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We present a general encoding-decoding framework for interpreting the
activity of a population of units. A standard population code interpre-
tation method, the Poisson model, starts from a description as to how a
single value of an underlying quantity can generate the activities of each
unit in the population. In casting it in the encoding-decoding framework,
we find that this model is too restrictive to describe fully the activities of
units in population codes in higher processing areas, such as the medial
temporal area. Under a more powerful model, the population activity
can convey information not only about a single value of some quantity
but also about its whole distribution, including its variance, and perhaps
even the certainty the system has in the actual presence in the world of the
entity generating this quantity. We propose a novel method for forming
such probabilistic interpretations of population codes and compare it to
the existing method.

1 Introduction

Population codes, where information is represented in the activities of whole
populations of units, are ubiquitous in the brain. There has been substantial
work on how animals should or actually do extract information about the
underlying encoded quantity (Georgopoulos, Schwartz, & Kettner, 1986;
Baldi & Heiligenberg, 1988; Seung & Sompolinsky, 1993; Salinas & Abbott,
1994; 1995; Snippe, 1996; Sanger, 1996). With the exception of Anderson
(1994), most of this work has concentrated on the case of extracting a single
value for this quantity. In this article, we study ways of characterizing the
joint activity of a population as coding a whole probability distribution over
the underlying quantity.

We will use two main motivating examples throughout this article, both
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of them well-studied, classic examples of population codes. The first is place
cells in hippocampus of freely moving rats (O’Keefe & Dostrovsky, 1971),
which tend to fire when the animal is at a particular part of an environment.
The second example is that of motion-selective cells in the medial temporal
(MT) area of monkeys that are reporting aspects of the motion in a stochastic
stimulus made up of dots moving in various directions (Newsome, Britten,
& Movshon, 1989). MT cells are selective for particular directions of motion
and are well activated by such random displays provided that some of the
dots are moving in the directions that they prefer.

In these cases, treating the activity of such populations of cells as report-
ing on a single value of the variables they code (e.g., direction of motion) is
inadequate. Instead, these are examples of two general situations in which
the population must be interpreted as coding probability distributions over
these variables:

1. Insufficient information exists to define a single value with certainty.
The rat may not have enough information from visual or vestibular
cues to know exactly where it is. This article discusses how to make
statistical sense of the obvious notion that if the animal is confused
whether it is in place x1 or place x2, then the place cells that prefer both
places should be activated.1 Hinton (1992) pointed out that one should
be able to use patterns of activity over such population codes to report
not only a single place in the world, but also variance and uncertainty
about that place and other aspects of a probability distribution.

2. Multiple values underlie the input. The monkey may have to report
the direction of coherent motion embedded in a field of random mo-
tion noise. MT cells cannot be characterized as only reporting on the
direction of coherent motion, since cells that prefer directions oppo-
site to this are activated by the noise. The population must therefore
be characterized as reporting something about the entire distribution
of inputs.

In this article, we first provide a general statistical framework that can
be used to understand how the activity of a population of neurons can be
considered as encoding information about the world and, concomitantly, the
way that this information can be decoded from the activity. We illustrate the
framework by casting the standard model for population codes in its terms,
use it to show why this model is inadequate for representing probability
distributions even though it does contain some distributional information,
and describe an existing model for probabilistic interpretation (Anderson
& Van Essen, 1994; Anderson, 1994) in terms of the framework.

In section 2 we define the encoding and decoding framework and exam-

1 As far as we are aware, there are as yet no data on how the place cells actually fire in
such ambiguous cases.
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ine existing models for population codes in its terms. In section 3 we propose
a novel method for encoding and decoding probability distributions from
population codes. In section 4 we present empirical comparisons between
the alternative methods.

2 Population Code Interpretations

2.1 The Encoding-Decoding Framework. The starting point for almost
all work on neural population codes is the neurophysiological finding that
many neurons respond to a particular variable underlying a stimulus (such
as the orientation of a visually presented bar) according to a unimodal tun-
ing function. This function is read out as the mean firing rate of the cell
and is often reasonably well characterized as a gaussian. The value of the
underlying variable at which the peak of the tuning function occurs (the
mean of the gaussian) is called the preferred value for the cell. This form of
response characterizes not only cells near the sensory periphery, but also
cells that report the results of more complex processing, including receiving
information from groups of cells that themselves have these tuning proper-
ties (in MT, for instance). A major caveat with almost all work on population
codes, including that in this article, is that the responses of cells vary with
many quantities in the world other than the particular one that is usually
studied. For example, many MT cells are also selective for disparity and can
be affected by spatial frequency, making it difficult to ascribe weak firing
to nonpreferred motion, or an incorrect disparity, or something else. In our
theory, we assume that we know the (collection of) variables with respect
to which a cell’s response is systematically determined; all other variables
are treated as noise, so if the response depends on some unknown variable,
interpretation will be hampered.

By definition, for each of these populations, the activities of the cells
can be interpreted as conveying information about some underlying low-
dimensional space. Interpreting population codes thus involves two spaces.
First, there is an explicit space that consists of the activities r = {ri} of the
cells in the population. Second, these activities are described in terms of an
implicit space (Zemel & Hinton, 1995), which contains the small number
of underlying dimensions (e.g., direction in the MT example above) that
the activities of the cells encode and in which they are described as having
tuning functions. The implicit space plays no explicit role, even though any
processing on the basis of the activities r has to be referred to the implicit
space. For instance, if the activities across the population are combined in
some particular way (as in generating a single value), then the implicit space
can be used to work out how much information is lost, and consequently
to work out the best method of combination.

