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In this letter, we compare the representational power of random forests,
binary decision diagrams (BDDs), and neural networks in terms of the
number of nodes. We assume that an axis-aligned function on a single
variable is assigned to each edge in random forests and BDDs, and the ac-
tivation functions of neural networks are sigmoid, rectified linear unit, or
similar functions. Based on existing studies, we show that for any random
forest, there exists an equivalent depth-3 neural network with a linear
number of nodes. We also show that for any BDD with balanced width,
there exists an equivalent shallow depth neural network with a polyno-
mial number of nodes. These results suggest that even shallow neural
networks have the same or higher representation power than deep ran-
dom forests and deep BDDs. We also show that in some cases, an expo-
nential number of nodes are required to express a given random forest
by a random forest with a much fewer number of trees, which suggests
that many trees are required for random forests to represent some specific
knowledge efficiently.

1 Introduction

Selecting an appropriate learning model, that is, selecting an appropriate
function family, is important in machine learning. If the function family
is unnecessarily large, it will cause problems of excessive computation
costs and overfitting. But if the function family is too small and thus
does not include the target functions, desired prediction results will not be
obtained.

In order to obtain effective clues in selecting such a function family, stud-
ies on the representational ability of learning models have been conducted.
For example, the universal approximation theorem, which claims that an
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1020 S. Kumano and T. Akutsu

arbitrary Borel measurable function can be approximated by a depth-2
neural network, is well known (Hornik, Stinchcombe, & White, 1989). How-
ever, there exist many cases for which a large number of nodes are required
using depth-2 neural networks. In recent years, it has been claimed that
the representational power of neural networks varies significantly by the
number of layers. We note in section 2 that many studies show the ex-
istence of function families, which cannot be expressed by shallow neu-
ral networks using a small number of nodes while deep neural networks
can (Chatziafratis, Nagarajan, Panageas, & Wang, 2020; Delalleau & Ben-
gio, 2011; Hanin & Rolnick, 2019; Montufar, Pascanu, Cho, & Bengio, 2014;
Raghu, Poole, Kleinberg, Ganguli, & Dickstein, 2017; Szymanski & McCane,
2014; Telgarsky, 2015). The property of the deep neural network that allows
functions to be expressed efficiently is called depth efficiency. Indeed, some
studies show evidence that the representational power of neural networks
increases exponentially by their depth (Montufar et al., 2014; Raghu et al.,
2017).

Tree models and their extensions, specifically, decision trees, random
forests, and binary decision diagrams (BDDs), have been widely used for
representation of a variety of information, as well as for various prediction
tasks (Breiman, Friedman, Olshen, & Stone, 1984; Breiman, 2001; Bryant,
1986; Ho, 1995; Meinel & Theobald, 1998). Although many theoretical stud-
ies have been conducted on the representational power of neural networks,
not many have been done on that of random forests and binary deci-
sion diagrams (BDDs) (de Mello, Manapragada, & Bifet, 2019; Zhou &
Mentch, 2021; Xu, He, Xie, & Li, 2018), which we explain in section 2. There-
fore, in this letter, we study the representational power of random forests
and BDDs via comparison with neural networks, focusing on theoretical
aspects.

This letter is organized as follows. We briefly review related work and
give necessary definitions in sections 2 and 3, respectively. Section 4 shows
that for any decision tree and any random forest with n nodes, there exists
an equivalent depth-3 neural network with O(n) nodes. Although these re-
sults are already known for Heaviside functions, sigmoidal functions, and
hyperbolic tangent functions (Bengio, Delalleau, & Simard, 2010; Biau, Scor-
net, & Welbl, 2019; Sethi, 1990), we present the proofs for the ReLU (recti-
fied linear unit) and related functions. Section 5 shows that for any depth-D
BDD with O(n/D) nodes at each depth, there exists a depth-(D + 1) neu-
ral network with O(n) nodes and a depth-(2�log2 D� + 1) neural network
with O(n3/D2) nodes that simulate the binary decision diagram. Regard-
ing the efficiency due to the number of trees, which is peculiar to ran-
dom forests, section 6 shows that there exists an n-trees random forest
with n nodes for which an equivalent T-trees random forest with T < n re-
quires �((2n/

√
n)(2/T+1) ) nodes. To our knowledge, all of these results are

new and thus are the contributions of this letter. We conclude with future
work.
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Comparison of Random Forests, BDD, and Neural Networks 1021

2 Related Work

It is well known as the universal approximation theorem that an arbitrary
Borel measurable function can be expressed by using a depth-2 neural net-
work (Hornik et al., 1989). However, the required number of nodes cannot
be derived from the theorem. Thus, it is meaningful to know how large the
model should be for each task. Actually, there are studies on what func-
tion families can be expressed efficiently by using what architectures, that
is, whether they can be expressed with a small number of nodes. Several
studies have shown that the depth of the network plays an important role.
In particular, the expression capacity of neural networks is thought to in-
crease exponentially with the depth. For example, Montufar et al. (2014)
showed that when a piecewise linear function is used as an activation func-
tion, the number of linear regions represented by the network increases not
only in the polynomial order of width but in the exponential order of depth.
Raghu et al. (2017) also argued that the representational power of a neu-
ral network increases exponentially with depth by showing that the length
of the network’s output trajectory also increases exponentially with depth.
In fact, many studies show that particular function families can or cannot
be expressed efficiently on particular architecture. Telgarsky (2015) proved
the existence of a function family that can be expressed by deep neural net-
works with nodes of the linear order while the nodes of the exponential
order are required with shallow neural networks. Chatziafratis et al. (2020)
extended his result and gave general lower bounds for the width needed to
represent a periodic function as a function of the depth, using Sharkovsky’s
theorem in dynamical systems. Szymanski and McCane (2014) showed that
the input periodicity is one of the factors that cause the depth efficiency in
deep neural networks. In other words, a function with the periodicity can
be expressed more efficiently by using a deep network. Delalleau and Ben-
gio (2011) showed that there is a function family that can be expressed more
efficiently by using deep networks than shallow networks in the context of
the sum-product network that calculates a linear sum or a product between
nodes at each layer. On the other hand, Hanin and Rolnick (2019) showed
that the average number of linear regions in a neural network with piece-
wise linear activation functions along any curve grows linearly if param-
eters are initialized at random, which suggests that the number of regions
does not grow rapidly in practice.

