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Abstract

Many machine learning methods assume that the training and test data follow the same

distribution. However, in the real world, this assumption is very often violated. In

particular, the phenomenon that the marginal distribution of the data changes is called

covariate shift, one of the most important research topics in machine learning. We

show that the well-known family of covariate shift adaptation methods is unified in the

framework of information geometry. Furthermore, we show that parameter search for

geometrically generalized covariate shift adaptation method can be achieved efficiently.

Numerical experiments show that our generalization can achieve better performance

than the existing methods it encompasses.

http://arxiv.org/abs/2304.09387v1


1 Introduction

When considering supervised learning methods, it is often assumed that the training and

test data follow the same distribution (Bishop, 1995; Duda et al., 2006; Hastie et al.,

2009; Vapnik, 2013; Mohri et al., 2018). However, this common assumption is violated

in the real world in most cases (Huang et al., 2007; Zadrozny, 2004; Cortes et al., 2008;

Quionero-Candela et al., 2009; Jiang, 2008).

Covariate shift (Shimodaira, 2000) is a prevalent setting for supervised learning in

the real world, where the input distribution differs in the training and test phases, but

the conditional distribution of the output variable given the input variable remains un-

changed. Covariate shift is a commonly observed phenomenon in real-world machine

learning applications, such as emotion recognition (Hassan et al., 2013; Jirayucharoensak et al.,

2014), 3D pose estimation (Yamada et al., 2012), brain computer interfaces (Li et al.,

2010; Raza et al., 2016), spam filtering (Bickel et al., 2009), and human activity recog-

nition (Hachiya et al., 2012). In addition, there has been recent discussion on the rela-

tionship between covariate shift and the robustness of deep learning (Ioffe and Szegedy,

2015; Arpit et al., 2016; Santurkar et al., 2018; Nado et al., 2020; Huang and Yu, 2020;

Awais et al., 2020).

Ordinary empirical risk minimization (ERM) (Vapnik, 1998, 2013) may not gener-

alize well to the test data under covariate shift because of the difference between the

training and test distributions. However, importance weighting for training examples

has been shown to be effective in mitigating the effect of covariate shift (Shimodaira,

2000; Sugiyama and Müller, 2005b,a; Zadrozny, 2004). The main idea of these strate-

gies is weighting the training loss terms according to their importance, which is the

ratio of the training input density to the test input density. The importance weighting

is widely adopted even in modern covariate shift studies with deep neural networks

(DNN) (Fang et al., 2020; Zhang et al., 2021).

In this paper, we consider the generalization of these methods in the framework of

information geometry (Amari, 1985; Amari and Nagaoka, 2007), a tool that allows us

to deal with probability distributions on Riemannian manifolds. This generalization

makes it possible to search for good weighting without searching for a large number of
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parameters. Our contributions is summarized as follows:

• (Section 4.1 and 4.2) We generalize existing methods of covariate shift adapta-

tion in the framework of information geometry. By our information geometrical

formulation, geometric biases of conventional methods are elucidated.

• (Section 4.3) We show that our geometrically generalized covariate shift adapta-

tion method has a much larger solution space than existing methods controlled by

only two parameters. Efficient weighting is obtained by searching for parameters

using an information criterion or Bayesian optimization.

• (Section 5) Numerical experiments show that our generalization can achieve bet-

ter performance than the existing methods it encompasses.

2 Preliminaries

2.1 Problem formulation

First, we formulate the problem of supervised learning. We denote by X ⊂ R
d the

input space. The output space is denoted by Y ⊂ R (regression) or Y ⊂ {1, . . . , K}
(K-class classification). We assume that training examples {(xtr

i , y
tr
i )}ntr

i=1 are indepen-

dently and identically distributed (i.i.d.) according to some fixed but unknown distribu-

tion ptr(x, y), which can be decomposed into the marginal distribution and the condi-

tional probability distribution, i.e., ptr(x, y) = ptr(x)ptr(y|x). We also denote the test

examples by {(xte
i , y

te
i )}nte

i=1 drawn from a test distribution pte(x, y) = pte(x)pte(y|x).
Let H be a hypothesis class. The goal of supervised learning is to obtain a hypoth-

esis h : X → R (h ∈ H) with the training examples that minimizes the expected loss

over the test distribution:

R(h) := E(xte,yte)∼pte(x,y)

[

ℓ(h(xte), yte)
]

, (1)

where ℓ : R × Y → R is the loss function that measures the discrepancy between the

true output value y and the predicted value ŷ := h(x). In this paper, we assume that ℓ

is bounded from above, i.e., ℓ(y, y′) <∞ (∀y, y′ ∈ Y).
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Definition 2.1 (Covariate shift assumption) We consider that the two distributions ptr(x, y)

and pte(x, y) satisfy the covariate shift assumption if the following three conditions

hold: 1) ptr(x) 6= pte(x), 2) supp(ptr(x)) ⊃ supp(pte(x)) and 3) ptr(y|x) = pte(y|x).

Under the covariate shift assumption, the goal of covariate shift adaptation is still to

obtain a hypothesis h that minimizes the expected loss (1) by utilizing both labeled

training examples {(xtr
i , y

tr
i )}ntr

i=1 and unlabeled test examples {(xte
i )}n

te

i=1.

2.2 Previous works

Ordinary empirical risk minimization (ERM) (Vapnik, 1998, 2013), a standard ap-

proach in supervised learning, may fail under the covariate shift because it assumes

that the training and test data follow the same distribution. Importance weighting has

been shown to be effective in mitigating the effect of covariate shift (Shimodaira, 2000;

Sugiyama and Müller, 2005b; Sugiyama et al., 2007; Zadrozny, 2004):

min
h∈H

1

ntr

ntr
∑

i=1

w(xtr
i )ℓ(h(x

tr
i ), y

tr
i ), (2)

where w : X → R≥0 is a certain weighting function.

Definition 2.2 (IWERM (Shimodaira, 2000)) If we choose the density ratio pte(x)/ptr(x)

as the weighting function, ERM according to

min
h∈H

1

ntr

ntr
∑

i=1

pte(x
tr
i )

ptr(xtr
i )
ℓ(h(xtr

i ), y
tr
i ) (3)

has consistency.

This is called importance weighted ERM (IWERM). However, IWERM tends to pro-

duce an estimator with high variance. We can reduce the variance by flattening the

importance weights, which is called adaptive IWERM (AIWERM):

Definition 2.3 (AIWERM (Shimodaira, 2000)) Let λ ∈ [0, 1]. If we choose (pte(x)/ptr(x))
λ

as the weighting function, we can obtain the variance-reduced estimator:

min
h∈H

1

ntr

ntr
∑

i=1

(pte(x
tr
i )

ptr(xtr
i )

)λ

ℓ(h(xtr
i ), y

tr
i ). (4)
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Relative IWERM (RIWERM), a stable version of AIWERM, has also been proposed:

Definition 2.4 (RIWERM (Yamada et al., 2011)) Let λ ∈ [0, 1]. If we choose pte(x)/λptr(x)+

(1− λ)pte(x) as the weighting function, we can directly estimate a flattened version of

the importance weight:

min
h∈H

1

ntr

ntr
∑

i=1

pte(x
tr
i )

λptr(xtr
i ) + (1− λ)pte(xtr

i )
ℓ(h(xtr

i ), y
tr
i ). (5)

All of the above methods are considered as different weighting methods for each point

of the training data. More generally, the method of covariate shift adaptation can be

essentially rephrased as a weighting strategy for training data.

3 Statistical Model and Exponential Family

Information geometry (Amari, 1985; Amari and Nagaoka, 2007) is a powerful frame-

work that allows us to deal with statistical models on Riemannian manifolds. For the-

oretical investigation, we need the notion of dual connection and curvature tensor as-

sociated with Fisher metric, but these details are deferred to the Appendix 6 and we

here present minimum required definitions and notations. We note that the assump-

tion on the parametric family is only required for the information geometric analysis in

Section 4.2. The algorithmic framework of the proposed method is independent of the

parametric model.