This notion of explicit and implicit spaces underlies our framework,
which is depicted in Figure 1 in the context of a single experiment. At the
top are the measured activities of a population of cells. There are two key
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Figure 1: (Left) Standard models of population codes, such as the Poisson
model, assume an underlying encoding model such as the one illustrated here.
The output of the encoding process is shown at the top: the activities of units,
corresponding to the explicit, observable representation. These are assumed
to have been generated by the independent application of each cell’s tuning
function and additive noise to the implicit representation shown at the bottom,
which in this case is a single value x∗ in the space of underlying variables. (Right)
Bayesian decoding models describe how to extractP[x |r] from the observed ac-
tivities, through knowledge of the tuning functions f (x). An estimate of the true
value of x can then be formed according to some loss function. Uppercase letters
label operations.

questions to ask about this firing:

1. What is the relationship between the activities r of the cells and the
underlying quantity x in the world that is represented? (encoding)

2. What information about the quantity x can be extracted from the ac-
tivities? (decoding)

Although it is of active interest (Pouget, Zhang, Deneve, & Latham, 1998),
we do not consider constraints that come from the neural instantiation of
the decoding algorithms and pose the decoding question as an abstract
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problem. Since neurons are generally noisy, it is often convenient to char-
acterize encoding (see Figure 1, operations A and B) in a probabilistic way,
by specifying:

P[r |x]. (2.1)

The simplest models make a further assumption of conditional indepen-
dence of the different units given the underlying quantity,

P[r |x] =
∏

i
P[ri |x], (2.2)

although others characterize the degree of correlation between the units
(Zohary, Shadlen, & Newsome, 1994).

If the encoding model in equation 2.1 is true, then a Bayesian decoding
model specifies that the information that r carries about x can be character-
ized precisely as

P[x |r] ∝ P[r |x]P[x], (2.3)

where P[x] is the prior distribution about x and the constant of proportion-
ality is set so that∫

x
P[x |r]dx = 1.

Note that starting with a deterministic quantity x in the world, encoding
it in the firing rates r, and decoding it (operation C) using equation 2.3
results in a probability distribution over x. This uncertainty arises from the
stochasticity represented byP[r |x]. Given a loss function, we could then go
on to extract a single value from this distribution (operation D).

For most real cases of population codes, encoding cannot be described
so crisply. This article describes the inadequacy of one particularly perva-
sive assumption: that the underlying quantity is a single value for instance,
the single position of a rat in an environment, or the single coherent di-
rection of motion of a set of dots in a direction discrimination task. The
assumption is pervasive since this is how one typically works out what a
population of cells is encoding and how each responds to some particular
x. It is inadequate because it cannot capture the subtleties of other exper-
iments, such as those in which rats can be made to be uncertain about
their position (Cheng & Gallistel, 1984), or in which one direction of motion
predominates yet there are several simultaneous motion directions (New-
some et al., 1989). In many cases, the natural characterization is actually
a whole probability distribution P[x |ω] over the value of the variable x,
where ω represents all the available information. For instance, for the rat,
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this distribution might be the distribution over its possible locations in the
environment.

The rat can clearly expect to be in exactly one position at any one time,
and it therefore makes sense to consider the distribution of uncertainty
P[x |ω] as to that position. This is not quite true for the monkey; it could be
observing many different directions of motion simultaneously. In this arti-
cle, we characterize this multiplicity by considering a separation between
the direction of motion of a single randomly chosen dot (which gives the
equivalent ofP[x |ω]) and the actual number of dots present at any one time.
Following Hinton (1992) we consider the sum total activity over the popu-
lation as reporting the latter and the distribution of that activity across the
population as reporting the former. This imposes the important constraint
that there is some independent standard for how much activity there should
be (with which to work out the number of dots) and is clearly not the only
possibility.2

Note also that there is no requirement that the animal perform decoding
as in equation 2.3, or, indeed, that it explicitly perform decoding at all. That
Wilson and McNaughton (1993) can extract the (x, y) coordinates of a rat in
a room on the basis of the activities of 25 of its place cells does not mean that
the stages of rodent processing subsequent to the hippocampus actually do
this.

We can now cast two existing classes of proposals for population codes
in terms of this framework.

2.2 The Poisson Model. Under the Poisson encoding model, the quan-
tity encoded is indeed one particular value, and the activities of the indi-
vidual units are independent, with the terms in equation 2.2 specified as

P[ri |x] = e− fi(x) ( fi(x))ri

ri!
. (2.4)

The activity ri could, for example, be the number of spikes the cell emits
in a fixed time interval following the stimulus onset. A typical form for the
tuning function fi(x) is gaussian:

fi(x) ∝ e−(x−xi)
2/2σ 2

, (2.5)

about a preferred value xi for cell i. In terms of Figure 1, turning the quantity
x into a set of mean firing rates fi(x) for the units is operation A; sampling

2 We propose that the magnitude of firing can be used to suggest the multiplicity of
inputs as well as their properties (i.e., doubling the firing rate could indicate that perhaps
there are two stimuli present). Then one could interpret the remaining pattern of activity as
implying multiple distributions, one for each possible stimulus. It is likely, however, that
nonlinear processes affect the firing rate under multiple stimuli. For example, Snowden
(1989) showed that an MT cell’s response to motion in its preferred direction can be
suppressed by adding motion in an orthogonal direction.
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the activities ri from these means according to a Poisson distribution is oper-
ation B. These operations are descriptive models; they capture the essence
of the results of a collection of experiments rather than being based on a
biophysical understanding of how x actually causes the activities r.

Several authors have examined maximum likelihood (ML) decoding un-
der the Poisson encoding model (Seung & Sompolinsky, 1993; Salinas &
Abbott, 1994, 1995; Snippe, 1996) and analyzed the performance of other
decoding methods relative to ML. These methods all focus on extracting
a single value for the underlying parameter. The full probability distribu-
tion over the quantity x from this Poisson model is given by (Sanger, 1996;
Földiák, 1993):

P[x |r] ∝ P[x]
∏

i
e− fi(x) ( fi(x))ri

ri!
. (2.6)

Although the Poisson model is simple and straightforward, it suffers from
the assumption criticized above: that there is just a single value x. If the rat
is really uncertain about whether it is at location x1 or location x2 in the
world, then the standard Poisson model has no formal way of turning that
uncertainty into activities. In this case, we argued that the natural charac-
terization of the quantity in the world that the activities of the cells encode
is now P[x|ω].

