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Abstract

A key problem in computational neuroscience is to find simple, tractable models that are never-
theless flexible enough to capture the response properties of real neurons. Here we examine
the capabilities of recurrent point process models known as Poisson generalized linear models
(GLMs). These models are defined by a set of linear filters, a point nonlinearity, and condi-
tionally Poisson spiking. They have desirable statistical properties for fitting and have been
widely used to analyze spike trains from electrophysiological recordings. However, the dynam-
ical repertoire of GLMs has not been systematically compared to that of real neurons. Here
we show that GLMs can reproduce a comprehensive suite of canonical neural response be-
haviors, including tonic and phasic spiking, bursting, spike rate adaptation, type | and type |l
excitation, and two forms of bistability. GLMs can also capture stimulus-dependent changes in
spike timing precision and reliability that mimic those observed in real neurons, and can exhibit
varying degrees of stochasticity, from virtually deterministic responses to greater-than-Poisson
variability. These results show that Poisson GLMs can exhibit a wide range of dynamic spiking
behaviors found in real neurons, making them well suited for qualitative dynamical as well as
quantitative statistical studies of single-neuron and population response properties.



1 Introduction

Understanding the dynamical and computational properties of neurons is a fundamental chal-
lenge in cellular and systems neuroscience. A wide variety of single-neuron models have been
proposed to account for neural response properties. These models can be arranged along a
complexity axis ranging from detailed, interpretable, biophysically accurate models to simple,
tractable, reduced functional models. Detailed Hodgkin-Huxley style models, which sit at one
end of this continuum, provide a biophysically detailed account of the conductances, currents,
and channel kinetics governing neural response properties [21]. These models can account
for the vast dynamical repertoire of real neurons, but they are often unwieldy for theoretical
analyses of neural coding and computation. This motivates the need for simplified models of
neural spike responses that are tractable enough for mathematical, computational, and statis-
tical analyses.

A variety of simplified dynamical models have been proposed to serve the need for math-
ematically tractable models, including the integrate-and-fire model, Fitzhugh-Nagumo, Morris-
Lecar, and Izhikevich models [9] 33| [32, 22, 4]. Generally, these models aim to reduce the
biophysically detailed descriptions of realistic neurons to systems of differential equations with
fewer variables and/or simplified dynamics. The one-dimensional integrate-and-fire model is
arguably the simplest of these, and the simplest to analyze mathematically, but it fails to cap-
ture many of the response properties of real neurons. The two-dimensional I1zhikevich model,
by contrast, was specifically formulated to retain the rich dynamical repertoire of more com-
plex, biophysically realistic models [23].

An alternative to a mathematical notion of simplicity is the statistical property of being
tractable for fitting from intracellular or extracellular physiological recordings. One well-known
statistical model that satisfies this desideratum is the recurrent linear-nonlinear Poisson model,
commonly referred to in the neuroscience literature as the generalized linear model (GLM)
[48],140]. GLMs are closely related to generalized integrate-and-fire models such as the spike-
response model, which has linear dynamics but incorporates spike-dependent feedback to
capture the nonlinear effects of spiking on neural membrane potential and subsequent spike
generation [13, 26, 24}, 139,[16]. In fact, a variant of the spike response model that incorporates
noise into the spike threshold is mathematically equivalent to the models we study here [15,
12, 25, 14]. GLMs are popular for characterizing neural responses in reverse-correlation or
white-noise experiments, due to the tractability of likelihood-based fitting methods. Recent
work has shown that GLMs can capture the detailed statistics of spiking in single and multi-
neuron recordings from a variety of brain areas [40, 2, 5, 50, 31} 141].

While several studies have shown that GLMs can successfully recapitulate various re-
sponse properties of biological or simulated neurons, here, we provide a more systematic
study of the dynamical repertoire of the GLM . We study this issue by fitting GLMs to data
from simulated neurons exhibiting a number of complex response properties. We show that
GLMs can reproduce a remarkably rich set of dynamical behaviors, including tonic and phasic
spiking, bursting, spike rate adaptation, type | and type Il excitation, and two different forms of
bistability. Furthermore, GLMs can exhibit stimulus-dependent degrees of spike timing preci-
sion and reliability [29], and mimic a recently reported form of greater-than-Poisson variability
[17].



2 Models of dynamical behaviors

2.1 lzhikevich model

First, we will examine whether generalized linear models can reproduce a suite of canonical
spiking behaviors exhibited by the well-known Izhikevich model [22, 23]. The Izhikevich model
is a biophysically-inspired model of intracellular membrane potential defined by a two-variable
system of ordinary differential equations governing membrane potential v(¢) and a recovery
variable u(t):
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with spiking and voltage-reset governed by the boundary condition:
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where I(t) is injected current, ¢* denotes the next time step after ¢, and parameters (a, b, ¢, d)
determine the model’s dynamics. Different settings of these parameters lead to qualitatively
different spiking behaviors, as shown in [23]. We focus on this model because of its demon-
strated ability to produce a wide range of response properties exhibited by real neurons. (See
Table 1 for parameter values used in this study and Methods for simulation details.)

2.2 Generalized linear model (GLM)

The GLM is a regression model typically used to characterize the relationship between exter-
nal or internal covariates and a set of recorded spike trains. In systems neuroscience, the
label “GLM” often refers to an autoregressive point process model, a model in which linear
functions of stimulus and spike history are nonlinearly transformed to produce the spike rate
or conditional intensity of a Poisson process [48, 140].

The GLM is parametrized by a stimulus filter k, which describes how the neuron integrates
an external stimulus, a post-spike filter h, which captures the influence of spike history on the
current probability of spiking, and a scalar p that determines the baseline spike rate. (See
Figure[1]) The outputs of these filters are summed and passed through a nonlinear function f
to determine the conditional intensity A(%):

At) = f(k-T(t) + B Gist (£) + p), (4)

where Z(t) is the (vectorized) spatio-temporal stimulus, 7s:(t) is a vector representing spike
history at time ¢, and f is a nonlinear function that ensures the spike rate is non-negative.
Spikes are generated according to a conditionally Poisson process [37, 6], so spike count y()
in a time bin of size A is distributed according to a Poisson distribution:

P(y(£)|A(1)) = ﬁ(AA(t))y(t)e_A/\(t), (5)
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Figure 1: Schematic of the generalized linear model. A: The stimulus filter k operates
linearly on the stimulus x(t), is combined with input from the post-spike filter h and mean input
level p. This combined linear signal passes through a point nonlinearity f(-), whose output
drives spiking via a conditionally Poisson process. B: An equivalent view of the GLM, which
emphasizes the dependencies between a particular time window of stimulus and spike history
and conditional intensity A(¢), which governs the probability of a spike in the current time bin
(dark gray box).

