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ABSTRACT
Understanding and predicting Origin-Destination (OD) flows is cru-
cial for urban planning and transportationmanagement. Traditional
OD prediction models, while effective within single cities, often
face limitations when applied across different cities due to varied
traffic conditions, urban layouts, and socio-economic factors.

In this paper, by employing Large Language Models (LLMs), we
introduce a new method for cross-city OD flow prediction. Our
approach leverages the advanced semantic understanding and con-
textual learning capabilities of LLMs to bridge the gap between
cities with different characteristics, providing a robust and adapt-
able solution for accurate OD flow prediction that can be transferred
from one city to another. Our novel framework involves four major
components: collecting OD training datasets from a source city,
instruction-tuning the LLMs, predicting destination POIs in a target
city, and identifying the locations that best match the predicted
destination POIs. We introduce a new loss function that integrates
POI semantics and trip distance during training. By extracting
high-quality semantic features from human mobility and POI data,
the model understands spatial and functional relationships within
urban spaces and captures interactions between individuals and
various POIs. Extensive experimental results demonstrate the su-
periority of our approach over the state-of-the-art learning-based
methods in cross-city OD flow prediction.

CCS CONCEPTS
• Information systems → Location based services; • Comput-
ing methodologies → Artificial intelligence.
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1 INTRODUCTION
Origin and destination (OD) matrices are invaluable tools in trans-
portation planning and urban development. By capturing the flow
of people, goods, or services between different locations within a
geographic area, OD matrices provide critical insights into travel
patterns, demand for infrastructure, and spatial interactions. Urban
planners and policymakers utilize OD matrices to identify trans-
portation bottlenecks [5, 30], optimize transit routes [1, 7], and
allocate resources efficiently [27, 30].

Gathering accurate and comprehensive data on travel move-
ments within a geographic area can be time-consuming and costly.
Data collection efforts may face challenges such as incomplete or
inconsistent data, limited data availability for certain modes of
transportation or population groups, and privacy concerns related
to personal travel data.

Traditional OD estimation models such as [18] and the Radiation
Model [25] rely on the assumptions that flow of people or goods
between two locations is proportional to their populations and
inversely proportional to the square of their distance. They have
been adapted to incorporate novel data sources such as social media
check-ins [21], enhancing their adaptability.

Recent learning-based models excel in capturing implicit data
characteristics and delivering commendable performance[9, 36] .
While effective in achieving their objectives, above works primarily
focus on the OD flow generation within a single city. Some recent
works [28] propose to generate trajectories across cities by learning
traffic patterns and vehicle behaviors from data-rich cities and
extrapolating this information to generate datasets for cities lacking
such data. However, it heavily depends on the vehicle trajectory and
road network datasets specific to the target city. Transferring the
learned patterns from these datasets to different cities is challenging
due to variations in traffic conditions and urban layouts among
cities.

Large language models (LLMs) [3, 6, 8, 23, 24] have demonstrated
impressive capabilities across diverse tasks by recognizing patterns
in vast datasets, enabling them to achieve high accuracy in various
applications, from natural language processing to fields such as
biomedical imaging and crop management [16, 33]. An interesting
question is whether LLMs can understand and predict likely trip
destinations based on a given point of interest and timeframe in the
same way humans do. Has some base knowlege about trip behav-
iors learned across cities and once fine-tuned for flow prediction
in one city and can be easily transfered to a different city? These
capabilities hinge on the LLMs’ ability to consider various factors
and make informed guesses about trip destination as well as recog-
nize patterns and associations in trip data. The main challenges of
leveraging an LLM model are that: (1) the models were pre-trained
on texts and do not have explict knowlege of OD flows; (2) The
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primary objective of the loss function of LLMs is to improve the
model’s ability to predict the next token in a sequence accurately,
thereby enhancing its performance in generating coherent and con-
textually relevant text. We need to design new loss functions that
take the spatial context into consideration.

1.1 Our Contributions
In this paper, we propose a framework to investigate and harness
large language models’ capabilities in understanding trips for OD
flow prediction across cities. Our approach is driven by the follow-
ing premises: (1) despite the considerable variations in their trips
across different cities, people travel for specific purposes and tend to
follow similar patterns in their Origin-Destination POIs [11, 17] and
(2) LLMs are trained on vast amounts of text data, including infor-
mation about transportation, urban planning, and human behavior,
and has basic understanding of city mobility patterns.

⊲ Contribution 1. We propse an LLM based Cross-city OD
(LLM-COD) flow prediction framework. LLM-COD leverages
the knowledge possed by LLMs and enhance it to infuse
understanding of origin and destination related to point of
interests, time, and distance. LLM-COD captures how people
interact with various POIs in the city related to time.

⊲ Contribution 2. We develop a process to allow LLM-COD
to transfer the knowledge to other cities and perform OD
flow prediction with adaptation. We propose a new loss
function that integrates POI semantics with distance which
helps LLM-COD to achieve reboust performance across cities.
This means that even with relatively limited training data for
a new city, the model can utilize the knowledge and mobility
patterns learned from other cities to improve prediction
accuracy.

⊲ Contribution 3. We conducted extensive experiments to
evaluate our method. The results demonstrate that our ap-
proach significantly outperforms traditional models and
state-of-the-art learning-based methods in cross-city OD
flow prediction. LLM-COD reduces RMSE significantly com-
pared to the best state-of-the-art model espcially for chal-
lenging high precision OD flow prediction (reduces by 46%
for 1,000m × 1,000m) and is consistently better in all other
commonly used metrics.

2 OVERVIEW
We consider a scenario where one city, referred to as "City 𝐴",
possesses an Origin-Destination (OD) dataset, which includes the
origin and destination points of various vehicle trips. In contrast,
the other city, referred to as "City 𝐵", does not have access to the
OD dataset. Our objective is to utilize the OD dataset from City 𝐴
to train a generative model that can subsequently produce an OD
dataset for City 𝐵.

