
SpikeGS: 3D Gaussian Splatting from Spike Streams with
High-Speed Camera Motion

Jiyuan Zhang
Peking University, Beijing, China

jyzhang@stu.pku.edu.cn

Kang Chen
Wuhan University, Beijing, China

ck@stu.pku.edu.cn

Shiyan Chen
Peking University, Beijing, China

2001212818@stu.pku.edu.cn

Yajing Zheng∗
Peking University, Beijing, China

yj.zheng@pku.edu.cn

Tiejun Huang
Peking University, Beijing, China

tjhuang@pku.edu.cn

Zhaofei Yu∗
Peking University, Beijing, China

yuzf12@pku.edu.cn

ABSTRACT
Novel View Synthesis plays a crucial role by generating new 2D ren-
derings from multi-view images of 3D scenes. However, capturing
high-speed scenes with conventional cameras often leads to motion
blur, hindering the effectiveness of 3D reconstruction. To address
this challenge, high-frame-rate dense 3D reconstruction emerges as
a vital technique, enabling detailed and accurate modeling of real-
world objects or scenes in various fields, including Virtual Reality or
embodied AI. Spike cameras, a novel type of neuromorphic sensor,
continuously record scenes with an ultra-high temporal resolution,
showing potential for accurate 3D reconstruction. Despite their
promise, existing approaches, such as applying Neural Radiance
Fields (NeRF) to spike cameras, encounter challenges due to the
time-consuming rendering process. To address this issue, we make
the first attempt to introduce the 3D Gaussian Splatting (3DGS) into
spike cameras in high-speed capture, providing 3DGS as dense and
continuous clues of views, then constructing SpikeGS. Specifically,
to train SpikeGS, we establish computational equations between
the rendering process of 3DGS and the processes of instantaneous
imaging and exposing-like imaging of the continuous spike stream.
Besides, we build a very lightweight but effective mapping process
from spikes to instant images to support training. Furthermore, we
introduced a new spike-based 3D rendering dataset for validation.
Extensive experiments have demonstrated our method possesses
the high quality of novel view rendering, proving the tremendous
potential of spike cameras in modeling 3D scenes.

KEYWORDS
View Synthesis, Dense 3D reconstruction, Spike Camera, Gaussian
Splatting

1 INTRODUCTION
Novel View Synthesis (NVS) involves the generation of new, unseen
2D renderings of a viewpoint from a sequence of multi-view images
of a given 3D scene. This task holds significant importance in the
realm of 3D scene reconstruction topic, playing a crucial role in
computer vision and imaging research. The introduction of Neural
Radiance Fields (NeRF) [24] has particularly drawn attention to this
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Figure 1: Illustration of spike-based Novel View Synthe-
sis (NVS). Spike cameras, with ultra-high-speed continuous
imaging capability, capture dense views and overcome the
blurring effects of exposure imaging. We make the first step
to present Spike-based Gaussian Splatting (SpikeGS), proving
the potential of spike cameras in real-time 3D Imaging.

field. NeRF combines implicit neural representations with volume
rendering techniques, paving the way for innovative approaches in
NVS. In recent years, there have been remarkable developments in
NeRF-related technologies, including enhanced rendering methods
for higher scene quality [33, 37], strategies tailored for handling
more complex [22] and dynamic scenes [7, 27], and techniques
for image deblurring [20]. NeRF learns the continuous volumetric
density and color that implicitly represents scenes by training a
Multi-Layer Perception (MLP) network. However, rendering a new
viewpoint still requires a great amount of sampling and integration
through MLP, imposing limitations on rendering speed.

Why 3DGS standing out? Recently, 3D Gaussian Splatting
(3DGS) [10] has been proposed to achieve real-time render speed
and more reliable performance. Different from NeRF which models
scenes implicitly, 3DGS represents scenes explicitly with a series
of 3D Gaussians, which is initialized by Structure-from-Motion
(SfM) [32]. Each Gaussian is parameterized by the mean position,
the full 3D covariance matrix, the opacity, and its color. 3DGS
projects 3D Gaussians to the 2D image plane with the differentiable
Gaussian rasterization, which makes it able to be optimized by
gradients of 3D Gaussians. It achieves very short training time and
rendering speed and possesses great potential on NVS.
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Degradation of 3DGS with camera motion. Despite the re-
markable efficacy demonstrated by 3DGS methodologies, their per-
formance encounters inherent limitations imposed by the proce-
dural characteristics of traditional exposure-based photo capturing.
The conventional cameras, predicated by discrete exposure mech-
anisms, capture each frame within a predetermined temporal ex-
posure window. This paradigm introduces a significant constraint
when the image sequence intended for training 3DGS is subjected
to blurring attributable to the high-velocity capture process. Such
conditions lead to two profound detriments of the 3DGS framework.
Firstly, the prerequisite quality of the initial point cloud essential
for 3DGS is severely compromised. Training high-quality 3D Gaus-
sians requires accurate assumptions about camera poses, which
is difficult to achieve in some real-world scenarios. Secondly, the
blurry images would affect optimizing the covariance matrix of the
3D Gaussians [14]. Moreover, the intrinsic interval between succes-
sive frames in traditional cameras entails a temporal void during
which no visual information is captured. This hiatus in data acqui-
sition may result in the omission of pivotal viewpoint information
for scenes demanding dense perspective sampling for high-grade
rendering, thereby adversely affecting the integrity of novel view
synthesis. If we can accurately capture dense and continuous views,
the performance of 3D reconstruction may make progress.