In this study we set f to be exponential, although similar properties can be obtained with other
nonlinearities such as the soft-rectification function.

Unlike classical deterministic models like Hodgkin-Huxley and integrate-and-fire, the GLM
is fundamentally stochastic due to the assumption of conditionally Poisson spiking. However,
this stochasticity is helpful for fitting purposes because it assigns graded probabilities to firing
events and allows for likelihood-based methods for parameter fitting [35 39]. In fact, the
Poisson GLM comes with a well-known guarantee that the log-likelihood function is concave for
suitable choices of nonlinearity f [34]. This means we can be assured of approaching a global
optimum of the likelihood function via gradient ascent, for any set of stimuli and spike trains
(barring any numerical issues that may complicate achieving the actual maximum for certain
datasets, cf. [93]]). This guarantee does not hold for stochastic formulations of most nonlinear
biophysical models, including the Izhikevich model. Moreover, despite its stochasticity, the
GLM can produce highly precise and repeatable spike trains in certain parameter settings, as
we will demonstrate below.

3 GLMs capture a wide array of complex dynamical behav-
iors

We fit GLMs to data simulated from Izhikevich neurons set up to exhibit a range of different
qualitative response behaviors. In the following, we describe these behaviors in detail, be-
ginning with simpler behaviors, such as tonic spiking and bursting (which have already been
demonstrated in previous work, e.g., [15, 25]) in order to build intuition for the GLM’s basic
capabilities, and then move on to more complex behaviors (such as bistability) and questions
of spike timing reliability and precision.



3.1 Tonic spiking

We first examined an Izhikevich neuron tuned to exhibit tonic spiking (Figure [2A-B; see Table
1 for parameters). When presented with a step input current, the Izhikevich neuron responds
with a few high-frequency spikes and then settles into a regular firing pattern that persists for
the duration of the step (Figure [2B). This response pattern resembles that of a deterministic
Hodgkin-Huxley or integrate-and-fire neuron, albeit with an added transient burst of spikes at
stimulus onset.

We simulated the Izhikevich neuron’s response to a series of step currents and used the
resulting training data to perform maximume-likelihood fitting of the GLM parameters {E, ﬁ, w1}
The estimated stimulus filter & is biphasic (Figure ), resulting in a large transient response
to stimulus onset, and has a positive integral, ensuring a sustained positive response to a

A .
= 10 stimulus fitted GLM parameters
Q —
£ g . C  stimulus filter &
Izhikevich neuron response
, B

> 20
€ .30

804
) _E —
3 2000 k output
s ) _ -100  -50 0
3 AMANMMAAANNNT
2 -2000- T =
= h output D post-spike filter A
104 F 0
(2]
=3 6
g 10 -250
~ 10° -500

§ et |zhikevich -750

§ -1000

g 0 50 100

0 200 400 600 time (ms)

time (ms)

Figure 2: Tonic spiking behavior. A: A step current stimulus. B: Voltage response of the
simulated Izhikevich neuron. C: The fitted GLM stimulus filter & has a biphasic shape that
gives the model a vigorous response to stimulus onset and a net positive response to a sus-
tained input. D: The fitted GLM post-spike filter h has a negative lobe that imposes strong
refractoriness on a timescale of ~50 ms. E: Stimulus (blue) and post-spike (red) filter outputs
during simulated response of the fitted GLM to the stimulus shown above on a single trial. F:
The summed filter outputs are passed through an exponential nonlinearity to determine the
conditional intensity A(¢), shown here for a single trial. G: Spike train of the Izhikevich neuron
(black) and simulated repeats of the GLM (gray). GLM spike responses are slightly different on
each trial, due to the stochasticity of spike generation, but reproduce Izhikevich model spike
times with high precision.



current step (Figure , blue trace). The estimated post-spike filter h (Figure D), by contrast,
has a large negative lobe that provides recurrent inhibition after every spike, enforcing a strong
relative refractory period. The stimulus filter and post-spike filter output (shown together for
a single trial in Figure [2E) are summed together and exponentiated to obtain the conditional
intensity A(¢) (Figure ), also known as the instantaneous spike rate.

For this stimulus, the intensity rises very quickly once h decays, which occurs approxi-
mately 50 ms after the previous spike. Note that the output of the stimulus filter is identical
on each trial, whereas the the output of the post-spike filter varies from trial to trial because
of variability in the exact timing of spikes. However, because the rising phase of the condi-
tional intensity is so rapid, spiking is virtually certain within a small time window sitting at a
fixed latency after the previous spike time. The combination of strong excitatory drive from the
stimulus filter and strong suppressive drive from the post-spike filter produces precisely timed
spikes across trials, allowing the GLM to closely match the deterministic firing pattern of the
Izhikevich neuron (Figure [2G).

3.2 Bursting

We next examined multi-spike bursting, a more complex temporal response pattern that re-
quires dependencies beyond the most recent interspike interval. Once again, we simulated
responses from an Izhikevich neuron tuned to exhibit tonic bursting (Figure [3A-B) and used
the resulting data to fit GLM parameters (Figure -D). The estimated stimulus filter & is bipha-
sic with a larger positive than negative lobe, which drives rapid spiking at stimulus onset and
generates sustained drive during an elevated stimulus (Figure [3E, blue trace). The post-spike
filter 1 has an immediate negative component that creates a relative refractory period after
each spike, and an even more negative mode after a latency of ~40 ms; the accumulation
of these negative components over multiple spikes gives rise to a sustained suppression of
activity between bursts.