A random forest is a set of decision trees (Breiman, 2001; Ho, 1995).
Since the decision tree is an old model, the limitations of the model have
been shown both theoretically and experimentally. For example, Grigoriev,
Karpinski, and Yao (1998) showed that decision trees need an exponential
number of nodes to represent the max function. Perez and Rendell (1996)
showed that decision trees cannot generalize areas that do not appear in
the training data. Bengio et al. (2010) also showed that decision trees can-
not generalize the data with many variations. Cucker and Grigoriev (1999)
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1022 S. Kumano and T. Akutsu

pointed out the importance of the depth in a decision tree and showed that
a certain depth is needed to express a function with an arbitrary error. In or-
der to analyze the model complexity of specific decision tree models, Yildiz
(2015) developed algorithms for computing lower bounds of the VC dimen-
sion for univariate decision trees, and de Mello et al. (2019) developed an
algorithm for measuring the Shattering coefficient of decision tree models.
Mansour (1997) showed that the lower bound of the VC dimension of the bi-
nary decision tree with N nodes and input dimension d is �(N) and the up-
per bound is O(N log2 d). As for the expressive ability of random forests, the
upper bound of the VC dimension of ensemble learning using T classifiers
with VC dimension d is known to be O(dT log2 dT ) (Shalev-Shwartz & Ben-
David, 2014). Oshiro, Perez, and Baranauskas (2012) defined the density of
the data and confirmed the relationship between the density and the op-
timal number of trees by experiments. Zhou and Mentch (2021) suggested
that tree depth should be seen as a natural form of regularization across
the entire procedure and showed via computational experiments that ran-
dom forests with shallow trees are advantageous when the signal-to-noise
ratio in the data is low. It seems from these studies that the representational
power of random forests does not dramatically increase by increasing the
number of trees. However, the trade-off between the number of trees and
the number of nodes in random forests is still unclear with respect to the
representational power. Therefore, this letter studies this trade-off in ran-
dom forests, focusing on classification random forests among two major
types of random forests (classification and regression ones). As for relations
with neural networks, it is known that decision trees (Bengio et al., 2010;
Sethi, 1990) and random forests (Biau et al., 2019) are efficiently embedded
into neural networks using Heaviside functions, sigmoidal functions, and
hyperbolic tangent functions as activation functions. However, it is not clear
whether similar results hold for ReLU and related activation functions.

Binary decision diagrams (BDDs) are another important data structure
to represent various areas of knowledge (Bryant, 1986). BDDs are consid-
ered an extension of binary decision trees in which rooted, directed acyclic
graphs are used instead of binary trees. BDDs have been extensively ap-
plied to design of logic circuits, and a number of studies have been done on
efficient design of BDDs (Meinel & Theobald, 1998). For relations with neu-
ral networks, Prasad, Assi, and Beg (2007) used neural networks to estimate
the space complexity of BDDs, and Xu et al. (2018) used neural networks to
reduce the size of ordered BDDs. However, to our knowledge, there is no
work on comparison of the representational power of BDDs and neural net-
works. Therefore, this letter also studies relations between BDDs and neural
networks with respect to representational power.

3 Definitions

In this section, we define and analyze models. First, we define tree mod-
els, specifically, decision trees and random forests. We consider normal
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Comparison of Random Forests, BDD, and Neural Networks 1023

axis-aligned binary decision trees. That is, each node in the decision tree
has exactly two child nodes and splits the input space by a hyperplane that
is perpendicular to an axis and parallel to the other axes. A random forest
is defined as a collection of decision trees, where the decision is made by
majority vote. Next, we define binary decision diagrams as an extension of
binary decision trees. Binary decision diagrams use directed acyclic graphs
instead of trees. Finally, we define neural networks. We consider feedfor-
ward neural networks. In the following, R and Rd denote the set of real
numbers and the d-dimensional Euclidean space, respectively. C denotes a
set of target classes, where we assume that C is finite and thus each target
class is represented by a positive integer. For a vector x ∈ Rd, xi (or, (x)i)
denotes the ith element of x.

3.1 Decision Trees. The decision tree is one of the fundamental machine
learning models (Breiman et al., 1984). It is represented as a rooted binary
tree in which the input region is split into two regions at each nonleaf node.
Since the decision tree is simple and has high explainability, it has been
widely utilized. However, it has several drawbacks. In fact, some studies
show performance limitations in both theoretical and experimental ways
(Vilalta, Blix, & Rendell, 1997; Grigoriev et al., 1998).

Definition 1 (Heaviside Function). A function H : R → {0, 1} is called the Heav-
iside function if it is expressed as

H(x) =
{

1 (x ≥ 0),

0 (x < 0).
(3.1)

Definition 2 (Axis Aligned Function). A function f : Rd → {0, 1} is called an
axis aligned function if f is expressed as f (x) = H(xi − a), f (x) = 1 − H(xi − a),
f (x) = H(a − xi), or f (x) = 1 − H(a − xi).

An axis aligned function splits input space into two regions by using a
hyperplane that is perpendicular to one axis and parallel to the other axes.