We describe below a method of encoding that takes exactly this approach.
However, one might argue that even though there is no formal way of encod-
ing uncertainty in the activities, there is a formal way of decoding activities
to produce a probability distribution over x. Perhaps one could form P[x|r]
in equation 2.6 as a decoding of r to model a diffuse or multimodal P[x|ω].
We now show that this approach turns out to be inadequate.

Consider a one-dimensional case with tuning functions as in equation 2.5.
Imagine that activities r are specified directly in some manner on the basis
of a whole probability distribution P[x|ω] over x. The goal is to decode
the activities r using equation 2.6 and actually represent P[x|ω] adequately.
From now on, we will use P̂ r(x) as the decoding distribution over x that is
specified by r. This is no longer P[x|r] unless it is a true Bayesian inverse.
From equation 2.6, and assuming a uniform prior over x, we have:

log P̂ r(x) = K −
∑

i
fi(x)− 1

2σ 2

∑
i

ri(x− xi)
2 (2.7)

= K′ − 1
2

(∑
i ri

σ 2

)(
x−

∑
i rixi∑

i ri

)2

(2.8)

by completing the square, if, as in most reasonable cases, there are sufficient
units such that

∑
i fi(x) is constant in x. But the distribution in equation 2.8
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is then gaussian, with mean µ and variance ξ2, where:

µ =
∑

i rixi∑
i ri

ξ2 = σ 2∑
i ri
.

If we extract a single value from this decoded distribution by simply tak-
ing its mean, then this value matches the center-of-gravity estimate (Snippe,
1996). However, if we are interested in the entire distribution, then this stan-
dard model cannot capture the range of input distributions P[x|ω] under
consideration. First, it will clearly not be possible to match multimodal
P[x|ω] with any fidelity, since this decoded gaussian is unimodal. Second,
remembering that ri ≥ 0 should reasonably be integers, then unless they
are all 0, the variance of P̂ r(x) is bound to be less than σ 2, and so there is
no setting for the r that will match P[x|ω] having widths greater than that
of the tuning functions themselves. Thus this Poisson model is incapable of
representing distributions that are broader than the tuning functions.

In fact, even though it is not actually being used to specify the activities of
the cells, the underlying assumption in the encoding of the Poisson model
(as embodied in equation 2.4) is that there is just one value of x that results in
the activities of the cells, and thus the Poisson model has trouble encoding
anything other than delta function P[x|ω]. This analysis also applies to the
gaussian encoding model. It is not strictly true if the tuning functions are
not gaussian or the units have some baseline activity (Snippe, 1996; Pouget
et al., 1998). We see later (in Figure 9) a case in which allowing baseline
activities permits the Poisson decoding model to produce a multimodal
distribution. However, each of the modes is much too narrow. To reinforce
this point: if the firing rate were stationary for long enough so that one could
collect arbitrary numbers of spikes, then one could estimate the true mean
activities fi(x) for the cells. Decoding using the Poisson model if one knows
the means will almost always lead to a delta function estimate.

2.3 The KDE Model. Anderson (1994) and Anderson and Van Essen
(1994) defined a new interpretation for population codes in which the notion
of representing probability distributions over x rather than just a single value
is essential. This method represents the distribution P̂ r(x) in terms of kernel
density estimates (KDEs), forming a linear combination of simple kernel or
basis functions ψi(x) associated with each cell, weighted by a normalized
function of its activity ri:

P̂ r(x) =
∑

i
r′iψi(x). (2.9)

Here the r′i are normalized such that P̂r(x) is a probability distribution. If
the ψi(x) are probability distributions themselves and ri are all positive, a
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natural choice is to have

r′i =
ri∑
j rj
. (2.10)

Note that the kernel functions ψi(x) are not the tuning functions fi(x) of the
cells that would commonly be measured in an experiment. They need have
no neural instantiation; instead, they form part of the interpretive structure
for the population code. If the ψi(x) are probability distributions, and so
are positive, then the range of spatial frequencies in P[x|ω] that they can
reproduce in P̂ r(x) is likely to be severely limited.

In terms of our framework, whereas the Poisson model makes decod-
ing a corollary of (that is, the Bayesian inverse of) the encoding model, the
KDE model makes encoding a corollary of the decoding model. Evaluat-
ing the KDE model requires us to consider encoding—taking a probability
distribution P[x |ω] over x and producing a set of firing rates {ri} such that
P̂ r(x) in equation 2.9 approximatesP[x |ω] closely. It is the encoding process
that standard experiments probe. Presenting single, unambiguous stimuli
(the experimental procedure that led to the characterization in the Poisson
model) amounts to asking the system to encode delta function distributions
P[x |ω] = δ(x − x∗) for various x∗. The measured responses are then the
mean resulting activities fi(x∗) ∼ 〈ri〉.

One natural way to do encoding is to use the Kullback-Leibler divergence
as a measure of the discrepancy betweenP[x |ω] and

∑
i r′iψi(x) and use the

expectation-maximization (EM) algorithm to fit the {r′i}, treating them as
mixing proportions in a mixture model (Dempster, Laird, & Rubin, 1987).
This relies on {ψi(x)} being probability distributions themselves.