The GLM captures the bursting behavior of the Izhikevich neuron with high precision, in-
cluding the fact that the first burst after stimulus onset contains a different pattern of spikes
than subsequent bursts. This difference arises from precise interactions between the stimulus
and post-spike filter outputs. During the first burst, fast spiking arises from an interplay be-
tween monotonically increasing stimulus filter output (Figure [BE, blue) and tonic decrements
induced by the post-spike filter after each spike (Figure [3E, red). After each spike, the post-
spike filter reduces the conditional intensity by a fixed decrement, but this decrement is soon
overwhelmed by the rising wave of input from the stimulus filter, which creates a rapid rise and
fall of the conditional intensity time-locked to each Izhikevich neuron spike time. The pattern
continues until accumulated contributions from the delayed negative lobes of post-spike filter
overwhelm those from the stimulus filter and the burst terminates. Subsequent bursts are gov-
erned by a somewhat different interplay between stimulus and post-spike filter outputs: bursts
sit on a rising phase of the conditional intensity due to the removal of suppression from the
previous burst. This rise is more gradual than the drive induced by stimulus onset, and results
in bursts with longer inter-spike intervals and fewer spikes per burst, but the resulting spike
pattern is nonetheless captured with high precision and reliability from trial to trial.
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Figure 3: Bursting behavior. A: Step current stimulus. B: Voltage response of I1zhikevich neu-
ron. C: Fitted GLM stimulus filter. D: Fitted GLM post-spike filter, which creates refractoriness
on short timescales (within each burst) due to instantaneous depolarization following a spike.
The large negative lobe ~25-50 ms after a spike terminates bursting and strongly suppresses
firing between bursts. E: Stimulus (blue) and post-spike (red) filter outputs for simulated re-
sponse of the GLM to step current shown above on a single trial. F: Output of the nonlinearity
(conditional intensity) A(¢) on a single trial. G: Spike train of Izhikevich neuron (black) and
simulated repeats of the fitted GLM (gray).

3.3 Bistability

Bistability refers to the phenomenon in which there are multiple stable response modes for
a single input condition. A common form of bistability observed in real neurons is the ability
to inhabit either a tonically active state or a silent state for a given level of current injection.
The Izhikevich model can exhibit this form of bistability, wherein a brief positive current pulse
is sufficient to kick it between states: the neuron can inhabit a silent state in the absence
of stimulation, but a brief positive current pulse kicks it into a tonically active state, and an
appropriately-timed positive pulse kicks it back to the silent state (Figure [4A-B).

We fit a GLM to spike trains simulated from such a bistable Izhikevich neuron and found
that the fitted GLM can capture bistable behavior of the original model with high accuracy
(Figure [4[C-G). When stimulated during the silent state, the GLM emits a spike due to the
positive output of the stimulus filter (Figure 4E, blue), and tonic firing ensues due to a positive
lobe in the post-spike filter that causes self-excitation at a fixed latency of approximately 10 ms
after the previous spike (Figure [4E). The GLM returns from the active state to the silent state
when a positive stimulus pulse synchronizes negative lobes of the stimulus and post-spike



filters. Only the combination of these two negative drives is strong enough to shut off spiking;
without the negative drive created by previous spikes (appearing in the post-spike filter at a
latency of 15 ms after a spike), suppression from the negative lobe of the stimulus filter is
not strong enough to prevent spiking. As with the tonic spiking neuron discussed above, the
interaction between the stimulus and post-spike filters generates rapid rises in the conditional
intensity (Figure [4F), leading to precisely timed spikes that mimic those of the deterministic
Izhikevich neuron (Figure [4G).

This Izhikevich neuron (with the same parameters) can also exhibit a second form of bista-
bility, in which the return to the silent state from the active state is induced by a negative
instead of a positive current pulse. We performed a similar fitting exercise and found that the
GLM is also able to reproduce this behavior. Firing is initiated and maintained by a similar
mechanism as the first form of bistability, but firing offset occurs due to the fact that a negative
stimulus pulse creates immediate negative output from the stimulus filter, which suppresses
firing during the time when a spike would have occurred due to spike-history filter input. Tonic
firing is extinguished more rapidly in this second form of bistability than the first (see Figure[g]
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Figure 4: Bistable responses. A: Stimulus consisting of two brief positive current pulses.
B: Voltage response of Izhikevich neuron, which exhibits bistability. The first pulse initiates a
tonic spiking mode and the second pulse (precisely timed to the phase of the spike response)
terminates it, returning to a quiescent mode. C: Fitted GLM stimulus filter, which provides a
biphasic impulse response. D: Fitted post-spike filter, which imposes a refractory period of
~4 ms and gives increased probability of firing ~5-10 ms after each spike. E: GLM stimulus
(blue) and post-spike (red) filter outputs on a single trial. F: Output of the nonlinearity gives the
conditional intensity for a single trial. G: Spike train of Izhikevich neuron (black) and simulated
repeats of the fitted GLM (gray).



below).

3.4 Type |l and type Il firing

Neurons have been classified as exhibiting either type | or type Il dynamics based on the
shape of their firing rate vs. intensity (F-1) curve. Type | neurons can fire at arbitrarily low
rates for low levels of injected current, whereas type Il neurons have discontinuous F-I curves
that arise from an abrupt transition from silence to a finite non-zero firing rate as the level of
injected current increases [20]. We simulated Izhikevich neurons that exhibit each of these
response types using published parameters. Inputs consisted of 500 ms current steps of
varying amplitude. The resulting F-I curves for the Izhikevich type | and type Il neurons are
shown in black in Figure BJA and Figure BB, respectively. We fit GLMs using data from each
Izhikevich neuron and found that the fitted GLMs capture the two response types with high
temporal precision. The corresponding F-I curves are shown in gray in Figure[5]and accurately
mimic the behaviors of the lzhikevich neuron. Similar F-I curves have been demonstrated
previously in [15] and [31].

The only discrepancy between the Izhikevich and GLM neurons occurs for the type Il cell
at input amplitudes near the Izhikevich neuron’s threshold. On some trials when the input
amplitude falls below this threshold, the GLM jumps into a a tonic firing state for the duration
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Figure 5: Type | and type Il firing curves. A: Top: Example responses of a GLM exhibiting
type | firing behavior. The spike rate increases continuously from zero in response to current
steps of increasing amplitude. Bottom: F-I curve for a type | Izhikevich neuron (black) and
corresponding GLM (gray). For the GLM, responses are plotted for five repetitions of each
input amplitude. B: Similar plots for type Il firing behavior, characterized by a discontinuous
jump from zero to a finite spike rate in responses to current steps of increasing amplitude.



of the stimulus. Similarly, on some trials when the input amplitude falls above this threshold,
the GLM fails to initiate firing. This is unsurprising given the stochastic nature of the GLM.
Importantly, the GLM never fires at a low rate, but rather abruptly transitions from no firing to
firing at a baseline level of ~25 Hz, reflecting type Il behavior.

