can offer insights
not available with other approaches, especially when multiple data
sources are involved and the investigator has limited control over
the research context [19, pp. 132-133].

Case studies were selected using ‘purposive sampling’ as de-
scribed by Flick [8, pp. 180-182]. Of necessity, the sample used
in this research was opportunistic, which Flick described as “con-
venience” sampling. As Flick wryly noted: “the problem of access
may be one of the crucial barriers” [p. 182], which applies partic-
ularly when seeking access to sensitive data and information on
software failures for commercial mobile apps. Organisations and
app development teams need to be willing to have the guts of their
development practices investigated and published.

Data used to develop the case studies included development arte-
facts (e.g. source code, output of software tools, bugs, and issues)
from the different mobile app project teams, pre-study interviews
with key members of each team, direct communication with devel-
opers, and analytics tools together with associated analysis artefacts.
When gathering these data the lead author had different roles in
each app development team, namely as: a consultant and/or an
embedded developer (an active participant integrated into the project
team), a coach (to the app developers), an interviewer (of develop-
ment teams to learn about their practices and results) and an analyst
/ observer (performing static analysis of code repositories).

The analysis of the data to develop the case studies and draw
out key findings used a combination of techniques which can be
broadly categorised into sense-making, sense-building, feedback
mechanisms, and action research, as summarised below:

¢ ‘Sense-making’ methods focused on understanding current
practice. It includes inductive analysis of different forms
of data to identify areas of interest - beacon finding. These
findings were augmented by drilling down - further data col-
lection & analysis to understand areas of interest in context.

o ‘Sense-building’ methods build on - and test - insights found
through sense-making. The research methods included micro-
experiments performed on local apps, FOSS analytics exper-
iments, & across-case comparisons.

e ‘Feedback mechanisms’ were used to support and verify
the other analyses, comparing the observations with other
evidence, and / or asking developers for clarifications or
reflections.

e ‘Action research’ methods were primarily concerned with
understanding the use of analytics in context and evaluating
the effect of improvements in the use of analytics, in terms
of adoption into their use & into performance of the apps.
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Table 1 summarises the mobile analytics tool case studies and
the associated research methods. The findings are illustrated using
four representative app case studies: Catrobat: a popular visual pro-
gramming development environment, Kiwix: providing Wikipedia
and other offline content to 10 million people globally, Moonpig a
commercial e-commerce app [16], and finally, a video conferencing
app with a userbase of millions, identified as C1 here.

3 FINDINGS

Limitations inherent in mobile analytics tools: The data comes
from other people’s apps, devices, and usage, and the data varies
accordingly. Variety brings complexity and outliers. To evaluate
the tools, the data must be representative of production; this is
hard to establish a priori so they are challenging to evaluate outside
production.

Four key themes: emerged that affected how developers use
mobile analytics tools in practice. They are:

Design: encompassing SDK design and developer experience.
Some SDKs also collect meta-data that helps developers find and fix
the cause of failures - mobile analytics SDKs collect such data by
design. There are numerous engineering challenges for developers
of mobile analytics SDKs. E.g. focus on developer experience is
vital for providers of mobile analytics. Iteratively ! innovated by
providing tools aimed at improving the coherence and consistency
of mobile analytics. The choice of programming framework can
have a major effect on the collection and reporting of failures. For
example, the React Native UI framework encapsulates failures to
the extent that the mobile platform (Android) did not record them.

Fitness-for-purpose: mobile analytics products need to pro-
vide a good product fit for app developers, including providing
actionable reports and integration into developer workflows. Pro-
grammatic access to analytics outputs is particularly important
for large organisations and development teams. Android Vitals,
while ubiquitous, only helps developers once their apps generate
sufficient data to pass unpublished thresholds within the product.

Utility: includes the efficacy of the mobile analytics tool(s), the
benefits of combining tools, and bug-localisation. Mobile analyt-
ics needs to provide value to developers in terms of finding and
addressing reliability issues.

Dependability: considers the extent to which developers can
rely on a mobile-analytics service and/or the underlying tool; and
even a tool with few flaws cannot compensate for a heavily flawed
service. There are numerous flaws in the mobile analytics tools and
services; 17 were identified in Google Play Console with Android
Vitals [14, p.207], the most studied of the offerings. Link rot and
testability also adversely affect the dependability of the offerings.

We also identified cross-cutting issues, including fidelity and
ethical considerations associated with the use of mobile analytics.