The projection method (Anderson, 1994) is an alternative encoding
scheme that does not require the iterations of EM but instead uses the L2
distance. This allows ri to be computed as a projection of P[x |ω] onto the
tuning functions:

ri =
∫

x
P[x|ω] fi(x)dx. (2.11)

The kernel functions are again assumed to be a fixed implicit property of
the cells in this formulation and the optimal L2 tuning functions fi(x) are
derived as

fi(x) =
∑

j

A−1
ij ψj(x); Aij =

∫
x
ψi(x)ψj(x) dx. (2.12)

These tuning functions are likely to need smoothing or regularizing (An-
derson, 1994), particularly if the ψi(x) overlap substantially. In this case,
with purely linear encoding and decoding operations, the overall scheme
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is a particular sort of linear filter, and many of its properties can be derived
from this perspective.

There is a further aspect of P[x |ω] that we might wish to represent in
a population code: certainty. Consider reducing the contrast of the moving
random dots near to threshold. Then the absolute activity levels of MT cells
might represent the certainty that there is actually a stimulus at all. In this
case, one might characterize P[x|ω] as a mixture model, with one mixing
proportion for the absence of a stimulus and one mixing proportion for a
distribution over directions for the presence of a stimulus. The normaliza-
tion step in equation 2.10 prevents the KDE from representing this form of
certainty, since

∑
i r′i = 1. However, certainty could easily be captured. For

instance, if there is a maximum value Rmax for the summed actual activities∑
i ri, then one could have an indicator variable z ∈ {0, 1} representing the

presence (1) or absence (0) of the underlying object and:

P[z = 1|{ri}] =
∑

i
ri/Rmax

P̂(x; {ri}, z) =


P[x] if z = 0∑

i

ri∑
j rj
ψi(x) if z = 1

whereP[x] is the prior distribution over x. Note that under this formulation,
as the probability of the underlying object’s presence approaches zero, the
marginalized estimate of the original distribution approaches the prior:

P̂ r(x) = P̂(x; {ri}, z = 1)P[z = 1|{ri}]
+ P̂(x; {ri}, z = 0)(1− P[z = 1|{ri}]).

Of course, as P[z = 1|{ri}] tends to 0, the question of the true underlying
distribution becomes moot.

3 The Extended Poisson Model

Given its linear decoding method and a limited number of decoding kernel
functionsψi(x), we might expect the KDE model to have difficulty capturing
in P̂ r(x) probability distributions P[x|ω] that have high frequencies, such
as delta functions. We also saw that the standard Poisson model has the
problem of decoding almost any pattern of activities r into something that
rapidly approaches a delta function as the activities increase. Is there any
middle ground?

We argued that the problem for the standard Poisson model comes from
its encoding model (see equation 2.4), which is based on there being a sin-
gle underlying value x. We can extend this encoding model to allow the
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recorded activities r to depend explicitly on general P[x |ω]. The extended
Poisson model is based on an encoding model in which the activity of cell i
is Poisson about a mean, which, in the continuous version, is

〈ri〉 =
∫

x
P[x |ω] fi(x)dx. (3.1)

Note that this equation is identical to the encoding model for the kernel den-
sity model (see equation 2.11), except that here the firing rates are stochastic.
In the kernel density model, there is no variability in the activities {ri} that
encode a particular P[x |ω]. Under the extended Poisson model, the activ-
ity of each cell is a filtered, sampled version of the underlying probability
distribution and this implies strong constraints on the potential quality of
reconstructions.

This model is the most straightforward extension of the conventional
Poisson model and makes roughly similar predictions about observable
activities when P[x|ω] is a delta function. However, it offers a much more
powerful model for representing P[x|ω] that are not delta functions.

Given {ri} generated using Poisson noise from equation 3.1, how should
one infer P[x|ω]? Recall that for the standard Poisson model, encoding a
single location in a population (P[ri|x]) leads, through decoding, to a proba-
bility distribution over possible locations (P[x|r]). Here the encoding model
takes a whole function (P[x|ω]) and stochastically produces a set of num-
bers ({ri}) that provide partial information about that function. The general
Bayesian inverse to this is a model that takes the numbers and produces a
probability distribution over the functions that could have generated them.
In our case, this means that decoding should really produce a probability
distribution over probability distributions over the implicit variable x, that
is, P[P[x|ω] |r]. Rather than do this, we choose to summarize this distri-
bution over distributions by an approximation to its most likely member;
we perform an approximate form of maximum a posteriori (MAP) decod-
ing, not in the value of x but in distributions over x. Figure 2 illustrates the
entire encoding and decoding process for the case of implicit probability
distributions.

We approximateP[x |ω] as a piece-wise constant histogram that takes the
value φ̂j in (xj, xj+1], and fi(x) by a piece-wise constant histogram that take
the values fij in (xj, xj+1]. Then we model activities {ri} as being independent
Poisson random variables whose means are (see equation 3.1)

〈ri〉 =
∑

j

φ̂j fij.

Then the true inverse distribution is:

P
[
{φ̂j} | {ri}

]
∝ P

[
{φ̂j}

]
e
−
∑

ij
φ̂j fij

∏
i

∑
j

φ̂j fij

ri

, (3.2)

where P[{φ̂j}] is the prior over the {φ̂j}.



414 Richard S. Zemel, Peter Dayan, and Alexandre Pouget

r

decodeunit

x

f(x)

unit

x

encode

P(x)

x

P(x|w) P(x|w)

x x x

P(x|w)

P(x|w)

P[P(x|w)|{r}]

P[r|P(x|w)]

r

P(x|w)

Figure 2: A set of firing rates may also be interpreted as encoding a probabil-
ity distribution in implicit space. Decoding the rates now involves forming a
probability distribution over possible implicit distributions, P [P[x|ω] |r]. The

decoding distribution P̂r(x) may be formed from this distribution over distri-
butions by integrating or through a maximum a posteriori computation. The

extended Poisson model forms P̂r(x) using an approximate form of ML in dis-
tributions over x.

If the system is translation invariant then
∑

i fij = f is constant for
all j.

