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Abstract
Vision-based estimation of the motion of a moving target is usually formulated as a bearing-only estimation problem
where the visual measurement is modeled as a bearing vector. Although the bearing-only approach has been studied
for decades, a fundamental limitation of this approach is that it requires extra lateral motion of the observer to enhance
the target’s observability. Unfortunately, the extra lateral motion conflicts with the desired motion of the observer in many
tasks. It is well-known that, once a target has been detected in an image, a bounding box that surrounds the target can
be obtained. Surprisingly, this common visual measurement especially its size information has not been well explored
up to now. In this paper, we propose a new bearing-angle approach to estimate the motion of a target by modeling its
image bounding box as bearing-angle measurements. Both theoretical analysis and experimental results show that this
approach can significantly enhance the observability without relying on additional lateral motion of the observer. The
benefit of the bearing-angle approach comes with no additional cost because a bounding box is a standard output of
object detection algorithms. The approach simply exploits the information that has not been fully exploited in the past.
No additional sensing devices or special detection algorithms are required.
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1 Introduction

This paper studies the problem of estimating the motion of
a moving target object using a moving monocular camera.
The target’s geometric information such as its physical size
is unknown in advance. This problem is important in many
fields (Qiu et al. 2019; Griffin and Corso 2021; Tekin et al.
2018). Our present work is particularly motivated by the
task of aerial target pursuit, where a micro aerial vehicle
(MAV) uses its onboard camera to detect, localize, and then
pursue another flying MAV. The task of aerial target pursuit,
originally motivated by the interesting bird-catching-bird
behaviors in nature (Brighton and Taylor 2019), potentially
provides an effective approach to the defense of misused
MAV (Rothe et al. 2019; Dressel and Kochenderfer 2019;
Vrba and Saska 2020).

When a target has been detected in an image by a vision
detection algorithm, we usually obtain a bounding box that
surrounds the target’s image (see Fig. 1). The bounding box
carries two types of useful information that can be used to
estimate the target’s motion.

The first type of useful information is the center point
of the bounding box. The pixel coordinate of the center
point can be used to calculate the spatial bearing vector
pointing from the camera to the target based on the pin-hole
camera model (Ma et al. 2012). Using the bearing vector
to estimate the target’s motion is referred to as bearing-
only target motion estimation (Fogel and Gavish 1988; He
et al. 2019; Li et al. 2023). As a problem that has been
studied for more than 40 years, bearing-only target motion
estimation was originally studied to estimate the motion of
ships on the ocean surface (Hoelzer et al. 1978), and regained
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Figure 1. An observer MAV observes a target MAV with a
monocular camera. The bearing g and angle θ can be obtained
from the bounding box that surrounds the target in the image.

increasing research attention in recent years in vision-based
target estimation tasks (Ponda et al. 2009; Anjaly and Ratnoo
2018; He et al. 2019).
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Bearing-only target motion estimation requires an
observability condition: The observer must have higher-
order motion than the target and, more importantly, the
higher-order motion must contain components that are
orthogonal to the target’s bearing vector (Fogel and Gavish
1988). Motivated by this observability condition, enormous
works have studied how an observer should move to enhance
the observability (Hammel et al. 1989; Sabet et al. 2016;
Anjaly and Ratnoo 2018; He et al. 2019). For instance, in our
recent work (Li et al. 2023), we proposed a helical guidance
law so that a MAV moves along a helical curve to optimize
the observability in the 3D space.

A limitation of the observability condition of the classic
bearing-only approach is that the observer must move in
the lateral directions that are orthogonal to the bearing
vector of the target. Such additional lateral motion is usually
unfavorable because it may conflict with the desired motion
of the observer in many tasks. For example, in an aerial
target pursuit task, the pursuer is desired to approach the
target as fast as possible and then keep stationary relative to
the target. Then, the additional lateral motion would conflict
with the desired motion. It is, therefore, important to study
other ways that can enhance the observability while avoiding
unfavorable lateral motion.

The second type of useful information of a bounding box
is its size (either width or height). The size of a bounding box
is jointly determined by several factors such as the target’s
distance, the target’s physical size, and the orientation of
the camera. The target’s physical size is usually unknown
in many tasks, especially in those antagonistic ones such
as aerial pursuit of misused MAVs. As a result, the size of
the bounding box cannot directly infer the target’s distance.
Nevertheless, it carries valuable information for localizing
the target.

Surprisingly, the size information of the bounding box
has not been well explored so far. The work that is closely
relevant to ours is the state-of-the-art one in (Griffin and
Corso 2021), where the size of a bounding box is used
to localize unknown target objects. Although the approach
in (Griffin and Corso 2021) is inspiring, it relies on two
assumptions: The target objects are stationary and the camera
can only translate without rotating. It is still an open problem
how to estimate a target’s motion when the two assumptions
are not valid. Moreover, the theoretical role of the size of a
bounding box in target motion estimation has not been fully
understood so far. Although the work in (Vrba and Saska
2020) also utilizes the size of the bounding box to estimate
the target’s position, it is assumed that the target’s physical
size is known in advance.

Estimating the motion of moving objects is also a
fundamental problem in dynamic SLAM. For example, the
works in (Yang and Scherer 2019; Qiu et al. 2019) firstly
estimate the camera’s pose and secondly estimate the target
object’s pose subject to a scale factor, and finally estimate
the scale factor from multi-view measurements. To estimate
the target object’s pose subject to a scale factor, (Yang
and Scherer 2019) and (Qiu et al. 2019) rely on detecting,
respectively, a 3D bounding box and sufficient feature points
inside the 2D bounding box. Different from (Yang and
Scherer 2019; Qiu et al. 2019), our proposed approach
merely utilizes a 2D image bounding box without further

extracting feature points or a 3D bounding box inside the 2D
bounding box. As a result, one benefit is that this approach
is more computationally efficient. Moreover, this approach
can handle the challenging small-target case where the target
object is far and hence its image is small. In this case, it
would be unreliable to extract sufficient stable features or
conduct 3D detection.

The aforementioned approaches in (Griffin and Corso
2021; Yang and Scherer 2019; Qiu et al. 2019) are all based
on multiple views. It is also possible to estimate the target’s
depth from a single view/image (Tekin et al. 2018; Vrba
and Saska 2020). The single-view approach however requires
prior information of the objects. Moreover, it would be
unable to successfully localize target objects with different
sizes but similar appearances. In this paper, we focus on the
multi-view case.

In this paper, we propose a novel bearing-angle target
motion estimation approach that models a bounding box
as bearing-angle measurements. This approach can enhance
the observability by fully exploiting the information in
a bounding box rather than relying on the additional
lateral motion of the observer. The benefit of the proposed
bearing-angle approach comes with no additional cost
since the bounding box is a standard output of object
detection algorithms. The approach simply exploits the angle
information that has not been fully exploited in the past. No
additional sensing devices or special detection algorithms are
required.

The technical novelties of this approach are threefold.
1) The proposed approach does not directly use the size of

a bounding box because the size is variant to the orientation
of the camera. That is, even if the target’s relative position
is unchanged, the size of the bounding box still varies when
the camera rotates. Motivated by this problem, we convert
the size of the bounding box to an angle subtended by the
target (see Fig. 1). The merit of using the angle measurement
is that it is invariant to the camera’s orientation change (see
Fig. 2) and hence can greatly facilitate the estimator design.
In this way, the assumption in (Griffin and Corso 2021) that
the camera can only translate but not rotate can be avoided.

2) Although the bearing-angle approach incorporates
an additional angle measurement, it is nontrivial to see
how to properly use this measurement because the angle
does not directly infer the target’s distance given that
the target’s size is unknown. We notice that the angle
is a joint nonlinear function of the target’s physical
size and relative distance. Hence, the state vector, which
only consists of the target’s position and velocity in the
conventional bearing-only approach, is augmented by the
unknown target’s physical size. Since the bearing and angle
measurements are all nonlinear functions of the target’s
state, we establish a pseudo-linear Kalman filter to properly
utilize the measurements to enhance estimation stability.
Both simulation and real-world experiments verify the
effectiveness of the proposed estimator.

3) Although an additional angle measurement is used,
an additional unknown, the target’s physical size, is also
introduced into the estimator. It is, therefore, nontrivial to
see how the additional angle measurement can help improve
the observability. Motivated by this problem, we prove the

Prepared using sagej.cls



Zian Ning et al. 3

necessary and sufficient observability condition for bearing-
angle target motion estimation. In particular, we show that
the target’s motion can be recovered if and only if the
observer has a higher-order motion than the target. Different
from the bearing-only case, the higher-order motion is not
required to be in the lateral directions that are orthogonal
to the bearing vector. This is an important enhancement of
the observability. As we show in various experiments, the
bearing-angle approach can successfully recover the target’s
motion in many scenarios where the bearing-only approach
fails.