Introducing spike cameras for 3D reconstruction. The spike
camera represents a novel class of neuromorphic visual sensors,
boasting advantages such as ultra-high temporal resolution and a
higher dynamic range. Inspired by the mechanism of the fovea in
the retinas of primates, each unit on a spike camera asynchronously
and continuously receives photons and accumulates photoelectric
current, immediately emitting a spike when the voltage reaches a
preset threshold. Event cameras [2, 18, 25] are also kind of neuro-
morphic cameras which also possess high temporal resolution. Sev-
eral studies integrate event cameras with NeRF for NVS. However,
events encode the change of light and do not have absolute intensity
information. spike cameras encode the absolute light intensity of
a scene at extremely high speeds, which reduces the significance of
exposure time. This characteristic naturally mitigates the presence
of blur and alleviates the speed requirements for the camera during
the shooting process. Existing studies [43] have proved the tempo-
ral and spatial completeness of spikes in 2D reconstruction. In 3D
scenes, spikes provide a denser and more continuous set of view-
points. We believe that spike cameras hold tremendous potential
for 3D scene reconstruction. Recently, pioneering work has been
carried out with SpikeNeRF [46], demonstrating the feasibility of
using spikes in modeling 3D scenes. However, SpikeNeRF faces
several challenges: first, due to its complex spike simulation pro-
cess, both training and rendering speeds are suboptimal; second, its
training requires noise estimation to be recalibrated for different
scenes, indicating a lack of adaptability; third, it fails to leverage
the high temporal resolution advantage of spike cameras fully. This
paper aims to fully exploit the high-speed and continuous imag-
ing advantages of spiking cameras, constructing a spike-based 3D
Gaussian Splatting model for the first time, and overcoming the
limitations of training 3DGS on traditional RGB sequences.

What attempts we have made for spike-based GS? In this
work, we make the first attempt to introduce the 3D Gaussian Splat-
ting (3DGS) into spike cameras in high-speed capture, providing
3DGS as great supervision signals and constructing SpikeGS.

To be specific, we first build the framework of SpikeGS based
on continuous spikes. we focus on two characteristics to assist the
training of high-quality 3D scenes from the fast-moving spike cam-
era: Instantaneous Imaging from spikes, and Exposing-like Imaging
from spikes. On the one hand, to meet the instantaneous imaging
assumption in 3DGS rendering, we aim to establish a ‘simple but
effective’ mapping from continuous spikes to instant images, which
can offer good signals for supervising the training. On the other
hand, building the equality constraint between spikes and con-
tinuous camera poses better utilizes the continuity of spikes. By
accumulating spikes and rendering images in SpikeGS in series,
the exposure-like imaging equation is achieved for training. Sec-
ondly, we propose a very simple but effective mapping network
Spike-based Instant Mapping (SIM) from spikes to instant images
to support the Instantaneous Imaging, to offer reliable supervision
signals for rendering SpikeGS. SIM is simply composed of sev-
eral convolutional layers and incorporates blind spots to enable
self-supervised training through spike firing frequency. Our SIM
achieves an ultra-lightweight (30K params) design with a very fast
inference speed (>1200FPS). In addition, we generate a high-quality
spike-based 3D dataset for training and validation. Experiments
demonstrate the superior 3D scene reconstruction capabilities of
SpikeGS, proving the potential of spiking cameras in 3D vision. The
contributions of this work can be summarized as follows:

• We make the first attempt to introduce the 3D Gaussian
Splatting (3DGS) with spike cameras in high-speed capture,
and constructing SpikeGS.

• To train SpikeGS efficiently and effectively, we establish
computational equations that relate the rendering process
of 3DGS to the instantaneous imaging and exposure-like
imaging processes of continuous spikes.

• We establish a very lightweight but effective mapping pro-
cess from spikes to instant images to assist training.

• Experiments demonstrate the superior 3D scene reconstruc-
tion capabilities of SpikeGS on existing and our proposed
datasets.