Definition 3 (Decision Tree). A decision tree T is a rooted binary tree with a de-
cision function T : Rd → C defined by

T(x) =
∑

l∈L(T )

cl

∏
e∈ancestor_edges(l)

fe(x). (3.2)

Note that we use T to denote both a tree and the corresponding decision
function. Here L(T ) is the set of all leaves in a binary tree T, ancestor_edges(l)
is the set of all edges in the path from the root to a leaf l, fe is an axis aligned
function assigned to an edge e, and cl is a positive integer that represents
the class value assigned to l (see Figure 1). Moreover, each nonleaf node in
T has two outgoing edges e and e′ to which axis aligned functions f and
1 − f are assigned, respectively.
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1024 S. Kumano and T. Akutsu

Figure 1: Example of a decision tree. White and gray leaves represent class 1
and class 2 leaves, respectively.

In a decision tree, for any input vector x ∈ Rd, exactly one leaf l satisfies

∏
e∈ancestor_edges(l)

fe(x) = 1.

Thus, we use reach(x) to denote such a leaf l. In addition, we use Lc to denote
the set of leaves with class label c.

3.2 Random Forests. The random forest is one of the machine learn-
ing models that uses multiple trees. Random forests are classified into two
major types, classification random forests and regression random forests,
where the former and latter use decision trees and regression trees, respec-
tively. As mentioned in section 1, this letter considers classification random
forests only. A classification random forest determines the result by major-
ity vote of decision trees where each tree uses a randomly selected subset of
samples and a randomly selected subset of features. Ho (1995) introduced
the concept of random decision forests in which trees are built using ran-
domly selected subspaces. Then Breiman (2001) established the concept of
random forests by introducing the use of a randomly selected subset of fea-
tures as candidates at each split in each tree. In construction of a random
forest, trees can be computed in parallel.

Notice that a key component of random forests is the randomization in-
jected into the learning procedure—not only randomness in drawing re-
samples but also that in building individual trees. However, since we focus
on the representational power of prediction models, we ignore the random-
ness and simply treat a random forest as a collection of decision trees.

Definition 4 (Indicator Function). An indicator function 1S : Rd → {0, 1} is de-
fined by

1S(x) =
{

1 (x ∈ S),
0 (x /∈ S). (3.3)
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Comparison of Random Forests, BDD, and Neural Networks 1025

Figure 2: Example of a random forest. White and gray leaves represent class 1
and class 2 leaves, respectively. In this case, RF(x) = 2 for x = (5, −5) because
T1(x) = 1 whereas T2(x) = T3(x) = 2.

Figure 3: Example of a binary decision diagram. The bottom nodes are the out-
put nodes.

Definition 5 (Random Forest). A random forest is a collection of trees T =
{T1, . . . , T|T |} with a decision function RF : Rd → C defined by

RF(x) = arg max
c∈C

∑
Ti∈T

1{c}(Ti(x)). (3.4)

Thus, a random forest outputs the result of majority vote of decision trees
(see Figure 2). In the following, a random forest consisting of n nodes in total
is called a random forest with n nodes.

3.3 Binary Decision Diagrams. We define binary decision diagrams
(BDDs) as an extension of decision trees. These diagrams use directed
acyclic graphs instead of trees, as shown in Figure 3. Thus, binary decision
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1026 S. Kumano and T. Akutsu

diagrams have much stronger representative power than decision trees
have. For example, a d-bit parity function can be expressed by a binary de-
cision diagram with O(d) nodes, whereas a decision tree needs �(2d ) nodes.
Moreover, each class c has O(|Lc|) regions in a decision tree, whereas each
class has O((2W )D) regions in a binary decision diagram where D is the
depth of the binary decision diagram and each layer has O(W ) nodes.

Definition 6 (Binary Decision Diagram, BDD). A binary decision diagram is a
binary directed acyclic graph with a decision function B : Rd → C defined by

B(x) =
∑

l∈L(B)

cl

∑
p∈paths(l)

∏
e∈edges(p)

fe(x). (3.5)

Here L(B) is the set of all nodes whose out-degree is 0 (these nodes are
called output nodes), paths(l) is the set of all paths that connect the root and
an output node l, and edges(p) is the set of all edges that are included in a
path p. In addition, each internal node has exactly two outgoing edges to
which axis aligned functions f , 1 − f are assigned, respectively.

3.4 Neural Networks. In this letter, we consider feedforward neural
networks. At each depth (i.e., at each layer), an input vector (from the pre-
ceding depth) is multiplied by a weight matrix, a bias vector is added, and
then nonlinear activation functions are applied.

Definition 7 (Piecewise Linear Function). A piecewise linear function f : R → R
is a function such that the input domain R is divided into a finite set of ranges in
each of which f is a linear function.

Definition 8 (Sigmoidal Function). A function σ : R → R is called a sigmoidal
function if there exist some constants a, b (a 	= b) such that

lim
x→−∞ σ (x) = a, lim

x→∞ σ (x) = b. (3.6)

Definition 9 (Fpl Function Family). Fpl is a function family such that each f ∈ Fpl

is a piecewise linear function f : R → R that satisfies

lim
x→−∞ f ′(x) 	= lim

x→∞ f ′(x). (3.7)

Definition 10 (Fsigpl Function Family). Fsigpl is a function family such that each
f ∈ Fsigpl is a sigmoidal function or an element of Fpl .

Function family Fsigpl includes almost all of practical activation functions
such that like sigmoid, tanh, ReLU (Nair & Hinton, 2010), and Leaky ReLU
(Trottier, Gigu, & Chaib-draa, 2017) (see Figure 4).
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Comparison of Random Forests, BDD, and Neural Networks 1027

Figure 4: Examples of functions in Fsigpl .

Figure 5: Example of a depth-2 neural network.

Definition 11 (Neural Network). Let y0 = x be an input vector and uk be the
number of depth-k nodes. Then the output vector of depth-k nodes in a neural net-
work is defined as

yk = f(Wky(k−1) + bk). (3.8)

The output vector of the depth-d neural network is defined as

yd = Wdy(d−1) + bd. (3.9)

Here, Wk is a uk × u(k−1) matrix, bk is a uk-dimensional vector (a vector of
biases), and f is a list of the identical activation functions (see Figure 5).
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1028 S. Kumano and T. Akutsu

Table 1: Summary of Symbols Introduced in Section 3.