2 Related Work

2.1 Algorithms for bearing-only target motion
estimation

Bearing-only target motion analysis aims to estimate the
target’s motion states, such as position and velocity, using
bearing measurement only. It was originally motivated by
ship localization and tracking in the ocean (Hoelzer et al.
1978). With the rapid development of small-scale mobile
robots equipped with cameras, the bearing-only approach
regained increasing attention in recent years (Ponda et al.
2009; Anjaly and Ratnoo 2018; He et al. 2019).

Kalman filter-based estimators are widely used in the
bearing-only target motion. One challenge of applying
the Kalman filter to the bearing-only estimation is the
nonlinearity of the bearing measurement. The conventional
extended Kalman filter (EKF) exhibits divergence problems
when applied to bearing-only target motion estimation
(Aidala 1979; Lin et al. 2002). Several methods have been
proposed to solve this problem. They can be divided into two
types. The first type is the modified polar EKF, which was
first proposed in (Hoelzer et al. 1978). In this approach, three
observable quantities are separated from the unobservable
ones to prevent divergence. The work in (Stallard 1991)
extends this approach to the case of spherical coordinates to
track targets in 3D space. The second type is the pseudo-
linear Kalman filter, which is first proposed in (Lingren and
Gong 1978) to solve the instability problem by transforming
the nonlinear measurement equation into a pseudo-linear
one. However, this transformation makes the noise become
non-Gaussian and highly correlated to the measurement
matrix and then causes estimation bias. Nevertheless, the
work in (Aidala and Nardone 1982) theoretically proves
that the velocity estimation has no bias, and the position
estimation bias can be removed by the observer’s maneuvers.

Recently, other estimation algorithms based on advanced
but more complex filters have been proposed. The work
in (Farina 1999) uses the maximum likelihood (MLE)
algorithm to estimate the target’s motion using bearing-only
measurements. The comparison with the Cramer-Rao lower
bound indicates that the MLE-based estimator is effective
against measurement errors. The work in (Doğançay 2005)
proposes a constrained total least-squares algorithm, which
can improve the estimation accuracy when the error of
bearing measurement is large. Three different algorithms are
used and compared in (Lin et al. 2002). The results show that
the EKF, the pseudo-linear filter, and the particle filter have

similar performances in most situations, while the EKF loses
track when the initial estimate error is large.

Another type of approach, called bearing-only trajectory
triangulation (Avidan and Shashua 2000), estimates the
target’s position from the perspective of trajectory fitting.
It reconstructs the trajectory by intersecting parametric
trajectory to a series of sight rays obtained from bearing
measurement. Once the trajectory is successfully fitted,
the target’s position at each time instant can be estimated
by the intersection of the bearing and the trajectory. The
trajectory fitting relies on the assumption of the trajectory’s
shape. However, in many applications, the target’s trajectory
is complex and unknown in advance. Many consecutive
studies aim to relax this assumption in various ways based
on hypersurfaces (Kaminski and Teicher 2004), parametric
temporal polynomials (Yu et al. 2009), or compact basis
vectors (Park et al. 2015).

2.2 Observability analysis of bearing-only
target motion estimation

Observability is a fundamental problem in bearing-only
target motion estimation. Early works mainly focus on
whether the system is observable or not. For example,
the work in (Lingren and Gong 1978) uses the rank
of observation matrix to determine the observability. The
work in (Fogel and Gavish 1988) extends the observability
criterion in (Nardone and Aidala 1981) to the Nth-order
target dynamics and inspires us for the observability analysis
in Section 6. All these conditions indicate that the observer
must have extra high-order motion in the lateral direction.
The observability condition can be significantly relaxed in
our approach.

Unlike the works on determining whether the system is
observable or not, some studies focus on quantifying the
observability degree. The work in (Hammel et al. 1989)
first introduces the Fisher information matrix (FIM) into the
observability analysis. The works in (Sabet et al. 2016) and
(Anjaly and Ratnoo 2018) use FIM-based objective functions
to maximize observability. We also use the FIM in our former
work (Li et al. 2023) to optimize the 3D helical guidance law
for better observability. Another method called the geometric
method uses the geometric relationship between the target
and the observer in two consecutive time instants to derive
the measure of observability (He et al. 2019; Woffinden
and Geller 2009), and the results are consistent with those
derived using FIM. Compared to the bearing-only approach,
the observability degree of our bearing-angle method is
sufficient to estimate the target’s motion in many common
scenarios such as tracking and guidance (see experiment
results in Figs. 4c and 13).

3 Problem Formulation
Consider a target object moving in the 3D space. Its position
and velocity at time tk are denoted as pT (tk) ∈ R3 and
vT (tk) ∈ R3, respectively. Suppose there is an observer
carrying a monocular camera to observe the target. The
position of the observer is denoted as po(tk) ∈ R3. Here, we
assume that the observer/camera’s pose including its position
and orientation can be obtained in other ways. For example,
it can be measured directly by RTK GPS (Li et al. 2023) or
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Figure 2. The size of the bounding box varies when the
camera rotates. By contrast, the angle subtended by the target
object is invariant to the camera’s orientation change.

estimated by visual inertial odometry (Qiu et al. 2019). In
the rest of the paper, the dependence of a variable on tk is
dropped when the context is clear.

If the target object can be detected by a vision algorithm,
we can obtain a bounding box surrounding the target object
in the image. Two types of information carried by the
bounding box can be used to estimate the motion of the
target.

First, the center point of the bounding box can be used
to calculate the bearing vector of the target. In particular,
denote g ∈ R3 as the unit bearing vector pointing from po to
pT . Suppose Pcam ∈ R3×3 is the intrinsic parameter matrix
of the camera (Ma et al. 2012, Section 4), and Rw

c ∈ R3×3 is
the rotation from the camera frame to the world frame. Then,
the bearing vector g can be calculated as

g =
Rw

c P
−1
camqpix

∥Rw
c P

−1
camqpix∥

,

where qpix = [xpix, ypix, 1]
T ∈ R3. Here, (xpix, ypix) is the

pixel coordinate of the center point of the bounding box.
Second, the size of the bounding box can be used to

calculate the angle subtended by the target in the camera’s
field of view. The reason that we convert the bounding box’s
size to the angle is that the angle is invariant to the camera’s
orientation change (see Fig. 2). In particular, let spix denote
the size of the bounding box. It can be either the width or the
height. Let θ ∈ (0, π/2) be the angle. According to the pin-
hole camera model (Ma et al. 2012, Section 4) and the law of
cosine (see Fig. 2), the angle can be calculated as

θ = arccos

(
l2left + l2right − s2pix

2lleftlright

)
,

where lleft =
√
(f/α)2 + (δx− spix/2)2 + δy2 ∈ R and

lright =
√

(f/α)2 + (δx+ spix/2)2 + δy2 ∈ R are the dis-
tances in pixel from the camera center to the middle points
of the left and right sides of the bounding box, respectively
(Fig. 1). Moreover, f and α denote the camera’s focal length
and single pixel size, respectively. iwidth and iheight represent
the width and the height of the whole image in pixels,
respectively. δx = ∥xpix − iwidth/2∥ ∈ R and δy = ∥ypix −
iheight/2∥ ∈ R are the distances between the center of the
bounding box and the center of the image.

Our goal is to estimate the target’s position and velocity,
pT and vT , based on the noisy measurements of the bearing
vector g and the angle θ together with the observer’s
own position po. To achieve this goal, we propose a new
bearing-angle target motion estimator (Fig. 3). The estimator
is introduced in detail in Section 4. The observability of
this estimator is analyzed based on Kalman’s observability
criterion in Section 5. We further prove a necessary
and sufficient observability condition of the observer in
Section 6. Numerical simulation results are given in
Section 7. More realistic AirSim simulation results are given
in Section 8. Finally, real-world experiments are given in
Section 9.

4 Bearing-Angle Target Motion Estimator
This section designs a bearing-angle target motion estimator
based on the framework of pseudo-linear Kalman filtering.
The key here is to establish appropriate measurement and
state transition equations.