2 RELATEDWORKS
2.1 Spike-based Image Reconstruction
Spike cameras [9], as a novel type of bio-inspired camera, feature
the capability of emitting spike bit stream with extremely low la-
tency, thus endowing spike cameras with substantial advantages in
the realm of the high-speed image reconstruction area. Specifically,
Zhu et al. [45] initially proposes a straightforward spike-based re-
construction method “texture from play-back (TFP)”, which closely
alignswith the imaging principles of conventional cameras. Inspired
by the spike camera’s biological principles, studies like [43, 44] have
employed short-term synaptic plasticity and retinal imaging prin-
ciples to transform the spike stream into a high frame rate video
sequence. However, these approaches often suffer from significant
image quality degradation in real-world scenarios due to inade-
quate modeling of spike noise. Addressing this, Zhao et al. [40]
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Figure 2: Illustration of the principle of spike cameras.

and Zhang et al. [39] leveraged the powerful nonlinear fitting ca-
pabilities of CNNs to train an end-to-end model for converting
the spike stream into sharp images on synthetic datasets. While
supervised methods trained on the synthetic dataset suffer from
significant performance degradation when applied to real-world
scenarios, Chen et al. [4] constructed a self-supervised spike-based
reconstruction framework that jointly predicts optical flow and
grayscale images. Some works focus on color spike cameras [6] or
deblurring reconstruction [5].

2.2 Novel View Synthesis
Neural Radiance Fields Since the introduction of Neural Radi-
ance Fields (NeRF) [24], which represents scenes implicitly and
constructs one differentiable 3D scenes reconstruction framework,
a significant amount of research has been garnered [15, 20, 34]. How-
ever, the quality of 3D scenes reconstructed by NeRF significantly
deteriorates when the input image quality is severely degraded,
such as in cases of motion blur. To this end, recent studies resort to
bio-inspired event cameras, which output events with low temporal
latency. For instance, Klenk et al. [11] utilized an event camera and
established the E-NeRF framework, which can recover sharp scenes
from events under high-speed camera movement. Rudnev et al. [29]
learned the 3D RGB representation using a color event camera. Low
and Lee [19] established a real event generation physical model and
proposed Robust e-NeRF, capable of reconstructing high-quality
scenes from sparse and noisy events produced by non-uniform
moving cameras. Qi et al. [28] leveraged the complementary infor-
mation between event and blurry images. Some studies[1, 21] focus
on constructing dynamic NeRFs, i.e., utilizing events to recover
dynamic scenes with rigid transformations, which is challenging
for traditional cameras owing to the limited frame rates.

3D Gaussian Splatting Kerbl et al. [10] proposes the novel
real-time radiance field rendering approach with the 3D Gaussian
splatting which has recently become a potent tool in computer
graphics and vision. Scenes are represented with 3D Gaussians
whose anisotropic covariance is optimized by gradients. Fu et al. [8]
utilized geometric information and continuity in the video to get rid
of the Structure-from-Motion(SfM) preprocessing. Yu et al. [38] em-
phasizes the importance of frequency constraints in 3DGS to avoid
artifacts when sampling rates vary. Someworks have been proposed
to deal with the blurry images led by camera motion [14, 26, 30, 42].
Deblurring 3DGS [14] consists of a small network predicting the

Exposure-based Camera Spike Camera

Exposure 
Time

Figure 3: An example of why spike cameras possess potential
on 3D scene understanding. The green area indicates the
visible area. Left: The frame-based camera captures discretely
with the exposure window, which may lead to blind areas of
the scene. Right: The spike camera continuously records the
scene, which offers more clues for the complex scene.

covariance offset of 3D Gaussians which represents the blur level
of the image. BAD-Gaussian [42] models the physical process of
motion blur by optimizing the camera trajectory with the exposure
time. BAGS [26] models blur by a Blur Proposal Network (BPN) ca-
pable of predicting kernels and masks that indicate the blur region
and types. Seiskari et al. [30] proposed to utilize the physical image
formation process and velocities to incorporate rolling-shutter and
motion blur effects.

However, limitations persist regarding the speed of camera mo-
tion across different scenes. The exposure photography principle
inherent in traditional cameras also hampers 3DGS-based model
performance. For the first time, we introduce the use of spike cam-
eras, leveraging their advantage of ultra-high-speed continuous
imaging to effectively model 3D scenes.

3 METHOD
3.1 Preliminary

Principle of the Spike Camera. In the spike camera, each pixel
is equipped with a photoreceptor that receives photons at a high
frequency, as shown in fig. 2. The arrival of photons alters the pho-
toelectric signals of the receptor sensor and there is an integrator
continuously accumulating the voltage. This accumulation contin-
ues until the voltage 𝑉 reaches a predefined threshold Θ. At this
moment 𝑡𝑒 , the pixel emits a spike, and the voltage of the integrator
is reset to zero, mathematically formulated as follows:

𝑉 (𝑡) =
∫ 𝑡

𝑡𝑠

𝜎 · 𝐼 (𝑡)𝑑𝑡 modΘ, (1)

where 𝐼 (𝑡) represents the instant light intensity at time 𝑡 , 𝑡𝑠 is the
moment when the previous spike was emitted, and 𝜎 is the constant
photoelectric conversion coefficient. The emitted spike 𝑆 will be
read out at extremely short and uniform intervals 𝜏 (25𝜇s), which
can be formulated as:

𝑆𝑥,𝑦,𝑘 =

{
1, if ∃𝑡 ∈ ((𝑘 − 1)𝜏, 𝑘𝜏], 𝑉𝑥,𝑦 (𝑡) = 0,
0, if ∀𝑡 ∈ ((𝑘 − 1)𝜏, 𝑘𝜏], 𝑉𝑥,𝑦 (𝑡) > 0, (2)

where (𝑥,𝑦) is the pixel coordinate on the imaging plane and 𝑘 is
the 𝑘-th readout of spikes.