Symbol Meaning

H(x) Heaviside function
1S(x) Indicator function
σ (x) Sigmoid function
Fpl Family of piecewise linear functions satisfying equation 3.7
Fsigpl Family of functions in Fpl and sigmoid functions
fparity Parity function
T(x) Decision tree (x: input data)
RF(x) Random forest
B(x) Binary decision diagram
L(T ) Set of leaves in tree T
ancestor_edges(l) Set of edges in the path from root to leaf l
fe Axis aligned function assigned to edge e
cl Class label (integer) assigned to leaf l
reach(x) Leaf corresponding to input vector x
paths(l) Set of paths from root to output node l in BDD
edges(p) Set of edges included in path p

In this letter, we consider only classification problems. Neural networks
have exactly the same number of output nodes as the number of classes, and
their output class is determined as the class whose corresponding output
node has the highest value.

3.5 Parity Function. Here, we define the parity function that we use as
an example function to show lower bounds in latter sections. The parity
function outputs 1 if and only if the sum of the elements in the input is odd.
Two-bit parity function is the same function as XOR.

Definition 12 (Parity Function). d-bit parity function fparity : {0, 1}d → {0, 1}
is defined as

fparity(x) =
{

1 (the number of one in x is odd),

0 (the number of one in x is even).
(3.10)

Table 1 summarizes the symbols introduced in this section.

4 Comparison of Tree Models and Neural Networks

In this section, we compare the representational power of tree models and
neural networks when both of them have O(n) nodes. It is already known
that a decision tree has shallow depth in the context of neural networks; for
example, Sethi (1990) and Bengio et al. (2010) showed that the architectural
depth of a decision tree is 2 by analogy with the disjunctive normal form
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Comparison of Random Forests, BDD, and Neural Networks 1029

Figure 6: Transformation of a decision tree to a depth-2 network.

(see Figure 6). In depth-1, each node of the network corresponds to a leaf in
the decision tree and takes a product of conditional expressions assigned to
edges in the path from the root to the leaf. In depth-2, each node corresponds
to a class and takes a sum of the values of depth-1 nodes. In the case of a
random forest, Biau et al. (2019) showed that it is enough to add another
layer to sum up the output values of depth-2. They also showed the sum-
up can be done by directly connecting the nodes corresponding to the leaves
of decision trees to the output node.

From the above discussion, we can speculate that random forests have
less representational power than fixed-depth neural networks, and random
forests do not have the same nature as the depth efficiency. However, most
recent results about the depth efficiency are shown in the case of neural net-
works whose activation functions are piecewise linear functions. Thus, we
begin with comparison of the representational power of decision trees and
neural networks with more general activation functions. We will prove that
random forests have no more representational power than depth-3 neural
networks whose activation functions are in Fsigpl . Recall that Fsigpl is the func-
tion family that was defined in section 3. Thus, the statements in section 4
hold for activation functions that are often used in practice, like ReLU, sig-
moid, and tanh.

4.1 Decision Trees and Neural Networks. To prove random forests
have no more representational power than depth-3 neural networks, we
compare the representational power of decision trees and neural networks
and prove that decision trees have no more representational power than
depth-3 neural networks. First, we consider neural networks whose activa-
tion functions are Heaviside functions.

Hereafter, we assume that the domain of input data is a finite set S ⊆
Rd because each input datum is represented as a vector of finite precision
numbers in practice and thus the number of possible input vectors is finite
for fixed dimensions d.
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1030 S. Kumano and T. Akutsu

Figure 7: These decision tree, and neural networks are equivalent. Each con-
stant on the edge of the neural network is the weight, and each constant on the
node is the bias. Weight zero edges are omitted. Activation functions are Heav-
iside functions.

Lemma 1. For any decision tree with n nodes T : S → C, there is an equivalent
depth-3 neural network with O(n) nodes using Heaviside functions as the activa-
tion functions.

Proof. For a given decision tree T, we construct a depth-3 neural network
that always outputs the same class as the decision tree does (see Figure 7).
First, we construct depth-1 nodes. For each edge e in T, we construct a
depth-1 node ve so that ve outputs 1 if and only if the condition assigned to e
is satisfied. To this end, for an edge e with xi ≥ a, we assign H(xi − a) to ve as
an activation function, and for an edge e with xi > a, we assign 1 − H(a − xi)
to ve. Although 1 − H(x) is not a Heaviside function, we can modify the net-
work by adjusting the weights of edges and biases so that only Heaviside
functions are used. Identically, for an edge e with xi ≤ a, we assign H(a − xi)
to ve, and for an edge e with xi < a, we assign 1 − H(xi − a) to ve.

Next, for each leaf l in T, we construct a depth-2 node vl in the neu-
ral network. Let Dl be the depth of l and Vl be the set of depth-1 neu-
ral network nodes corresponding to edges in ancestor_edges(l) (recall that
ancestor_edges(l) denotes the set of edges in the path from the root to a leaf
l in the decision tree). Then we assign

H

⎛
⎝

⎛
⎝∑

v∈Vl

v

⎞
⎠ − Dl + 0.5

⎞
⎠ (4.1)

to vl . Notice that we use v to denote both a node and its output value.
Finally, for each output class c ∈ C for T, we construct a depth-3 node

(i.e., an output node) vc. Let Ic be the set of depth-2 nodes corresponding to
leaves with label c (i.e., Ic = {vl |l ∈ Lc}). Then we assign

∑
v∈Ic

v (4.2)
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Comparison of Random Forests, BDD, and Neural Networks 1031

to vc. It is straightforward to see that vc takes value 1 for an input vector x
if and only if the class label of a leaf l = reach(x) is c. Since the number of
nodes in the constructed neural network is O(n), the lemma holds. �

Using this lemma, we can prove that decision trees have no more rep-
resentational power than depth-3 neural networks with O(n) nodes using
any activation function in Fsigpl .