4.1 States transition equation
The state vector of the target is designed as

x =

 pT
vT
ℓ

 ∈ R7,

where pT and vT are target’s global position and velocity,
respectively. Here, ℓ > 0 is a scalar that represents the
physical size of the target object in the dimension that is
orthogonal to the bearing vector (Fig. 2). In this paper, ℓ is
assumed to be constant or varying slowly, which means that
the physical size of the target object should be approximately
invariant from different viewing angles. Here, ℓ corresponds
to θ, which further corresponds to either the width or height
of the bounding box. Whether ℓ should correspond to the
width or height depends on in which dimension the physical
size of the target object is invariant when viewed from
different angles. More explanation is given in Section 4.2.

Different from the bearing-only case where the state
merely consists of the position and velocity, the state here
is augmented by the target’s physical size. This is due to
the fact that the angle measurement is a function of the
target’s physical size, which should be estimated as well. One
may wonder whether the state vector can also incorporate
the target’s acceleration. To estimate high-order motion
(e.g., acceleration) of the target, the observer must have
higher-order motion (e.g., nonzero jerk) according to the
observability condition presented in Section 6. Otherwise,
the estimation would diverge. Therefore, it is preferred to
exclude the acceleration and merely estimate the position and
velocity.

If no information of the target’s motion is available, it
is common to model the target’s motion as a discrete-time
noise-driven double integrator:

x(tk+1) = Fx(tk) + q(tk), (1)

where

F =

I3×3 δtI3×3 03×1

03×3 I3×3 03×1

01×3 01×3 1

 ∈ R7×7, (2)
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Figure 3. The architecture of the proposed approach. All the simulation and real-world experiments in this paper follow this
architecture.

with δt as the sampling time, and I and 0 as the identity
and zero matrices, respectively. Here, q ∈ R7 is a zero-mean
process noise satisfying q ∼ N (0,Σq), where the covariance
matrix is

Σq = diag(0, 0, 0, σ2
v , σ

2
v , σ

2
v , σ

2
ℓ ) ∈ R7×7. (3)

Here, σv ∈ R and σℓ ∈ R are the standard deviations of the
target’s velocity and size, respectively. When the target’s
shape is irregular, ℓ may vary when viewed from different
angles. By letting σℓ ̸= 0, we can handle the case where ℓ
varies slowly. The dynamic modeling of ℓ is discussed in the
following subsection.

4.2 Dynamic modeling of target’s physical size
Since the target’s physical size ℓ is a state variable to be
estimated, it is important to discuss its dynamic model. In
fact, the dynamic model of ℓ in (1) assumes that ℓ varies
slowly. We next justify this modeling and provide more
discussion.

First of all, ℓ corresponds to the physical size of the target
object in the dimension that is orthogonal to the bearing
vector. Its dynamics can be categorized into three cases.

1) ℓ is invariant. In theory, when ℓ is invariant, a change
of θ implies a change of r. As a result, the measurement of
θ can help improve the system’s observability, as proven in
Section 6. An ideal case where ℓ is invariant is that the target
object is a sphere or cylinder so that ℓ corresponds to its
diameter (Vrba and Saska 2020). In practice, the target object
does not have to be the ideal case. For example, consider an
autonomous driving scenario where a focal vehicle uses a
camera to localize its surrounding vehicles in the 2D plane.
Although the physical size of a surrounding vehicle changes
greatly when viewed from behind or side, the height of the
vehicle is invariant from different side-view angles. In this
case, ℓ corresponds to the height of the vehicle, and we need
to use the height of the image bounding box to calculate θ.

2) ℓ varies slowly. If there does not exist any dimension in
which the physical size of the target remains invariant, ℓ may
vary slowly when the target is viewed from different angles.
For example, in the tasks of aerial target pursuit, if the target
is a quadcopter or hexacopter, then ℓ is approximately equal
to the wheelbase but may vary slightly when viewed from
different angles since the MAV is not a perfect cylinder. In
this case, ℓ corresponds to the wheelbase of the MAV, and we
need to use the width of the image bounding box to calculate
θ.

If ℓ varies slowly, it can still be treated as invariant within
short time intervals. As long as the observability condition

(Section 6) is satisfied, the motion of the target as well as
ℓ can be successfully estimated. This fact is supported by
the experimental results in Section 8.4. It is however worth
nothing that the performance of the proposed bearing-angle
approach would degenerate to the conventional bearing-only
one because the additional information brought by θ is used
to estimate the time-varying ℓ rather than helping improve
the system’s observability.

3) ℓ varies rapidly. If ℓ varies rapidly due to certain
reasons, it would be difficult to distinguish whether the
change of θ is caused by the change of ℓ or the change of r.
For example, when a MAV is used to track a ground vehicle,
ℓ in any dimension may vary rapidly when the relative
motion between the MAV and the ground vehicle is highly
dynamic. In such scenarios, the additional information
brought by θ is no longer sufficient to estimate the rapidly
varying ℓ in this case. Additional visual information such as
a 3D bounding box that indicates the target’s 3D attitude is
required. This is an important topic for future research but
out of the scope of the present paper.

4.3 Nonlinear measurement equations
The bearing vector g and the subtended angle θ are both
nonlinear functions of the target’s position. In particular,

g =
pT − po

r
, (4a)

θ = 2arctan

(
ℓ

2r

)
≈ ℓ

r
, (4b)

where
r = ∥pT − po∥

is the distance between the target and the observer.
It is notable that there is an approximation in (4b).
This approximation is accurate. Specifically, when r > 3ℓ,
which is common in practice, it can be verified that the
approximation error is less than 0.08%. The approximation
error further decreases as r increases.

In practice, measurements always contain noises. First,
denote ĝ ∈ R3 as the noise-corrupted bearing measurement.
Then, we have

ĝ = R (η, ϵ) g, (5)

where R (η, ϵ) ∈ R3×3 is a rotation matrix that perturbs g.
Here, η ∈ R3 is a unit vector representing a random rotation
axis, and ϵ ∈ R is a random rotation angle. This rotation
matrix would rotate the vector g by an angle ϵ around the
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axis η. The productive noise in (5) can be transformed into
an additive one:

ĝ = g + µ, (6)

where µ = (R (η, ϵ)− I3×3)g ∈ R3 is the measurement
noise of the bearing vector. The covariance of µ is
derived in our previous work (Li et al. 2023). Since the
covariance is complex and involves unknown true values,
we can approximately treat it as a Gaussian noise: µ ∼
N (0, σ2

µI3×3) (Li et al. 2023).
Substituting (4a) into (6) gives the nonlinear bearing

measurement equation:

ĝ =
pT − po

r
+ µ. (7)

Second, denote θ̂ ∈ R as the noise-corrupted measurement
of the subtended angle. Then, we have

θ̂ = θ + w, (8)

where w ∼ N (0, σ2
w) is the measurement noise. Substituting

(4b) into (8) yields the nonlinear angle measurement
equation:

θ̂ =
ℓ

r
+ w. (9)

4.4 Pseudo-linear measurement equations
The measurement equations (7) and (9) are nonlinear in the
target’s state. In the following, we convert the two equations
to be pseudo-linear and then apply pseudo-linear Kalman
filtering to achieve better estimation stability (Lin et al.
2002).

First, to convert the 3D bearing measurement to pseudo-
linear, we introduce a useful orthogonal projection matrix:

Pĝ
.
= I3×3 − ĝĝT ∈ R3×3.

This matrix plays an important role in the analysis of
bearing-related estimation and control problems (Zhao and
Zelazo 2019). It has an important property:

Pĝ ĝ = 03×1.

As a result, multiplying rPĝ on both side of (7) yields

03×1 = Pĝ(pT − po) + rPĝµ

and consequently

Pĝpo = PĝpT + rPĝµ.

Rewriting this equation in terms of the target’s state variables
yields the pseudo-linear bearing measurement equation:

Pĝpo =
[
Pĝ 03×4

]  pT
vT
ℓ

+ rPĝµ. (10)

Here, Pĝpo on the left-hand side is the new measurement,
which is pseudo-linear in the target’s state variables. The
reason that it is called ”pseudo” is because the measurements

also appear on the right-hand side of the equation, especially
in the measurement matrix.

Second, we convert the nonlinear angle measurement in
(9) to be pseudo-linear. To that end, multiplying rĝ on both
side of (9) yields

θ̂rĝ = ℓĝ + wrĝ. (11)

It follows from (7) that rĝ = pT − po + rµ, substituting
which into the left-hand side of (11) gives

θ̂(pT − po + rµ) = ℓĝ + wrĝ.

Reorganizing the above equation gives

θ̂po =θ̂pT − ℓĝ + r(θ̂µ− wĝ).