3.5 Additional behaviors

We fit GLMs to every dynamical behavior considered in [23] with the exception of purely sub-
threshold behaviors, since GLM fitting uses spike trains and does not consider sub-threshold
responses. The full suite of behaviors is shown in Figure [6] with responses of the Izhikevich
neurons in black and spike responses of the GLM in gray. This list includes tonic and phasic
spiking, tonic and phasic bursting, mixed mode firing, spike frequency adaptation, type | and
type |l excitability, two different forms of bistability, and several others that depend primarily
on the shape of stimulus filter. Several additional behaviors that can be captured by a GLM
are not depicted in Figure [ as they can be achieved by a trivial manipulation of the stimulus
filter; for example, inhibition-induced bursting can be achieved by simply flipping the sign of
the stimulus filter for the bursting neuron shown in Figure [E[C. Previous work has shown the
Izhikevich neuron to be capable of producing 18 distinct spiking behaviors [23], and we found
that all can also be produced by a GLM.

3.6 Systematic variation of filter amplitudes

We next considered what happens to the behaviors produced by a GLM as some aspect of the
filters is systematically varied. To do so, we created stimulus and post-spike filters composed
by linear combinations of two basis filters, and then systematically varied the amplitude of one
basis filter while holding the other fixed. (See Methods for details.) Figure [7] shows the phase
space of qualitative spiking behaviors obtained at different points in this 2D filter space.

When the stimulus filter has a strongly negative component (center panel, bottom), a pos-
itive stimulus pulse does not produce enough driving force to cause the neuron to spike at all
(quiescent). As the amplitude of this component of the stimulus filter is increased, the neuron
receives stronger and stronger input and is driven first to spike once or twice (phasic spiking),
and eventually to emit a burst of spikes (phasic bursting). The stimulus filter largely drives
changes between these behaviors, with the additional detail that a strongly negative post-
spike filter component is able to inhibit a burst that would otherwise occur (upper left corner
of “phasic spiking" region). As the stimulus filter component becomes still more positive and
the stimulus filter transitions from being biphasic to more monophasic, it produces a positive
driving force for the duration of the stimulus step, rather than just the onset. This causes the
neuron to fire for the duration of the step.

Importantly, the post-spike filter here determines the nature of this sustained firing. A
post-spike filter that is purely negative beginning at short timescales (top, left side) mimics a
relative refractory period, inhibiting additional spikes for a short window following each elicited
spike and resulting in tonic spiking. If, on the other hand, the post-spike filter is only weakly
negative at short timescales while being more strongly negative at longer timescales, this
creates multiple timescales in the neuron’s response (top, right side). At short timescales,
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Figure 6: Suite of dynamical behaviors of Izhikevich and GLM neurons. Each panel,
top to bottom: stimulus (blue), I1zhikevich neuron response (black), GLM responses on five
trials (gray), stimulus filter (left, blue), and post-spike filter (right, red). Black line in each plot
indicates a 50 ms scale bar for the stimulus and spike response. (Differing timescales reflect
timescales used for each behavior in original Izhikevich paper [23])). Stimulus filter and post-
spike filter plots all have 100 ms duration.

there is little inhibition from each spike (beyond the absolute refractory period), so additional
spikes may occur. Over longer timescales, inhibition is accumulated over multiple spikes,
which eventually shuts off spiking. After a brief window of no spikes, the inhibition is relaxed
and spiking commences again until enough inhibition is accumulated to shut spiking off. This
cycle results in tonic bursting for the duration of the step. In the extreme case where the
post-spike filter is actually biphasic (top, far right), each spike promotes additional spikes on
short timescales, leading to highly regular timing of spikes within bursts (Figure [7[C). This set
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Figure 7: Changes in a single component of each filter can produce a variety of behav-
iors. Center: Amplitudes for a single component of the stimulus filter (ordinate) or post-spike
filter (abscissa) were varied. Responses were simulated for 15 trials of a step stimulus, and
the most common behavior produced is indicated by color. Small panels show example filters
at each extreme of the range tested. A-D: Example responses (gray) to step stimulus (blue)
for GLMs with filters indicated by corresponding letter in center panel.

of behaviors could be achieved by simply sweeping over the amplitude of a single basis vector
in each filter. Incorporating shifts to the basis vectors or additional basis vectors would likely
be necessary to achieve more complex behaviors, such as bistability.

Although we have drawn clear borders at the transition between behaviors, these transi-
tions in fact occur gradually. Near the border between phasic spiking and phasic bursting, for
example, there will be some trials where a single spike is produced and other trials where a
burst is elicited. We have indicated the behavior that is produced most frequently here for sim-
plicity. The transition from tonic bursting to tonic spiking also occurs gradually, with the near
perfectly regular bursting breaking down into more irregular firing until no apparent bursts are
produced. If the post-spike filter is made even more negative than the range explored in this fig-
ure, the timing of tonic spiking becomes near perfectly regular as well. This is easily explained
by the fact that as the post-spike filter becomes more and more negative, it imposes stronger
refractoriness on the cell, which results in more regular spike timing. As the post-spike filter
component amplitude is changed, there is therefore a gradual change from precisely timed
bursts, to irregular firing, to precisely timed tonic spiking. In the following section, we further
explore questions of spike timing precision in the GLM.

3.7 Generalization to new stimuli

The behaviors shows in Figure [6| were all fit using stimuli that probe only a small range of the
possible behaviors of the neuron. For example, many were probed using only a single step
height. A natural question that arises is therefore: how well will these fitted GLMs generalize to
predict the Izhikevich neuron responses to new stimuli? We examined this question for three
canonical Izhikevich neurons from our study (Figure [8). We first generated responses from a
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Figure 8: GLMs have lim-
ited ability to genearlize to
new stimuli. A: Inputs used
to generate responses from
Izhikevich neurons.  Step
amplitudes were 7, 14, &
28; 0.3, 0.6, & 1.2; and
5, 10, & 20 for B, C, &
D, respectively. Standard
deviation of noise was 7.2
for all neuron types. B:
Top: Responses of a regu-
lar spiking Izhikevich neuron
to the above stimuli. Mid-
dle: Spike responses of the
Izhikevich neuron (red) and
GLM (black) fit on responses
to only the middle step size
(indicated by gray box). Bot-
tom: Spike responses of the
Izhikevich neuron (red) and
GLM (black) fit on responses
to all three step sizes (indi-
cated by gray box). C: Re-
sponses of a phasic bursting
Izhikevich neuron. All pan-
els as in B. D: Responses
of a tonic bursting Izhikevich
neuron. All panels as in B &
C.