Flaws, quirks, and limitations were found in the mobile ana-
lytics tools used by the various apps. For example, reports from
Microsoft’s App Center, used by C1’s app, often showed dates up
to several days in the future 2 which made reported issues difficult
to pinpoint.

!Since acquired by Amplitude
2Microsoft App Center accepts logs from 25 days ago to 3 days future,
see learn.microsoft.com/en-us/appcenter/diagnostics/troubleshooting.

This version is a pre-print. For the definitive Version of Record, please refer to the ACM Digital Library.
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Case Study Role of Researcher

Main Research Method

Research Opportunities Research Purpose

Firebase Analytics Interviewer

Fabric Crashlytics & Firebase Crashlytics ~ Analyst/Observer

Microsoft App Center Analyst/Observer Sense-making
Sentry Analyst/Observer Sense-making
Sentry Embedded developer Hybrid/Mixed
PostHog Embedded developer Hybrid/Mixed
Google Play Console with Android Vitals ~ Analyst/Observer Ask the tool devs
Iteratively Consultant Ask the tool devs

Iteratively->Amplitude
Early Experience Program

Ask the app devs

Sense-making

Interviewer & Informal  Ask the tool devs

Insights into maintaining re-  Obtain expert users’ views of the most
liable apps and SDKs popular mobile analytics tool

Compare several Google An-  Triangulation

alytics tools

Crash & Error analytics Blue-chip alternative

Mobile analytics for React Increase variety and coverage of tools
Mobile cross-platform apps

Mobile Analytics for iOS Ma-  Additional mobile platform

chine Learning SDK
Mobile Analytics for iOS Ma-  Additional mobile platform; comparison
chine Learning SDK with Sentry

Mutual symbiotic cross- Learn about the providers’ perspectives
pollination

‘Behind the curtain’ Discover state of the art approach to im-
proving the rigour of mobile analytics
Explore state of the art novel  Insights into improving the tools

tool

Table 1: Tool-centric cases: the research perspective

A more complete example are the 17 flaws found in Android
Vitals and Google Play Console via the 4 illustrative apps. 14 are
detailed in [12, 13, 16]. Table 2 lists all 17 for quick reference.

Despite flaws, all app developers accepted mobile analytics as
useful and necessary even if some ignored them for the most part.
Perhaps this is unsurprising given many people may consider good
health to be useful, and yet ignore the state of their health?

One of the app case studies, Moonpig, exemplified the benefits
of active engagement where they were able to consistently achieve
and maintain high reliability of their app. Even when reliability de-
creased, the development team managed improvements and timed
their releases to balance the overall end-user experience for their
overall userbase [16, pp. 29-30]. Google Play does not allow de-
velopers to filter who receives newer releases, so the devs held off
from releasing a new release to the most affected subset of users
(a minority who were on newer releases of Android at the time)
rather than disrupt the overall Android userbase.

Commercial teams generally incorporate at least one in-app
mobile analytics SDK. Opensource teams tend not to; Catrobat used
to before abandoning Crashlytics to protect the privacy of end users.
Privacy may be a ‘hidden’ consideration in the choice of in-app
mobile analytics and well worth further study.

Charges are a more visible consideration, as illustrated in a recent
project in 2023 where default instrumentation of lifecycle events led
to a monthly charge of between £2,000 and £3,000 by the commercial
service. This charge occurred even though the Machine Learning
SDK that incorporated this mobile analytics service was only being
used by a few 10’s of users out of an active user population of
10,000’s [15]. The intended behaviour was to only record events
when the Machine Learning SDK was in-use; however, the mobile
analytics SDK’s default setting meant it also recorded lifecycle
events for the entire active user population 3.

3Thankfully, the service credited the first month’s charge and helped the devs disable
the recording of lifecycle events.

4 DISCUSSION

To date, four complementary directions of improvement have been
identified for mobile analytics tools.

(1) Fixing flaws in the tools, including those listed in Table 2
for Google’s Android Vitals, would help to increase the de-
pendability and encourage evaluation of the various mobile
analytics services. An appetite to fix, test, and monitor such
flaws is key to addressing them.

(2) Improving integration into other tools and into developer
workflows becomes more important as the business grows.
Integration also facilitates analysis and knowledge dissem-
ination within a larger team, rather than requiring each
developed to access the mobile analytics service. Microsoft’s
App Center’s APIs demonstrate integration is possible 4.