Since ptr(y|x) = pte(y|x) = p(y|x) from the assumption of Definition 2.1, what

we are interested in is the model manifold (M, g(θ)) to which the marginal distribution

p(x; θ) belongs:

M =
{

p(x; θ) ; θ ∈ Θ
}

. (6)

Here, ptr(x; θ), pte(x; θ) ∈ M. We note that elements in M is specified by its param-

eter θ and we identify the parameter vector θ to the density function p(x; θ) and write

p(x; θ) ≃ θ if necessary. In this paper, we assume that M is an exponential family and

the probability density function can be written as

p(x; θ) = exp
{

θiTi(x) + k(x)− ψ(θ)
}

, (7)
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where x is a random variable, θ = (θ1, . . . , θp) is an p-dimensional vector parameter

to specify a distribution, T (x) = (T1(x), . . . , Tp(x)) are sufficient statistics of x, k(x)

is a function of x and ψ corresponds to the normalization factor. In Eq. (7), and here-

after the Einstein summation convention will be assumed, so that summation will be

automatically taken over indices repeated twice in the term, e.g., aibi =
∑

i a
ibi.

In the exponential family, the natural parameter θ forms the affine coordinate sys-

tem, i.e.,

θ(t) = (1− t)θ1 + tθ2 (∀θ1, θ2 ∈ Θ, ∀t ∈ [0, 1]) (8)

is a geodesic on M. As a dual coordinate of θ, the expectation parameter η is defined

by the Legendre transformation

η =∇ψ(θ), θ = ∇ϕ(η),

where ϕ(η) =max
θ′

{

θ′ · η − ψ(θ′)
}

.

Existing weights for covariate shift adaptation are geometrically characterized, then

a generalized weight function is designed based on this geometric formulation.

4 Geometrical Generalization of Covariate Shift Adap-

tation

4.1 Information Geometrically Generalized IWERM

In order to derive a generalized covariate shift adaptation method, we prepare the fol-

lowing function.

Definition 4.1 (f -interpolation (Kimura and Hino, 2021)) For any a, b,∈ R, some

λ ∈ [0, 1] and some α ∈ R, we define f -interpolation as

m
(λ,α)
f (a, b) = f−1

α

{

(1− λ)fα(a) + λfα(b)
}

, (9)

where

fα(a) =











a
1−α
2 (α 6= 1)

log a (α = 1)

(10)

is the function that defines the f -mean (Hardy et al., 1952).
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We can easily see that this family includes various known weighted means including the

e-mixture and m-mixture for α = ±1 in the literature of information geometry (Amari,

2016):

m
(λ,1)
f (a, b) = exp{(1− λ) log a+ λ log b},

m
(λ,−1)
f (a, b) =(1− λ)a + λb,

m
(λ,0)
f (a, b) =

(

(1− λ)
√
a+ λ

√
b
)2

,

m
(λ,3)
f (a, b) =

1

(1− λ) 1
a
+ λ1

b

.

Also, for any u, v ∈ R
d (d > 0), we write

m = m
(λ,α)
f (u, v),where mi = m

(λ,α)
f (ui, vi).

Using this function, we generalize the existing methods of covariate shift adaptation.

Lemma 4.1 (f -representation of AIWERM) The marginal positive measures gener-

ated by the weighting of AIWERM can be expressed by using the f -interpolation func-

tion as

p
(λ)
A (x) = m

(λ,1)
f (ptr(x), pte(x)). (11)

Proof 1 From Eq .(4), we consider its expectation as

ĥ =min
h∈H

∫

X×Y

(pte(x)

ptr(x)

)λ

ℓ(h(x), y)ptr(x, y)dxdy

=min
h∈H

∫

X×Y

ℓ(h(x), y)p
(λ)
A (x)ptr(y|x)dxdy.

Here,

p
(λ)
A (x) =

(pte(x)

ptr(x)

)λ

ptr(x)

log p
(λ)
A (x) = α(log pte(x)− log ptr(x)) + log ptr(x)

=(1− λ) log ptr(x) + λ log pte(x)

p
(λ)
A (x) = exp{(1− λ) log ptr(x) + λ log pte(x)}

=m
(λ,1)
f (ptr(x), pte(x)).
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Lemma 4.2 (f -representation of RIWERM) The marginal positive measures gener-

ated by the weighting of RIWERM can be expressed by using the f -interpolation func-

tion as

p
(λ)
R (x) = m

(λ,3)
f (ptr(x), pte(x)). (12)

Proof 2 From Eq. (5),

p
(λ)
R (x) =

pte(x)ptr(x)

λptr(x) + (1− λ)pte(x)

=
1

λ 1
pte(x)

+ (1− λ) 1
ptr(x)

= m
(λ,3)
f (ptr(x), pte(x)).

From the above discussion, the following generalized method of covariate shift

adaptation is derived using the f -representation.

Theorem 4.1 (Geometrically generalized IWERM) For λ ∈ [0, 1] and α ∈ R, AIW-

ERM and RIWERM is generalized as

ĥ = min
h∈H

∫

X×Y

w(λ,α)(x)ℓ(h(x), y)ptr(x, y)dxdy, (13)

where

w(λ,α)(x) =
m

(λ,α)
f (ptr(x), pte(x))

ptr(x)
. (14)

See the Appendix 6 for the proof. From Definition 4.1, we can confirm that

m
(0,α)
f (ptr(x), pte(x)) = ptr(x), and

m
(1,α)
f (ptr(x), pte(x)) = pte(x),

for all α ∈ R, and this means that we can obtain the set of all curves that connect ptr(x)

and pte(x).

We note that Zhang et al. (2021) proposed a method based on basis expansion to

estimate a flexible importance weight. It is similar to our proposal in the sense that

improves the degree of freedom for designing the importance weight. However, our

method considers the parametric form of weight, which enables us to achieve informa-

tion geometric insight.
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In many studies of covariate shift problems using the density ratio weighting in-

cluding Yamada et al. (2011), the direct estimation of the density ratio is often em-

ployed (Sugiyama et al., 2012). Our proposed weight function in (14) is also repre-

sented as density ratio:

w(λ,α)(x) =

[

(1− λ)ptr(x)
1−α
2 + λpte(x)

1−α
2

]
2

1−α

ptr(x)

=

[

1− λ+ λ

(

pte(x)

ptr(x)

)
1−α
2

]
2

1−α

, (α 6= 1).

It is then also possible to apply the direct estimation of the density ratio using, for

example kernel expansion. In our implementation, we simply used the given ptr(x) and

pte(x) separately because they are explicitly known by the construction of the training

and the test datasets as explained in Section 5.1. In the practical application of the

proposed method in which the generative processes of the covariates of training and

test data are unknown, direct density estimation would be a promising approach.

4.2 Geometric Bias

AIWERM and RIWERM connects two distributions ptr and pte in different ways. Sta-

tistical bias and variance of IWERM, AIWERM, and RIWERM are discussed in the

respective papers. In this subsection, we study the geometric bias of these methods to

have a deeper understanding of these methods from the geometric viewpoint.

The proposed generalization of IWERM is independent from a specific parametriza-

tion of density functions. In this subsection, for theoretical treatment, the exponential

model manifold which contains ptr(x; θ) and pte(x; θ) are considered, hence geodesics

can be described by a linear combination of parameters as explained in Appendix 6.

With this assumption, specifying λ and α is equivalent to selecting a point on the

geodesic connecting ptr and pte.