Rewriting this equation in terms of the target’s state variables
yields the pseudo-linear angle measurement equation:

θ̂po =
[
θ̂I3×3 03×3 −ĝ

]  pT
vT
ℓ

+ r(θ̂µ− wĝ),

(12)

where θ̂po is the new measurement that is pseudo-linear in
the target’s state variables.

4.5 Bearing-angle estimation algorithm
Combining (10) and (12) gives the compact form of the
measurement equation:

z = Hx+ ν, (13)

where

z =

[
Pĝpo
θ̂po

]
∈ R6, (14a)

H =

[
Pĝ 03×3 03×1

θ̂I3×3 03×3 −ĝ

]
∈ R6×7, (14b)

ν =

[
rPĝµ

r(θ̂µ− wĝ)

]
∈ R6. (14c)

Here, ν can be rewritten as a matrix form

ν = E

[
µ
w

]
,

where

E = r

[
Pĝ 03×1

θ̂I3×3 −ĝ

]
∈ R6×4. (15)

As a result, ν can be approximately treated as a linear
transformation of Gaussian noises. Its covariance matrix can
be calculated as

Σν = E

[
σ2
µI3×3 03×1

01×3 σ2
w

]
ET ∈ R6×6.

Although the quantities in E such as ĝ and θ̂ contain
measurement noises, it is a common practice to treat them
as deterministic quantities. Otherwise, if, for example, ĝ is
split to ĝ = g + µ and we consider the noise separately,

Prepared using sagej.cls



Zian Ning et al. 7

the expression of ν would be a complex function of
the true values and the noises. Since the true values are
unknown, the covariance cannot be calculated. Moreover,
r in (15) is the true target range, which is unknown. We
can use the estimated value r̂ = ∥p̂T − po∥ to replace it in
implementation. Here, p̂T ∈ R3 is the estimated value of the
target’s position. This technique has been used in bearing-
only target estimation (He et al. 2018; Li et al. 2023).

With the state transition equation (1) and the measurement
equation (13), the bearing-angle estimator can be realized by
the Kalman filter. For a quick reference, we list the steps
below. The prediction steps are

x̂−(tk) = Fx̂(tk−1),

P−(tk) = FP (tk−1)F
T +Σq,

where x̂−(tk) ∈ R7 and P−(tk) ∈ R7×7 are the prior
estimated state and covariance matrix, respectively. The
correction steps are

K(tk) = P−(tk)H
T(tk)

[
H(tk)P

−(tk)H
T(tk) + Σν

]†
,

x̂(tk) = x̂−(tk) +K(tk)
[
z(tk)−H(tk)x̂

−(tk)
]
,

P (tk) = [I7×7 −K(tk)H(tk)]P
−(tk),

where K(tk) ∈ R7×6 is the Kalman gain matrix, x̂(tk) and
P (tk) are posterior estimated state and covariance matrix,
and symbol † denotes the pseudoinverse. The usage of
pseudoinverse in the Kalman filter is a common practice to
prevent the situation that H(tk)P

−(tk)H
T(tk) + Σν is rank

deficient (Yoshikawa 1972; Kulikov and Kulikova 2018).

5 Observability Analysis by Kalman’s
Criterion

Although an additional angle measurement is adopted in
the bearing-angle estimator, it is nontrivial to see whether
this additional measurement can improve the system’s
observability because an additional unknown variable, the
target’s physical size, is also required to estimate. It is
therefore necessary to study the observability conditions
under which the target’s motion can be successfully
estimated.

In this and the next sections, we present two methods to
analyze the observability conditions. The first method, as
presented in this section, relies on Kalman’s observability
criterion, which is to check the rank of the observability
matrix of a linear system. The second method, as presented
in the next section, relies on solving a set of linear equations.
Both methods have been adopted in the literature to analyze
the observability of estimators (Zhao et al. 2015; Fogel
and Gavish 1988). For the bearing-angle estimator, the first
method considers the specific dynamics of the filter but is not
able to handle the case when the target’s motion has a higher
order. The second method can handle the high-order motion
of the target but does not consider the dynamics of the filter.
We will show that the conclusions given by the two methods
are consistent. In both of the methods, we consider the case
where ℓ is invariant.

5.1 The observability matrix
Consider a time horizon of k ≥ 3 consecutive steps. The
observability matrix of the system of (14b) and (2) can be

calculated as

Q =


H(t1)
H(t2)F
H(t3)F

2

· · ·
H(tk)F

k−1

 ∈ R6k×7. (16)

Substituting the expressions of F and H in (2) and (14b) into
(16) yields

Q =



Pg(t1) 03×3 03×1

θ(t1)I3×3 03×3 −g(t1)
Pg(t2) δtPg(t2) 03×1

θ(t2)I3×3 δtθ(t2)I3×3 −g(t2)
...

...
...

Pg(tk) (k − 1)δtPg(tk) 03×1

θ(tk)I3×3 (k − 1)δtθ(tk)I3×3 −g(tk)


.

Note that the noises in the bearing and angle measurements
are neglected when we analyze the fundamental observabil-
ity property. After a series of elementary row transformations
in Q, we can obtain

Q →


I3×3 03×3 −g(t1)/θ(t1)
03×3 I3×3 −δv(t2)/ℓ

...
...

...
03×3 I3×3 −δv(tk)/ℓ
03k×3 03k×3 03k×1

 , (17)

where

δv(tk)
.
= vT (tk)− vo(tk)

is the relative velocity.
In the following two subsections, we analyze the rank of

the observability matrix in two scenarios where the observer
moves with zero and nonzero acceleration, respectively. In
the two scenarios, the target is always assumed to move with
a constant velocity:

vT (tk) = vconst
T .

5.2 Case 1: the observer’s velocity is constant
Denoted vo ∈ R3 as the velocity of the observer. Consider
the case where the observer has a constant velocity
vcase1
o (ti) = vconst

o for any i ∈ {1, . . . , k}. Then, the relative
velocity is also constant:

δvcase1(ti) = vconst
T − vconst

o = δvconst. (18)

Substituting (18) into (17) and conducting elementary row
transformation yields

Qcase1 →

 I3×3 03×3 −g(t1)/θ(t1)
03×3 I3×3 −δvconst/ℓ

06(k−1)×3 06(k−1)×3 06(k−1)×1

 .

(19)

Since the upper 6× 7 block of (19) has full row rank and the
lower block is zero, the rank of Qcase1 is

rank
(
Qcase1) = 6.
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Since the number of states is seven and the rank is six,
we know there is one unobservable mode. To identify this
unobservable mode, we calculate the unobservable subspace,
which is the null space of Q:

Null
(
Qcase1) = span


g(t1)/θ(t1)δvconst/ℓ

1

 . (20)

According to (20), the unobservable mode is

xT

 g(t1)/θ(t1)
δvconst/ℓ

1

 = pTT
g(t1)

θ(t1)
+ vTT

δvconst

ℓ
+ ℓ. (21)

Although there is only one unobservable mode, this mode
given in (21) involves all the states including the target’s
position, velocity, and physical size. It suggests that the
estimation of the three quantities is coupled. In conclusion,
we know that, if the target moves with a constant velocity,
its states are unobservable when the observer moves with a
constant velocity.

5.3 Case 2: the observer’s velocity is
time-varying

We now consider the case where the observer has nonzero
acceleration so that its velocity is time-varying across the
time horizon from t1 to tk.

Denote ao(ti) ∈ R as the observer’s acceleration, which
can be approximated as

ao(ti) ≈
vo(ti)− vo(ti−1)

δt

= − [vconst
T − vo(ti)]− [vconst

T − vo(ti−1)]

δt

= −δv(ti)− δv(ti−1)

δt
. (22)

Substituting (22) into (17) and performing elementary row
transformation yields

Qcase2 →



I3×3 03×3 −g(t1)/θ(t1)
03×3 I3×3 −δv(t2)/ℓ
03×3 03×3 δtao(t3)/ℓ

...
...

...
03×3 03×3 δtao(tk)/ℓ
03k×3 03k×3 03k×1


. (23)

The upper 6× 7 block in (23) has full column rank.
Therefore, if ao(ti) ̸= 0 for any i ≥ 3, then

rank
(
Qcase2) = 7,

Which is the same as the number of estimated states.
Therefore, the target’s state is observable when the observer
moves with nonzero acceleration.

5.4 Summary of this section
From the above analysis, we know that when the target has
a constant velocity, its states including its position, velocity,
and physical size are observable if and only if the observer
has non-zero accelerations.