∑
j φ̂j = 1, because it represents a probability distribution, therefore

e
−
∑

ij
φ̂j fij = e− f , which is constant. Taking logs,

logP
[
{φ̂j} | {ri}

]
= K + logP

[
{φ̂j}

]
+
∑

i
ri log

∑
j

φ̂j fij

 , (3.3)

where K is a constant. Maximum a posteriori decoding in this context re-
quires finding the set of {φ̂j} that sum to 1 and maximize this expression. If
logP[{φ̂j}] is dominated by a smoothness prior such as

∑
j

(
φ̂j − φ̂j+1

)2
, (3.4)
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then we are left with the following expression:

AP({φ̂j}) =
∑

i
ri log

∑
j

φ̂j fij

− ε∑
j

(
φ̂j − φ̂j+1

)2
, (3.5)

where ε is a weighting coefficient on the smoothness prior.
Thus, the extended Poisson model creates a decoding distribution P̂ r(x)

that approximates MAP inference from the distribution over distributions
P [P[x|ω] | {ri}].

The values of this decoding distribution can be found in a number of
ways. One simple method involves adjusting {φ̂j} via simple gradient as-
cent in MAP({φ̂j}). Alternatively, one can use a version of EM to find the
MAP values. For this, one interprets

∑
j φ̂j fij as a mixture model for case i,

where {φ̂j} are the mixing proportions and { fij} are the fixed values of the
underlying distributions. ri is then the weighting for case i, and the resulting
expression in equation 3.3 therefore acts just like a likelihood. In practice,
a smoothness prior such as equation 3.4 is required for regularization. For
the experiments described below, we implemented a crude approximation
by averaging adjacent φ̂j after each EM iteration.

With this method of decoding in mind, we now see how the extended
Poisson model competes with the KDE model as a way of representing
probability distributions. By comparison with the linear equation 2.9, equa-
tion 3.5 offers a nonlinear way of combining a set of activities {ri} to give a
probability distribution P̂ r(x) over the underlying variable x. The compu-
tational complexities of equation 3.5 are irrelevant, since decoding is only
an implicit operation that the system need never actually perform.

Another way of looking at the difference between the models is that the
extended Poisson model is a Bayesian decoding method, and thus involves
a multiplication of tuning functions (assuming the units are independent),
while the KDE model is a basis function method, in which decoding entails
a summation of kernels. We will see the consequences of this difference in
the simulations below.

Finally, just as for the KDE model, this form of decoding does not capture
well the certainty in the presence of a stimulus. A natural extension to the
model in equation 3.5 is to estimate φ̂j just as before, but set the approxima-

tion to P̂ r(x) to be φ̂ × φ̂j in the interval (xj, xj+1], where

φ̂ = min

[
1,

∑
i ri∑

i,j fij

]
. (3.6)
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4 Comparing the Models

We now compare the ability of these interpretation methods to extract the
probabilistic information contained in a population code. The primary ques-
tion of interest is whether we can find a set of deterministic activities {ri}
that make P̂ r(x) a close approximation to an interesting implicit distribution
P[x|ω]. We take three instances of implicit distributions intended to model
the primary cases in which interpreting a population code as a probability
distribution is essential:

1. Some uncertainty exists about the location of the target. The aim is to
approximate correctly the mean and the uncertainty about this mean.

2. The target could be in one of two locations. A bimodal distribution
could arise due to insufficient information, as in the case of the rat, or
due to the actual existence of multiple values.

3. Uncertainty exists about the presence of the target. Here the mag-
nitude of the integral under the implicit distribution is intended to
capture the degree of certainty in the presence of the target.

Finally, we also examine the noise robustness of the methods.
In each of these cases, we consider a simplified situation in which the

location of the object varies along only one dimension. This eases visualiza-
tion of network activity and decoded distributions, but each model readily
could be extended to include other dimensions. For each model, the popu-
lation code consisted of 50 units, with preferred values xi spaced uniformly
in the range of x = [−10, 10]. Associated with each unit was a gaussian
distribution: N (xi, σ = 0.3). In the KDE model, these 50 gaussians were
the kernels ψi(x), while in the Poisson and extended Poisson models, they
represented the tuning functions fi(x).

For the KDE model, we used two methods to find the set of activities that
provided the best fit between the true implicit distribution P[x|ω] and the
estimate P̂r(x) (see equation 2.9). The projection method computes the rates
{ri} as a projection of P[x|ω] onto the tuning functions, where the optimal
tuning functions are derived from the fixed kernels (see equations 2.11 and
2.12). The EM method adapts {ri} to minimize the Kullback-Leibler diver-
gence between the estimated and true distributions.

For the Poisson and extended Poisson models, we again computed the
rates {ri}as a projection ofP[x|ω] onto the tuning functions, where the tuning
functions are now the fixed { fi(x)}. In the Poisson model, we decode directly
into the ML values of equation 2.8, while in the extended Poisson model,
we decode using a version of EM to find the MAP values of equation 3.5.
In all of these experiments, we limited the activities {ri} to assume integer
values. Note that in the case of the KDE model, these activities are then
normalized as part of the decoding process (see equation 2.10). Finally, in
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Figure 3: All three methods can reconstruct the original implicit gaussian dis-
tribution over a range of values of τ , the standard deviation of this gaussian.
Here τ = 1.0.

all simulations presented here, Rmax = 50, and the number of histogram
bins in the extended Poisson model was 500. Table 1 summarizes these
methods.

We also require some quantitative way of comparing the reconstructions
of the various models. Although the Kullback-Leiber distance (the implicit
metric for both extended Poisson and KDE-EM methods) is the natural
measure of the difference between two probability distributions, it cannot
be used here, since the reconstructions from the KDE-projection method are
not strict distributions (they are not nonnegative). We therefore used the
somewhat less informative squared error measure:

E =
∑

j

[
P̂ r(xj)− P[xj|ω]

]2
. (4.1)

4.1 Uncertainty in Target Location. For these simulations, the implicit
distribution is a gaussian:

P[x|ω] = N (0, τ ).