Definition 4.2 (α-divergence (Amari, 1985)) Let α be a real parameter. The α-divergence

between two probability vectors p and q is defined as

Dα[p : q] =
4

1− α2

(

1−
∑

i

p
1−α
2

i q
1+α
2

i

)

. (15)
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Definition 4.3 (α-representation (Amari, 2009)) For some positive measure m
1−α
2

i , the

coordinate system θ = (θi) derived from the α-divergence is θi = m
1−α
2

i = fα(mi) and

denote by θi the α-representation of a positive measure m
1−α
2

i .

Definition 4.4 (α-geodesic (Amari, 2016)) The α-geodesic connecting two probabil-

ity vectors p(x) and q(x) is defined as

ri(λ) =c(t)f
−1
α

{

(1− λ)fα(p(xi)) + λfα(q(xi))
}

,

c(λ) =

(

p
∑

i=1

ri(λ)

)−1

. (16)

Let ψα(θ) =
1−α
2

∑

i=1mi, the dual coordinate system η is given by η = ∇ψα(θ) as

ηi = (θi)
1+α
1−α = f−α(mi), (17)

which is the −α-representation of mi.

From Definitions 4.1 and 4.4, we see that f -interpoloation is the unnormalized ver-

sion of the α-geodesic. We write m̃
(λ,α)
f for a suitably normalized f -interpolation. The

important properties of α-geodesics are

• the α-geodesic is a geodesic in the α-coordinate system derived fromα-divergence,

• the −α-geodesic is linear in the −α-representation.

Let γc be the geodesic connecting two distributions parameterized by θtr and θte.

Now, we define two types of geometric biases to characterize the dispersion of θtr from

θte with respect to the direction along the α-geodesic and to the direction orthogonal to

the α-geodesic.

Definition 4.5 (Geodesic bias and curvature bias) If we write the unit vector along

the α-geodesic direction as e1 and any unit vector in the orthogonal direction to e1

as e2, the bias relative to the test distribution due to weighting can be decomposed as

follows:

• geodesic bias: bg = (1− λ)e1,

• curvature bias: bc = (1− λ)trg(Ric)e2,

10



Algorithm 1 Bayesian optimization for IGIWERM

Input: acquisition function a(λ, α|D), target function L(h;λ, α), initial points Dinit

compose of a set of parameters Ξ = {(λ, α)} and corresponding values of the target

function

Output: (λ∗, α∗) that minimizes minh∈H L(h;λ, α)

Initialize D = Dinit

while Not converge do

λ̂, α̂ = arg min
λ,α

a(λ, α|D), Ξ = Ξ ∪ {(λ̂, α̂)}

ê = L(h; λ̂, α̂), D = D ∪ {(λ̂, α̂, ê)}
end while

(λ∗, α∗) = arg min
(λ,α)∈Ξ

{minh∈H L(h;λ, α)}

where trg is the trace operation on the metric tensor g and Ric is the Ricci curvature of

the curve connecting the two points generated by the weighting:

Ric = Rikjdθ
i ⊗ dθj. (18)

Here, Rikj is the Riemannian curvature tensor.

For more detail on the geometric concepts, see textbooks on Riemannian manifolds (Jost,

2017). This definition of geometric biases is consistent with the fact that IWERM,

which corresponds to λ = 1, leads to an unbiased estimator of the risk in the test

dataset.

Proposition 4.2 For AIWERM, the geometric bias bA(λ) is computed as

bA(λ) = (1− λ)e1. (19)

Proposition 4.3 For RIWERM, the geometric bias bR(λ) is computed as

bR(λ) = (1− λ)
{

e1 + trg

(

− 4Λikjdθ
i ⊗ dθj

)

e2

}

. (20)

Here, Λ is a tensor that depends on the connection.
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Figure 1: Geometry of covariate shift adaptation methods. In the θ-coordinate system,

the dashed line corresponds to AIWERM and the dotted line corresponds to RIWERM.

We write unit vector along the α-geodesic direction as e1 and any unit vector in the

orthogonal direction to e1 as e2. Here, λ = 0 and λ = 1 correspond to θtr (ERM) and

θte (IWERM), respectively, and α = 1 and α = 3 correspond to the AIWERM and

RIWERM curves in the figure.
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Figure 2: Visualization of grid search for α and λ on LIBSVM dataset.

These propositions are proved by straightforward calculation as detailed in Appendix 6

Figure 1 shows the curves on the manifolds created by AIWERM and RIWERM.

Both of them satisfy

• for λ = 0, it is equivalent to unweighted ERM,

• for λ = 1, it is equivalent to IWERM.

Note that the curvature bias bc vanishes for all λ ∈ [0, 1] in AIWERM, while RIWERM

does not guarantee the vanishing of the curvature bias for λ ∈ (0, 1).

Intuitively, the geometric bias reveals in which direction the two parameters are

misaligned. IWERM, which corresponds to AIWERM and RIWERM with λ = 1, is

optimal when the sample size is large enough, but in real problems with limited sample

size, it is often desirable to adopt a point between θtr and θte. AIWERM and RIWERM

consider distinct curves and specify a point on them by the parameter λ. Our geometric

analysis revealed that these curves are included in the set of curves represented by dual

f -representation of the parameter coordinate system, and the geometric biases of these

particular cases (AIWERM and RIWERM) are identified. The results presented in this

subsection do not claim superiority of a particular method and are of importance in their

13



Figure 3: Left: generated data from y = x2 + ε. We see that ptr(x) and pte(x) are

different. Right: results of fitting by ERM, IWERM, and IGIWERM.

Table 1: Mean squared errors of covariate shift adaptation methods in regression prob-

lems over 10 trials. Here, IGIWERM (bopt) is the Bayesian optimization based, and

IGIWERM (IC) is the information criterion based strategy.

Weighting strategy MSE

ERM 160.19(±4.25)

IWERM 33.76(±3.82)

AIWERM 31.14(±2.97)

RIWERM 30.03(±2.74)

IGIWERM (bopt) 28.89(±2.42)

IGIWERM (IC) 28.38(±2.12)

own right as a geometric analysis of the covariate shift method.

4.3 Optimization of the generalized IWERM

The existing covariate shift adaptation methods described above can be regarded as

having determined a good “weighting direction” in some sense in advance and then the

“weighting magnitude” is adjusted according to the parameter λ. This approach is very

convenient in terms of computational efficiency since the only optimized parameter is

λ ∈ [0, 1].

However, geometrically, these methods only consider certain curves on the manifold

as candidate solutions, as can be seen from Figure 1, which means that the solution

14



Figure 4: Bayesian optimization for IGIWERM. The coordinates of the purple circles

are the parameters explored by Bayesian optimization, and the size of the purple circles

indicates the goodness of the parameters (inverse of the MSE).

space is very small.

Our information geometrical IWERM (IGIWERM) can handle all curves γα(λ) in

Π(ptr,pte) that connect ptr(x) and pte(x), by adding only one parameter. For example,

by setting α ∈ [1, 3], shaded area in Figure 1 can be used as the solution space. The

problem of how to determine λ and α remains.