, , Jiyuan Zhang, Kang Chen, Shiyan Chen, Yajing Zheng, Tiejun Huang, and Zhaofei Yu

Projection

SfM

Differentiable 
Rasterization

Initialize
Adaptive 

Density Control

3D Gaussian Splatting

Continuous
Spikes

t0
t1

t2
t3

t4

t0 t1 t3 t4

t0 t1 t2 t3 t4

t2

Spike Accumulating

Instant-Mapping from Spikes
Average

Instantaneous Imaging

Exposing-Like Imaging

Self-Supervised
Very-Lightweight

Forward Flow Gradient Flow

Figure 4: The schematic diagram of our SpikeGS. Combining the Instantaneous Imaging and Exposing-Like Imaging in spikes,
together with the self-supervised lightweight mappingmodule from spikes to instant images, SpikeGS can be trained effectively.

3D Gaussian Splatting . 3D Gaussian Splatting stands out as
a sophisticated point-based method for 3D scene reconstruction,
offering notable advancements beyond the capabilities of Neural
Radiance Fields. The core of 3DGS lies in its utilization of a series of
3D Gaussian primitives {G𝑛 |𝑛 = 1, ..., 𝑁 } to encapsulate the scene’s
spatial attributes.

Each Gaussian primitive is anchored by the central point p𝑛 and
shaped by the covariance matrix Σ𝑛 , which shape the Gaussian’s
influence at any selected point v in 3D space, described mathemati-
cally as:

G𝑛 (v) = 𝑒−
1
2 (v−p𝑛 )

𝑇 Σ−1
𝑛 (v−p𝑛 ) . (3)

In the rendering phase, these 3D Gaussians are projected onto a
2D plane along the ray 𝑟 , resulting in 2D Gaussian forms G2𝐷

𝑛 .
Throughout this process, the 3D Gaussians are endowed with addi-
tional properties, such as opacity 𝛼 and color 𝑐 , which play a crucial
role in the rendering equation:

𝐶 (𝑟 ) =
𝑁∑︁
𝑘=1

𝑇𝑖𝛼𝑖c𝑖G2D
𝑖 , 𝑖 = 𝐷𝑘 ,𝑇𝑖 =

𝑖−1∏
𝑗=1

(
1 − 𝛼 𝑗G2D

𝑗

)
, (4)

where 𝐷 represents the index of the 3D Gaussian primitives set
rearranged according to their depth over the rendered tile.

3.2 Analysis on Spike-based Views
Potentials on Continuous Imaging in 3D Scenes. In high-

speed motion settings, using traditional cameras for 3D reconstruc-
tion faces two challenges: 1) insufficient frame rates of traditional
cameras lead to missed details due to occlusion in the scene and the
camera at certain viewpoints; 2) images captured by traditional cam-
eras in high-speed scenarios tend to blur, as in Fig. 3(left). The spike
camera offers a solution by outputting the continuous spikes at
40,000 Hz with minimal latency, which ensures that the full details
of the captured object are visible even under high-speed camera

motion settings, as in Fig. 3(right). Recent spike-based image re-
construction methods [39, 40] have demonstrated the capability to
recover sharp images from spikes at any given timestamp.

3.3 Spike-based Gaussian Splatting
We aim to train a high-quality 3DGS with spikes as supervision.
During recording the scene with the spike camera, spikes are con-
tinuous. Thus, at training, a 3DGS model can be denoted as:

𝐼 (𝑡) = F3dgs (PC, 𝜐 (𝑡)) (5)

where PC is the initial points, 𝜐 (𝑡) is the camera pose at some
timestamp 𝑡 and 𝐼 (𝑡) is the rendered image. Spikes are irregularly
binary data, which can be viewed directly. Then the key problem
in spike-based 3DGS is raised:

how to deal with the supervision for 𝐼 (𝑡) at view 𝜐 (𝑡)?
To supervise the training of continuous 3D scenes based on the

discrete spike stream, a straightforward idea is to construct a virtual
exposure window as in traditional RGB cameras, i.e., accumulating
a large number of spikes and summing up them to get the image.
However, in the experimental setting of this paper, the camera
moves around the scene at extremely high speeds, leading to sig-
nificant motion blur in the images obtained through this virtual
exposure method. In our SpikeGS, we focus on two factors to assist
the training of high-quality 3D scenes from the fast-moving spike
camera: (A) Instantaneous Imaging from spikes, (B) Exposing-like
Imaging from spikes. The SpikeGS framework is shown in Fig. 4.