The critical difference of this condition from the bearing-
only case is that the target’s states are still observable even
if the observer moves along the bearing vector towards
or backward the target. By contrast, for a bearing-only
estimator, moving along the bearing vector is insufficient
to recover the target’s motion. Therefore, the additional
lateral motion of the observer required in the bearing-only
case is not required in the bearing-angle case anymore,
which provides better flexibility for designing the observer’s
motion.

6 Observability Analysis by Solving Linear
Equations

This section extends the observability condition obtained in
the last section to more general cases where the target’s
velocity does not have to be constant.

6.1 Problem formulation
The observability problem that we aim to solve is to
determine whether pT (t) can be recovered from po(t) and
g(t), θ(t).

Suppose the target’s motion can be described by an nth-
order polynomial during a time interval:

pT (t) = b0 + b1t+ · · ·+ bnt
n, (24)

where b0, b1, · · · , bn ∈ R3 are unknown constant vectors.
If we can determine the values of {bi}ni=0, then we can
determine the target’s motion and hence it is observable.
Although polynomials cannot represent all trajectories, they
can effectively approximate a majority of them according to
the method of Taylor expansion. This is especially true if we
consider a short time horizon. This kind of technique has
been adopted in the observability analysis of bearing-only
target motion estimation tasks (Nardone and Aidala 1981;
Lee et al. 2010).

Suppose the observer’s motion is described by

po(t) = c0 + c1t+ · · ·+ cnt
n + h(t),

where c0, c1, · · · , cn ∈ R3 are constant parameters, and

h(t) = d1t
n+1 + d2t

n+2 + · · · (25)

represents higher-order motion with d1, d2, · · · ∈ R3. It can
be verified that the derivatives of h(t) satisfy h(i)(0) = 03×1

for i = 0, 1, · · · , n. Let s(t) ∈ R3 be the relative motion
between the target and the observer:

s(t)
.
= pT (t)− po(t)
.
= s0 + s1t+ · · ·+ snt

n + h(t), (26)

where si = di − ci ∈ R3 for i = 0, 1, · · · , n.
If we can determine {si}ni=0, then s(t) and hence pT (t)

can be determined. Therefore, we next study under what
conditions {si}ni=0 can be uniquely determined. Since
pT (t)− po(t) = g(t)r(t) according to (4a) and r(t) =
ℓ/θ(t) according to (4b), we have

s(t) = pT (t)− po(t) = g(t)r(t) =
g(t)

θ(t)
ℓ.
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Substituting the above equation into (26) yields

s0 + s1t+ · · ·+ snt
n + h(t) =

g(t)

θ(t)
ℓ. (27)

Here, s0, · · · , sn, ℓ are unknowns to be determined and
g(t), θ(t), h(t) are known. Equation (27) can be reorganized
to a linear equation:

A(t)X = h(t), (28)

where

X =
[
sT0 , s

T
1 , · · · , sTn , ℓ

]T ∈ R3n+4,

and

A(t) =
[
I3×3, tI3×3, · · · , tnI3×3, ρ(t)

]
∈ R3×(3n+4),

(29)

where

ρ(t)
.
= −g(t)

θ(t)
∈ R3. (30)

Therefore, the problem that we aim to solve becomes
determining whether X can be uniquely solved from (28).

6.2 Necessary and sufficient observability
condition

We next present a necessary and sufficient condition under
which the solution X of (28) is unique.

Theorem 1. (Necessary and sufficient observability condi-
tion). The target’s motion pT (t) can be uniquely deter-
mined by the observer’s motion po(t), the bearing g(t), and
the angle θ(t) if and only if

h(t) ̸= 03×1,

which means that the order of the observer’s motion must be
greater than the target.

Proof 6.1. Since the row number of A(t) is less than
its column number, (28) is an under-determined system
whose solution cannot be uniquely determined. However, in
the continuous time domain, we can use additional higher
derivatives of this equation to uniquely determine X .

In particular, taking the ith-order derivative on both sides
of (28) gives A(i)(t)X = h(i)(t). Consider any integer N
satisfying N ≥ n+ 1. Combining the equations with i ∈
{0, 1, . . . , N} gives

Ā(t)X = h̄(t), (31)

where

Ā(t) =


A(t)

A
′
(t)
...

A(N)(t)

 , h̄(t)


h(t)

h
′
(t)
...

h(N)(t)

 . (32)

Here, Ā(t) ∈ R(3N+3)×(3n+4) and h̄(t) ∈ R3N+3. Since
N ≥ n+ 1, Ā(t) is a tall matrix and (31) is an over-
determined system.

We next examine when Ā(t) has full column rank.
Substituting (29) into Ā(t) yields

Ā(t) =



I3×3 tI3×3 · · · tnI3×3 ρ(t)

03×3 I3×3 · · · ntn−1I3×3 ρ
′
(t)

...
...

. . .
...

...
03×3 03×3 · · · n!I3×3 ρ(n)(t)

03×3 03×3 · · · 03×3 ρ(n+1)(t)
...

...
...

...
...

03×3 03×3 · · · 03×3 ρ(N)(t)


.

Since the top-left block of Ā(t) is a full-rank square matrix,
Ā(t) has full column rank if and only if there exists i ∈
{n+ 1, . . . , N} such that

ρ(i)(t) ̸= 03×1. (33)

Since ρ(t) = −g(t)/θ(t) as shown in (30) and g(t)/θ(t) =
(s0 + s1t+ · · ·+ snt

n + h(t))/ℓ as shown in (27), we can
rewrite (33) to

−1

ℓ
(s0 + s1t+ · · ·+ snt

n + h(t))(i) ̸= 03×1. (34)

Since i ≥ n+ 1, (34) is equivalent to

h(i)(t) ̸= 03×1. (35)

According to the definition of h(t) in (25), the condition in
(35) is equivalent to

h(t) ̸= 03×1.

The proof is complete.

Some important remarks about Theorem 1 are given
below.

1) The necessary and sufficient condition suggested by
Theorem 1 is that the observer should have higher-order
motion than the target. For example, when the target is
stationary, the observer should move with a nonzero velocity.
When the target moves with a constant velocity, the observer
should move with a nonzero acceleration.

2) The necessary and sufficient condition given by
Theorem 1 has a key difference from the bearing-only case
that the higher-order motion in the bearing-angle case is not
required to be orthogonal to the bearing vector, making the
bearing-angle approach more flexible than the bearing-only
one. For example, the bearing-angle approach can estimate
the target’s motion even if the observer simply moves along
the bearing vector.

3) In the special case where the target moves with a
constant velocity, the condition in Theorem 1 is consistent
with the one obtained in Section 5. Although the condition in
Theorem 1 allows more general target motion, the analysis in
Section 5 is still meaningful since it is directly related to the
dynamic model used in the pseudo-linear Kalman filter.

4) In practice, we would not estimate the target’s motion
by using the method of solving an equation like (31). That
is because such a method involves calculating high-order
derivatives, which are challenging to obtain accurately in
practice. The role of this equation is to provide a fundamental
perspective on whether there is sufficient information to
uniquely recover the target’s motion.
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Ã →



I t1I · · · tn−1
1 I tn1 I ρ(t1)

0 I · · · ∆(tn−1
2 , tn−1

1 )I ∆(tn2 , t
n
1 )I ∆(ρ(t2), ρ(t1))

...
...

. . .
...

...
...

0 0 · · · (n− 1)!I ∆n−1(tnn, · · · , tn1 ) ∆n−1(ρ(tn), · · · , ρ(t1))
0 0 · · · 0 n!I ∆n(ρ(tn+1), · · · , ρ(t1))
0 0 · · · 0 0 ∆n+1(ρ(tn+2), · · · , ρ(t1))
...

...
...

...
...

...
0 0 · · · 0 0 ∆N−1(ρ(tN ), · · · , ρ(t1))


(36)

6.3 Number of observations required
It is of practical importance to study how many discrete
observations are required to recover the target’s motion.
Although Theorem 1 gives an observability condition, it does
not answer this question because it is based on the continuous
time domain. We next answer this question by exploring
multiple discrete time steps.

Theorem 2. (Number of discrete observations). If the
observer’s motion satisfies the observability condition in
Theorem 1, it is necessary and sufficient to use at least n+ 2
observations to recover the target’s motion. Here, n is the
order of the target’s polynomial motion as shown in (24).

Proof 6.2. Consider t1, . . . , tN time instances. Each time
instance corresponds to an equation like (28): A(ti)X =
h(ti) for i = 1, . . . , N . Combining these equations gives

ÃX = h̃, (37)

where

Ã =

 A(t1)
...