4.1 Information criterion

When the predictive model is of a simple parametric form, information criterion derived

in (Shimodaira, 2000) is available (see appendix of (Shimodaira, 2000) for the proof.):

Theorem 4.4 (Information criterion for IGIWERM) Let the information criterion for

IWERM be

ICGW := −2L1(θ̂) + 2tr(JwH
−1
w ), (21)

15



Table 2: Mean misclassification rates averaged over 10 trails on LIBSVM benchmark

datasets. The numbers in the brackets are the standard deviations. For the methods with

(optimal), the optimal parameters for the test data are obtained by linear search.
Dataset #features #data unweighted IWERM AIWERM (optimal) RIWERM (optimal) ours

australian 14 690 33.46(±23.65) 22.13(±3.37) 21.98(±3.36) 21.73(±3.82) 18.85(±3.99)

breast-cancer 10 683 38.28(±10.98) 41.23(±15.39) 36.41(±9.68) 36.13(±10.81) 31.65(±8.49)

heart 13 270 45.17(±6.98) 39.94(±8.55) 39.76(±8.49) 39.76(±8.92) 35.37(±6.84)

diabetes 8 768 33.19(±5.69) 37.22(±6.63) 33.11(±6.45) 33.38(±5.74) 32.83(±5.62)

madelon 500 2, 000 47.78(±1.53) 47.28(±2.20) 47.10(±2.13) 47.12(±1.65) 46.56(±2.12)

where L1(θ) =
∑ntr

i=1 dr(x
tr
i ) log p(y

tr
i |xtr

i , θ), dr(x) =
pte(x)
ptr(x)

and

Jw = −Eptr

[

dr(x)
∂ log p(y|x, θ)

∂θ

∣

∣

∣

∣

∣

θ∗

w

×
∂
(

mλ,α
f

(ptr(x),pte(x))

ptr(x)
log p(y|x, θ)

)

∂θ′

∣

∣

∣

∣

∣

θ∗

w

]

Hw = Eptr

[

∂2
(

mλ,α

f
(ptr(x),pte(x))

ptr(x)
log p(y|x, θ)

)

∂θ∂θ′

]

.

Here, θ∗
w is the minimizer of the weighted empirical risk. The matrices Jw and Hw may

be replaced by their consistent estimates. Then, ICGW/2n is an unbiased estimator of

the expected loss up to O(n−1) term:

Eptr

[

ICGW/2n
]

= Eptr

[

ℓ1(θ̂w)
]

+ o(n−1). (22)

4.2 Bayesian optimization

This information criterion does not work for complicated nonparametric models. As a

method that can be applied in general situations, we consider using Bayesian optimiza-

tion Snoek et al. (2012); Frazier (2018) to find the optimal weighting by IGIWERM.

Bayesian optimization assumes that the target function is drawn from a prior distribu-

tion over functions, typically a Gaussian process, updating a posterior as we observe the

target function value in new places. We use the validation loss as the target function:

L(h;λ, α) =
1

nval

nval
∑

i=1

pte(x
val
i )

ptr(xval
i )

ℓ(hλ,α(x
val
i ), yvali ). (23)

where nval is the validation sample size and hλ,α is given by IWERM with λ and α.

This validation procedure is based on the importance weighted cross validation used
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in (Sugiyama et al., 2007). In Bayesian optimization, an acquisition function a(λ, α|D)

is used for measuring goodness of candidate point (λ, α) based on current dataset D.

As the acquisition function, we adopt the expected improvement Mockus et al. (1978);

Jones et al. (1998). In this strategy, we choose the next query point which has the

highest expected improvement over the current minimum target value. See Appendix 6

for more detail. The overall picture is summarized in Algorithm 1.

4.4 Learning guarantee

Generalization bounds of weighted maximum likelihood estimator for the target domain

are derived in Cortes et al. (2010), and our weight function (14) is compatible with their

bound. The weight defined by Eq. (14) is bounded when α 6= 1 and achieves a standard

rate O(n
−1/2
tr ). When α = 1, the weight is unbounded and its rate is O(n

−3/8
tr ). Details

are shown in Appendix 6.

5 Numerical Experiments

In this section, we present experimental results of domain adaptation problems under

covariate shift using both synthetic and real data1. Since the main purpose of the exper-

iments is to see the effect of our generalization of the importance weighted ERM and

comparison to the proposed and conventional IWERM methods, in all experiments, we

assume that ptr and pte are known as detailed in Section 5.1.

5.1 Induction of Covariate Shift

Since each dataset is composed of data points generated from independent and identical

distributions, we need to artificially induce covariate shifts. We induce the covariate

shift as follows Cortes et al. (2008):

1. As a preprocessing step, we perform Z-score standardization on all input data.

1Source code to reproduce the results is available from https://github.com/nocotan/IGIWERM
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2. Then, an example (x, y) is assigned to the training dataset with probability exp(v)/(1+

exp(v)) and to the test dataset with probability 1/(1 + exp(v)), where v =

16wTx/σ with σ being the standard deviation of wTx determined by using the

given dataset, and w ∈ R
d is a given projection vector. Here, the projection

vector w is given randomly for each experimental process.

By this construction of the training and test datasets, ptr and pte are explicitly deter-

mined as

ptr(x) =
exp(16wTx/σ)

1 + exp(16wTx/σ)
,

pte(x) =
1

1 + exp(16wTx/σ)
,

when the projection vector w ∈ R
d is given. Although density ratio estimation could

be employed in our experiments, we assume that the distribution is known in order to

compare the performance of the proposed method without relying on the accuracy of

the density or density ratio estimation.

5.2 Illustrative Example in Regression

Here, we predict the response y ∈ R using ordinary linear regression: y = β0 +

β1x + ε, ε ∼ N (0, σ2), where N (a, b) denotes the normal distribution with mean

a and variance b. In the numerical example below, we assume the true p(y|x) given

as y = x2 + ε, ε ∼ N (0, 5). The ptr(x) and pte(x) of the covariate x are xtr ∼
N (0, 5), xte ∼ N (−5, 0.5). The training sample size is ntr = 1000 and the test sample

size is nte = 300. The left-hand side of Fig. 3 shows the data to be generated. We can

see that ptr(x) 6= pte(x).

The right panel of Fig. 3 shows the results of fitting by unweighted ERM, IWERM,

and IGIWERM. Here, the parameters of IGIWERM are explored by using Algorithm 1,

as shown in Fig. 4. The coordinates of the purple circles are the parameters explored by

Bayesian optimization, and the radius of the purple circles is proportional to the good-

ness r(β) of the parameters (inverse of the MSE): r(β) =
(

1
n

∑n
i=1(yi − h(xi,β))

2
)−1

.

By choosing the size r(β) of the plot for each point in this manner, the better-evaluated

parameters can be plotted in larger circles. From this figure, it can be seen that our
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generalized weighting is not restricted to lying just on two curves corresponding to

AIWERM and RIWERM.

For the normal linear regression, the information criterion (21) is calculated from

ICGW (λ, α) =
1

2

ntr
∑

i=1

dr(xtr
i )

{

ǫ̂21
σ̂2 + log(2πσ̂2)

}

+

ntr
∑

i=1

dr(xtr
i )

{

ǫ̂2i
σ̂2
ĥi +

mλ,α
f (ptr(x

tr), pte(x
tr))

2ĉwptr(xtr)

( ǫ̂2i
σ̂2

− 1
)2
}

.

Here, ĉw =
∑n

i=1

mλ,α

f
(ptr(xtr

i ),pte(xtr
i ))

ptr(xtr
i )

, σ̂2 =
∑n

i=1

mλ,α

f
(ptr(xtr

i ),pte(xtr
i ))

ptr(xtr
i )

ǫ̂2i /ĉw and ǫ̂i is the

residual. Table 1 shows that the IGIWERM outperforms existing methods.

5.3 Experiments on binary classification problem

We show the results of our experiments on the LIBSVM dataset2.

In the experiments, we randomly generate a mapping vector w for each trial and

perform 10 trials for each dataset. We use SVM with Radial Basis Function (RBF)

kernel as the base classifier. In this experiment, the parameters λ of AIWERM and

RIWERM are chosen optimally by linear search using the test data. The experimental

results on benchmark datasets are summarized in Table 2. The table shows that the

proposed IGIWERM outperforms the conventional methods even when the parameters

of those methods are optimized by using the test dataset. More experimental results on

other datasets with various models are reported in Appendix 6.

5.4 Computational Cost

Here, we investigate the computational cost of our IGIWERM. The experimental setup

is the same as in Section 5.2. The mean and standard deviation of the computation time

obtained in the 10 trials are shown in Table 3. From this table, we can see that our

IGIWERM takes constant times longer to compute than the vanilla ERM.