(A) Instantaneous Imaging from spikes. In 3DGS, it generally
follows the assumption of instantaneous exposure where the images
for supervision should denote the instanct light intensity. To address
this, an idealmappingM from spikes to instant images is essential,
as follows:

𝐼 (𝑡) = M
(
𝑆Γ (𝑡 )

)
, (6)
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where 𝑆Γ (𝑡 ) is a segment of spikes in a time interval Γ around the
𝑡 , and 𝐼 (𝑡) is the instant image at 𝑡 predicted from spikes.

Benefit from the continuity of spikes, plenty of motion and tex-
ture information are contained in the spikes. If the mapping M
can be established, the instant imaging loss can be formulated as
follows to offer SpikeGS supervision as in Fig. 4 for training:

L𝑖𝑛𝑠𝑡𝑎𝑛𝑡 = ∥𝐼 (𝑡) − 𝐼 (𝑡)∥1 . (7)
(B) Exposing-like Imaging from spikes. In our setting, a spike

camera records a 3D scene continuously, indicating that the camera
poses are also non-uniformly continuous. In the time interval Γ(𝑡)
around the view 𝜐 (𝑡) at 𝑡 (the duration of Γ is denoted as 𝑇Γ ), spike
streams and camera poses are both continuous. We aim to build
the mathematical formulation between spikes and camera poses.
For camera poses, 3DGS itself inputs camera poses and outputs the
rendered image at the corresponding view. Assuming the output
of 3DGS is an instant clear image, then the mean of its rendering
results with continuous poses will approximate an exposure-like
blurred image �̂�𝑡 with an exposure time of 𝑇Γ , as follows:

�̂�(𝑡) = 1
𝑇Γ

∫ 𝑡+𝑇Γ/2

𝑡−𝑇Γ/2
F3dgs (PC, 𝜐 (𝑡)). (8)

However, in real-world data capturing, the camera pose cannot be
read out at any timestamps. They are recorded discretely. Suppose
that there are 𝐾 poses in 𝑇Γ , then Eq.8 can be re-write as:

�̂�(𝑡) = 1
𝐾

𝐾∑︁
𝑘=0

F3dgs (PC, 𝜐 (𝑡𝑘 )) . (9)

In the spike stream, the exposure-like image in the Γ(𝑡) can be
achieved by accumulating spikes along the time axis. with the
characteristics of spikes, we can formulate an approximate equation
between poses and spikes aiming to train the SpikeGS:

L𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 = ∥�̂�(𝑡) −
𝑆Γ (𝑡 )
𝑇Γ

∥1 . (10)

The illustration is shown in Fig. 4. In this way, utilizing the equation
Eq. 7 and Eq. 10, the SpikeGS can be trained.

3.4 Ideal Mapping of Spikes to Instant Image
For the instantaneous imaging from spikes, recall that to suc-
cessfully achieve the training of SpikeGS, an ideal mappingM from
the segment of spikes to instantaneous image (as in Eq. 6) is needed
to satisfy the supervision loss in Eq. 7. Thus, in this section, we are
dedicated to dealing with the problem:

How to get the ideal mapping M from spikes?
What is an ideal mapping from spikes to images? (1) the mapping

should be High-Quality and Generalized in the 3D scene, which
means that the image recovered from spikes has sharp textures
across all the views. (2) To meet the feature of real-time rendering
and very-fast training of the 3DGS, the mapping should be Simple
but Effective. Upon these requirements, we build a new Spike
Instant Mapping (SIM) network (M(·)).

Several approaches have been proposed to recover sharp images
from spike segments. Although TFI and TFP [45], as the most basic
and fast numerical analysis spike reconstruction algorithms, can
recover images fast, their quality is poor with noise and blurring.
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Figure 5: Model Architecture for mapping spikes to images.

Some supervised deep learning-based methods proposed to recover
high-quality grayscale images from spike streams rely on training
on large synthetic datasets. The capability of generalization is poor
and the model is also complex and has a low speed of inference.

In SpikeGS, from the perspective of generalization ability, we aim
to accomplish the mapping M(𝑆Γ𝑇 ) in a self-supervised manner,
training the specific model with spikes in each 3D scene.

SSML [3] is the first self-supervised reconstruction algorithm
tailored for spike cameras. It adopts a blind spot network (BSN)
structure [13, 16, 17, 35, 36] to predict the current pixel from neigh-
boring spikes. However, SSML’s network structure and computing
processes are relatively complex, and its training cost is lagging
compared to the fast 3DGS process. Therefore, we aim to build a
‘simple but effective’ self-supervised module and strive to achieve
a lightweight design, motivated by BSN.