Our approach is motivated by the observation that, despite
significant variations in individuals’ trips across different urban
environments—attributable to varied transportation modes and city
layouts—people in different cities exhibit similar patterns in their
Origin-Destination Points of Interest (POIs). For example, a universal
OD pattern is the daily commute between residential areas and
workplaces [15]. Additionally, educational institutions like schools,
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Figure 1: LLM-COD Framework.

colleges, and universities serve as major OD points in cities, creat-
ing distinct travel patterns tied to the academic year, with weekdays
seeing increased travel during morning and afternoon peaks.

In recent years, deep neural networks (DNNs) have proven to
be highly effective in modeling and analyzing daily behavior pat-
terns, owing to their ability to discern complex patterns from vast
datasets [12]. The advancement of LLMs has notably transformed
many fields and enabled deeper insights into human behavior and
trends. An LLM is initially pre-trained on extensive data collections
and subsequently adapted to address specific downstream tasks.
While initial applications were focused on tasks such as language
translation [31] and sentiment analysis [6], the scope of LLMs has
broadened to include a variety of fields, including the prediction of
human behavior [13].

Leveraging the strong capability of LLMs to learn human behav-
ior patterns, LLM-COD is designed to generate OD datasets across
various cities. Figure 1 shows the framework of our approach, com-
posed of the following four steps 1○– 4○:

1○ OD POI training dataset collection (in City 𝐴): Given
the OD vehicle trip dataset from City 𝐴, we construct an OD
POI training dataset. Each sample in this dataset consists of
inputs, which include a list of origin POIs and the associated
timestamp, and outputs, which comprise a list of destination
POIs and the permissible distance range between the origin
and destination.

2○ Instruction fine-tuning of LLM: We take a pre-trained
LLM (Llama2 + Gemma) and fine-tune the model using the
OD training dataset created in 1○. 2○ leverages the general
understanding and linguistic capabilities the LLM model has
learned from a vast and diverse initial training phase and
then narrows its focus to our OD POI generation problem.

3○ Origin POI creation and their destination POI predic-
tion (in City 𝐵): Assuming City 𝐵 possesses the origin POIs
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along with their time stamps, the generative LLM model
fine-tuned in 2○ is capable of predicting a distribution of
destination POIs for each specified origin POI, as well as the
acceptable distance range.

4○ Destination cell matching (in City 𝐵): The resulting lists
of destination POIs can then be aligned with the most similar
location (represented as a grid cell), based on the highest
similarity in POI distributions.

3 METHODOLOGY
In this section, we detail the four steps for generating the OD dataset
of City 𝐵 based on City 𝐴 (Section 3.2–Section 3.5), as outlined
in Figure 1. Before that, we first introduce the notations and the
definitions in Section 3.1. Table 1 lists the main notations used
throughout this paper.

3.1 Notations and Definitions
We use the superscript 𝑋 to denote the notations specific to City 𝑋 ,
where 𝑋 can be either 𝐴 or 𝐵.

Definition 3.1. (Grid) City 𝑋 is divided into 𝑁𝑋 square cells of

equal size (e.g., 500m × 500m), denoted as V𝑋 =

{
𝑣𝑋1 , . . . , 𝑣

𝑋
𝑁𝑋

}
,

where each 𝑣𝑋
𝑖

represents the 𝑖-th grid cell in City 𝑋 . The center
coordinates of each grid cell are assumed to be known for both cities,
as further discussed in Section 3.2.

Definition 3.2. (Spatial features) We consider 𝐾 distinct types of
POIs, detailed in Table 7 in the Appendix. Each grid cell 𝑣𝑋

𝑖
(𝑖 =

1, ..., 𝑁𝑋 ) can be characterized by a spatial feature vector u𝑋
𝑖

=[
𝑢𝑋
𝑖,1, . . . , 𝑢

𝑋
𝑖,𝐾

]
, where each 𝑢𝑋

𝑖,𝑘
(𝑘 = 1, ..., 𝐾) denotes the number

of the 𝑘-th type of POIs in grid cell 𝑣𝑋
𝑖
. We use U𝑋 =

{
𝑢𝑋1 , ..., 𝑢

𝑋
𝑁𝑋

}
to represent the spatial features of the grid cells of City X.

Definition 3.3. (Trip Set) We represent each trip 𝑙 by a 4-tuple(
𝑣𝑋
𝑂𝑙
, 𝑡𝑋
𝑙
, 𝑣𝑋
𝐷𝑙
, 𝑐𝑋
𝑙

)
, including its origin cell 𝑣𝑋

𝑂𝑙
, the starting time 𝑡𝑋

𝑙
,

its destination cell 𝑣𝑋
𝐷𝑙
, and the acceptable traveling cost 𝑐𝑋

𝑙
. We use

T𝑋 =

{(
𝑣𝑋
𝑂𝑙
, 𝑡𝑙 , 𝑣

𝑋
𝐷𝑙
, 𝑐𝑋
𝑙

)}
𝑙=1,...,𝐿𝑋

to represent the trip set of City 𝑋 ,

where 𝐿𝑋 is the number of trips in T𝑋 .

Definition 3.4. (Origin Set) The origin set of city 𝑋 , denoted
as O𝑋 , is defined as the set of origin cells, along with their corre-
sponding starting time points for the trips T𝑋 in City 𝑋 , i.e., O𝑋 ={(
𝑣𝑋
𝑂𝑙
, 𝑡𝑋
𝑙

)}
𝑙=1,...,𝐿𝑋

.

Definition 3.5. (OD pair learning) Given an origin set O𝑋 , OD
pair learning is a process of predicting the destination 𝑣𝑋

𝐷𝑙
and travel-

ing cost 𝑐𝑋
𝑙
of each

(
𝑣𝑋
𝑂𝑙
, 𝑡𝑋
𝑙

)
∈ O𝑋 , creating the corresponding trip(

𝑣𝑋
𝑂𝑙
, 𝑡𝑋
𝑙
, 𝑣𝑋
𝐷𝑙
, 𝑐𝑋
𝑙

)
.