2https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Table 3: Computational cost of ERM and IGIWERM.

Method Computation time [sec]

ERM 1.130(±0.238)

IGIWERM 9.887(±0.845)

6 Conclusion and Discussion

We generalized existing methods of covariate shift adaptation in the geometrical frame-

work. By our information geometrical formulation, geometric biases of conventional

methods are elucidated. Unlike the dominant approaches restricted to a specific curve

on a manifold in the literature, our generalization has a much larger solution space with

only two parameters. Our experiments highlighted the advantage of our method over

previous approaches, suggesting that our generalization can achieve better performance

than the existing methods. A drawback of our proposed method is its relatively high

computational cost for optimizing parameters α and λ. We used Bayesian optimization

for efficient parameter search, and further sophisticated approaches would be explored

in our future work.

As mentioned in the introduction, the importance weighting is used with deep neu-

ral network models (Fang et al., 2020), in which the importance weight in the fea-

ture representation obtained by DNN is considered. It is also worth mentioning that

Sakai and Shimizu (2019) used RIWERM in the study of covariate shift on the learning

from positive and unlabeled data. Our generalization will be applicable to their methods

to improve the performance under a small sample regime. In particular, in a standard

approach for optimizing the implicit weight function w(x), it is common to add a reg-

ularization term (w(x)− ptr(x)/pte(x))
2 to the optimization objective. The use of the

derived geodesic and curvature biases to regularize the optimal weight function will be

investigated in connection with the modern weight learning approach using deep neural

network models. Finally, the relation between geometric bias and statistical bias should

be explored.
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Appendix A: Statistical Manifolds and Straight Line in

Exponential Family

Let M be a d-dimensional differentiable manifold with a Riemannian metric g. For

each x ∈M , TxM is its tangent space.

Definition 6.1 Let gx an inner product

gx : Tx(M)× Tx(M) → R ∀x ∈M. (24)

When, for any X, Y ∈ M , the map x → gx(Xx, Yx) is differentiable with respect to

x ∈M , gx is denoted as the Riemannian metric.

The correspondence X : M ∋ x 7→ Xx ∈ TxM is called a vector field on M . For

x ∈ M , let coordinate expression of Xx be Xx = (v1(x), . . . , vd(x)). Then, vi(x)

defines a real-valued function vi on M and X is expressed as X = (v1, . . . , vd). When

a function on M is k times continuously differentiable, it is called the class Ck, and the

set of all functions of class Ck on M is denoted as Ck(M). A vector field X is called

class Ck when all of vi, i = 1, . . . , d are class Ck. The set of all class C∞ vector fields

is denoted as X(M). A tangent space Tx(M) is a vector space spanned by differentials

∂
∂xi , namely,

Tx(M) =

{

ai
(

∂

∂xi

)

x

∣

∣

∣

∣

∀ ai ∈ R

}

. (25)

Following the notational convention of differential geometry, we use ∂i =
∂
∂xi and the

Einstein summation convention. The vector field on a manifold M is then written as

X(M) =
{

vi∂i
∣

∣ vi ∈ C∞(M)
}

. (26)
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For X ∈ X(M) and f ∈ C∞(M), fX ∈ X(M) is defined by (fX)x = f(x)Xx, (x ∈
M). Differential of a function f with respect to a vector field X is denoted as Xf ∈
C∞(M) and defined by (Xf)(x) = Xx(f), (x ∈ M). When two vector fields are

expressed as X = vi∂i and Y = ui∂i, we have

X(Y f)− Y (Xf) = (vj∂ju
i − uj∂jv

i)∂if. (27)

The commutator product of X and Y is defined as [X, Y ] ∈ X(M), [X, Y ]f = (XY −
Y X)f , and

[X, Y ] = (vj∂ju
i − uj∂jv

i)∂i. (28)

Definition 6.2 Consider a map ∇ : X(M) × X(D) → X(M) which assigns a pair

of vectors (X, Y ) ∈ X(M) × X(M) to a vector ∇YX ∈ X(M). ∇YX is called a

covariant derivative of X with respect to Y , and ∇ is called an affine connection when

the following conditions hold for any X, Y, Z ∈ X(M) and f ∈ C∞(M):

• ∇Y+ZX = ∇YX +∇ZX

• ∇fXX = f∇YX

• ∇Z(X + Y ) = ∇ZX +∇ZY

• ∇Y (fX) = (Y f)X + f∇YX

Definition 6.3 Let ∇ be an affine connection on M , and define a map

T : X(M)× X(M) →X(M)

(X, Y ) 7→T (X, Y ) = ∇XY −∇YX − [X, Y ]. (29)

The map T is called the torsion tensor field of ∇. When T = 0 for all X, Y ∈ X(M),

the connection ∇ is called torsion-free.

For an affine connection, the Christoffel symbol Γk
ij ∈ C∞(M) is defined by

∇∂i∂j = Γk
ij∂k. (30)

With this formula, the connection and the Christoffel symbol are often identified. The

affine connection ∇ is torsion-free when and only when Γk
ij = Γk

ji.

22



Suppose a manifold M is equipped with a Riemannian metric g. When

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) (31)

holds for all X, Y, Z ∈ X(M), the connection ∇ is called a metric connection. In

general, an affine connection is not a metric connection, but there uniquely exists an

affine connection ∇∗ which satisfies

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
XZ). (32)

The connection ∇∗ is called the dual connection of ∇.

Given a Riemannian metric g, another reperesentation of the Christoffel symbol is

given by

Γij,k = g (∇∂i∂j , ∂k) . (33)

Definition 6.4 When an affine connection ∇ is torsion-free and a metric connection

with respect to the Riemannian metric g, it is called a Levi-Civita connection with re-

spect to the metric g.

In general, when a (0, 3)-tensor T̄ is given in addition to an affine connection ∇ and

a Riemannian metric g, an alternative connection ∇̃ is defined as

g(∇̃YX,Z) = g(∇YX,Z) + T̄ (X, Y, Z). (34)

Let Ω be a set for which probability measure is defined, and define a d-dimensional

statistical model

S = {p(·; ξ)|ξ ∈ Ξ}, (35)

where the parameter space Ξ is isomorphic to R
d. As a Riemannian metric associated

with the statistical model S, we consider the Fisher metric defined as

gij(ξ) = Eξ[(∂ilξ)(∂jlξ)], (36)

where Eξ[·] is expectation with respect to a probability density p(·; ξ) and lξ(x) =

log p(x; ξ) (x ∈ Ω) is the log-likelihood. Now, consider a (0, 3)-tensor T̄ on S defined

by

(T̄ )ijk(ξ) =
∑

x∈Ω

(∂ilξ(x))(∂jlξ(x))(∂klξ(x))p(x; ξ), (37)
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and based on the Levi-Civita connection ∇ associated with the Fisher metric g on S,

we define a affine connection ∇(α) by

g(∇(α)
Y X,Z) = g(∇YX,Z)−

α

2
T̄ (X, Y, Z), (X, Y, Z ∈ X(S)). (38)

This connection is called the α-connection. The Christoffel symbols associated with

connections ∇ and ∇(α) are

Γij,k =Eξ

[{

∂i∂jlξ +
1

2
(∂ilξ)(∂jlξ)

}

(∂klξ)

]

,

Γ
(α)
ij,k =Eξ

[{

∂i∂jlξ +
1− α

2
(∂ilξ)(∂jlξ)

}

(∂klξ)

]

.

From Γ
(α)
ij,k = Γ

(α)
ji,k, the α-connection is torsion-free. Note that the dual connection of

∇(α) is ∇(−α), and it also holds that

∇(α) =
1 + α

2
∇∗ +

1− α

2
∇. (39)

Definition 6.5 For an affine connection ∇ of a manifold M , a map

R : X(M)× X(M)× X(M) →X(D)

(X, Y, Z) 7→R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is called the curvature tensor field of the connection ∇.