regular spiking Izhikevich neuron using three step heights and one noise stimulus (Figure [BA;
B, top). We then simulated responses to these stimuli using the GLM fit only to the intermediate
step height (Figure [8B, middle). (This is the same fit as Figure [2]) The GLM responses nearly
perfectly capture the Izhikevich responses for the original stimulus, and the GLM maintains
regular firing patterns for the other step heights. However, the GLM'’s firing rate is too high
for the small step and too low for the large step. While the GLM accurately captures some
firing events for the noise stimulus, the firing rate is overall too high. We next refit a GLM
to responses from all three step heights, using the same set of basis vectors as the original
fit (Figure |8, bottom). The responses to all three step heights are captured nearly perfectly.
Additionally, the response to the noise stimulus is much more similar to that of the Izhikevich
neuron. Although there is one firing event that occurs at a delay, the regular spiking GLM fit on
an enriched stimulus set is better able to generalize to the noise stimulus.

We performed this same test for neurons showing phasic bursting (Figure [8iC) and tonic
bursting (Figure [8D). (Note that although some responses of the phasic bursting Izhikevich
neuron are not actually phasic, we retain the naming convention given to this set of parameters
in the original paper.) For phasic bursting, the GLM fit on additional step sizes improves the
accuracy of responses to the smallest and largest steps, while decreasing the accuracy of
responses for the original step of intermediate size. There is marked improvement in the
accuracy of responses to the noise stimulus, with many firing events being accurately captured
and the GLM no longer exhibiting runaway excitation. For tonic bursting, the refit GLM retains
bursting behavior but fails to even capture responses for the steps on which it was trained.
As noted above, when refitting we used the same set of basis vectors as the initial fits for fair
comparison. It is possible that by increasing the number of basis vectors used or tuning their
properties that better fits to all stimuli might be achieved.

Taken together, these results show that while GLMs might retain some characteristic re-
sponse features (such as bursting) when probed with new stimuli, they often have limited ability
to generalize beyond stimuli on which they are directly fit.

4 Spiking precision and reliability

A noteworthy feature of the spike trains of the GLM neurons considered above is their high
degree of spike timing precision and reliability across trials. This precision arises from the fact
that the conditional intensity (or instantaneous spike rate) rises abruptly at spike times (due to
filter outputs passing through a rapidly accelerating exponential nonlinearity), and decreases
immediately after each spike due to suppressive effects of the post-spike filter. By contrast, a
Poisson GLM without recurrent feedback, more commonly known as a linear-nonlinear Pois-
son (LNP) cascade model, cannot produce temporally precise spike responses to a constant
stimulus because its output is constrained to be a Poisson process.

Real neurons, however, seem to be capable of both response modes: they emit precisely-
timed spikes in some settings and highly variable spike trains in others. A seminal paper by
Mainen & Sejnowski illustrated this duality by showing that spike responses to a constant DC
current exhibit substantial trial-to-trial variability, whereas responses to a rapidly fluctuating
injected current are precise and repeatable across trials [29]. Deterministic models like the
Izhikevich model cannot, of course, mimic this property because their spikes are perfectly
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Figure 9: Stimulus-dependent spike timing reliability. A: Top: Weak step stimulus. Bottom:
Spike train responses of tonic-spiking GLM on 15 repeated trials. Although the first spike is
precise and reliable, subsequent spikes have irregular timing from trial to trial. B: Top: Rapidly
fluctuating stimulus. Bottom: Spike response of same GLM neuron on 15 repeated trials,
exhibiting a high degree of precision and reliability. (Compare to Figure 1 of [29].)

reproducible for any stimulus. (A stochastic version of the Izhikevich model with an appropriate
level of injected noise could likely overcome this shortcoming, however. See [44] for a similar
case in a Hodgkin-Huxley neuron.) Here we show that the GLM naturally reproduces the
same form of stimulus-dependent changes in precision and reliability observed in real neurons.
Figure [9) shows that a single GLM (with parameters identical to those fit to the tonic-spiking
Izhikevich neuron, shown in Figure |2) produces irregular spiking in response to a constant
stimulus with low-to-intermediate amplitude, and precisely-timed, reliable spikes in response
to a stimulus with large, rapid fluctuations.

5 GLMs can produce super-Poisson variability

We have shown that GLM neurons can reproduce the high degree of spike timing precision
found in real neurons stimulated with injected currents. However, a variety of studies have
reported that neurons exhibit overdispersed responses, or greater-than-Poisson spike count
variability in response to repeated presentations of a sensory stimulus [47, |46, 45, 17]. A
prominent recent study from Goris, Movshon, & Simoncelli showed that the degree of overdis-
persion grows with mean spike count, so that the Fano factor (variance-to-mean ratio) is an
increasing function of spike rate [17]. They proposed a doubly stochastic model to account for
this phenomenon, in which the rate of a Poisson process is modulated by a slowly fluctuating
stochastic gain variable g. For each trial, g is drawn from a gamma distribution with mean 1
and variance ag. (See Methods for detalils.)

We sought to determine if a GLM with spike-history dependence can also account for
the mean-dependent overdispersion found in neural responses. To test this possibility, we
simulated spike trains from the doubly stochastic model of Goris et al for three different settings
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of the over-dispersion factor 03 with the same mean spike rate (100 spikes/s), and fit a GLM
to the spike trains associated with each value of ag. We then simulated responses from each
GLM to 500 ms pulses at a number of different input intensities, with each point in Figure
corresponding to a different intensity.

We found that the GLM can indeed match the qualitative behavior of the Goris et al model,
giving approximately Poisson responses at low spike rates and increasingly overdispersed re-
sponses at higher rates (Figure [T0IC). To match the data from larger values of overdispersion
factor 03 (darker curves in Figure ), the GLM relies on increasing amounts of self-excitation
from the post-spike filter, but exhibits no changes in stimulus filter (Figure [T0A-B). The filters
here do not include an absolute refractory period, as the original model does not incorporate
one. However, similar results can be achieved when a refractory period is enforced in the train-
ing data. This will result in post-spike filters with strongly negative lobes on short timescales,
which impose refractoriness, but otherwise similar filters to those in Figure[10] Unlike models
with purely suppressive spike history effects, which capture effects due to refractoriness and
reduce variability in firing (e.g., [3}149]), here we show that allowing spike history effects to be
excitatory can result in increased variability. While the former might be suitable for early sen-
sory areas, such as the retina, the latter better captures the super-Poisson variability observed
in higher visual areas.