(3) Improving auditability and verifiability: e.g. providing SDKs

and analytics as opensource and open cross-tool benchmarks.

Crashprobe ® provided this service for several years, similar

work should be viable to resurrect.

Improving analytics capabilities: The ability to search and

filter results varies significantly between tools. Recent work

in 2023 with PostHog’s HogQL helped identify and diagnose

a production issue within hours and demonstrates such ca-

pabilities are feasible; sadly, other tools lack any such facility

which limits analysis from a practical perspective.

—~
N
=

Ownership of the collected data is a key concern, as is determin-
ing who has permission to use various aspects of the data.

4.1 Industrial implications of this research

For mobile analytic tool providers: Apply the four directions of
improvements identified in the above discussion; and encourage
public research and auditing of your service(s).

For app developers: One of the key insights from the work
was the importance of development teams continuing to actively
engage with mobile analytics on an ongoing basis. Moonpig’s en-
gineering team was able to achieve excellent results throughout

40penapiappcenter.ms/
5crashprobe.com/ios

This version is a pre-print. For the definitive Version of Record, please refer to the ACM Digital Library.
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ID Flaw Consequences

01 Testing discouraged Limits investigation into behaviours and their impacts.

02 Negative populations Nonsensical and therefore untrustworthy statistics.

03 Repeated graphs Poor UX, waste of space (waste of real estate).

04 Gaps in the data ‘Flying blind’, loss of confidence in the service.

05 Inconsistent data ranges for some reports Poor UX, confusing, may lead to incorrect/flawed decisions.

06 Missing URL parameters
07 No updates for 10+ days

Results incorrectly filtered.
‘Flying blind’, loss of confidence in the service.

08 Incorrect ranges in reports Off-by-one errors.

09 Unexplained negative headline rate E.g. the combination of new users acquired and lost imply a subzero userbase.

10 Poor grouping of clusters Inaccurate summaries, rank of failures skewed, suboptimal prioritisation.

11 No Service problem-reporting Lack of transparency of historical service outages, etc.

12 Lack of reports (despite usage) Unusable analytics for low to mid range usage by end users, ‘Flying blind’ after take-off.

13 Second country’s data conflated with that of the first Misleading report, poor UX.

14 10x mismatch with crashlytics Lack of trust in at least one of the mobile analytics tools.

15 Incorrect date for last update Misleading developer experience, loss of trust in the service.

16 Identical crash clusters in the paged list of ranked results ~ Adversely affects counts of matching crash clusters, confusing.

17 Stale data in some graphs Data should be fresh and recent in each of the reports for the ‘last’ so many days e.g. ‘Last 7 days’.

Table 2: Flaws discovered in Google Play Console with Android Vitals, based on [14, p.208, Table 8.1]

the case study. Hackathons boosted reliability for the Kiwix and
Catrobat apps for as long as the development team paid attention
to the problems reported by mobile analytics. However, as interest
waned poor reliability returned, hence, to provide highly reliable
apps developers need to actively use mobile analytics.

4.2 What challenges remain?

One of the hardest challenges in this area of research is obtain-
ing access and then permission to publish results gleaned from
commercial app development teams and their companies. This is
particularly true, as studying the reliability and stability of mobile
apps may lead to an intense focus on what goes wrong with those
apps in the field for end users. Companies, particularly those with
legal and/or compliance departments, sometimes prevent publi-
cation. One of our case studies terminated the case study shortly
before listing for an Initial Public Offering (IPO). Similarly, Google’s
product and engineering teams for Android Vitals were prevented
by their policies and practices from providing updates on the flaws
that were shared with them. These restrictions make such research
particularly challenging and may be a key reason why so little
research has been done or published on the accuracy and effec-
tiveness of mobile analytics for mobile app development teams. Of
note: secrecy in industry can lead to longer-term problems (e.g. the
British Post Office Horizon system cover-up) [18].

5 CONCLUSION

Mobile analytics tools are in widespread use by mobile app and SDK
developers. Implicitly, they depend on the results being trustworthy.
Although these tools are useful, many have flaws that may limit
their utility and dependability. This research, grounded in industry,
explores a variety of these tools with the aim of encouraging re-
search and improvements. Investigating the effectiveness of these
tools helps developers and, indirectly, their users. In turn, as more
is known about the behaviours, limitations, and flaws of the tools,
there are opportunities to improve these tools and how developers
learn how to use them. Notably, Google now offers online training
for Google Play Console, Android Vitals, and Prelaunch reports [9].
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