Definition 3.6. (OD flow) The OD flow is the volume of movement
between two grid cells. We use T𝑋

𝑖 𝑗
to represent the set of trips from

grid cell 𝑣𝑋
𝑖

to 𝑣𝑋
𝑗

T𝑋𝑖 𝑗 =

{(
𝑣𝑋𝑂𝑙

, 𝑡𝑋
𝑙
, 𝑣𝑋𝐷𝑙

, 𝑐𝑋
𝑙

)
∈ T𝑋 | 𝑣𝑋𝑂𝑙 = 𝑣

𝑋
𝑖 , 𝑣

𝑋
𝐷𝑙

= 𝑣𝑋𝑗

}
, (1)

Table 1: Main notations and their descriptions

Symbol Description
V𝑋 The set of grid cells of City X
T𝑋 The trip set in City X
𝑁𝑋 The total number of discrete locations in V𝑋

O𝑋 The origin set in City X
𝐾 The total number of POI types
𝐿𝑋 The total number of trips in City 𝑋
𝑣𝑋
𝑖

The 𝑖th grid cell in V𝑋

𝜎𝑋 The grid cell size of City 𝑋
u𝑋
𝑖

u𝑋
𝑖

=

[
𝑢𝑋
𝑖,𝑘
, ...,𝑢𝑋

𝑖,𝐾

]
denotes the spatial feature of the

cell 𝑣𝑋
𝑖
, where each 𝑢𝑋

𝑖,𝑘
denotes the number of type 𝑘 POIs

within 𝑣𝑋
𝑖
.

û𝑋
𝑖

The predicted spatial feature of the cell 𝑣𝑋
𝑖

𝑣𝑋
𝑂𝑙

The origin cell of trip 𝑙
𝑣𝑋
𝐷𝑙

The destination cell of trip 𝑙
𝑐𝑋
𝑙

The travel cost of trip 𝑙
𝑡𝑋
𝑙

The starting time of trip 𝑙
𝑓 ( ·) The function describing the relationship between origin

and destination cells in each trip

and use 𝑓 𝑋
𝑖 𝑗

=

���T𝑋𝑖 𝑗 ��� to represent the OD flow from cell 𝑣𝑋
𝑖

to 𝑣𝑋
𝑗
.

Definition 3.7. (OD matrix) The OD matrix F𝑋 =

{
𝑓 𝑋
𝑖 𝑗

}
𝑁𝑋 ×𝑁𝑋

includes the OD flows between each pair of grid cells in City X.

Problem formulation. The cross-city OD generation problem can
be considered as a domain adaptation problem[2], which aims at
learning a model from a source data distribution and transferring
the knowledge to a different (but related) target data distribution.
Given the above notations and definitions (Definition 3.1 – 3.7), We
formally define the cross-city OD generation problem in Definition
3.8:

Definition 3.8. (Cross-city OD generation problem)
⊲ Instance: Given the location sets of both cities,V𝐴 ,V𝐵 , their
spatial features U𝐴,U𝐵 , the trip set of City 𝐴, T𝐴 , and the
origin set of City 𝐵, O𝐵 ;

⊲ Question: How to predict the OD flow matrix F̂𝐵 of City 𝐵.

Note that given the learned OD pairs (Definition 3.5) at City 𝐵,
we can count the number of trips between each pairs of cells in City
𝐵, therefore obtaining the OD flow matrix (according to Defintion
3.6 and Defintion 3.7). Next, we detail our approach, LLM-COD, for
the OD pair learning, including the four steps outlined in Figure 1.

3.2 Step 1○ - OD Training Dataset Collection in
City 𝐴

To construct an origin-destination POI dataset for both Cities 𝐴 and
𝐵, we follow a streamlined process encompassing the following
three steps, as illustrated in Figure 2:

(a) Grid Map Creation: Given the geographical boundary co-
ordinates (latitude and longitude) of both Cities 𝐴 and 𝐵,
we define a rectangular bounding box that encompasses the
area of interest. As Figure 2 (Step (a)) shows, we divide this
area into square grid cells with size 𝜎𝐴×𝜎𝐴 (e.g., 𝜎𝐴 = 500m,
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1000m, and 2000m in our experiments). For simplicity, the
cell sizes are kept consistent for both City 𝐴 and City 𝐵, i.e.,
𝜎𝐴 = 𝜎𝐵 . In this step, we can obtain the location sets of both
cities,V𝐴 andV𝐵 .

(b) Grid cell POI distribution retrieval: We retrieve the POI
distributions for each cell to obtain the spatial feature sets
U𝐴 and U𝐵 of the two cities. As Figure 2 (Step (b)) shows,
for each grid cell 𝑣𝐴

𝑖
, we create its spatial feature u𝐴

𝑖
by

identifying the POIs whose nearest center point corresponds
to the center point of 𝑣𝐴

𝑖
. Specifically, in the experiment in

Section 4, we use asynchronous HTTP requests to query
nearby POIs for each cell’s central point via the Map Service
API.

(c) OD POI dataset creation:We then process the trajectory
dataset to obtain the POI distributions of the origin and
destination cells of each trip. As Figure 2 (Step (c)) shows,
for each trip 𝑙 in City 𝐴, we query POI types for its OD
cells

(
𝑣𝐴
𝑂𝑙
, 𝑣𝐴
𝐷𝑙

)
fromU𝐴 created in Step (b), obtaining their

corresponding POI distributions u𝐴
𝑂𝑙

and u𝐴
𝐷𝑙
, respectively.

The whole set of OD POI distributions
{(
u𝐴
𝑂𝑙
, u𝐴
𝐷𝑙

)}
𝑙=1,...,𝐿𝐴

is saved for further analysis and also served as the training
dataset for fine-tuning the LLM models.

3.3 Step 2○ - Instruction-Tuning of LLMs
Our next step is to fine-tune an LLM using instructions to establish
the OD pair learning in textual format.

However, most existing DNN-based approaches for predicting
traffic flows still rely primarily on numerical data, such as road
network and node features [28, 37]. As a solution, we guide the LLM
with a specific instruction, as detailed in Table 2, which specifies
the spatial features of the origin and destination, thereby enhancing
the LLM’s understanding the input format, and what the responses
(or the outputs) are expected.

As depicted in Figure 3, we apply the LLM to a cross city OD
flow prediction scenario guided by the instruction format in Table
2. The primary functions of LLM-COD are twofold:

(a) Constructing input prompt. Specifically, for each OD trip,
given

(
𝑢𝐴
𝑂𝑙
, 𝑡𝐴
𝑙

)
, we form the input sample as "<Input> Start-

ing place:
[
𝑣𝐴
𝑂𝑙

]
, Starting time:

[
𝑡𝑋
𝑙

]
".