The curvature tensor is expressed with coordinate and the Christoffel symbol as

R(∂i, ∂j)∂k = (∂iΓ
l
jk − ∂jΓ

l
ik)∂l + (Γl

jkΓ
m
il − Γl

ikΓ
m
jl )∂m. (40)

Definition 6.6 When both the torsion and curvature are zero, the connection ∇ is said

to be flat.

Let γ be a map from a close interval I to a manifoldM . The map γ is parameterized

by a real-valued parameter t ∈ I as γ(t) and called a curve on M . When the value of γ

at two endpoints of I is fixed, the shortest path between these two points is defined by

using the variational principle. The pararell shift of dγ
dt

along with γ is expressed as

∇γ
d
dt

dγ

dt
=

(

d2γk
dt2

+ (Γk
ij ◦ γ)

dγi
dt

dγj
dt

)

∂k. (41)
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Definition 6.7 An equation

∇γ
d
dt

dγ

dt
= 0 (42)

is called the geodesic equation, and the curve satisfying this equation is called a geodesic.

Note that if Γij,k = 0 ∀i, j, k, the geodesic equation is of the form d2γk
dt2

= 0, hence

the geodesic is a straight line.

Definition 6.8 Let S be a d-dimensional statistical model. When each element of the

model in S is represented by

p(x; θ) = exp
(

k(x) + θiFi(x)− ψ(θ)
)

, (43)

by using functions k, F1, . . . , Fd : Ω → R and ψ : Θ → R, the statistical model S is

called an exponential family, and θ is called the natural parameter of the model.

Note that in a general statistical model S, ξ, and Ξ are often used as its parameter and the

parameter space, while for an exponential family, θ and Θ are often used to represent its

parameter and the parameter space. Consider an exponential family with α connection

∇(α). The Christoffel symbols are

Γ
(α)
ij,k = Eθ

[{

∂i∂jlθ +
1− α

2
(∂ilθ)(∂jlθ)

}

(∂klθ)

]

, (44)

and

∂ilθ = Fi(x)− (∂iψ)(θ), (∂i∂jψ)(θ). (45)

So, when α = 1, we have

Γ
(1)
ij,k = Eθ[(−(∂i∂jψ)(θ))(∂klθ)] = 0, (46)

namely, the exponential family is flat with the Fisher metric and α = 1 connection.

This implies that in exponential family, for the α = 1-connection ∇(1) associated with

the Fisher metric, the geodesic between two points correspond to natural parameters θ1

and θ2 is of the form tθ1 + (1− t)θ2.
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Appendix B: Proofs of main results

Proof 3 (Derivation of the information geometrically generalized IWERM) Let hA

be a hypothesis generated by AIWERM. From Lemma 4.1, we can write

ĥA = min
h∈H

∫

X×Y

ℓ(h(x), y)p
(λ)
A (x)ptr(y|x)dxdy

= min
h∈H

∫

X×Y

ℓ(h(x), y)m
(λ,1)
f (ptr(x), pte(x))ptr(y|x)dxdy

= min
h∈H

∫

X×Y

ℓ(h(x), y)
m

(λ,1)
f (ptr(x), pte(x))

ptr(x)
ptr(x, y)dxdy. (47)

From Lemma 4.2, we also have

ĥR = min
h∈H

∫

X×Y

ℓ(h(x), y)
m

(λ,3)
f (ptr(x), pte(x))

ptr(x)
ptr(x, y)dxdy. (48)

Then, we consider

ĥ = min
h∈H

∫

X×Y

w(λ,α)(x)ℓ(h(x), y)ptr(x, y)dxdy, (49)

where

w(λ,α)(x) =
m

(λ,α)
f (ptr(x), pte(x))

ptr(x)
. (50)

We can see that AIWERM is a special case when α = 1 and RIWERM is a special case

when α = 3.

Proof 4 (Proofs of Propositions 4.2 and 4.3) Let

θ(λ,α) = m
(λ,α)
f (θtr, θte), (51)

and let R(α) be the Riemann curvature tensor defined in Definition 6.5 with respect to

the α-connection ∇(α).

We define the relative curvature tensor as

R(α,β)(X, Y, Z) =
[

∇(α)
X ,∇(β)

Y

]

Z −∇(α)
[X,Y ]Z (52)

and the difference tensor as

K(X, Y ) = ∇∗
XY −∇XY. (53)

26



For any α ∈ R and β ∈ R, we have

∇(α)
X ∇(β)

Y Z =
(1 + α

2
∇∗

X +
1− α

2
∇X

)(1 + β

2
∇∗

Y +
1− β

2
∇Y

)

Z

=
(1 + α)(1 + β)

4
∇∗

X∇∗
Y Z +

(1 + α)(1− β)

4
∇∗

X∇Y Z

+
(1− α)(1 + β)

4
∇X∇∗

Y Z +
(1− α)(1− β)

4
∇X∇YZ. (54)

∇(β)
Y ∇(α)

X =
(1 + β

2
∇∗

Y +
1− β

2
∇Y

)(1 + α

2
∇∗

X +
1− α

2
∇X

)

Z

=
(1 + α)(1 + β)

4
∇∗

Y∇∗
XZ +

(1− α)(1 + β)

4
∇∗

Y∇XZ

+
(1 + α)(1− β)

4
∇Y∇∗

XZ +
(1− α)(1− β)

4
∇Y∇XZ. (55)

∇(α)
[X,Y ]Z =

1 + α

2
∇∗

[X,Y ]Z +
1− α

2
∇[X,Y ]Z. (56)

Then

R(α,β)(X, Y, Z) = ∇(α)
X ∇(β)

Y Z −∇(β)
X ∇(α)

Y Z −∇(α)
[X,Y ]Z

=
(1 + α)(1 + β)

4
(∇∗

X∇∗
Y −∇∗

Y∇∗
X)Z

+
(1 + α)(1− β)

4
(∇∗

X∇Y −∇Y∇∗
X)Z

+
(1− α)(1 + β)

4
(∇X∇∗

Y −∇∗
Y∇X)Z

+
(1− α)(1− β)

4
(∇X∇Y −∇Y∇X)Z

− 1 + α

2
∇∗

[X,Y ]Z − 1− α

2
∇[X,Y ]Z

=
(1 + α)(1 + β)

4

{

R∗(X, Y, Z) +∇∗
[X,Y ]Z

}

+
(1 + α)(1− β)

4

{

R(1,−1)(X, Y, Z) +∇∗
[X,Y ]Z

}

+
(1− α)(1 + β)

4

{

R(−1,1)(X, Y, Z) +∇[X,Y ]Z
}

+
(1− α)(1− β)

4

{

R(−1,−1)(X, Y, Z) +∇∗
[X,Y ]Z

}

− 1 + α

2
∇∗

[X,Y ]Z − 1− α

2
∇[X,Y ]Z (57)

4R(α,β) = (1 + α)(1 + β)R∗ + (1− α)(1− β)R

+ (1 + α)(1− β)R(1,−1) + (1− α)(1 + β)R(−1,1). (58)
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We also have

K(α,β)(X, Y ) = ∇(β)
X Y −∇(α)

X Y

=
{1 + β

2
∇∗

XY +
1− β

2
∇XY

}

−
{1 + α

2
∇∗

XY +
1− α

2
∇XY

}

=
β − α

2
∇∗

XY − β − α

2
∇XY =

β − α

2
K(X, Y ) (59)

K(α,β)
(

X,K(α,β)(Y, Z)
)

=
β − α

2
K
(

X,K(α,β)(Y, Z)
)

=
(β − α)2

4
K
(

X,K(Y, Z)
)

.