All three methods form good estimates for a range of values of τ , the width
of the true implicit distribution (for example, see Figure 3). However, as
predicted, both KDE methods are unable to represent narrow distributions
accurately for example, τ = 0.2 (see Figure 4). In general, the critical vari-
able in the fidelity of the KDE estimate is the ratio of the widths σ of the
decoding kernels and the widths τ in the true implicit distribution. The ex-
tended Poisson method is able to capture both narrow and wide implicit
distributions, so it can form accurate interpretations of distributions with a
relatively high variance, as well as delta functions.
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Table 1: Summary of the Key Operations of the Three Interpretation Methods.

Operation Extended Poisson KDE (Projection) KDE (EM)

Encode 〈ri〉 = h
[∫

x P[x|ω] fi(x)dx
]

〈ri〉 = h
[
Rmax

∫
x P[x|ω] fi(x)dx

]
〈ri〉 = h

[
Rmaxr′i

]
〈ri〉 fi(x) = RmaxN (xi, σ ) fi(x) =

∑
j A−1

ij ψj(x) r′i to max L

Aij =
∫

x ψi(x)ψj(x)dx

Decode P̂r(x) to max L P̂r(x) =∑i r′iψi(x) P̂r(x) =∑i r′iψi(x)

P̂r(x) r̂i =
∫

x P̂
r(x) fi(x)dx ≈∑j φ̂j fij r′i = ri/

∑
j rj

Likelihood L = logP
[
{φ̂j}|{ri}

]
≈∑i ri log r̂i L =

∫
x P[x|ω] log P̂r(x)dx

Error G =∑i ri log(ri/r̂i) E =
∫

x

[
P̂r(x)−P[x|ω]

]2
dx G =

∫
x P[x|ω] log P [x|ω]

P̂r
(x)

dx

Note: h[ ] is a rounding operator to ensure integer firing rates, and ψi(x) = N (xi, σ ) are the kernel functions for the KDE
method. The certainty calculation is not included in this table.
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Figure 4: The KDE method has difficulty capturing the high-frequency informa-
tion in the implicit gaussian distribution, when its standard deviation, τ = 0.2,
is smaller than the kernel widths (σ = 0.3).

4.2 Multiple Locations. A multimodal implicit distribution can be de-
scribed as a mixture of two gaussians:

P[x|ω] = 0.5 ∗N (x1, τ )+ 0.5 ∗N (x2, τ ).

Here we can model the situation in which the rat is uncertain whether the
target is in location x1 or x2. The variable τ describes an additional degree
of uncertainty about the exact location of each potential target. For these
simulations, we let x1 = 2 and x2 = −2.

To get a sense of the different encoding models, the expected activities
of the 50 units in the population code are plotted in Figure 5. For τ = 1.0,
the KDE-EM method has converged to a local minimum, which is why
one of the firing rates looks odd. However, because the distribution being
modeled is so broad, this makes very little difference to the net quality of
reconstruction.

Applying the respective decoding models to these expected firing rates,
we find results similar to those of the previous section. Both KDE methods
can capture a bimodal implicit distribution where the width exceeds that
of the kernels (see Figure 6), yet they cannot accurately reconstruct narrow
distributions (see Figure 7). The extended Poisson model matches both
types of implicit distributions with high fidelity.

For the sake of comparison, Figure 8 shows the decoded distribution
formed by the simple Poisson model (see equation 2.8). Here we use the same
encoding model as in the extended Poisson method, in order to allow the
unit activities to convey information about the entire implicit distribution.
Nonetheless, the simple decoding model always produces a delta function
estimate. An estimated delta function fits the case of the narrow unimodal
implicit distribution shown in Figure 4, but it cannot match the bimodal
implicit distribution here.
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Figure 5: Each method’s encoding model specifies how the expected firing rates
of units in the population are based on the implicit distribution. The implicit
distribution here is a bimodal gaussian with standard deviation τ . The firing
rates on the left are for τ = 0.2 and on the right for τ = 1.0. In both cases,
Rmax = 50.
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Figure 6: All three methods provide a good fit to the bimodal gaussian distri-
bution when its variance is sufficiently large (τ = 1.0).
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Figure 7: The KDE method again has difficulty capturing the high-frequency
information in the implicit bimodal gaussian distribution when its variance
τ = 0.2 is smaller than the kernel widths (σ = 0.3).
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Figure 8: The simple Poisson decoding model leads to a delta function for the
estimated implicit distribution. Here the implicit distribution is the bimodal
gaussian, τ = 1.0. The unit activities r are the same as for the extended Poisson
model, and the decoding is done using equation 2.8.

This result is predicted based on the the analysis presented in section 2.2.
This analysis, however, applied to the case of gaussian tuning functions in
the absence of any baseline activity. Using simulations, we examine what
happens when the units have some baseline activity. Here it is necessary to
change the encoding model so that the unit’s expected firing rate is the sum
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Figure 9: When we extend the simple Poisson decoding model to include base-
line firing rates (Rb = 5.0 here), the estimated implicit distribution can be multi-
modal. Yet this decoded distribution does not contain any variance about these
values. The implicit distribution is again the bimodal gaussian, τ = 1.0, and the
unit activities r are the same as for the extended Poisson model.

of a gaussian tuning function and a baseline firing rate, Rb:

fi(x) ∝ e−(x−xi)
2/2σ 2 + Rb. (4.2)

Again we form the decoding distribution as the Bayesian inverse of this
new encoding model:

P[x|r] ∝ P[x]
∏

i
e− fi(x) ( fi(x))ri

ri!
.

For the simulations, we again use the encoding model of the extended
Poisson model, but now use this modified simple Poisson model for de-
coding. An example of the results is shown in Figure 9. The decoded dis-
tribution is able to take on multiple modes, yet it is always highly peaked,
due to the likelihood being a product of Poisson probabilities. Thus, this
decoding method can recover multiple implicit values but cannot capture
any uncertainty in these values.