Theorem 1. Let f be an arbitrary function in Fsigpl . Then for any decision tree
with n nodes T : S → C, there exists an equivalent depth-3 neural network with
O(n) nodes using f as the activation functions.

Proof. Since S is a finite set of samples, we can assume without loss of gen-
erality (w.l.o.g.) that there are no samples on a decision boundary of a de-
cision tree. We will prove that for any neural network with n nodes using
Heaviside functions as activation functions, there exists an equivalent neu-
ral network with O(n) nodes using f ∈ Fsigpl as activation functions.

Let g be a sigmoidal function. Thus, g satisfies

∃a, b ∈ R s.t. a 	= b, lim
x→∞ g(x) = a, lim

x→−∞ g(x) = b. (4.3)

Then we can express H by g for x 	= 0. In fact,

H(x) = lim
ε→0

(
g
(x

ε

)
− b

) 1
a − b

= 1
a − b

lim
ε→0

g
(x

ε

)
− b

a − b
. (4.4)

Of course, we need to use some contact ε > 0 in practice, and thus there is a
difference between H(x) and its representation by using g(x). However, the
final decisions can be the same if we use sufficiently small constant ε > 0.

Next, let h be an arbitrary function included in Fpl . Thus, h satisfies

∃c, d, c′, d′ ∈ R s.t. c 	= c′,

lim
x→∞ h(x) = cx + d, lim

x→−∞ h(x) = c′x + d′. (4.5)

Then, since

lim
x→∞ h(x + 1) − h(x) = c, lim

x→−∞ h(x + 1) − h(x) = c′, (4.6)

we can express H by using h(x + 1) and h(x) (i.e., two nodes using h as ac-
tivation functions) for x 	= 0 (see Figure 8).

Therefore, for any f ∈ Fsigpl and for any depth-3 neural network with
O(n) nodes using H as activation functions, there exists an equivalent
depth-3 neural network with O(n) nodes using f as activation functions.
Thus, the theorem follows from lemma 1. �
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1032 S. Kumano and T. Akutsu

Figure 8: These two neural networks are equivalent. A constant on each edge
is a weight, and weight zero edges are omitted. A constant near each node is a
bias. The left neural network uses Heaviside activation functions, and the right
neural network uses ReLU activation functions. ε is a small, positive value.
The left network represents nH(m1x1 + m2x2 − e), and the right network rep-
resents nReLU(m1x1/ε + m2x2/ε + 1 − e/ε) − nReLU(m1x1/ε + m2x2/ε − e/ε).
These two expressions can be the same for the finite set of inputs if we use suf-
ficiently small constant ε > 0.

4.2 Random Forests and Neural Networks. From the results in sec-
tion 4.1, we can easily prove that random forests have no more represen-
tational power than depth-3 neural networks.

Theorem 2. Let f be an arbitrary function in Fsigpl . Then for any random forest
with n nodes RF : S → C, there exists an equivalent depth-3 neural network with
O(n) nodes using f as the activation functions.

Proof. We prove the theorem only for the case of the Heaviside function.
The other cases can be proven as in theorem 1.

First, for each decision tree Ti (i = 1, . . . , |T |), we construct a depth-3 neu-
ral network. Here, each depth-2 node vl , which corresponds to a leaf l in
some Ti, outputs 1 for an input vector x if and only if reach(x) = l in Ti, and
otherwise outputs 0.

Next, we remove all depth-3 nodes, and then for each class c ∈ C, we
construct a depth-3 node vc. Let Lc be the set of all leaves (in all Tis) having
label c and Ic = {vl |l ∈ Lc}. We assign

∑
v∈Ic

v (4.7)

to vc.
Then the output node with the highest value corresponds to the class

determined by RF. Furthermore, this neural network clearly satisfies the
requirement of the theorem. �

This result holds also for weighted random forests in which the decision
is made by weighted vote in place of majority vote.
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Comparison of Random Forests, BDD, and Neural Networks 1033

Figure 9: This neural network represents parity function.

4.3 Efficiency for the Number of Nodes in Tree Models. In this sec-
tion, we compare the representational power of tree models and neural
networks. In the context of circuits, it is obvious that tree models have shal-
low depth; in fact, their depth is 2. However, most results of the efficiency
on the number of nodes in neural networks have been proved with neural
networks whose activation functions are piecewise linear functions. Thus,
we compare decision trees and neural networks whose activation functions
are in the function family Fsigpl , which includes most practical activation
functions.

It is seen from theorem 2 that tree models (i.e., decision trees and random
forests) with n nodes can be expressed with depth-3 neural networks with
O(n) nodes whose activation functions are in the function family Fsigpl . That
is, the functions for which the depth works well in neural networks (e.g., pe-
riodic function) cannot be expressed efficiently with tree models, since the
function family whose elements can be expressed efficiently by a decision
tree is included by the function family whose elements can be expressed
efficiently by a depth-3 neural network. In contrast, there are many func-
tions that can be efficiently expressed by a depth-3 neural network but re-
quire many nodes in tree models. For example, depth-3 neural networks can
express the d bit-parity function with O(d) nodes (Bengio & Lecun, 2007),
while decision trees need an exponential number of nodes. Figure 9 shows
the neural network that expresses the d-bit parity function. Each depth-1
node vi in the neural network calculates whether the number of ones in
x = (x1, x2, . . . , xd ) is larger than i or not. This can be established by simple
summation and bias −i. Depth-2 output nodes also take simple summation
as

∑
even i vi − vi−1 for the output node “odd” and

∑
odd i vi − vi−1 for the

output node “even.” This neural network calculates the d-bit parity func-
tion since vi − vi−1 = 1 holds if and only if exactly i of d input bits are 1.