A(tN )

 , h̃

 h(t1)
...

h(tN )

 . (38)

Here, Ã ∈ R(3N)×(3n+4) and h̃ ∈ R3N .
(Necessity) Since X ∈ R3n+4, we need at least N ≥ n+

2 observations so that Ã is a tall matrix and hence (37) is an
over-determined system.

(Sufficiency) Suppose we have N ≥ n+ 2 discrete
observations. Substituting (29) into (38) yields

Ã =



I3×3 t1I3×3 · · · tn1 I3×3 ρ(t1)
I3×3 t2I3×3 · · · tn2 I3×3 ρ(t2)

...
...

...
...

I3×3 tn+1I3×3 · · · tnn+1I3×3 ρ(tn+1)
I3×3 tn+2I3×3 · · · tnn+2I3×3 ρ(tn+2)

...
...

...
...

...
I3×3 tNI3×3 · · · tnNI3×3 ρ(tN )


.

Starting from the last line in Ã, subtract the previous line
from each subsequent line, and repeat this process.
Finally, we can obtain (36) (the equation is too
long and located at the top of another page). Here,
∆n represents the nth-order time difference (Milne-
Thomson 2000). For example, ∆(a2, a1) = (a2 − a1)/δt,
∆2(a3, a2, a1) = ∆(∆(a3, a2),∆(a2, a1)) = [(a3 −

a2)/δt− (a2 − a1)/δt]/δt. When δt is sufficiently small,
the time difference is an approximation of the derivative.
When the observability condition in Theorem 1 is satisfied,
there exists i ≥ n+ 1 such that ρ(i)(t) ̸= 0 as shown in
(33). As a result, there exists i ≥ n+ 1 such that

∆i(ρ(ti+1), · · · , ρ(t1)) ̸= 0.

The above implication is valid because ∆i is an
approximation of the ith-order derivative when δt is
sufficiently small. Then, Ã in (36) has full column rank and
hence (37) has a unique solution.

Theorem 2 suggests that when the target is stationary and
hence n = 0, at least two discrete observations are sufficient
to localize the target. This is true even if the two observations
are acquired when the observer moves along the bearing
vector. When the target moves with a constant velocity and
hence n = 1, at least three discrete observations are sufficient
to localize the target, which is consistent with the results in
Section 5.

7 Numerical Simulation Results
This section presents a set of numerical simulation results to
demonstrate the effectiveness of the proposed bearing-angle
approach.

The values of the parameters in two estimators are selected
as σv = 10−3, σl = 10−4, σµ = 0.01, and σw = 0.01. The
selection of these values is inspired by the measurement
noises obtained in the AirSim simulation and real-world
experiments as shown later. The initial covariance matrix of
the estimated states is set to P (t0) = 0.1I . The target is a
circle whose diameter is ℓ = 1. The update rate of the system
is 50 Hz. In addition, we use the same parameter values
across all the simulation examples to verify the robustness
of the algorithm. Better performances can be achieved if the
parameters are well-tuned for specific scenarios. We perform
Nx = 100 Monte Carlo simulations for each scenario.

We use the normalized-estimation error squared (NEES)
(Bar-Shalom and Li 1998) to analyze the consistency of the
estimation algorithms. In particular, the value of the average
NEES is

ϵ̄NEES =
1

Nx

Nx∑
i=1

(x− x̂i)
TP−1

i (x− x̂i), (39)

where x̂i is the estimated states in the ith simulation, and Pi

is the covariance matrix obtained from the estimator in the
ith simulation.
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(a) Scenario 1: Circular motion around the target. Both the bearing-only and bearing-angle approaches work well, but the bearing-angle one
converges faster.
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(b) Scenario 2: Straight motion towards and backwards the target. The bearing-only approach fails, but the bearing-angle approach works effectively.
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(c) Scenario 3: Approaching the target by a guidance law. The bearing-only approach works unstably, but the bearing-angle approach works
effectively.

Figure 4. Numerical simulation results based on 100 Monte Carlo runs in three scenarios.

Finally, image acquisition and visual detection are not
considered in these numerical simulation scenarios. They
will be considered in Section 8 and Section 9.

7.1 Scenario 1: Circular motion around the
target

In the first scenario, the target is stationary and located
at pT = [0, 10]T. The observer moves on a circle centered
at the target with the speed of 3 m/s (see Fig. 4a). The

radius of the circle is 5 m. The initial estimates are p̂o(t0) =

[0, 13]T, v̂o(t0) = [0, 0]T, ℓ̂(t0) = 1.6. During this process,
the bearing vector varies while the angle subtended by
the target remains constant. The angle measurement varies
slightly due to the measurement noise. This scenario is
favorable to the conventional bearing-only approach because
its observability condition that the target should be viewed
from different angles is well satisfied (Li et al. 2023).

Prepared using sagej.cls



12 Journal Title XX(X)

-6 -4 -2 0 2 4 6

x (m)

4

6

8

10

12

14

16

18

y 
(m

)
Trajectory

true traj of observer
true traj of target
est by bearing-only
est by bearing-angle

pos of observer
pos of target
est by bearing-only
est by bearing-angle

0 2 4 6 8 10

time (s)

0

0.5

1

1.5

2

2.5

3

3.5

er
ro

r 
of

 d
is

ta
nc

e 
(m

)

bearing-only
bearing-angle

0 2 4 6 8 10

time (s)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

S
iz

e 
(m

)

Target Size

real target size
estimated size

(a) The observer moves around the square-shaped target. The target spins rapidly at 2π rad/s.
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(b) The observer moves along the bearing vector. The target’s spinning speed is π/8 rad/s.

Figure 5. Numerical simulation results for time-varying ℓ.

Fig. 4a shows the estimation results by the two approaches
of bearing-only and bearing-angle. As can be seen, both
algorithms perform well. The convergence of the bearing-
angle approach is faster than the bearing-only one, as shown
in the middle and right subfigures of Fig. 4a, due to the
additional angle measurement. The bearing-angle approach
can successfully estimate the size of the target as shown in
the right subfigure of Fig. 4a.

7.2 Scenario 2: Straight motion towards and
backwards the target repeatedly

In the second scenario, the target is also stationary but the
observer moves along a straight line towards and backwards
the target repeatedly (Fig. 4b). During this process, the
bearing vector remains constant while the angle varies. This
scenario is most challenging for the bearing-only approach
because its observability condition is not fulfilled.

In this simulation scenario, the target is stationary and
located at pT (t0) = [0, 10]T. The observer moves along
a straight line towards and backwards the target with a
constant acceleration of −2 m/s2. The initial conditions are
vo(t0) = [0, 4]T and po(t0) = [0, 5]T. The initial estimates
are p̂o(t0) = [0, 8]T, v̂o(t0) = [0, 0]T, ℓ̂(t0) = 0.8. In this
scenario, the true bearing of the target relative to the observer
remains unchanged though the bearing measurement may
vary slightly due to the measurement noise.

Fig. 4b shows the estimation results of the bearing-only
and bearing-angle approaches. As can be seen, the bearing-
only approach diverges since its observability condition
is not satisfied. By contrast, the proposed bearing-angle
approach converges, and is able to localize the target and
estimate its size, which demonstrates the strong observability
of the bearing-angle approach. One may notice that the
estimated size and the NEES value get worse first before
converging. This is because the noise level of the angle is
set to be constant. Since the angle is small in the beginning,
the noise-angle ratio is large, causing a relatively large NEES
value.

7.3 Scenario 3: Approaching the target by a
guidance law

The third scenario is more complex than the first two. Here,
the target moves with a constant velocity where the observer
is controlled by a proportional navigation guidance (PNG)
law to approach the target (Fig. 4c). During this process, both
the bearing and angle vary. This scenario is also challenging
for the bearing-only approach because its observability is
weak due to the fact that the lateral motion of the observer
is small. Many researchers have studied how to add extra
control commands to the PNG to enhance the observability
based on the bearing-only approach (Song and Um 1996; Seo
and Tahk 2015; Lee et al. 2015).
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Figure 6. The setup of the AirSim simulation experiments.
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Figure 7. The software architecture of the AirSim simulation system. AirSim is a plugin for Unreal Engine. Three programmed
modules (Offline training, Online estimation, and MAV control) communicate with the AirSim plugin through APIs.

In this simulation scenario, the target moves along a
straight line with a constant velocity vT = [1/

√
2, 1/

√
2]T.

The observer’s velocity magnitude is constantly 3 m/s while
the velocity direction is controlled by a PNG law. The
navigation gain of the PNG law is selected as one. The initial
estimates of the target’s states are the same as Scenario 1.
The simulation stops just before the observer collides with
the target.