4.3 Uncertainty in Object Presence. The next set of simulations ad-
dresses the issue of object presence. We use a dampened gaussian to model
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Figure 10: This plot shows the squared error (see equation 4.1) for different val-
ues of c, the total integral under the implicit distribution, for both the extended
Poisson and KDE projection methods. In these simulations, Rmax = 50.

the situation in which uncertainty exists in the actual presence of the target:

cN (0, τ ), 0 ≤ c ≤ 1.

Ideally, c would not be restricted to be less than 1. Instead, it could take on
any positive value and thereby describe the actual number of instances of
the implicit variable. Here we consider the simpler situation in which only
one instance of the object is represented.

In these simulations, we compare the KDE model using the projection
method to the extended Poisson model. We set τ to be 1.0, because both
methods are able to match this distribution with high fidelity when c = 1.0.
The primary empirical result is that while both methods have difficulty as
the presence c gets close to 0, both are able to recover a variety of nonnor-
malized gaussian implicit distributions, as shown in Figure 10. The main
reason for the poor performance as c decreases is that the firing rates are
forced to be integers. Clearly, increasing Rmax would extend the range of
good reconstructions.

4.4 Noise Robustness. In the previous simulations, the activities of the
units in the population code were equal to their expected responses accord-
ing to the respective encoding models. We now examine the robustness of
the interpretation methods by treating the unit activities as Poisson ran-
dom variables. Each simulation involves a stochastic sampling of the unit
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Figure 11: The expected error 〈E〉 in the decoded distribution, averaged over 50
samples from the firing rate distributions, is plotted against different values of
τ , the width of the bimodal gaussian implicit distribution. The results for only
one of the KDE methods are shown because both KDE methods involve the
same decoding operation.

responses. The robustness of a method is estimated by computing the ex-
pected error in the decoding distribution with respect to the true implicit
distribution, that is, averaging the squared-error metric (see equation 4.1)
over 50 stochastic trials.

The results of this set of simulations again match the predictions based
on the contrast between the methods, as shown in Figure 11. Because the
decoding in the extended Poisson model is nonlinear, we predict that this
model will be more robust to noise than the KDE model, in which decoding
is linear.

Figure 11 makes it appear that both methods produce perfect reconstruc-
tions for larger values of τ . This is in fact not true and is largely due to
the magnitude of the expected error for small values of τ . For the extended
Poisson model, the regularization removes one component of the error: in-
accuracies in the shape of the reconstructed distribution. This process is
more effective as τ gets larger. However, the smoothing does not remove
the second component: the bias that is present if the centers of the two gaus-
sians in the reconstructed distribution are incorrect. This bias component of
the error is slightly higher for low values of τ but relatively constant and
nonzero for τ > 0.4.
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5 Discussion

We have presented a theoretical framework for understanding population
codes that generalizes naturally to the important case in which the popu-
lation provides information about a whole probability distribution over an
underlying quantity rather than just a single value. We used the framework
to analyze two existing models and to suggest and evaluate a third model
for encoding such probability distributions.

More informally, we have tried to examine the consequences of the seem-
ingly obvious step of saying that if a rat, for instance, is uncertain about
whether it is at one of two places, then place cells representing both places
could be activated. The complications come because the structure of the in-
terpretation changes; for instance, one can no longer think of ML methods
to extract a single value from the code directly.

We are not suggesting that the uncertainty is generated at any particular
step in the processing system. Rather, it is a type of information that is
potentially contained in the population activity, about which inferences can
be made from one level to the next. So the rat need not be aware that it
is uncertain; we are not positing anything about “conscious” uncertainty.
Instead, different firing patterns corresponding to different distributions
over the underlying implicit variables are all that is needed to infer the
uncertainty at the level above. This leads to the prediction that place cells
corresponding to multiple locations will be active when the rat is uncertain
as to its location. This uncertainty may be present even at the sensor level. A
population of orientation-selective cells should have a different pattern of
firing to a bar at one orientation and a blurred image of the same bar in which
the orientation is “uncertain.” This fuzzier bar (as well as the sharper bar)
can be represented in terms of a probability distribution over orientation.

One main result of our framework is a method for encoding and decod-
ing probability distributions that is the natural extension of the standard
Poisson model for encoding and decoding single values. We also showed
that this standard model is inadequate for coding probability distributions.
Under the new encoding model, the activity of a cell has Poisson statis-
tics about a mean that is dependent on the integral of the whole encoded
probability distribution, weighted by the tuning function of the cell. The
behavior of this encoding model is appropriate in circumstances such as the
positional uncertainty of the rat. We suggested a particular decoding model,
based on an approximation to ML decoding to a discretized version of the
whole probability distribution. The resulting calculations require a form
of the EM algorithm, regularized by a smoothing operation. We showed
that this nonlinear decoding method works well in a variety of circum-
stances, reconstructing broad, narrow, and multimodal distributions more
accurately than either the standard Poisson model or the kernel density
model. Stochasticity is built into our method, since the units are supposed
to have Poisson statistics, and it is therefore also quite robust to noise.
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Various aspects of this scheme merit discussion. First, we readily ac-
knowledge that the decoding model is quite nonbiological, involving an
implausible iterative computation. The point of our particular decoding
model was to show explicitly a lower bound to the veracity with which a
set of activities can code a distribution. One might expect the subsequent
stages of processing in the brain to do one of two things with the information
in the population:

1. Integrate it with information represented in other population codes
to form a combined population code (e.g., combining uncertain infor-
mation about the relative position of two landmarks to generate the
activity of a population code formed of place cells).

2. Extract a single value from it to control behavior (e.g., pull a lever
to report the best-supported direction for the motion of the dots or
choose where to explore for food in a maze).