Intuitively, the GLM generates overdispersed spike counts because of dependencies the
spike-history filter induces between early and late spikes during a trial: if the GLM neuron
generates a larger-than-average number of spikes early in a trial, the positive post-spike filter
produces a higher conditional intensity (and hence more spiking) later in the trial; conversely, if
a neuron emits fewer-than-average spikes early in a trial, the conditional intensity will be lower
later in the trial (yielding less spiking). The Goris et al model can be seen to capture similar
dependencies between early and late spikes via the stochastic gain variable g, which is con-
stant during a trial but independent across trials. Thus, it is reasonable to view g in the Goris et
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Figure 10: GLMs can produce super-Poisson variability. A: Stimulus filters for GLMs trained
on three different levels of variability: high (dark blue), medium (medium), and low (light) super-
Poisson variability. Spike count mean was identical in the three cases: 100 spikes/s. B: Post-
spike filters for high (dark red), medium (medium), and low (light) super-Poisson variability. C:
Spike count variance versus mean for three levels of variability. This relationship is strikingly
similar to that observed in many cortical neurons.
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al model as a proxy for the accumulated self-excitation from spike-history filter outputs under
a GLM. We note, however, that attempts to drive the GLM to higher levels of overdispersion
(e.g., Fano factors significantly > 3) often resulted in runaway self-excitation, indicating that
GLMs may require additional mechanisms to maintain stability in order to produce highly over-
dispersed responses through recurrent excitation alone [11, [19]. An alternative mechanism
for generating over-dispersed responses with GLMs is through the addition of latent stochastic
inputs [42], an avenue we have not explored here.

6 Discussion

We have shown that recurrent Poisson GLMs can capture an extensive set of behaviors exhib-
ited by biological neurons, including tonic and phasic spiking, bursting, spike frequency adap-
tation, type | and type Il behavior, and bistability. GLMs can also reproduce widely varying
levels of response stochasticity, ranging from precisely timed spikes with negligible trial-to-trial
variability, to substantially super-Poisson spike count variability. We have also shown that, like
real neurons, GLMs can exhibit irregular firing in response to a constant stimulus, but precise
and repeatable firing patterns in response to a temporally varying stimulus. Thus, generalized
linear models are able to capture a rich array of spiking behaviors like many dynamical models,
while remaining tractable to fit to neural data.

6.1 Relationship to previous work

As mentioned above, GLMs have strong connections to a number of other models. It is partic-
ularly worth noting the connection between GLMs and generalized integrate-and-fire models,
such as the spike response model (SRM) extensively studied by Gerstner and colleagues
[15) 13]. These models draw on much earlier work which incorporated a variable threshold
that depends on spiking history [51,[10]. The SRM includes a membrane filter (analogous to
the stimulus filter here) and both a spike afterpotential and moving threshold (which can be
combined and are analogous to the spike history filter here). In its simplest formulation, the
SRM is a deterministic model. Although the threshold for spiking can shift as a function of
spike history, a spike will occur precisely at each threshold crossing.

Extensions of the model have incorporated so-called “escape noise," where spiking no
longer occurs deterministically at threshold crossings, but rather the probability of spiking de-
pends on the distance of the membrane voltage to threshold [15] 25]. This variant of the SRM
is in fact a GLM, and it is therefore worthwhile to consider how previous work investigating
the SRM with escape noise relates to our results here. Early work demonstrated that such a
model was capable of producing responses with high temporal precision, including both tonic
spiking as well as tonic bursting [15], though demonstrating the range of behaviors that could
be produced by the SRM was not the focus of this study. Additional work demonstrated that the
model could produce highly repeatable spike trains to a noisy stimulus (similar to Figure [9B,
though no comparison of irregular firing in response to a constant stimulus was shown) [25].
Other studies have shown that the SRM can capture the detailed statistics of neural responses
[31) 141]. Further, many of these studies show that the spike responses model can be used
to capture not only the relationship between an external stimulus and a neuron’s response,
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but also to faithfully capture the relationship between intracellularly recorded neural responses
and injected current [25, 41].

6.2 Limitations

Despite their many advantages, GLMs have several limitations that bear further discussion.
First, GLMs often do not generalize well across stimulus distributions; models fit with a partic-
ular set of stimuli often do not accurately predict responses to stimuli with markedly different
statistics (e.g., stimuli with large changes in mean or variance, or white noise vs. naturalistic
stimuli) [18].

Secondly, GLMs often lack clear interpretability in terms of underlying mechanisms. This
stands in contrast to dynamical models designed to capture specific biophysical variables and
processes. In the two-dimensional Izhikevich model, for example, one variable (v) represents
the neuron’s membrane potential, and the other variable (u) can be understood as a membrane
recovery variable, which reflects K* channel activation and Na* channel inactivation. Despite
the fact the GLM filters do not represent specific biophysical variables, in some cases they can
still provide insight into underlying biological processes. For example, recent work provides an
interpretation of the GLM as a synaptic conductance based model with linear sub-threshold
dynamics [27]. Work on the SRM has shown that by dividing the effects of spike history into a
dynamic threshold and a spike afterpotential, one can in fact measure their separate contribu-
tions with intracellular recordings of a neuron’s subthreshold voltage; the spike afterpotential
can be observed directly in this voltage trace, while the effects on thereshold can be estimated
indirectly by noting the absence of firing [31} 141} [14].

A third known limitation of GLMs is that they lack the flexibility to capture some nonlinear
response properties of real spike trains. For example, as point neuron models, GLMs do not
reflect the fact that neurons often receive spatially segregated inputs on the dendritic tree, and
these inputs can be processed separately and combined nonlinearly [28]. Some extensions of
the GLM that incorporate nonlinear inputs and multiple subunits [8, 143, 136, [7, 30, (1}, 52] may
begin to address this issue, but certainly fall short of capturing the full complexity of dendritic
processing. For the range of dynamical behaviors considered here, however, we did not find
these extensions to be necessary.