Thus, the function family corresponding to n-nodes tree models (resp.,
n-nodes decision trees) is a subset (resp., a proper subset) of the function
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1034 S. Kumano and T. Akutsu

family corresponding to depth-3, O(n) nodes neural networks. Therefore,
we can conclude that tree models have no more representational power
than depth-3 neural networks.

5 Comparison of Binary Decision Diagrams and Neural Networks

In the previous section, we compared the representational power of neural
networks and tree models and showed that tree models have no more rep-
resentational power than depth-3 neural networks. In this section, we prove
analogous results for binary decision diagrams. Recall that we defined the
binary decision diagram as an extension of the binary decision tree. Only
the difference between binary decision diagrams and decision trees is that
binary decision diagrams use binary-directed acyclic graphs instead of bi-
nary trees. Binary decision diagrams have higher representational power
than decision trees because it is obvious that n nodes decision trees can be
simulated by n nodes binary decision diagrams. Moreover, a decision tree
with n nodes outputs class c when

∨
li∈L(c)

li(x) (5.1)

is satisfied, while a depth- D binary decision diagram with n nodes outputs
class c when

∨
pi∈P(c)

pi(x) (5.2)

is satisfied. Here x is an input vector, and li and pi are conditional expres-
sions corresponding to the conjunctions of the conditional expressions from
the root to the leaf and output node, respectively. L(c) is a set of the conjunc-
tions corresponding to paths from the root to leaves with class label c in the
decision tree, and P(c) is a set of conjunctions corresponding to paths from
the root to output nodes with class label c in the binary decision diagram.
Then, assuming that each layer in the binary decision diagram has O( n

D )
nodes, it is seen that |L(c)| is O(n), whereas |P(c)| is O(( 2n

D )D). Since O(( 2n
D )D)

is much larger than O(n), this suggests that binary decision diagrams have
much higher representational power than decision trees have.

Actually, there are functions that can be expressed efficiently with binary
decision diagrams, while they need many nodes in decision trees. For ex-
ample, a decision tree needs an exponential number of nodes to express the
parity function, while a binary decision diagram needs only a linear num-
ber of nodes. Figure 10 shows the 2-bit parity function represented by a
decision tree and a binary decision diagram.
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Comparison of Random Forests, BDD, and Neural Networks 1035

Figure 10: Two-bit parity function expressed by a decision tree and a binary
decision diagram. In the bottom, gray nodes and white nodes represent even
and odd classes, respectively.

5.1 Binary Decision Diagrams and Neural Networks. Here we show
that for any depth-D binary decision diagram with n nodes, there exists an
O(n) nodes neural network that can express the binary decision diagram.

Theorem 3. Let f be an arbitrary function in Fsigpl . Then for any binary decision
diagram with n nodes B : S → C, there exists an equivalent depth-(D + 1) neural
network with O(n) nodes using f as the activation functions. The network has skip
connections.

Proof. We prove the theorem only for the case of the Heaviside function.
The other cases can be proven as in theorem 1.

First, for each edge e in the binary decision diagram, we construct a
depth-1 neural network node ve where ve outputs 1 if and only if e is ac-
tivated. This can be done as in the proof of lemma 1. For example, for an
edge e with xi ≥ a, we assign H(xi − a) to ve as an activation function.

Next, for each depth-s (1 ≤ s ≤ D − 1) binary decision diagram edge e,
we construct a depth-(s + 1) neural network node v

(s+1)
e . Suppose that e has

e1, e2, . . . , ek as input edges. As before, we use v to denote both a node and
its output value. Then v

(s+1)
e is determined by

v (s+1)
e = H((k + 1)ve + v (s)

e1
+ · · · + v (s)

ek
− (k + 1)). (5.3)

Note that a neural network edge from ve to v
(s+1)
e corresponds to a skip con-

nection (see Figure 11).
Finally, for each output node v with class label c in the binary decision di-

agram, we construct a depth-(D + 1) neural network node v
(D+1)
c . Suppose

that v has e1, e2, . . . , ek as input edges. Then v
(D+1)
c is determined by

v (D+1)
c = v (D)

e1
+ · · · + v (D)

ek
. (5.4)
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1036 S. Kumano and T. Akutsu

Figure 11: Example of transformation from a binary decision diagram to a neu-
ral network. For each edge in the binary decision diagram, we construct a
depth-2 neural network node corresponding to the path from the root to the
edge. Depth-1 neural network nodes correspond to edges in the binary decision
diagram.

Furthermore, since each node in the binary decision diagram has two
output edges, the number of nodes in the resulting neural network is
O(n). �
Theorem 4. Let f be an arbitrary function in Fsigpl , let D be the depth of a given
binary decision diagram, and assume that the diagram has no skip connections.
Then for any binary decision diagram with n nodes B : S → C and a positive integer
b, there exists an equivalent depth-� 2D

b + 1� neural network with O(bnb) nodes
using f as the activation functions, where the network has skip connections.

Proof. We construct neural network nodes that correspond to binary de-
cision diagram nodes whose depths are multiples of b. For each k =
1, . . . , �D

b �, we construct network nodes corresponding to decision diagram
nodes between depth-b(k − 1) and depth-bk.

This construction needs two layers per k, as shown in Figure 12. In the
first layer, for each path p from depth-b(k − 1) to depth-bk in the binary de-
cision diagram, we construct a node vp representing the conjunction of the
conditions given by p and the condition given by the beginning node of p.
In the second layer, for each depth-bk binary decision diagram node u, we
construct a node vu with inputs from nodes vps corresponding to paths ps
ending at u (see Figure 13).

Clearly the binary decision diagram and the constructed neural net-
work always output the same class. Since the number of paths between
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Comparison of Random Forests, BDD, and Neural Networks 1037

Figure 12: For each sub-binary decision diagram with depth-b, we construct the
corresponding depth-2 neural subnetwork.

depth-b(k − 1) nodes and depth-bk nodes in the binary decision diagram is
O(nb), the number of nodes per k is O(n + nb). Therefore, the constructed
neural network has depth-� 2D

b + 1� and O(bnb) nodes, where it has skip
connections. �

As shown below, the depth of the network can be significantly reduced
without significantly increasing the number of nodes.