In both cases, the extraction is presumably performed through standard
neural operations such as taking nonlinear weighted sums and, possibly,
products of the activities. We are interested in how much information is
preserved by such operations, as measured against the nonbiological stan-
dard of our decoding method.

The first issue—how to integrate two or more population codes to gen-
erate the output in the form of another population code—was stressed by
Hinton (1992), who noted that it directly relates to Ballard’s (1981) notion
of generalized Hough transforms. This question is particularly important
because of the apparent ubiquity of population coding in the brain. It is not
at all obvious how simple and local combination methods could be capable
of preserving and combining probabilistic information in the population,
and we are studying this question, using the EM-based decoder to generate
targets and using local learning rules.

One interesting theoretical concern is that the population code output of
such a combination might not have exactly the same form as the population
code inputs. For instance, it might not be completely accurate to characterize
the cells as having Poisson statistics based on a gaussian tuning function.
In this case, one could formally calculate the true statistical interpretation
of the combined code. However, in the brain, there does not appear to be
a great difference between the population codes near to the input and the
population codes in deeper areas, such as MT. This actually places a strong
constraint on the method of combination.

One special concern for combination is how to understand noise. For
instance, the visual system can be behaviorally extraordinarily sensitive,
detecting just a handful of photons. However, the outputs of real cells at
various stages in the system are quite noisy, with apparent Poisson statistics.
If noise is added at every stage of processing and combination, then the final
population code will not be very faithful to the input. There is much current
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and confusing research on the issue of the creation and elimination of noise
in cortical synapses and neurons (Shadlen & Newsome, 1994; Mainen &
Sejnowski, 1995; Bair & Koch, 1996). Correlated noise presents extra and
different concerns.

A further concern for combination is the basis function strategy appar-
ently adopted in parietal cortex, in which the position of an object in space is
reported by neurons that have a retinotopic visual receptive field and multi-
plicative modulation from the position of the eyes in their orbits (Andersen,
Essick, & Siegel, 1985; Zipser & Andersen, 1988; Pouget & Sejnowski, 1995;
Salinas & Abbott, 1996). Multiplicative modulation based on the locus of
attention has also been found in V4 (Connor, Gallant, Preddie, & Van Essen,
1996), and it has been suggested as being a general computational strat-
egy (Poggio, 1990; Pouget & Sejnowski, 1997). The statistical effects of the
multiplicative modulation remain to be investigated.

The second issue—extracting a single value from the population—is also
important, particularly at the interface into the motor system. Some empir-
ical data about how this is accomplished come from the work on biasing
the choices of the monkeys as to the directions of motion of the random dot
stimuli through electrical microstimulation in MT (Salzman & Newsome,
1994). If the dots were moving in one direction but the electrical stimulation
favored a different direction, then the monkeys would typically choose one
or other of the two directions, rather than something like the mean direction.
In our framework, we would regard the simultaneous activity of the MT
cells that prefer the two directions as encoding a distribution and postulate
an output extraction process (thought to be in the lateral intraparietal area;
Shadlen & Newsome, 1996) that chooses a single value on the basis of this
distribution. Short of knowing exactly the effects of the electrical stimulation
on the activity of the MT cells, it is hard to use the experiment to confirm or
reject this hypothesis.

A final issue that we have addressed is that of certainty or magnitude.
Hinton’s (1992) idea of using the sum total activity of a population to code
the certainty in the existence of the quantity they represent is attractive,
provided that there is some independent way of knowing what the scale
is for this total. We used this scaling idea for both the kernel density and
the extended Poisson models. In fact, we can go one stage further and in-
terpret greater activity still as representing information about the existence
of multiple objects or multiple motions. However, this treatment seems less
appropriate for the place cell system; the rat presumably is always certain
that it is somewhere. There, it has been suggested that the absolute level
of activity could be coding something different, such as the familiarity of a
location.

An entire collection of cells is a terrible thing to waste on representing
just a single value of some quantity. Representing a whole probability dis-
tribution, at least with some fidelity, is not more difficult, provided that the
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interpretation of the encoding and decoding is clear. Here we have sug-
gested some steps in this direction.

Acknowledgments

We thank Charlie Anderson, Terry Sanger, and Larry Abbott for helpful
discussions and an anonymous reviewer for useful comments. R. Z. was
supported by the McDonnell Foundation, grant JSMF 95-1; P. D. by NIMH
R29 MH 55541-01 and the Surdna Foundation; and A. P. by a grant from the
DOD, grant DAMD17-93-V-3018.

References

Andersen, R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location
in posterior parietal neurons. Science, 230, 456–458.

Anderson, C. H. (1994). Basic elements of biological computational systems.
International Journal of Modern Physics C, 5(2), 135–137.

Anderson, C. H., & Van Essen, D. C. (1994). Neurobiological computational
systems. In J. M. Zureda, R. J. Marks, & C. J. Robinson (Eds.), Computational
Intelligence Imitating Life (pp. 213–222). New York: IEEE Press.

Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate
cortex of the behaving Macaque monkey. Neural Computation, 8(6), 1185–1202.

Baldi, P., & Heiligenberg, W. (1988). How sensory maps could enhance reso-
lution through ordered arrangements of broadly tuned receivers. Biological
Cybernetics, 59, 313–318.

Ballard, D. H. (1981). Generalizing the Hough transfrom to detect arbitrary
shapes. Pattern Recognition, 13(2), 111–122.

Cheng, K., & Gallistel, C. R. (1984). Testing the geometric power of an animal’s
spatial representation. In W. L. Roitblat (Ed.), Animal Cognition (pp. 409–423).
Hillsdale, NJ: Erlbaum.

Connor, C. E., Gallant, J. L., Preddie, D. C., & Van Essen, D. C. (1996). Responses
in area V4 depend on the spatial relationship between stimulus and attention.
Journal of Neurophysiology, 75, 1306–1308.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society,
B, 39, 1–38.
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