For all results shown, we used a GLM with an exponential nonlinearity. To test the depen-
dence of our results on the form of the nonlinearity, we also fit GLMs to several of the behaviors
with a “soft-rectifying” nonlinearity given by f(z) = log (1 + exp (z)). This function grows only
linearly for large input values, but still has an exponential decay on its left tail and remains
in the family of nonlinearities (convex and log-concave) for which the GLM log-likelihood is
provably concave [34]. For the behaviors tested (tonic spiking, tonic bursting, phasic spiking,
and phasic bursting), our results were similar to those with an exponential nonlinearity, though
generally not as temporally precise. This increased precision is likely due to the fact that an
exponential nonlinearity rises more steeply than a linear-rectifying function, causing the condi-
tional intensity to accelerate more rapidly from a low-probability to a high-probability of spiking
regime. Past studies have found that responses of both retinal ganglion cells and neocortical
pyramidal neurons are well described by a GLM with exponential nonlinearity [40, 25].

It is worth noting that for many of the dynamic behaviors studied here, the GLM parameters
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were not strongly constrained by the training data. (See "Sensitivity to changes in parameter
values" in Appendix.) Slight changes in the model parameters did not produce noticeable
changes in response, at least for the stereotyped range of input currents and output spike
patterns considered. The filter parameters were therefore only weakly identifiable, which cor-
responds to a likelihood function with a very gradual falloff along certain directions in parameter
space. This uncertainty potentially complicates interpretation of the filters in terms of functions
performed by the underlying biophysical mechanism. Conversely, it reveals that the suite of
behaviors considered by Izhikevich and others can be achieved by a range of different GLMs,
and that a richer set of input-output patterns is needed to identify a unique set of GLM param-
eters.

Conclusion

The GLM has the ability to mimic a wide range of biophysically realistic behaviors exhibited by
real neurons. Although it is clear there are some forms of nonlinear behavior it cannot produce,
such as frequency-doubled responses of cat Y cells or V1 complex cells to a contrast-reversing
grating, our work provides an existence proof for its ability to exhibit an important range of re-
sponse types considered previously only in biophysics and applied math modeling literature.
Moreover, by considering response stochasticity as another dimension along which real neu-
rons vary, we have shown that that the GLM can generate response characteristics ranging
from quasi-deterministic to greater-than-Poisson variability. The GLM therefore provides a
flexible yet powerful tool for studying the dynamics of real neurons and the computations they
carry out.

Appendix

MATLAB code used to generate example responses from Izhikevich neurons and to fit GLMs
to these responses is available in a Github repository (https://github.com/aiweber/
GLM_and_TIzhikevich).

Izhikevich model simulations

To generate training data for fitting the GLM, we simulated responses from an Izhikevich model
[22] with parameters set to published values given for each behavior in [23] (Table [ parameter
values can be found at http://www.izhikevich.org/publications/izhikevich.m). For each behavior,
we generated approximately 20 seconds of training data using the forward Euler method with
fixed time step size (dt) given in Table[f] It should be noted that in some cases, published pa-
rameter values did not produce the desired qualitative behavior. In these cases, we tuned the
simulation parameters to achieve the desired behavior. Parameters marked with an asterisk in
Table 1 indicate those that differ from published values for the corresponding behavior in [23].
Additionally, some behaviors of the Izhikevich neuron are not robust to small changes in stim-
ulus timing, stimulus amplitude, or time step of integration. In particular, we found bistability to
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be highly dependent on the precise stimulus timing (onset and duration), stimulus amplitude,
and integration window. We tuned these values by hand to produce the desired behavior.

GLM fitting and simulations

A generalized linear model for a single neuron attributes features of a spike train to both stimu-
lus dependence and spike history. Stimulus dependence is captured by a stimulus filter k&, and
spike-history dependence is captured by a post-spike filter h. k£ and h are represented with a
raised cosine basis to reduce to the dimensionality necessary to fit and ensure smoothness of
the filters. Basis vectors are of the form:

1 1
bi(t) = 5 cos(alog[t + ¢| — ¢;) + 5 (6)
for ¢ such that alog(t +¢) € [¢; — 7, ¢, + 7] and O elsewhere. The parameter c determines the
extent to which peaks of the basis vectors are linearly spaced, with larger values of ¢ resulting
in more linear spacing. We typically used 6 such basis vectors to fit a 100 ms stimulus filter
k and 8 basis vectors to fit a 150 ms post-spike filter h, for a total of 15 parameters (including

neuron type a b c d I | dt(ms)
tonic spiking 0.02| 0.2 | -65 6 14 0.1
phasic spiking 0.02 | 0.25 | -65 6 0.5 0.1
tonic bursting 0.02| 0.2 | -50 2 10* 0.1
phasic bursting 0.02 025 | -55 | 0.05| 0.6 0.1
mixed mode 0.02 | 0.2 | -55 4 10 0.1
spike frequency adaptation | 0.01 | 0.2 | -65 | 5% 20* 0.1
type | 0.02 | -0.1 | -55 6 25 1
type Il 0.2 | 0.26 | -65 0 0.5 1
spike latency 0.02| 0.2 | -65 6 | 3.49" 0.1
resonator 0.1* | 0.26 | -60 | -1 0.3 0.5
integrator 002 -01 |-66"| 6 27.4 0.5
rebound spike 0.03 | 0.25 | -60 4 -5 0.1
rebound burst 0.03 | 0.25 | -52 0 -5 0.1
threshold variability 0.03 | 0.25 | -60 4 2.3 1
bistability | 1 1.5 | -60 0 30* 0.05
bistability Il 1 1.5 | -60 0 40 0.05

Table 1: Parameters of the Izhikevich neuron for dynamic behaviors shown in Figures 2-6, 8-
9, & 11. Parameters marked with * indicate parameters that differ from those used in [23].
Additionally, only a single form of bistability (bistability I) was presented in [23].
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one for i that determines baseline firing rate). In some cases, as few as 7 or as many as
26 parameters were used to fit an individual Izhikevich neuron’s behavior. In general, the
fewest number of basis vectors required to reproduce a given behavior were used, though it
is likely that by altering specific features of the basis vectors (e.g., their spacing), even fewer
parameters would suffice.

We fit the model parameters (weights on the basis functions for k, weights on the basis
functions of i, and p) by maximizing the log-likelihood:

LO)= Y logA(t) — A> A1) (7)

t=spike

where A is the time resolution of y(t). We used MATLAB’s fminunc function, part of the
MATLAB optimization toolbox, to find the global maximum of the likelihood function.