Principle of BSN.The BSNwas initially utilized in self-supervised
image-denoising tasks. It relies on the assumption of Noise2Void
[12], which assumes that under the premise of noise mean being
zero and noise having no spatial correlation, the optimization ob-
jective of self-supervised denoising is approximately equivalent to
supervised denoising, namely:

𝑎𝑟𝑔𝑚𝑖𝑛 E{(𝑓𝜃 (𝑥) − 𝑥)2} ≈ 𝑎𝑟𝑔𝑚𝑖𝑛 E{(𝑓𝜃 (𝑥) − 𝑦)2}, (11)

where 𝑓𝜃 (·) represents the denoising network, 𝑥 denotes the noisy
input and 𝑦 represents the potential sharp image. The equation
between the 𝑥 and 𝑦 is:

𝑥 = 𝑦 +𝑚, (12)

where𝑚 is the noise. To avoid the identity mapping of the noisy
image itself. BSN is thus introduced to address this issue, where
the receptive field of each pixel does not include the pixel itself,
preventing the identity mapping of the noise.

The spike stream mainly suffers from stochastic thermal noise.
Accumulation of dark current can lead the accumulator to reach the
firing threshold prematurely, resulting in unexpected binary spike
noise. Methods like TFP [45] can construct a low-quality image
from spikes with noise, as 𝐼𝑛𝑜𝑖𝑠𝑦 (𝑡) = TFP(𝑆Γ (𝑡 ) ). Then, between
the desired clean image 𝐼 (𝑡) and the 𝐼𝑛𝑜𝑖𝑠𝑦 (𝑡), the formulation like
Eq: 12 can be established as:

𝐼𝑛𝑜𝑖𝑠𝑦 (𝑡) = 𝐼 (𝑡) +𝑚, (13)

Thus, for self-supervised BSN-basedmoduleM, the optimal module
M∗ can be obtained by:

M∗ = 𝑎𝑟𝑔𝑚𝑖𝑛 E{(M(𝑆Γ (𝑡 ) ) − 𝐼𝑛𝑜𝑖𝑠𝑦 (𝑡))2}. (14)
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Figure 6: Qualitative results compared with other methods on the synthetic dataset. We compare with SpikeNeRF [46], and
three baseline methods that are the cascading two-stage model TFP(33)+3DGS, TFP(33)+3DGS and TFI+3DGS.

With such a definition, we can use the results of TFP [45] from
spikes as the self-supervision for spike-to-image mappingM.

Constructing the Lightweight Mapping Module for Spikes.
Following the assumptions in SSML [3], the current pixel value
can be inferred from the neighboring spike stream. By excluding
the central pixel position, the network is unable to learn the noise
value at the current position from the spike stream. Fig.5 illustrates
the spike reconstruction network we designed. Specifically, we
employ a blind spot construction scheme similar to SSML, using
shift-based convolutions. We propose to design the Spike Instant
Mapping (SIM) network (M(·)) most simply with only sequential
Conv layers, as shown in Fig. 5.

Since shift-based convolutions cause the network’s receptive
field to grow in a single direction, we rotate the input spike stream
into four parts to obtain a complete receptive field in four directions.
The rotated spike stream is fed into𝑚 layers of shift-based 3 × 3
convolutional layers In this way, the network possesses a receptive
field with a (2𝑚+1, 2𝑚+1) size. In the end, the extracted features are
combined through 𝑛 layers of 1×1 convolutions and the re-rotation
operation to obtain the mapped clean image.

Since spikes reach a time resolution of 40,000 Hz, we can safely
assume that small pixel displacements are caused bymotions within
a segment of spikes during a very short interval in 𝑇Γ . Thus, the
(2𝑚 + 1, 2𝑚 + 1) receptive field is enough when𝑚 is small. In our
implementation, we only use𝑚 = 3 and 𝑛 = 3. Thus we construct a
very lightweight but robust network for mapping spikes to images.

To train the BSN-based M, we simply utilize L1 loss:

LM = ∥M(𝑆Γ) − 𝐼𝑛𝑜𝑖𝑠𝑦 ∥1 = ∥M(𝑆Γ) − TFP(𝑆Γ)∥1 . (15)

3.5 Training the SpikeGS
The loss in Eq. 7 holds with the achievement of idea mappingM
from spikes to images which meets the requirement of Eq. 6. Thus,
the loss function for training SpikeGS is as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝑖𝑛𝑠𝑡𝑎𝑛𝑡 + 𝜆 · L𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 , (16)

where 𝜆 is a hyperparameter to balance the weight of two losses.

4 EXPERIMENTS
4.1 Datasets
To our knowledge, there is a related dataset [46] focusing on spike-
based 3D reconstruction. However, this dataset has converted the
spike stream into image format, rendering it impractical to imple-
ment our SpikeGS on this dataset. Therefore, we construct a new
synthetic dataset and provide the raw spike stream instead of the
image format, as described in Zhu et al. [46].