(60)

Combining them, the following relations hold:

K(β,α)
(

X,K(β,α)(Y, Z)
)

= K(β,α)
(

X,∇(α)
Y Z −∇(β)

Y Z
)

(61)

= K(β,α)
(

X,∇(α)
Y Z

)

−K(β,α)
(

X,∇(β)
Y Z

)

= ∇(α)
X ∇(α)

Y Z −∇(β)
X ∇(α)

Y Z −∇(α)
X ∇(β)

Y Z +∇(β)
X ∇(β)

Y Z

(62)

(α− β)2

4
K
(

X,K(Y, Z)
)

= ∇(α)
X ∇(α)

Y Z −∇(β)
X ∇(α)

Y Z −∇(α)
X ∇(β)

Y Z +∇(β)
X ∇(β)

Y Z.

(63)

Swapping X and Y , we have

(α− β)2

4

{

K
(

X,K(Y, Z)
)

−K
(

Y,K(X,Z)
)

}

= R(α)(X, Y, Z) +R(β)(X, Y, Z)−
{[

∇(α)
X ,∇(β)

Y

]

Z −∇(α)
[X,Y ]Z

}

−
{[

∇(β)
X ,∇(α)

Y

]

Z −∇(β)
[X,Y ]Z

}

= R(α)(X, Y, Z) +R(β)(X, Y, Z)− R(α,β)(X, Y, Z)− R(β,α)(X, Y, Z). (64)

Making α = β, we have

4R(α) = (1 + α)2R∗ + (1− α)2R + (1− α2)R(1,−1) + (1− α2)R(−1,1)

= (1 + α2)R∗ + (1− α)2R + (1− α2)
(

R(1,−1) +R(−1,1)
)

. (65)

Making α = 1 and β = −1, we also have

R(1,−1)(X, Y, Z) +R(−1,1)(X, Y, Z) = R∗(X, Y, Z) +R(X, Y, Z)

−
{

K
(

X,K(Y, Z)
)

−K
(

Y,K(X,Z)
)

}

.

(66)
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From Eq. (65) and (66), we obtain

4R(α) = (1 + α)2R∗(X, Y, Z) + (1− α)2R(X, Y, Z)

+ (1− α2)R∗(X, Y, Z) + (1− α2)

{

K
(

X,K(Y, Z)
)

−K
(

Y,K(X,Z)
)

}

= 2(1 + α)R∗(X, Y, Z) + 2(1− α)R(X, Y, Z)

+ (1− α2)

{

K
(

Y,K(X,Z)
)

−K
(

X,K(Y, Z)
)

}

(67)

Since the exponential family is dually flat, that is R = 0 and R∗ = 0, and the Riemann

curvature tensor with respect to ∇(α) is

R(α)(X, Y, Z) =
1− α2

4
Λ, (68)

Λ =
(

K(Y,K(X,Z))−K(X,K(Y, Z))
)

. (69)

Then, the geometric bias vector of θ(λ,α) is

b(α, λ) = (1− λ)
{

e1 + trg

(1− α2

2
Λikjdθ

i ⊗ dθj
)

e2

}

, (70)

where trg is the trace operation on the metric tensor g, and Λikj is the element of Λ in

Eq. (69). Since AIWERM and RIWERM are two special cases for α = 1 and α = 3, we

have

b(1, λ) = (1− λ)e1, (71)

b(3, λ) = (1− λ)
{

e1 + trg

(

− 4Λikjdθ
i ⊗ dθj

)

e2

}

. (72)

Appendix C: Learning guarantee

Generalization bounds of weighted maximum likelihood estimator for the target domain

are derived in Cortes et al. (2010), and our weight function (14) is compatible with their

bound.

Then, the gap between the expected (with respect to test distribution) loss R(h) and
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empirical risk L(h;λ, α) is bounded as

|R(h)− L(h;λ, α)| ≤
∣

∣

∣

∣

Eptr

[{

pte(x)

ptr(x)
− w(λ,α)(x)

}]
∣

∣

∣

∣

ℓ(h(x, y(x)))

+25/4 max

(

√

Eptr(w
(λ,α)(x))2ℓ2(h(x, y(x))),

√

Ep̂tr(w
(λ,α)(x))2ℓ2(h(x, y(x))

)

×
(

p log 2ntre
p

+ log 4
δ

ntr

)
3

8

. (73)

In the above inequality, p is the pseudo-dimension of the function class {wλ,α(x)ℓ(h(x), y(x))|h ∈
H} where y(x) is the ground truth function of connecting x and y as y = y(x). The

first term of the r.h.s. of the above inequality is the bias introduced by using wλ,α

instead of a standard density ratio, and the second term reflects the variance. It is

worth mentioning that the term Eptr(w
(λ,α)(x))2ℓ2(h(x, y(x))) is further bounded by

d2(pte||ptr) =
∫

x∈X

p2te(x)

ptr(x)
dx.

Appendix D: Optimization of the generalized IWERM

In the expected improvement strategy, the t + 1th point (λ, α)t+1 is selected according

to the following equation.

(λ, α)t+1 = arg min
(λ,α)

E

[

max
(

0, ht+1(λ, α) − L(λ†, α†)
)
∣

∣

∣
Dt

]

,

where L(λ†, α†) is the maximum value of empirical risk that has been encountered

so far, ht+1(λ, α) is the posterior mean of the surrogate at the t + 1th step and Dt =

{(λ, α)i, L(λi, αi)}ti=1. This equation for Gaussian process surrogate is an analytical

expression:

aEI(λ, α) = (µt(λ, α)− L(λ†, α†))Φ(Z) + σt(λ, α)φ(Z),

Z =
µt(λ, α)− L(λ†, α†)

σt(λ, α)
,

where Φ(·) and φ(·) are normal cumulative and density functions, respectively, and µt

and σt are mean and standard deviation of {(λ, α)i}ti=1.
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Appendix E: Additional experimental results

6.1 Experimental results on LIBSVM dataset

We show that for the LIBSVM dataset, IGIWERM is effective even for multiple models.

Table 4 shows the results for each model. We use the scikit-learn Pedregosa et al. (2011)

implementation of the models, and the hyperparameters of each model are the default

values of this library. Figure 5 also shows the relationship between the two parameters

of IGIWERM and the errors that can be achieved. For this visualization, we explore the

parameter pairs by grid search and evaluate their performance at that time. From this

figure, it is seen that the best performance is often achieved when α 6= 1 and α 6= 3,

showing the sub-optimality of conventional methods.

6.2 Experimental results on regression problems

In this section, we present experimental results for the regression problem. All the

datasets used in this experiment are available in the scikit-learn Pedregosa et al. (2011)

dataset collection. We use SVR with Radial Basis Function (RBF) kernel as the base

regressor. Table 5 shows the results of this experiment. In this experiment, we use MSE

as a metric, and this table shows that IGIWERM is superior to existing covariate shift

adaptation methods. Figure 6 shows the relationship between the two parameters of

IGIWERM and the mean squared errors that can be achieved. This figure shows that,

as in the case of binary classification, the optimal parameters do not necessarily match

those of existing methods.

6.3 Experimental results on multi-class classification

We also introduce the additional experimental results for the multi-class classifica-

tion problem. All the datasets used in this experiment are available in the scikit-

learn Pedregosa et al. (2011) dataset collection. We also use the scikit-learn Pedregosa et al.

(2011) implementation of the models, and the hyperparameters of each model are the

default values of this library. We note that the number of training sample for covtype

is so large hence the results with SVM for this dataset are omitted. Table 6 shows the
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experimental results, and we see that our proposed generalization outperforms existing

methods. Figure 7 shows the relationship between the two parameters of IGIWERM

and the errors that can be achieved. This figure also shows the sub-optimality of con-

ventional methods.

6.4 Visualization of covariate shift

In Section 5, we induce the covariate shift by the method of Cortes et al Cortes et al.