(b) Training and inferencing. For training, after we get "POIs"
and "traveling cost", wewill combine the two objects together
and backpropagate the loss to update the parameters. For

Table 2: Instruction format

Instruction <Instruction> Given the starting place and time of a taxi
trajectory in [city], predict the most likely destination and
how far it is from the starting point.
Please use the provided "Candidate POIs" list to describe the
starting place and destination.
Candidate POIs: [POI list]

Input
Sample

<Input> Starting place: [Food & Cuisine, Healthcare, Shop-
ping, Tourist Attraction], Starting time: [12:35]

Response
Sample

"POIs": [Residential area, Company, Hotel, Cultural Venue,
Shopping], "traveling cost": [1.3 kilometers]

Predicted
Cell Index

23

Instruction

Starting place 𝑣𝑂𝑙

𝐴 , 

Starting time 𝑡𝑙
𝐴 

Starting place 𝑣𝑂𝑙

𝐵 , 

Starting time 𝑡𝑙
𝐵 

𝑢𝑂𝑙

𝐵 , 𝑡𝑙
𝐵𝑢𝑂𝑙

𝐴 , 𝑡𝑙
𝐴

LLM-COD

POIs ෝ𝒖𝑂𝑙

𝐴 , 

traveling cost Ƹ𝑐𝑙
𝐴 

POIs ෝ𝒖𝑂𝑙

𝐵 , 

traveling cost Ƹ𝑐𝑙
𝐵 

Instruction 
tuning

Instruction 
tuning

Response Response

Backpropagate

Training 
(in City A)

Testing
(in City B)

𝑢𝑂𝑙
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𝐴
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𝐵
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𝐴 
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𝐴 , 

traveling cost Ƹ𝑐𝑙
𝐴 

POIs ෝ𝒖𝑂𝑙

𝐵 , 

traveling cost Ƹ𝑐𝑙
𝐵 

POIs ෝ𝒖𝐷𝑙

𝐵 , 

traveling cost Ƹ𝑐𝑙
𝐵 

Starting place 𝑣𝑂𝑙

𝐴 , 
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Figure 3: LLM-COD.

inference, we will perform the destination cell matching
using the two objects, introduced in step 4○.

We use a function 𝑓 to represent the relationship between each
OD pair in the LLM model,(

û𝑋𝐷𝑙 , 𝑐
𝑋
𝑙

)
= 𝑓

(
u𝑋𝑂𝑙 , 𝑡

𝑋
𝑙
;𝜽

)
. (2)

where
⊲ the inputs include the spatial feature of the origin cell u𝑋

𝑂𝑙

and the starting time stamp 𝑡𝑋
𝑙
, and

⊲ the outputs include the spatial feature of the destination cell
û𝑋
𝐷𝑙

and the accepted traveling cost 𝑐𝑋
𝑙
between the origin

cell and destination cell:
Here, 𝜽 is the parameters of 𝑓 . Our goal is to optimize 𝜽 , achieved
by fine-tuning the Language model.

Low-rank adaptation. We apply Low-Rank Adaptation (LoRA)
[10], freezing dense layers in LLMs and updating weights with rank
decomposition matrices. In LoRA, a hidden layer weight update
transformation could be represented as

ℎ = W0𝑥 + ΔW𝑥 = W0𝑥 + BA𝑥, (3)

where W0 ∈ R𝑑×𝑘 is the original weight matrix, and B ∈ R𝑑×𝑟
and A ∈ R𝑟×𝑘 are the low-rank matrices with 𝑟 ≪ min(𝑑, 𝑘). This
low-rank adaptation effectively captures the necessary adjustments
without the overhead of updating the entire model, as seen in its
application to geoscience and other fields.

Loss function. During training, we aim to predict the spatial
feature of each destination cell within the target urban area and the
acceptable traveling cost to reach the destination cell. As shown in
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Figure 3, LLMwill output a POI list and a traveling cost.We combine
the two objects together and employ weighted cross-entropy loss
between the actual and predicted outcomes as the loss function,
defined by:

CrossEntropy = −
(
𝐾∑︁
𝑘=1

𝑤𝑘𝑢
𝑋
𝐷𝑙 ,𝑘

log(𝑤𝑘𝑢
𝑋

𝐷𝑙 ,𝑘
) + 𝛼𝑐𝑋

𝑙
log(𝛼𝑐𝑋𝑙 )

)
.

(4)
Here, we use 𝑢𝑋

𝐷𝑙 ,𝑘
and 𝑢𝑋

𝐷𝑙 ,𝑘
(𝑐𝑋
𝑙
and 𝑐𝑋

𝑙
) to denote the actual and

forecasted numbers of POI 𝑘 (actual and forecasted traveling cost)
within cell 𝑣𝑋

𝐷𝑙
, respectively. In Equ. (4), each 𝑢𝑋

𝐷𝑙 ,𝑘
, 𝑢𝑋
𝐷𝑙 ,𝑘

, 𝑐𝑋
𝑙
, and

𝑐𝑋
𝑙
are normalized by the soft max function:

𝑢𝑋
𝐷𝑙 ,𝑘

=
𝑒
𝑢𝑋
𝐷𝑙 ,𝑘∑𝐾

𝑘=1 𝑒
𝑢𝑋
𝐷𝑙 ,𝑘 + 𝑒𝑐

𝑋
𝑙

, 𝑐𝑋
𝑙

=
𝑒𝑐
𝑋
𝑙∑𝐾

𝑘=1 𝑒
𝑢𝑋
𝐷𝑙 ,𝑘 + 𝑒𝑐

𝑋
𝑙

, (5)

𝑢
𝑋

𝐷𝑙 ,𝑘
=

𝑒
𝑢̂𝐷𝑙 ,𝑘∑𝐾

𝑘=1 𝑒
𝑢̂𝐷𝑙 ,𝑘 + 𝑒𝑐

𝑋
𝑙

, 𝑐
𝑋

𝑙 =
𝑒𝑐
𝑋
𝑙∑𝐾

𝑘=1 𝑒
𝑢̂𝐷𝑙 ,𝑘 + 𝑒𝑐

𝑋
𝑙

. (6)

Each𝑤𝑘 (𝑘 = 1, ..., 𝐾 ) is the weight assigned to the probability𝑢𝑋
𝐷𝑙 ,𝑘

and 𝑢
𝑋

𝐷𝑙 ,𝑘
and 𝛼 is the weight assigned to the travel cost 𝑐𝑋

𝑙
and

𝑐
𝑋

𝑙 .
Next, we use the fine-tuned LLM model to generate a set of OD

pairs for City 𝐵 in Step 3○ and Step 4○.