Synthetic Dataset. To evaluate the quantitative performance
of our approach, we first conduct experiments on synthetic scenes
provided by Mildenhall et al. [24]. We begin by designing a virtual
camera path in Blender that orbits and ascends in a spiral manner
around the captured scene. Following this, we render the video
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Table 1: Quantitative Results on the built Synthetic dataset.

Method Lego Chair Materials Drums Mic Hotdog Ficus

PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑
TFP(33)+3DGS 26.03/89.18 28.65/95.45 29.17/93.85 25.76/91.97 31.03/95.80 33.36/96.43 30.12/96.31
TFP(65)+3DGS 23.19/84.55 25.54/93.11 26.49/91.24 24.12/89.23 29.04/94.1 30.82/95.11 26.71/93.60
TFI+3DGS 24.52/86.33 25.12/87.99 25.12/87.99 27.04/93.08 30.88/95.36 25.97/88.05 29.54/94.81
SpikeNeRF 19.24/89.77 19.63/90.23 25.48/94.34 22.07/89.91 29.47/95.39 23.18/93.62 25.42/95.30

SpikeGS (Ours) 32.67/96.44 35.53/98.53 34.18/97.40 28.82/96.07 34.80/98.29 37.39/98.05 36.81/99.00
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Train: 0.28minTrain: 330min

TFI+3DGS

Figure 7: Real-World Comparison with other methods on the dataset in SpikeNeRF [46]. We mainly compare with SpikeNeRF,
and the two baseline methods are the cascading two-stage model TFI+NeRF and TFI+3DGS.

sequence along the designed camera path and employ the XVFI
frame interpolation algorithm [31] to generate 7 additional frames
between each pair of adjacent frames. Finally, we turn to a physi-
cally based spike simulator [41], which adopts the Poisson model
into the spike simulation process, to convert the high-frame-rate
video sequences into the spike stream with low latency.

Real-world Dataset. We evaluate the performance of SpikeGS
on the real-world spike dataset released by Zhu et al. [46]. This
dataset is captured utilizing a spike camera with a spatial resolution
of 250×400. Five real-world scenarios are recorded, each comprising
35 spike images captured by the fast-moving spike camera. The
dataset is organized in the LLFF [23] format, slightly different from
the 360 synthetic scenes constructed in the synthetic dataset.

4.2 Training Details
All experiments were conducted on a single NVIDIA GTX 4090,
with PyTorch. SpikeGS is trained for 30k iterations taking about 15
minutes, and the learning rate and scheduler settings are identical
to those of standard 3DGS. In the implementation, the number of
continuous camera poses 𝐾 = 5 used for calculating L𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ,
corresponds to a spike stream length of 33. During training, the pa-
rameters of the self-supervised network M were frozen to provide
the supervisory signal for L𝑖𝑛𝑠𝑡𝑎𝑛𝑡 .

4.3 Quantitative and Qualitative Comparison
We compare our SpikeGS with the SpikeNeRF [46], the only spike-
based 3D reconstruction work to our knowledge, in the synthetic
and real-world scenarios for quantitative and qualitative compar-
isons. As for the baseline methods, we chose two direct spike-to-
image reconstruction methods, TFI [45] and TFP [45](window size
= 33 and 65), and cascaded them with standard 3DGS [10], complet-
ing the comparison using the two-stage approach. We choose them
to thoroughly show the effectiveness of the 3DGS and our proposed
self-supervised BSN network. In the following, We compare our
SpikeGS against other methods mainly from two aspects: image
quality and training speed.

Synthetic Results. In Tab. 1, we present the results of our
method compared to others across all 7 scenes of the synthetic
dataset. PSNR and SSIM are used as the quantitative metrics. The
results show that the quality of novel view synthesis by SpikeGS
significantly surpasses other methods. Specifically, compared to
those that use TFI and TFP as cascading modules with 3DGS as the
baseline model, SpikeGS surpasses them by approximately 5.3dB,
7.7dB, and 7.5dB in PSNR, respectively. Meanwhile, compared to
SpikeNeRF, SpikeGS exceeds by more than 10.8dB. This indicates
the high effectiveness of the SpikeGS in 3D reconstruction from
spikes. Fig. 6 provides a comparison of visual results. As shown
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Table 2: Ablation Study on Losses in Modules in the SpikeGS.

Method Lego Chair Materials Drums Mic Hotdog Ficus

PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑ PSNR/SSIM ↑
Only L𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 29.23/92.94 31.73/96.91 31.42/95.56 26.90/94.19 32.72/97.34 35.48/96.92 34.74/98.41
Only L𝑖𝑛𝑠𝑡𝑎𝑛𝑡 32.28/96.30 34.62/98.42 33.62/97.17 28.09/96.01 34.22/98.09 36.11/97.87 36.47/98.95

L𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 + L𝑖𝑛𝑠𝑡𝑎𝑛𝑡 32.67/96.44 35.53/98.53 34.18/97.40 28.82/96.07 34.80/98.29 37.39/98.05 36.81/99.00

in the results, the images predicted by SpikeNeRF exhibit blurring
effects as well as poor adaptability to the motion-induced spike
stream; in contrast, images predicted by SpikeGS maintain clear
textures and smooth edges, with enhanced realism. Moreover, the
training time of SpikeNeRF is about 10 hours (600min), while
SpikeGS only needs 15min for training.