(2008). Figure 8 shows a plot by PCA of each dataset splitted into the training set and

test set. This figure shows that we are able to induce a covariate shift by partitioning

the dataset.
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Table 4: Mean misclassification rates averaged over 10 trails on LIBSVM benchmark

datasets. The numbers in the brackets are the standard deviations. For the methods with

(optimal), the optimal parameters for the test data are obtained by the linear search. The

lowest misclassification rates among five methods are shown with bold.

Dataset model unweighted IWERM AIWERM (optimal) RIWERM (optimal) ours

australian Logistic Regression 22.76(±9.53) 22.75(±7.73) 22.19(±9.35) 22.39(±7.76) 21.47(±8.91)

SVM 33.46(±23.65) 22.13(±3.37) 21.98(±3.36) 21.73(±3.82) 18.85(±3.99)

AdaBoost 10.20(±5.09) 16.35(±10.67) 11.23(±3.49) 15.47(±2.72) 9.15(±3.93)

Naive Bayes 17.04(±6.02) 14.92(±5.96) 16.33(±6.07) 15.49(±6.07) 14.74(±5.84)

Random Forest 8.89(±3.72) 8.64(±3.20) 8.29(±3.21) 8.38(±3.47) 8.61(±3.73)

breast-cancer Logistic Regression 32.32(±3.08) 32.87(±3.56) 32.32(±3.08) 32.32(±3.08) 32.26(±3.04)

SVM 38.28(±10.98) 41.23(±15.39) 36.41(±9.68) 36.13(±10.81) 31.65(±8.49)

AdaBoost 5.09(±1.65) 5.63(±1.38) 6.01(±1.13) 5.95(±1.50) 4.84(±1.50)

Naive Bayes 11.27(±4.09) 19.65(±15.14) 10.36(±5.14) 18.00(±14.24) 10.03(±3.53)

Random Forest 3.32(±1.23) 3.19(±1.10) 3.19(±1.13) 3.18(±1.04) 3.13(±1.04)

heart Logistic Regression 39.68(±7.90) 40.55(±9.10) 39.96(±7.40) 39.94(±6.93) 36.56(±8.29)

SVM 45.17(±6.98) 39.94(±8.55) 39.76(±8.49) 39.74(±8.92) 35.37(±6.84)

AdaBoost 30.87(±12.04) 29.24(±6.47) 29.37(±12.19) 31.27(±8.37) 26.96(±13.12)

Naive Bayes 22.79(±6.17) 24.78(±7.99) 22.87(±6.02) 24.58(±7.98) 21.97(±6.41)

Random Forest 20.87(±6.64) 20.98(±6.62 20.96(±6.67) 21.96(±6.70) 19.95(±6.61)

diabetes Logistic Regression 37.62(±4.35) 40.22(±4.10) 38.38(±3.85) 40.11(±3.74) 36.86(±4.81)

SVM 33.19(±5.69) 37.22(±6.63) 33.11(±6.45) 33.38(±5.74) 32.83(±5.62)

AdaBoost 37.69(±4.28) 40.13(±5.28) 40.76(±4.31) 41.26(±5.16) 33.45(±4.35)

Naive Bayes 39.29(±3.98) 39.21(±3.18) 39.26(±2.97) 39.35(±2.85) 38.10(±4.02)

Random Forest 30.09(±3.03) 30.90(±3.52) 31.07(±3.10) 30.51(±3.67) 29.46(±2.99)

madelon Logistic Regression 47.31(±1.80) 47.80(±1.57) 47.16(±1.68) 46.81(±1.56) 46.31(±1.69)

SVM 47.78(±1.53) 47.28(±2.20) 47.10(±2.13) 47.12(±1.65) 46.56(±2.12)

AdaBoost 42.92(±1.40) 42.91(±1.68) 43.36(±1.81) 42.90(±1.40) 40.64(±7.32)

Naive Bayes 41.90(±1.05) 41.43(±8.76) 41.79(±8.05) 41.62(±7.43) 41.03(±8.32)

Random Forest 35.90(±0.83) 35.42(±1.75) 35.13(±1.30) 34.79(±1.75) 35.56(±2.03)

Table 5: Mean squared errors averaged over 10 trails on scikit-learn Pedregosa et al.

(2011) regression benchmark datasets. The numbers in the brackets are the standard

deviations. For the methods with (optimal), the optimal parameters for the test data are

obtained by the linear search. The lowest mean squared errors are shown with bold.

Dataset #features #data unweighted IWERM AIWERM (optimal) RIWERM (optimal) ours

boston 13 506 83.22(±5.72) 69.87(±2.31) 69.68(±1.46) 69.96(±1.84) 68.36(±1.20)

diabetes 10 442 0.049(±0.007) 0.0501(±0.009) 0.049(±0.008) 0.049(±0.009) 0.048(±0.007)

california housing 8 20, 640 1.432(±0.095) 1.3214(±0.345) 1.260(±0.125) 1.261(±0.086) 1.232(±0.095)
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Figure 5: Visualization of grid search for α and λ on LIBSVM dataset. For the sake of

clarity, we apply a moving average.
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Figure 6: Visualization of grid search for α and λ on scikit-learn regression dataset. For

the sake of visualization, we apply a moving average.
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Table 6: Mean misclassification rates averaged over 10 trails on scikit-

learn Pedregosa et al. (2011) multi-class classification benchmark datasets. The num-

bers in the brackets are the standard deviations. For the methods with (optimal), the

optimal parameters for the test data are obtained by the linear search. The lowest mis-

classification rates among five methods are shown with bold.

Dataset model unweighted IWERM AIWERM (optimal) RIWERM (optimal) ours

digits Logistic Regression 6.92(±2.25) 7.10(±1.76) 6.90(±1.81) 6.89(±1.80) 6.79(±1.82)

SVM 4.21(±2.04) 3.94(±1.14) 4.20(±1.22) 4.02(±1.18) 3.88(±1.11)

AdaBoost 67.98(±12.35) 71.77(±6.25) 71.26(±8.21) 70.47(±6.46) 65.20(±8.20)

Naive Bayes 19.07(±2.45) 18.68(±2.61) 19.31(±2.64) 18.78(±2.68) 18.58(±2.66)

Random Forest 6.85(±2.40) 6.30(±1.80) 6.23(±1.53) 6.27(±1.64) 6.17(±1.90)

iris Logistic Regression 54.69(±20.51) 36.49(±22.39) 45.78(±18.09) 35.37(±23.19) 28.89(±20.54)

SVM 55.16(±22.60) 36.65(±22.56) 33.21(±20.25) 30.46(±21.14) 29.04(±20.02)

AdaBoost 27.19(±22.56) 26.00(±22.98) 26.00(±22.98) 26.00(±22.98) 19.62(±21.36)

Naive Bayes 35.88(±23.24) 35.97(±26.79) 37.99(±23.55) 33.84(±25.64) 27.52(±21.00)

Random Forest 26.16(±22.86) 32.17(±21.21) 26.00(±22.98) 28.47(±22.63) 22.77(±21.74)

covtype Logistic Regression 45.36(±13.08) 32.04(±5.833) 30.62(±4.64) 25.20(±8.99) 19.99(±5.56)

SVM − − − − −
AdaBoost 47.53(±14.51) 25.55(±12.27) 25.47(±14.14) 27.86(±10.37) 18.96(±7.29)

Naive Bayes 41.13(±15.65) 30.66(±15.09) 28.48(±15.66) 27.20(±15.79) 19.64(±15.62)

Random Forest 23.51(±3.31) 18.18(±2.01) 17.28(±2.05) 17.13(±2.26) 16.42(±2.08)
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Figure 7: Visualization of grid search for α and λ on scikit-learn multi-class classifica-

tion dataset. For the sake of visualization, we apply a moving average.

41



Figure 8: Plot of covariate shifts using the method of Cortes et al Cortes et al. (2008).

Each dataset is included in LIBSVM and mapped to two dimensions by PCA.
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