Theorem 5. Let f be an arbitrary function in Fsigpl , let D be the depth of a given
binary decision diagram, and assume that the diagram has no skip connections
and has O( n

D ) nodes in each layer. Then for any binary decision diagram with n
nodes B : S → C, there exists an equivalent depth-(2�log2 D� + 1) neural network
with O( n3

D2 ) nodes using f as the activation functions, where the network has skip
connections.
Proof. For a specific pair of nodes (s, t) in the binary decision diagram, we
construct a neural network node v(s,t) such that v(s,t) takes value 1 if and
only if at least one path between s and t is activated.

For an integer S ∈ 1, . . . , D, let VS denote the set of depth-S nodes in the
binary decision diagram. For integers S, T such that S < T, we define V(S,T )
by

V(S,T ) = {v(s,t)|s ∈ VS, t ∈ VT}. (5.5)

We construct v(s,t)s and the corresponding activation functions in a
bottom-up manner. Suppose that we have V(S,T ) and V(T,U ) at the same
depth d along with activation functions where 1 ≤ S < T < U ≤ D. Then we
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1038 S. Kumano and T. Akutsu

Figure 13: Example of transformation from a binary decision diagram to a neu-
ral network for b = 3. Depth-1 nodes in the neural network correspond to edges
in the binary decision diagram. For each path from m1 or m2 to n1 or n2, we con-
struct a corresponding neural network node.

construct neural network nodes in V(S,U ) at depth d + 2 such that the output
value of v(s,u) ∈ V(S,U ) is determined by

v(s,u) =
∨
t∈VT

(v(s,t) ∧ v(t,u) ). (5.6)

This can be done adding nodes (at depth d + 1) representing v(s,t) ∧ v(t,u) for
each pair (v(s,t), v(t,u) ), which we call conjunction nodes. Therefore, to con-
struct nodes in V(S,U ), we need two additional layers and O(|VS||VT ||VU |) =
O((n/D)3) additional nodes because we assume that the binary decision tree
has O(n/D) nodes in each layer.

The bottom-up construction is done as follows. First, for depth-1 neu-
ral network nodes, we construct nodes in V(0,1),V(1,2), . . . ,V(D−1,D), that
is, we construct nodes corresponding to edges in the binary decision di-
agram. We can see that at most 2n nodes are at depth 1 because each
(nonoutput) node has exactly two output edges in the binary decision di-
agram. Next, for depth-3 neural network nodes, we construct nodes in
V(0,2),V(2,4), . . . ,V(D−2,D) along with conjunction nodes at depth 2. Then,
at depth-5 neural network nodes, we construct nodes in V(0,4),V(4,8), . . . ,

V(D−4,D) along with conjunction nodes at depth 4. We repeat this procedure
until nodes in V(0,D) are constructed. Although D = 2h for some h is assumed
here, we can modify the construction procedure for the case of D 	= 2h.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/34/4/1019/2003062/neco_a_01486.pdf by KYO
TO

 U
N

IVER
SITY user on 24 O

ctober 2022



Comparison of Random Forests, BDD, and Neural Networks 1039

From the construction, we can see that each node v(s,t) takes value 1 if
and only if at least one path between s and t is activated. Finally, we can see
that the order of the number of nodes in the constructed neural network is
bounded by

2n + D
2

n3

D3 + D
4

n3

D3 + · · · ≤ 2n + n3

D2 , (5.7)

and its depth is 2�log2 D� + 1. Therefore, the theorem holds. �

6 The Number of Trees and Nodes in Random Forests

In this section, we compare random forests consisting of different numbers
of trees.

6.1 Lower Bound of the Number of Nodes. In the previous section, we
proved that tree models do not have the same efficiency on the number of
nodes as neural networks. However, random forests may have specific effi-
ciency on the number of nodes. We show that in some cases, the efficiency
on the number of nodes is generated from the number of trees by proving
a lower bound of the number of nodes to express an n-trees random forest
with n nodes by a T-trees random forest with T < n. Let (xi, ci) be a pair of
a vector and its class. A leaf l is called a support leaf for (xi, ci) if reach(xi) = l
and c(l) = ci. First, we show that if any pair of two distinct samples in the
same class has fewer than (T + 1)/2 common support leaves, then the total
number of nodes in a T-trees random forest must be large.

Lemma 2. Let (X, c) be a pair of a set of vectors and a classification function
satisfying the following property and M = |X|. Then any T-trees random forest
RF : S → {1, 2} that can correctly classify all elements in X (according to c) has
�(M

2
T+1 ) nodes, where T is a positive odd integer.

For every T-trees random forest that correctly classifies X,

∀x1 	= x2 ∈ X, c(x1) = c(x2) = ci →
|{l|c(l) = ci, reach(x1) = reach(x2) = l}|

<
T + 1

2
, (6.1)

holds, where c(x) is a class of x, reach(x) is the leaf that x reaches, and c(l) is a class
label of a leaf l.

Proof. The above property states that any two different inputs x1 and x2

from the same class ci do not share more than half of the leaf nodes having
class label ci in any random forest that recognizes X.
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1040 S. Kumano and T. Akutsu

Let Li = {l|c(l) = i, l is a leaf}, hi = |Li|. Thus, hi is the number of leaves
that have class label i. Let Mi = |{x ∈ X|c(x) = i}|. That is, Mi denotes the
number of class i samples in X. Let Ri(x) = {l|reach(x) = l, c(l) = i}.