Real-world Results. Regarding training speed, our SpikeGS
demonstrates a substantial efficiency gain against other methods as
evidenced in Fig. 7. SpikeGS completes the training in merely 0.28
minutes, a significant reduction from the 330 minutes required by
SpikeNeRF. This marked decrease in training time, by over three
orders of magnitude, is mainly attributed to the employment of
the 3DGS and our designed extremely lightweight BSN, which
has faster speed compared to the NeRF framework and SNN as
in SpikeNeRF. In terms of image quality, the presented visual out-
puts indicate that SpikeGS maintains higher reconstruction fidelity
than other methods. Specifically, the ‘Box’ and ‘Grid’ examples,
which are typically challenging due to their regular geometries
and uniform patterns, are rendered with greater clarity and less
noise by SpikeGS. Moreover, the ‘Dolls’ instance, characterized by
intricate textures and shading, appears to be reconstructed with
greater fidelity, indicating the superior handling of subtle image
features by our SpikeGS.

5 ABLATION STUDY
5.1 Ablation on Modules
We conduct ablation experiments on the two types of loss, specif-
ically L𝑖𝑛𝑠𝑎𝑛𝑡 and L𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 . The results in Tab. 2 show that if
each loss is adopted individually, the model performance decreases.
When they are trained together, the model performance signifi-
cantly increases by 2.57dB and 0.68dB, respectively. This experiment
demonstrates the rationality and effectiveness of our architectural
design. Through exploring two types of imaging characteristics of
spikes, SpikeGS is efficiently and effectively trained.

5.2 Ablation on Continuous Rendering Loss

Table 3: Abation study on the Continuous Rendering Loss
with different lengths of spikes for supervision.

Render Images Spikes PSNR ↑ SSIM ↑ Train

13 97 33.97 97.39 25.5min
9 65 34.28 97.66 22.1min
5 33 34.31 97.68 15.0min

We utilize the average firing rate of the continuous spike stream
as the supervision for the Continuous Rendering Loss, simulating
the real long-exposure process to optimize the pixel distribution of
images with only the short-exposure imaging loss. We conduct ab-
lation experiments on the number of continuous rendering images
and the length of the spikes for the loss. The results from Tab. 3 in-
dicate that excessively long exposure times lead to a certain degree
of performance degradation and increased training time. Therefore,
We ultimately adopt the setting of rendering 5 images.

5.3 Discussion on Reconstruction Model

Table 4: Performance of the lightweight self-supervised re-
construction model.

Scene PSNR ↑ SSIM ↑ Speed Param

Lego 33.36 96.12

1200+FPS 30K

Chair 35.45 98.13
Materials 37.24 98.70
Drums 32.10 97.00
Mic 35.07 98.01

Hotdog 37.64 97.30
Ficus 39.28 99.08

In this section, we aim to highlight and analyze the advantages
and significance of our hyper-quantized self-supervised reconstruc-
tionmodel, tinySpkRecon. (1) In the context of 3D scene understand-
ing based on spike cameras, there is no image information avail-
able for designing reconstruction models with supervised learning,
and supervised models often lack generalizability; Thus, explor-
ing high-performance self-supervised models is essential. (2) Su-
pervised reconstruction models, such as Spk2ImgNet [40], suffer
from slow inference time, poor generalizability, and extremely high
computational complexity. Complex reconstruction models con-
tradict the real-time rendering characteristics of 3DGS; therefore,
designing ultra-lightweight, fast-inference, and highly generaliz-
able self-supervised models is necessary. Tab. 4 demonstrates that
our designed self-supervised model performs well in scene recon-
struction with strong generalizability; at the same time, our model
can infer at speeds exceeding 1200 FPS (frames per second) on a
single 4090 GPU, with only 30K parameters required. Such design
and performance will not increase any computational burden on
the 3DGS pipeline and greatly enhance the rendering performance
of our SpikeGS.
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6 CONCLUSION
We make the first attempt to introduce the 3D Gaussian Splatting
(3DGS) with spike cameras in high-speed capture, and construct-
ing SpikeGS. A lightweight self-supervised model tinySpkRecon
is proposed for recovering images from spikes. The loss combined
with Instantaneous imaging and Exposure-like imaging is designed
to improve rendering quality. Experiments demonstrate the supe-
rior 3D scene reconstruction capabilities of SpikeGS both on the
synthetic and the real-world datasets.
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