3.4 Step 3○ - Origin POI Creation and Their
Destination POI Prediction in City 𝐵

In this step, we first create an origin cell set O𝐵 in City 𝐵, incorpo-
rating POIs within each cell. O𝐵 can be established using datasets
that are mostly available in major cities, such as (1) demographic
data, which reflects the density of origin locations across different
areas [34], (2) requested location data in LBS, which often serve
as the starting points for trajectory analysis [22], (3) location data
from large events, stadiums [20], or venues, which includes infor-
mation on where attendees originate, and (4) public transportation
data [35].

As an example, in the experiment part (Section 4), we use Tencent
Location Requested (TLR) data betweenMarch 1 andMarch 28, 2024,
sourced from Tencent’s big data portal (https://heat.qq.com). This
data captures the number of location requests from Tencent’s LBSs,
which include services related to social networks, games, online
shopping, communication, and travel. Liu et al. [22] found the data
exhibits a high correlation coefficient of 0.9 with the residential
population, indicating a strong relationship between Tencent’s
location data and human activity patterns. This strong correlation
suggests that Tencent’s location-aware dataset can serve as a proxy
for human activities on a short-time scale, making it suitable for
defining origin cells in any city in China.

Given each generated origin POI distribution u𝐵
𝑂𝑙

in City 𝐵 and
their corresponding timestamps 𝑡𝐵

𝑙
as the inputs, the fine-tuned

LLM (described by Equ. (2)) predicts the destination POI distribution
û𝐵
𝐷𝑙

along with an acceptable distance range 𝑐𝐵
𝑙
between the origin

and destination cell.

3.5 Step 4○ - Destination Cell Matching and OD
Matrix Calculation in City 𝐵

For every trip
(
𝑣𝐵
𝑂𝑙
, 𝑡𝐵
𝑙

)
∈ T𝐵 in City 𝐵, we can utilize LLM to

predict the POI distribution û𝐵
𝐷𝑙

of the destination cell and the
acceptable traveling cost 𝑐𝐵

𝑙
. To find the matched destination cell,

we check each 𝑣𝐵
𝑖
∈ V𝐵 where the travel cost from 𝑣𝐵

𝑂𝑙
to 𝑣𝐵

𝑖
is no

higher than 𝑐𝐵
𝑙
.

Among these cells, we select the one whose normalized POI dis-
tribution u𝐵𝑖 exhibits the lowest cross entropy with the normalized
predicted POI distribution û

𝐵

𝐷𝑙
.

𝑣𝐷𝑙 = arg min
𝑣𝐵
𝑖
∈V𝐵 ,𝑐 (𝑣𝐵

𝑂𝑙
,𝑣𝐵
𝑖
)≤𝑐𝐵

𝑙

CrossEntropy
(
û
𝑋

𝐷𝑙
, u𝑋𝑖

)
(7)

Consequently, the set of OD pairs
{(
𝑣𝐵
𝑂𝑙
, 𝑣𝐵
𝐷𝑙

)
| 𝑣𝐵
𝑂𝑙

∈ O𝐵 .
}
consti-

tutes the OD dataset generated in City 𝐵.

4 PERFORMANCE EVALUATION
In this section, we conduct extensive experiments to test the perfor-
mance of our approach, LLM-COD, with the emphasis on answering
the following 4 questions:
RQ1: What is the performance of OD flow prediction of LLM-COD

in new cities compared to the state of arts (Section 4.2)?
RQ2: How do the design choices of our method impact perfor-

mance (Section 4.3)?
RQ3: Can the LLM-COD model robustly handle the predicting

tasks with varying OD flow and trip distance distribution
(Section 4.4)?

RQ4: Are the generated OD flows spatially distributed in a practi-
cal way (Section 4.5)?

Before that, we first introduce the experiment settings in Section
4.1.

4.1 Settings
4.1.1 Dataset. Table 3 lists the statistics of the 3 real-world trip
data on Beijing, Xi’an, and Chengdu. Beijing dataset [29] contain
taxi trajectories; Xi’an and Chengdu datasets contain trajectories
by DiDi ride-sharing1. Table 3 also provides the time span of each
trip and the number of grid cells for different grid sizes.

Table 3: Dataset information

Dataset Beijing Xi’an Chengdu

#Trip 3,100,845 2,419,072 3,887,769

Time span 2009/3/2-
2009/3/25

2016/10/1-
2016/10/31

2016/10/1-
2016/10/31

#Grid Cells
(1, 000𝑚 × 1, 000𝑚)

250,120 14,001 30,028

#Grid Cells
(2, 000𝑚 × 2, 000𝑚)

140,160 8,103 17,745

1https://gaia.didichuxing.com/

https://heat.qq.com
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Furthermore, Points of Interest (POIs) datawere obtained through
APIs provided by Tencent map API2 , utilizing the latitude and
longitude of different grid cells. For more detailed POI categories
descriptions, please refer to the Appendix.

4.1.2 Baseline Models.

⊲ Random Forest (RF) [21] is a traditional machine learning
method that consists of an ensemble of multiple decision
tree models. Each tree is built on a subset of the data, and
the final prediction is made by aggregating the predictions
of all the individual trees.

⊲ GravityModel [18] is a traditional spatial interaction model
which is inspired by Newton’s law of Gravitation. The spatial
features of one region work as the mass and population flow
between two regions follow the power-law distance decay.

⊲ Gradient Boosted Regression Trees(GBRT) [26] is a ma-
chine learning method that builds an ensemble of decision
trees sequentially, where each new tree is trained to correct
the errors made by the previous ones.