Fig. 4c shows the estimation results by the bearing-only
and bearing-angle approaches. As can be seen, the bearing-
angle algorithm successfully converges before the collision
occurs, but the bearing-only algorithm fails to estimate the
target’s states due to its weak observability. This simulation
example demonstrates that the bearing-angle algorithm can
be used directly in the guidance scenario without extra
maneuvers required by the bearing-only approach (Song and
Um 1996; Seo and Tahk 2015; Lee et al. 2015).

7.4 Simulation results for time-varying ℓ

Although ℓ is assumed to be invariant, it is meaningful
to challenge the proposed bearing-angle approach by
considering time-varying ℓ. We will see through simulation
examples that the bearing-angle approach is still effective
when ℓ varies slowly. It becomes unstable when ℓ varies
rapidly since the assumption of invariant ℓ is severely invalid.

Suppose that the target object has a square shape. Then,
ℓ varies when the object is observed from different viewing

angles or the object spins. Fig. 5a shows a scenario where
the observer moves around the target, whose spinning speed
is 2π rad/s. The red curve in the right subfigure represents
the true value of ℓ, which varies rapidly. As can be seen, the
bearing-angle algorithm works effectively though there is a
small estimation bias. Fig. 5b shows a scenario where the
observer moves along the bearing vector. The spinning speed
of the target object is π/8 rad/s. As can be seen, the bearing-
only approach diverges due to the lack of observability. The
bearing-angle algorithm can still converge since ℓ varies
slowly. When we further increase the spinning speed of the
target, the bearing-angle algorithm will also diverge because
the algorithm cannot distinguish whether the change of θ is
caused by the change of ℓ or the change of r.

8 AirSim Simulation Results
In this section, we show simulation results under a more
realistic setup. In particular, the simulation is based on
AirSim, a simulator that can provide high-quality visual
simulation (Shah et al. 2017). Nonlinear MAV dynamics and
control are also considered.

8.1 Simulation setup
Fig. 6a shows an AirSim simulation scenario. As can be seen,
there are two flying quadcopter MAVs. The observer MAV
can capture images of the target MAV using its simulated
onboard camera. A simple gimbal camera controller is
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(a) The target MAV hovers stationarily, while the observer MAV approaches the target MAV under the control of (40).
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(b) The target MAV moves with a constant velocity, while the observer MAV follows the target MAV under the control of (40).

Figure 8. AirSim simulation results in the approaching and following scenarios.

implemented so that the target MAV is always located inside
the field of view of the camera. The visual environment
used in the simulation is called Landscape Mountains, which
includes realistic mountains, lakes, trees, and roads. Other
environments can also be used if needed.

The bearing and angle measurements are obtained from
the bounding boxes generated by a Yolo-based detection
algorithm. A tiny-YOLO v4 network (Bochkovskiy et al.
2020) is trained to detect the target MAV in the images.
Although the visual detector can be replaced by other
state-of-the-art ones, the tiny-YOLO v4 network is already
sufficient to verify our proposed approach. The architecture
of the entire simulation system is shown in Fig. 7. The
system consists of the modules of automatic image dataset
collection, Yolo-based target detection, gimbal camera
control, nonlinear quadcopter dynamics, and quadcopter
flight control. The quadcopter dynamics and flight control
used in the simulation are similar to (Meier et al. 2011;
Shah et al. 2017) and omitted here due to space limitation.
The quadcopter’s physical size varies slightly when viewed
from different directions, although it is assumed to be
invariant. All of these factors make the Airsim simulation
more realistic and challenging.

8.2 Automatic dataset collection
To train the Yolo-based detector, we developed a module
to automatically collect an image dataset. This module
has some advantages. First, it is efficient. More than ten
thousand labeled images can be collected automatically in
24 hours. Second, it is flexible. It can acquire images with
random target’s positions, random target’s attitudes, random
camera’s view angles, and random background scenes. These
images are beneficial to achieve a good generalization ability
of the detector. Third, the image labels are of high quality.
Since the ground truth of the target’s image is known
in the simulation, the generated bounding box is tight.
The collected dataset contains 17,000 labeled images (see
Fig. 6b). The resolution of the images is 1536× 864 pixels.
The simulation system was deployed on a Dell Precision
7920 Tower Workstation with two NVIDIA Quadro GV100
graphic cards. Since the dataset is sufficient and high-quality,
the detection can achieve the accuracy of mAP=99.5%.

8.3 Scenario 1: Approaching and following the
target

We first consider the scenarios where the observer MAV
approaches or follows a target MAV. These scenarios widely
exist in practical applications such as aerial target pursuit.

We show two simulation examples in Fig. 8a and Fig. 8b,
respectively. In both examples, the observer is controlled by

Prepared using sagej.cls



Zian Ning et al. 15

Trajectory

15

y (m)

10-50

-6

x (m)

-4

z 
(m

)

-48

5-2 0 2

-46

4 6

true traj of observer
true traj of target
est by bearing-only
est by bearing-angle

pos of observer
pos of target
est by bearing-only
est by bearing-angle

0 2 4 6 8 10

time (s)

0

0.5

1

1.5

2

er
ro

r 
of

 d
is

ta
nc

e 
(m

)

bearing-only
bearing-angle

0 2 4 6 8 10

time (s)

0.8

1

1.2

1.4

S
iz

e 
(m

)

Target Size

real target size
estimated size

0 2 4 6 8 10

time (s)

0.1

0.2

0.3

0.4

Error of bearing(degree)

0 2 4 6 8 10

time (s)

0.2

0.4

0.6

0.8

Error of angle(degree)

(a) Estimation results when σl = 10−4 and the other parameters are the same as those in Section 8.3.
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(b) Estimation results when σl = 0.01 and the other parameters are the same as those in Section 8.3.

Figure 9. AirSim simulation results in the circular motion scenario where ℓ varies.

a controller so that it can approach the target and maintain a
desired separation. In particular, the controller is

vcmd
o (t) = vT (t) + ktrack r

2(t)− r2d
r2(t)

g(t), (40)

where vcmd
o (t) is the velocity command of the observer MAV,

ktrack = 3 is the control gain, and rd = 3 is the desired
separation. The magnitude of the observer’s velocity is
bounded from above by 3 m/s. It should be noted that (40)
relies on the true position and velocity of the target MAV in
the simulation. Therefore, the data is collected first and then
processed offline so that we can compare the performances
of the bearing-only and bearing-angle approaches.

In the first example, the target MAV hovers constantly
at pT (t0) = [0, 10, 10]T. The observer MAV moves along
a straight line toward the target with a decreasing velocity
command. Since the bearing of the target MAV remains
the same, this example is challenging for the bearing-only
approach. As shown in Fig. 8a, the bearing-only approach
fails to converge while the bearing-angle approach can
successfully estimate the target’s motion.

In the second example, the target MAV moves with a
constant velocity of vT = [1/

√
2, 1/

√
2, 0]T. The trajectory

of the observer MAV under the control of (40) is still
close to (though not strictly) a straight line. As a result,
the observability is weak by the bearing-only approach. As
shown in Fig. 8b, the bearing-angle approach successfully

converges while the bearing-only one fails. It is notable that
ℓ is invariant in the first example and varies slowly in the
second example.

It is worth mentioning that the detection results used in
the estimation algorithms are obtained from the Yolo-based
estimator. The ground truth obtained from AirSim is only
used to calculate the errors of measurements, as shown in
the right figures of Figs. 8a and 8b. It is not surprising that
the measurement noises are not strictly Gaussian since the
2D bounding box is generated by a deep learning vision
algorithm. It is noticed that the noises are inversely correlated
to the observer-target range. This is reasonable because,
when the target is close to the camera and hence its image
is large, the center point and the size of the bounding box
usually vary for a few pixels.

The NEES values are also shown in Fig. 8. As can be
seen, the NEES value of the bearing-only approach diverges.
The NEES value of the bearing-angle approach oscillates
and converges slowly. The reasons are analyzed as follows.
Compared to the Matlab-based numerical simulation, the
visual measurements here are generated by deep learning
algorithms, and the measurement noises are non-Gaussian.
The non-Gaussian noises propagate into P in (39) since
the calculation of P relies on noisy measurements. The
noises may also cause an estimation bias that can further
aggravate the NEES error. Moreover, although the system is
observable in the two simulation examples, the observability
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is relatively weak compared to the case where the observer
moves surrounding the target. As a result, the matrix P may
not be able to perfectly describe the estimation accuracy.
These elements may jointly cause the convergence behavior
of the NEES values shown in Fig. 8.