Let x1 be a vector in X such that c(x1) = 1. Let S1 be an arbitrary subset of
R1(x1) such that |S1| = T+1

2 . It is seen from the property that for any vector x2

in X such that c(x2) = 1 and x2 	= x1, there exists S2 ⊆ R1(x2) such that |S2| =
T+1

2 and S2 	= S1. Furthermore, for any vector x3 in X such that c(x3) = 1,
x3 	= x1, and x3 	= x2, there exists S3 ⊆ R1(x3) such that |S3| = T+1

2 , S3 	= S1,
and S3 	= S2. We can repeat this procedure until all xis in M1 are tested. This
means that for each xi ∈ M1, there exists a unique subset Si such that |Si| =
T+1

2 . Thus,

(
h1

T+1
2

)
≥ M1 (6.2)

holds. Similarly,

(
h2

T+1
2

)
≥ M2 (6.3)

holds. Hence, we have

h
T+1

2
1 ≥ M1, (6.4)

h
T+1

2
2 ≥ M2. (6.5)

Therefore, the number of leaves in this random forest is

h1 + h2 ≥ M1
2

T+1 + M2
2

T+1 ≥ M
2

T+1 , (6.6)

from which the theorem follows. �
With this lemma, we prove a lower bound of the number of nodes to

express an n-trees random forest with n nodes by a T-trees random forest.
Specifically, we show that there exists a function that satisfies the condition
in the lemma. This function only needs a linear number of nodes in an n-
trees random forest; however, it needs a large number of nodes in a T-trees
random forest with T < n.
Theorem 6. There exists an n-trees random forest with O(n) nodes RF :
{0, 1}n → {1, 2} such that any T-trees random forest needs �(( 2n√

n )
2

T+1 ) nodes to
represent it, where T is any odd integer such that 0 < T < n.

Proof. Let c(x) be a function such that it takes value 1 if and only if the sum
of the elements of x is at least n+1

2 , where we assume w.l.o.g. that n is an odd
number. That is, c(x) is a kind of majority function. Let X be the set of vectors
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Comparison of Random Forests, BDD, and Neural Networks 1041

x such that the sum of the elements of x is either n+1
2 or n+1

2 − 1. Note that for
each x ∈ X, c(x) = 1 if this sum is n+1

2 and c(x) = 2 otherwise. Clearly, c(x)
can be represented by an n-trees random forest with O(n) nodes: Ti outputs
1 if (x)i = 1, and 2 otherwise.

We will prove by contradiction that for any T(T < n), X satisfies the
condition in lemma 2. Assume that there exists a T-trees random for-
est that classifies X correctly and (X, c) does not satisfy the condition in
lemma 2. Then we can assume w.l.o.g. that there exist two vectors x1 and x2

such that c(x1) = c(x2) = 1 holds and T+1
2 or more leaves satisfy reach(x1) =

reach(x2) = l and c(l) = 1.
Since x1 	= x2, we can assume w.l.o.g. that there exists at least one index

k such that (x1)k = 1 and (x2)k = 0 hold. Let T ′ be the set of trees Ti such
that reach(x1) = reach(x2) = l and c(l) = 1, from which it is seen that the path
from the root to a leaf l in any Ti ∈ T ′ is not affected by the kth element of
input vectors.

Let x′
1 be the vector obtained by inverting the kth bit of x1. Then,

reach(x1) = reach(x′
1) = l holds for all trees in T ′ because the kth element of

an input vector does not affect the path from the root to l = reach(x1). How-
ever, x′

1 should be classified as class 2 because the sum of elements in x′
1

is equal to n+1
2 − 1. This fact contradicts the assumption that X is classified

correctly by a T-trees random forest. Therefore, (X, c) satisfies the condition
in lemma 2.

Furthermore, the size of X is given by

|X| = 2
(

n
n+1

2

)
≥ 2n

√
n

. (6.7)

Therefore, from lemma 2, the number of required nodes is

�

((
2n

√
n

) 2
T+1

)
. (6.8)

�

7 Conclusion

In this letter, we have investigated the relationship on the representational
power of machine learning models under some restriction of the number
of nodes. Without this restriction, discussions in this letter would be mean-
ingless because neural networks can express any Borel measurable function
and decision trees can express any function whose domain is finite.

Based on other studies (Sethi, 1990; Bengio et al., 2010; Biau et al., 2019),
we showed that for any random forest with n nodes, there exists an equiv-
alent depth-3 neural network with O(n) nodes for the activation function
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1042 S. Kumano and T. Akutsu

family Fsigpl that includes almost all practical activation functions. This re-
sult shows that the function family corresponding to tree models is a subset
of the function family corresponding to depth-3 neural networks. Further-
more, since there exist functions that can be expressed efficiently by depth-3
neural networks but need a lot of nodes in decision trees, the inclusionship
is proper for decision trees.

We also showed that for any depth-D binary decision diagram with
O(n/D) nodes at each depth, there exists an equivalent depth-(D + 1) neural
network with O(n) nodes and an equivalent depth-(2�log2 D� + 1) neural
network with O(n3/D2) nodes. The latter result suggests that neural net-
works need much smaller depth to express any functions than binary deci-
sion diagrams need under the condition that a polynomial number of nodes
are used.

Finally, we obtained an �(( 2n√
n )

2
T+1 ) lower bound of the number of nodes

to express an n-trees random forest with O(n) nodes by a T-trees random
forest with T < n. This result implies that there are some cases in which
the efficiency on the number of nodes is caused by the number of trees in
random forests.

In section 5, we have not yet shown whether analogous results as in sec-
tion 4 hold. Thus, it is left as an open problem to decide whether binary
decision diagrams with an arbitrary depth can be expressed by fixed-depth
neural networks using a polynomial number of nodes. It is also left as an
open problem to find a function family that can be efficiently represented
by neural networks but needs an exponential number of nodes in binary de-
cision diagrams. In section 6, we only proved a lower bound of the number
of nodes in random forests. Therefore, showing nontrivial upper bounds of
the number of nodes in random forests is also an open problem.
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