⊲ GODDAG [28] is a deep learning method designed to gen-
erate origin-destination (OD) flow data for cities where such
data is unavailable. It leverages graph neural networks (GNN)
to model spatial dependencies and employs domain adver-
sarial training to transfer knowledge from a source city with
ample data to a target city with scarce data, thereby improv-
ing the model’s ability to generalize across different urban
environments.

Table 4: Baseline models

Models Techniques
Random Forest [21] Tree-based Model
Gravity Model [18] Physical Model
GBRT [26] Tree-based Model
GODDAG [28] Deep Learning

4.1.3 Evaluation Metric. We employ three widely-adopted metrics
to assess the predictive efficacy of the models as Rong[28] did:

⊲ Root mean square error(RMSE) RMSE is a popular metric
applied in regression problems. The formula for RMSE is
given by equation 8, where 𝑓 𝑋

𝑖 𝑗
are the observed values, 𝑓 𝑋

𝑖 𝑗

are the predicted values, and
��F𝑋 �� is the number of elements

in the OD matrix F𝑋 , i.e.,
��F𝑋 �� = 𝑁𝑋 × 𝑁𝑋 .

𝑅𝑀𝑆𝐸 =

√︄
1��F𝑋 �� ∑︁

𝑖, 𝑗

(
𝑓 𝑋
𝑖 𝑗

− 𝑓 𝑋
𝑖 𝑗

)2
(8)

⊲ Symmetric Mean Absolute Percentage Error (SMAPE)
SMAPE is used to measure the accuracy of forecasts. It is
a variation of the Mean Absolute Percentage Error (MAPE)
that addresses some of the limitations of MAPE, particularly
its asymmetry and sensitivity to scale. The value range is in
[0,2]. Its formula is given in equation 9 with lower values
indicating better forecasting accuracy.

𝑆𝑀𝐴𝑃𝐸 =
100%��F𝑋 �� ∑︁

𝑖, 𝑗

���𝑓 𝑋𝑖 𝑗 − 𝑓 𝑋
𝑖 𝑗

���(���𝑓 𝑋𝑖 𝑗 ��� + ���𝑓 𝑋𝑖 𝑗 ���) /2 (9)

2https://lbs.qq.com/service/webService

⊲ Common Part of Commuters (CPC) CPC measures the
similarity between two data sets by comparing their common
parts to the sum of their individual parts. The range is in
[0,1], with a value of 1 indicating that the two commuting
patterns being compared are identical and all commuters in
one pattern are also present in the other pattern. Its formula
is given in equation 10.

𝐶𝑃𝐶 =

2
∑
𝑖, 𝑗 min

(
𝑓 𝑋
𝑖 𝑗
, 𝑓 𝑋
𝑖 𝑗

)
∑
𝑖, 𝑗 𝑓

𝑋
𝑖 𝑗

+ ∑
𝑖, 𝑗 𝑓

𝑋
𝑖 𝑗

(10)

4.1.4 Experiment Settings. The experiments were carried out on
a system with 4 NVIDIA A100 GPUs, each with 40GB of mem-
ory. For training LLM based models, we used the Adam optimizer
with a learning rate of 0.001, while Random Forest, Gravity Model
and GBRT used the Adam optimizer with 0.0002 learning rate and
weight decay of 0.001. The LLMs used is LLAMA2 7B. The experi-
ments were conducted with a batch size of 100.

4.2 Cross City OD Flow Prediction (RQ1)
To evaluate the performance of our novel model in cross-city predic-
tion tasks, we trained our model on Beijing datasets and performed
prediction on on Chengdu and Xi’an datasets, which were not seen
during the training phase. The results are summarized in Table 5.
We have the following observations:

(1) Consistent Superiority in Both Cities Our model consis-
tently outperforms the comparison method in both Chengdu
and Xi’an. Notably, our model exhibits significant advan-
tages in terms of RMSE, SMAPE, and CPC metrics, indicat-
ing its proficiency in maintaining the distribution of origin-
destination (OD) flow in cross-city prediction scenarios. The
performance in Chengdu is slightly better than Xi’an. This
is attributed to the similarities between Chengdu and Bei-
jing, including urban grid structure and population density.
One of the reason that the traditional models and GODDAG
underperform may be that they cannot effectively utilize the
origin set of the target city because of the structure design
the models, resulting in low high SMAPE and low CPC.

(2) LLM-CCD Excels in High Precision OD Flow Predic-
tion LLM-CCD reduces the RMSE of the current best model
GODDAG by 46% for grid size of 1,000 m × 1,000m. The
ability to predict origin-destination trip flow for high spatial
resolution is critical to optimizing transportation systems.

4.3 Performance on Design Choices (RQ2)
To assess the performance of our proposed LLM-COD framework,
we conducted experiments focusing on different design choices.
Our evaluations utilized the Beijing to Xi’an dataset. The exper-
iments compare the performance of our LLM-COD model under
three different settings: the impact of city indicators “[city]” in the
instruction format (as described in Table 2), the use of a Single POI
strategy, and the impact of distance cost.

(1) LLM-CODwith Full Features: This includes all city indicators
and multiple POI types for each grid cell.

(2) LLM-COD without City Indicators: This version omits city-
specific indicators in the instruction format to evaluate their
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Table 5: Comparison of models for different cell sizes

Cell size = 1,000m×1,000m Cell size = 2,000m×2,000m
Beijing → Chengdu Beijing→ Xi’an Beijing→ Chengdu Beijing→ Xi’an

Methods RMSE SMAPE CPC RMSE SMAPE CPC RMSE SMAPE CPC RMSE SMAPE CPC
Random Forest 25.32 2.00 0.00 8.72 2.00 0.00 304.85 2.00 0.00 444.25 2.00 0.00
Gravity Model 13.08 2.00 0.00 10.56 2.00 0.00 50.51 2.00 0.00 67.8 2.00 0.00
GBRT 29.12 2.00 0.00 9.07 2.00 0.00 268.09 2.00 0.00 446.26 2.00 0.00
GODDAG 4.29 2.00 0.00 3.94 2.00 0.00 26.97 2.00 0.00 28.87 2.00 0.00
LLM-COD 2.29 0.00 0.57 2.12 0.00 0.57 24.25 0.00 0.63 28.49 0.00 0.42

impact on performance. Specifically, the instruction format
follows: “<Instruction> Given the starting place and time of a
taxi trajectory, predict the most likely destination and how far
it is from the starting point.”