8.4 Scenario 2: Circular motion and varying ℓ

We next examine a case where ℓ is time-varying. In
particular, suppose a target quadcopter MAV hovers
constantly at pT (t0) = [0, 10, 10]T. The observer MAV
moves on a circle centered at the target (Fig. 9a). Since the
target quadcopter MAV has a square shape from the top view,
its size ℓ is time-varying when viewed from side angles (see
the red curves in the middle subfigure of Fig. 9a).

We show two simulation examples in Fig. 9a and Fig. 9b,
respectively. The two simulation examples share the same
measurement data but different values of σℓ. Moreover, the
other parameters are the same as those in Section 8.3.

In the first simulation example, σℓ is set to be a small
value: σℓ = 10−4. Its interpretation is that ℓ is treated as
invariant during the process. In this case, the performance
of the bearing-angle approach is almost the same as the
bearing-only one as shown in Fig. 9a. Since ℓ is treated to
be invariant, the estimated value ℓ̂ converges to a constant
which is the mean value of the time-varying ℓ.

In the second simulation example, the value of σℓ is larger
than the first example: σℓ = 0.01. Its interpretation is that ℓ is
believed to be time-varying during the process. In this case,
the performance of the bearing-angle approach is still almost
the same as the bearing-only one. Moreover, since σℓ is large,
the bearing-angle approach can successfully estimate the true
time-varying value of ℓ.

In summary, in the case where ℓ varies slowly, the bearing-
angle approach would degenerate to the bearing-only one.
The fundamental reason is that the extra information
embedded in the angle measurement is used to estimate the
time-varying ℓ rather than improving the observability of the
target’s motion.

9 Real-World Experimental Results
In this section, two sets of real-world experiments are
presented to further verify the effectiveness of the approach.
The first is based on a hand-held camera and a ground robot.
The second is based on two quadcopter MAVs. The second
experimental scenario is motivated by aerial target pursuit
tasks.

9.1 Experiment 1: Hand-held camera
The experimental setup is shown in Fig. 10a. The observer
is a hand-held camera (Hik Vision DS-E14S) connected to
a laptop. The camera’s intrinsic parameters are calibrated
beforehand. The robot built on Mecanum wheels can move
in any direction on the ground under velocity control. The
ground truth of the states of the camera and the robot are
provided by a Vicon indoor motion capture system. The key
experimental specifications are listed in Table 1.

A dataset of 5,514 images was collected and used to
train a tiny-YOLO v4 network to detect the target robot
(see Fig. 10b). The detection precision of the trained

Table 1. Key specifications of the indoor hardware system.

Parameter Value Unit

Camera Resolution 640× 480 pixel
Max frequency 30 fps

Robot Max speed 1 m/s
Diameter size 295 mm

Vicon Localization accuracy 1 mm
Max frequency 100 Hz

Table 2. Key specifications of the outdoor hardware system.

Parameter Value Unit

M300
quadcopter

Diagonal size 895 mm
Total mass 7.4 kg
Max pitch/roll 30 degree
Max flight time 30 minutes

RTK Accuracy 1 cm
Max frequency 10 Hz

H20
gimbal &
camera

Resolution 1920×1080 pixel
Frequency 15 Hz
Max angular rate 180 deg/s

network is mAP=99.8%. In the experiment, the target robot
is commanded to move with a constant velocity. In the
meantime, a person holding the camera moves along some
trajectories. Two different cases are studied. In both of
the cases, the target robot moves with a constant velocity
vT = [−0.1, 0.1, 0]T. The noises of the measurements are
calculated based on the ground truth provided by the Vicon
system. The noises are shown in the right subfigures of
Fig. 11a and Fig. 11b.

In the first case, the camera is held about 1.5 meters
above the ground and moves around the target robot. In this
case, the bearing vector varies sufficiently and hence the
observability conditions for the bearing-only and bearing-
angle approaches are both well satisfied. As shown in
Fig. 11a, both approaches perform well in this case while
the bearing-angle approach performs slightly better than the
bearing-only one.

In the second case, the camera moves along the trajectory
of the robot by getting close or far from it periodically. In
this case, the angle varies significantly, but the bearing does
not. Without surprise, the bearing-only approach performs
poorly in this case due to weak observability (Fig. 11b). By
contrast, the bearing-angle approach can perform stably due
to its enhanced observability.

9.2 Experiment 2: MAV-following-MAV
Two MAV platforms were developed based on DJI M300
quadcopters (Fig. 12a). The MAV platforms are equipped
with RTK GPS modules for accurate self-localization, an
H20 camera for visual detection, a Manifold 2G onboard
computer for onboard flight control, and a Zigbee module
for wireless communication. Some key specifications of
the MAV platforms are listed in Table 2. The structure
of the hardware perception and communication system is
illustrated in Fig. 12c. The target MAV is also equipped
with an RTK GPS module, whose measurements are used
as the ground truth to calculate the noises of the visual

Prepared using sagej.cls



Zian Ning et al. 17

Target 
Camera

Image

(a) Experimental setup (b) Samples in the dataset

Figure 10. The setup of the experiments based on a hand-held camera.
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(a) Case 1: The observer moves around the target. Both the bearing-only and bearing-angle approaches work well.
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(b) Case 2: The observer moves close or far from the target periodically. The bearing-angle approach performs effectively, but the bearing-only
approach works unstably.

Figure 11. Experimental results based on a hand-held camera.

measurements. The noises are shown in the right subfigure
of Fig. 13.

The experiment consists of two stages: data acquisition
and offline data processing. In the data acquisition stage, the
target MAV is commanded to fly with a constant velocity, and
the observer MAV is automatically controlled to follow the
target MAV to maintain a constant distance from the target.
More specifically, the procedure of the flight experiment is
as follows. Initially, the observer MAV is placed about 20
meters behind the target MAV on the ground. Then, the

two MAVs take off and fly to the same specified height
automatically upon a takeoff command sent from the ground
control station. After they have reached the desired height,
all deployed algorithms are activated. Then, the target MAV
moves with a constant velocity of vT = [1/

√
2, 1/

√
2, 0]T.

The observer MAV approaches the target by the controller
in (40). It takes the observer MAV about eight seconds to
reach the desired relative distance. Then, the two MAVs fly
with the same velocity and remain relatively stationary for
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Figure 12. The setup of the MAV-following-MAV experiment.
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Figure 13. The results of the MAV-following-MAV experiments. The bearing-angle approach performs effectively, but the
bearing-only approach works unstably.

another 20 seconds. Finally, the ground station sends a stop
command and the two MAVs return and land automatically.

During the flight, the gimbal camera of the observer
MAV is automatically controlled so that the target MAV is
maintained in the field of view. It is noted that the control
of the gimbal camera and the observer MAV is not based on
the visual detection results. Instead, the control is based on
the measurements provided by the RKT GPS and inter-MAV
wireless communication. In this way, we can analyze the
image and flight data offline and compare the performance of
the two approaches of bearing-angle and bearing-only. The
acquired images and flight data are saved on the onboard
computer during the flight. A dataset of 5,341 images was
collected (Fig. 12b) and used to train a tiny-YOLO v4

network. The detection precision of the trained network
reaches mAP=99.8%.

The experimental results are shown in Fig. 13. As can
be seen, the bearing-angle approach performs well. By
contrast, the bearing-only approach only works well before
the observer MAV reached the desired position relative to the
target MAV. That is because the bearing varies significantly
during this process due to the fluctuation of the observer’s
motion caused by the flight control. However, the bearing-
only approach diverges quickly thereafter when the bearing
stops varying significantly.
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10 Conclusion
Motivated by the limitation of the existing bearing-only
approach, this paper proposed and analyzed a novel bearing-
angle approach for vision-based target motion estimation.
We showed that the observability by the bearing-angle
approach is significantly enhanced compared to the bearing-
only one. As a result, the requirement of the observer’s extra
motion for observability enhancement can be significantly
relaxed. As we showed in various experiments, the bearing-
angle approach can successfully estimate the target’s motion
in many scenarios where the bearing-only approach fails.
The enhanced observability of the bearing-angle approach
comes with no additional cost since almost all vision
detection algorithms can generate bounding boxes. One
assumption adopted in the bearing-angle approach is that the
target’s physical size is invariant to different viewing angles.
Although this assumption is approximately valid in many
tasks as demonstrated in this paper, it is meaningful to study
how to relax or remove this assumption in the future.
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