We simulated the GLM response in time bins of the same size as the corresponding Izhike-
vich neuron and computed the single-bin probability of a spike as

P(y(t) > 1A(1) = 1 = P(y(t) = 0[A()) = 1 — exp(AA(H)), ®)

where A is the time bin size, so that the probability of 0 or 1 spikes in a bin sums to 1 (resulting
in a Bernoulli approximation to the Poisson process), disallowing spike counts greater than 1
in a single bin.

Systematic variation of filter amplitudes

In order to more carefully examine the transitions between different behaviors as the stimulus
and post-spike filter change, we systematically varied the amplitude of individual filter compo-
nents and observed the behavior produced. Each filter was parameterized with 2 components.
The amplitude of one was fixed while the amplitude of the other was varied. For the stimulus
filter, the amplitude of the second component was varied (-1.5 to +0.25). This allowed us to
transition from monophasic to biphasic filters. The amplitude of the first component was set to
be positive (+1), creating an “ON" filter appropriate for a positive step stimulus. For the post-
spike filter, the amplitude of the first component was varied (-1 to +1). The amplitude of the
second component was set to be negative (-3), ensuring that spiking would be suppressed on
longer timescales. For the post-spike filter we also imposed an absolute refractory period of 5
ms. Finally, we included a negative baseline drive (1 = -1) to suppress spontaneous spiking
so that the baseline firing rate was zero.

We simulated responses to 25 identical step stimuli for each set of filters and then classi-
fied the behaviors as quiescent, phasic spiking, phasic bursting, tonic spiking, or tonic bursting.
The most commonly observed behavior over the 25 repetitions is depicted in Figure [7] Re-
sponses were classified in the following way. If no spikes were elicited in the first 200 ms of
stimulus presentation and fewer than 5 spikes were elicited during the final 10 seconds of stim-
ulus presentation, the behavior was classified as quiescent. If at least one spike was elicited
in the first 200 ms following stimulus onset and fewer than 5 spikes were elicited during the
final 10 seconds of stimulus presentation, the behavior was classified as phasic. Phasic firing
patterns were further classified into phasic spiking if only 1 or 2 spikes were elicited in the
first 200 ms, and phasic bursting if 3 or more spikes were elicited in the first 200 ms. The
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remaining responses were classified as either tonic spiking or tonic bursting in the following
manner. Inter-spike interval distributions were fit with a Gaussian mixture distribution using
MATLAB’s gmdistribution function. We fit both a single Gaussian distribution as well as
a mixture of two Gaussians and then compared the Akaike information criterion (AIC) values
to determine whether the ISl distribution was better fit as a unimodal distribution or a bimodal
distribution, with a lower AIC indicating better fit. If 0.9 - AIC nimodat < AlCpimodal, the spike
train was classified as tonic spiking; otherwise, it was classified as tonic bursting. (We added
the 0.9 factor to create a more stringent standard for what is classified as bursting activity so
that the responses that fall into this category are strongly bimodal distributions that would be
readily identified as bursting. Slightly altering the value of this factor, or eliminating it entirely,
gives the same qualitative results, but merely shifts the boundary in Figure [7|between the tonic
spiking and tonic bursting regions.)
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Figure 11: Sensitivity to changes in parameter values for a regular spiking (left) and tonic
bursting (right) GLM. A: Fit coefficient of each eigenvector of Hessian matrix of likelihood,
normalized by corresponding eigenvalue. Eigenvectors are in order of decreasing eigenvalues
(not necessarily decreasing z-scored eigenvalues). B: Stimulus filter (top, blue) and spike
history filter (bottom, red), along with two most constrained eigenvectors. These correspond
to the largest (dark gray) and second largest (light gray) eigenvalues. Eigenvectors are scaled
to size comparable with filters. C: Same as B, for least constrained eigenvectors. D-F: Same
as A-D for tonic bursting neuron.
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Sensitivity to changes in parameter values

We wished to investigate how well constrained different features of our fit GLMs were. To
do so, we calculated the eigendecomposition of the Hessian matrix of the likelihood function:
H = QAQ~!. The Hessian matrix provides a local quadratic approximation to the likelihood
function, with eigenvectors ¢; pointing along the principal axes and length of these axes propor-
tional to % Thus, larger magnitude eigenvalues indicate greater curvature (i.e., shorter axes)
and better constrained directions, while smaller magnitude eigenvalues indicate lower curva-
ture and more poorly constrained directions. Results of this analysis are shown in Figure
for both a regular spiking neuron (left) and tonic bursting neuron (right). For both neurons, the
least constrained directions correspond to eigenvectors similar in shape to the best-fit filters or
the absolute refractory period. As such, perturbations in these directions do not result in large
changes in the behavior. Perturbations along eigenvectors corresponding to the most con-
strained directions, on the other hand, would result in significant changes to the filter shape.
The difference in scale between Panel A and Panel D indicates that overall, parameters for the
tonic bursting neuron are more constrained than those for the regular spiking neuron.

Doubly stochastic model with super-Poisson variability

In Figure we used a negative binomial model to generate spike trains with greater-than-
Poisson variability [38, [17]. The negative binomial distribution can be conceived as a doubly-
stochastic model in which the rate of a Poisson process is modulated by an iid gamma random
variable on each trial. Following [17], we modeled responses with a stochastic gain variable g
with mean 1 and variance 03 that obeys a gamma distribution:

P(glr,s) = S,nrl(r)g’”‘1 exp (—%) , 9)

where s = o denotes the scale parameter, r = 1/0; is the shape parameter, and T'(-)
represents the gamma function.
The spike count conditioned on g and a stimulus S for each trial then obeys a Poisson

distribution: Ao (SN
Plylg. ) = %exp (—AgF(S))., (10)

where A is the time bin size, g is the gain, and f(.5) is the tuning curve that specifies the
mean response to stimulus S. In the limit 03 = 0, the gain g is deterministically equal to 1
and the spike count is Poisson with mean and variance equal to Af(.S). For responses with
US > (), however, responses are overdispersed relative to the Poisson distribution and have
mean Af(S) and variance Af(S)(1+ oA f(S)).

For the results shown in Figure [10, we simulated data from the negative binomial dis-
tribution with a single mean rate f(.S) (100 spikes/s) at three different gain variances 03 €
{.0125,0.02,0.05}. Spike counts were drawn iid across trials, with spike times distributed uni-
formly within each trial to generate spike trains suitable for GLM fitting. We used these spike
trains to fit a GLM to the data associated with each value of 03, with an assumed constant
input current for each trial.
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