(3) LLM-COD with Single POI Strategy: Each grid cell is rep-
resented by at most one POI type. If the cell originally has
multiple POIs, the policy to choose is based on social check-
in scenarios, prioritizing popular locations where users fre-
quently check in.

(4) LLM-COD with diffrent 𝛼 (the weight assigned to the travel
cost 𝑐𝑋

𝑙
in the loss function (Equ. (4))).

As shown in Table 6, the LLM-COD model with full features
achieves an RMSE of 24.25, a SMAPE of 0.00, and a CPC of 0.42
when predicting OD flows from Beijing to Xi’an. When the city
indicators are removed, the RMSE increases to 27.96, and the CPC
slightly decreases to 0.40, indicating that city-specific features sig-
nificantly enhance model performance. Furthermore, employing
the Single POI strategy results in a higher RMSE of 31.28 and a CPC
of 0.40, suggesting that representing each grid cell with multiple
POIs provides a richer and more informative feature set, leading to
better performance.

As shown in Figure 4, with alpha increasing, the average RMSE
first decreases then increases. This trend occurs because taxi drivers
often prefer destinations with shorter travel distances. However,
when the weight for distance becomes too large, the model tends to
overemphasize proximity, consistently choosing the nearest destina-
tions. This approach neglects destinations that are slightly further
away but are preferred for their higher quality or better reviews.
This behavior is particularly evident in categories such as restau-
rants and hotels, where quality and reputation often outweigh mere
proximity.

Table 6: Performance in Different Model Parameters

Beijing→ Chengdu Beijing→ Xi’an
Methods RMSE SMAPE CPC RMSE SMAPE CPC
LLM-COD 28.49 0.00 0.63 24.25 0.00 0.42
LLM-COD (without city indicators) 32.96 0.00 0.57 27.96 0.00 0.40
LLM-COD (Single POI) 32.95 0.00 0.57 31.28 0.00 0.40

4.4 Robustness Analysis (RQ3)
To evaluate the robustness of our proposed LLM-COD model, we
conducted a detailed analysis focusing on the distribution of OD

Figure 4: Effects of Alpha

flow and travel distance across the entire test dataset. We specif-
ically examined the RMSE performance as a function of OD flow
and distance, across four experimental setups: two different cell
sizes (1,000m and 2,000m) and two city pairs (Beijing to Chengdu
and Beijing to Xi’an). Figures 5 and 6 present the results of this
robustness analysis for cell sizes 1,000m and 2,000m respectively.
The key observations from these experiments are as follows:

(1) The LLM-COD model consistently achieves a RMSE of zero
as the OD flow or distance increases. This indicates that
our model effectively captures and predicts high-volume
and long-distance flows, maintaining accuracy even as these
metrics increase. This trend is observed across all eight exper-
iment settings, demonstrating the robustness of our model.

(2) On the distribution of OD flow, the GODDAG model, along
with other baseline models, exhibit large errors and consid-
erable deviation from the actual distribution. These models
struggle with both high and low OD flows, almost get the
identical error as the flow value.

(3) On the distribution of distance, GODDAG, represented by
blue markers, achieves a RMSE of zero as the distance value
increases. But it shows slightly larger errors in the mid-range
distances compared to LLM-COD.

(4) The validity of the LLM-COD model can be attributed to
its ability to preserve the underlying distribution of OD
flows as found in the ground truth. Unlike other models,
LLM-COD leverages comprehensive city indicators and POI
data, enabling it to generalize well across different cities,
effectively transferring learned mobility patterns from the
source city to the target city.
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Figure 5: Robustness Analysis (1, 000𝑚 × 1, 000𝑚)

4.5 Visualization (RQ4)
To further demonstrate the effectiveness of our proposed OD gen-
eration framework and provide an intuitive comparison, we visual-
ize the generated OD flows from our model and several baselines
against the ground truth. For this comparison, we select Xi’an as
the target city and Beijing as the source city. The cell size is set
to 2,000m. As illustrated in Figure 7, OD flows are depicted using
an arc diagram, where each arc represents a flow between two
locations. Green marker stands for origin and white marker stands
for destination. The brightness of the arcs indicates the volume of
OD flows, with blue indicates small volumes, red indicates medium
volumes, and yellow indicates the largest volumes of OD flows.

In Figure 7, the ground truth shows that most taxi trips starting
from the surrounding areas to the city center. Our LLM-CODmodel
(Figure 7f) closely replicates this spatial distribution, aligning well
with the ground truth.

Conversely, the GODDAG model (Figure 7c), mainly shows blue
arcs, indicating smaller volumes. However, the distribution of OD
flows is incorrect, with the predicted OD flows forming an elliptical
shape, suggesting that people have longer commuting ranges in
the northwest-southeast direction, which is not true for Xi’an. This
leads to a lower RMSE for GODDAG when the distance becomes
larger, but it fails to accurately represent the actual commuting
patterns. Similarly, the Random Forest (Figure 7b), gravity model
(Figure 7c) and GBRT model (Figure 7d), also display elliptical

distributions of OD flows, which is inconsistent with the actual
commuting patterns in Xi’an. These models show predominantly
red arcs, indicating larger volumes of OD flows but also higher
errors. Additionally, it is difficult to discern the true center of the
city from the distributions generated by these baseline models.

This visual comparison underscores the robustness and accuracy
of our LLM-COD model in replicating the true distribution of OD
flows.

5 RELATEDWORK
In the domain of OD flow prediction, various approaches have been
developed to forecast OD flows using accessible urban data. This
field has evolved from traditional models (Section 5.1) to advanced
learning-based models (Section 5.2), adapting to the complexities of
urban mobility patterns.

5.1 Traditional Models
Initial research predominantly employed models such as the Grav-
ity Model [18] and the Radiation Model [25]. The Gravity Model
posits that the OD flow is proportional to the population sizes of the
origin and the destination and inversely proportional to the square
of their distance. Recent extensions of this model have incorporated
novel data sources such as social media check-ins from X [21], en-
hancing the model’s adaptability to modern urban dynamics. The
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Figure 6: Robustness Analysis (2, 000𝑚 × 2, 000𝑚)

Radiation Model introduces a probabilistic approach [25], consid-
ering the attractiveness of intermediate regions, thus providing
insights into spatial dynamics. This model has also been refined
to include socioeconomic variables, such as income and education,
improving its predictive performance [18]. These developments
signify a methodological evolution, adapting traditional models to
leverage the increasing availability of rich urban data.

Traditional models might fall short in prediction performance,
yet they provide essential insights and intuition for building predic-
tive models. Learning-based models, noted for their flexibility and
complex structures, deliver commendable performance, especially
in capturing implicit data characteristics.

5.2 Learning-Based Models
The advent of machine learning ushered a shift towards data-driven
methodologies in OD prediction. Techniques such as Gradient
Boosted Regression Trees (GBRT) [26] and Random Forest [21]
have demonstrated superior capability in capturing complex inter-
actions within mobility data. Further advancements in deep learn-
ing have led to the incorporation of graph-based methodologies,
acknowledging the networked nature of urban spaces. Graph Ma-
chine Learning Ensemble (GMEL) [19] and Spatial Graph Attention
Networks (Spatial GAT) [4] leverage Graph Attention Networks
(GAT) [32] and Graph Convolutional Networks (GCN) [14] to model

the intricate spatial relationships essential for accurate OD flow
prediction. These approaches significantly enhance the ability to
interpret the influence of both direct and neighboring regions on
mobility patterns.

Despite these advancements, these works all target predicting
OD flows in a single city, while achieving OD prediction across
cities remains an unresolved issue. Notably, OD prediction models
tailored for a single city [9, 36] often depend on unique urban
characteristics, such as transportation modes and urban layouts,
making it challenging to apply the learned features from one city to
another. The work most related to our works is proposed by Rong et
al. [28], which employes unsupervised transfer learning to enhance
model transferability. This approach, named GODDAG, involves
unsupervised domain adaptation, which trains models within a
data-rich source domain and then adapts them to an unlabeled
target domain. The central concept is to align features from both
the source and target domains into a shared feature space, thereby
minimizing the domain discrepancies. Consequently, this method
enables the application of OD prediction models, initially trained in
one urban environment, to be effectively used in another without
the need for labeled data in the target domain.

Leveraging the exceptional pattern recognition and inference
capabilities of LLMs, our research introduces a new approach for
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(a) Ground Truth (b) Random Forest (c) Gravity Model

(d) GBRT (e) GODDAG (f) LLM-COD

Figure 7: Visualization of the generated OD flow of ground truth and different models under cell size = 2,000m (Beijing -> Xi’an),
where green marker stands for origin and white marker stands for destination. The diagrams from left to right are from (a)
Ground truth, (b) Random Forest, (c) Gravity Model, (d) GBRT, (e) GODDAG, (f) LLM-COD

predicting OD flows. By combining LLMs with traditional trans-
fer learning techniques, we enhance model generalization across
diverse urban environments. This novel method is particularly ben-
eficial for rapidly evolving cities with limited data, providing a new
solution to contemporary urban planning challenges.

6 CONCLUSIONS
We introduced LLM-COD which is a new method for cross-city OD
flowprediction. By fine-tuning an LLMwith a new loss function, our
method can understand spatial and functional relationships within
urban spaces and capture interactions between individuals and
various POIs. Experimental results based on data from three major
cities—Beijing, Chengdu, and Xi’an—demonstrate that LLM-COD
outperforms state-of-the-art learning-based methods in cross-city
OD flow prediction, especially for high-volume and long-distance
flows.

We envision several promising research directions to explore
further. First, we are committed to enhancing the capabilities of
our LLM-COD model by applying to more urban dataset. This will
include integrating diverse urban datasets from different cities or

even different coutries. Second, Understanding and interpreting the
decision-making process of LLM-COD is another crucial area of
focus. Although ourmodel achieves high performance, it is essential
to provide users with clear and understandable explanations of
its predictions. In summary, our future endeavors will focus on
expanding the data diversity and contextual understanding of LLM-
COD, enhancing its interpretability.
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A EXPERIMENTAL DETAILS DESCRIPTION
A.1 POI category Details
We collected POI data using tencent map API. The POI data we use
contains 24 categories, as table 7 shows.

Table 7: POI Types and Their Frequencies

POI Type Frequency
Residential Area 105,183
Food & Cuisine 66,158
Commercial Building 46,772
Infrastructure 38,313
Tourist Attraction 34,648
Organization 34,302
Education & School 29,849
Hotel 28,866
Shopping 22,972
Healthcare 18,315
Company & Enterprise 16,377
Industrial Park 13,789
Automobile 11,576
Real Estate Community Affiliated 11,015
Sports & Fitness 9,715
Entertainment & Leisure 9,485
Cultural Venue 8,420
Life Services 5,536
Place Name & Address 4,226
Banking & Finance 2,559
Indoor & Affiliated Facilities 574
Other Real Estate Community 2
Others 1

B LLM BACKEND COMPARISON
When we started the project, Google hadn’t released Gemma. On
April 16th, Google made Gemma open source. As Gemma is more
powerful than LLaMA2,we conducted a comparison betweenGemma-
7B and the LLaMA2 model we initially used. The table below
presents the results of this comparison.

Table 8: Performance in Different LLM backend

Beijing→ Chengdu Beijing→ Xi’an
Methods RMSE SMAPE CPC RMSE SMAPE CPC
LLM-COD 28.49 0.00 0.63 24.25 0.00 0.42
LLM-COD(Gemma) 21.07 0.00 0.66 19.18 0.00 0.48

As shown in the Table 8, the LLM-COD model using Google
Gemma significantly outperforms the one using LLaMA2. Specifi-
cally, the RMSE values for the OD flow predictions from Beijing to
Chengdu and Xi’an are lower with Gemma, indicating improved
accuracy. Similarly, the CPC values are higher, suggesting better
alignment with the actual OD flow distribution. The experiments
further demonstrate that our framework and new loss function
are effective in cross-city OD flow prediction, showing increased
performance with a better base LLM model and outperforming
state-of-the-arts models further.
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