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Abstract
Hybrid density-functional calculation is one of the most commonly adopted electronic structure theory used in
computational chemistry and materials science because of its balance between accuracy and computational cost.
Recently, we have developed a novel scheme called NAO2GTO to achieve linear scaling (Order-N) calculations for
hybrid density-functionalsShang et al. (2011). In our scheme, the most time-consuming step is the calculation of the
electron repulsion integrals (ERIs) part. So how to create an even distribution of these ERIs in parallel implementation is
an issue of particular importance. Here, we present two static scalable distributed algorithms for the ERIs computation.
Firstly, the ERIs are distributed over ERIs shell pairs. Secondly, the ERIs is distributed over ERIs shell quartets. In both
algorithms, the calculation of ERIs is independent of each other, so the communication time is minimized. We show
our speedup results to demonstrate the performance of these static parallel distributed algorithms in the Hefei Order-N
packages for ab initio simulations (HONPAS)Qin et al. (2014).

INTRODUCTION

The electronic structure calculations based on density
functional theory (DFT) Parr and Yang (1989); Hohenberg
and Kohn (1964); Kohn and Sham (1965) are the work-
horse of computational chemistry and materials science.
However, widely used semi-local density functionals could
underestimate the band gaps because of its inclusion of
the unphysical self-interaction Mori-Sánchez et al. (2008).
A possible solution is to add the nonlocal Hartree-Fock
type exchange (HFX) into semi-local density-functionals
to construct hybrid functionalsBecke (1993); Stephens
et al. (1994); Janesko et al. (2009); Paier et al. (2009);
Monkhorst (1979); Delhalle and Calais (1987); Gell-Mann
and Brueckner (1957); Heyd et al. (2003, 2006); Krukau
et al. (2006); Frisch et al. (2009); Paier et al. (2006).
However, the drawback of hybrid density-functionals is
that it is significantly more expensive than conventional
DFT. The most time-consuming part in hybrid density-
functional calculations becomes construction of HFX matrix,
even with the appearance of fast linear scaling algorithms
that overcome the bottlenecks encountered in conventional
methodsSchwegler and Challacombe (1996); Burant et al.
(1996); Schwegler et al. (1997); Ochsenfeld et al. (1998);
Polly et al. (2004); Tymczak and Challacombe (2005); Sodt
and Head-Gordon (2008); Guidon et al. (2010); Merlot et al.
(2014). As a result, hybrid density-functional calculations
must make efficient use of parallel computing resources
in order to reduce the execution time of HFX matrix
construction.

The implementation of hybrid density-functionals for
solid state physics calculations are mostly based on plane
waves (PW)Gonze et al. (2002, 2016); Paier et al. (2006)
or linear combination of atomic orbitals (LCAO)Krukau

et al. (2006); Frisch et al. (2009); Dovesi et al. (2006)
method. The atomic orbitals basis set is efficient for
real-space formalisms, which have attracted considerable
interest for DFT calculations because of their favorable
scaling with respect to the number of atoms and their
potential for massively parallel implementations for large-
scale calculations Delley (1990); Soler et al. (2002); Blum
et al. (2009); Havu et al. (2009); Ren et al. (2012); Enkovaara
et al. (2010); Mohr et al. (2014); Frisch et al. (2009);
Shang et al. (2011). Unlike plane wave method, when
constructing HFX matrix within LCAO method, we must
first calculate the ERIs via the atomic orbitals. There are
currently two types of atomic orbits that are most commonly
used. The first is gaussian type orbital(GTO), as adopted
in GaussianFrisch et al. (2009) and CRYSTALDovesi et al.
(2006), its advantage is to calculate ERIs analytically.
The second is numerical atomic orbital (NAO), which
is adopted in SIESTASoler et al. (2002), DMOLDelley
(1990), OPENMXOzaki (2003), et al.. The advantage of
NAO is its strict locality, which naturally leads to lower
order scaling of computational time versus system size. In
order to take advantages of both types of atomic orbitals,
we have proposed a new scheme called NAO2GTOShang
et al. (2011), in which GTO can be used for analytical
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computation of ERIs in a straightforward and efficient way,
while NAO can be employed to set the strict cutoff for atomic
orbitals. After employing several ERI screening techniques,
the construction of HFX matrix can be very efficient and
scale linearlyShang et al. (2011); Qin et al. (2014).

Parallelization of HFX matrix construction faces two
major problems of load imbalance and high communication
cost. The load imbalance arises from the irregularity of
the independent tasks available in the computation, which
is due to the screening procedure and different types
of shell quartets distributed among processes. The high
communication cost is from interprocessor communication
of the density and/or HFX matrices, which is associated with
the data access pattern. It is well known that NWChemValiev
et al. (2010) and CP2K/QuickstepVandeVondele et al. (2005)
are the most outstanding softwares in the field of high
performance parallel quantum chemical computing, and
both of them use GTOs to construct HFX matrix. In
NWChem, the parallelization of HFX matrix construction
is based on a static partitioning of work followed by
a work stealing phaseLiu et al. (2014); Chow et al.
(2015). The tasks are statically partitioned throughout
the set of shell (or atom) quartets, and then the work
stealing phase acts to polish the load balance. As a
result, this parallel implementation gives very good parallel
scalability of Hartree–Fock calculationsLiu et al. (2014).
In CP2K/Quickstep, the HFX parallelization strategy is to
replicate the global density and HFX matrix on each MPI
process in order to reduce communication. A load balance
optimization based on simulated annealing and a binning
procedure to coarse grain the load balancing problem have
been developedGuidon et al. (2008). However, this approach
may limit both system size and ultimately parallel scalability.

As the ERIs calculation is the most computationally
demanding step in the NAO2GTO scheme, the development
of the new parallel algorithms is of particular importance.
Previously, for codes using localized atomic orbitals, the
parallelization of ERIs are mainly implemented to treat
finite, isolated systems Schmidt et al. (1993); Alexeev et al.
(2002); Liu et al. (2014); Chow et al. (2015), but only a few
literature reports exist for the treatment of periodic boundary
conditions with such basis sets Bush et al. (2011); Guidon
et al. (2008), in which the Order-N screening for the ERIs
calculations has not been considered. The purpose of this
work is to present the static parallel distribution algorithms
for the NAO2GTO schemeShang et al. (2011) with Order-
N performance in HONPAS codeQin et al. (2014). In our
approaches, the calculations of ERIs are not replicated, but
are distributed over CPU cores, as a result, both the memory
and the CPU requirements of the ERIs calculation are
paralleled. The efficiency and scalability of these algorithms
are demonstrated by benchmark timings in periodic solid
system with 64 silicon atoms in the unit cell.

The outline of this paper is as follows: In Section 2, we
begin with a description of the theory of hybrid functionals.
In Section 3, we describe the detail implementation of our
parallel distribution . In Section 4, we present the benchmark
results and the efficiency of our scheme.

Fundamental Theoretical Framework
Before addressing the parallel algorithms, we recall the basic
equations used in this work. A spin-unpolarized notation
is used throughout the text for the sake of simplicity,
but a formal generalization to the collinear spin case
is straightforward. In Kohn-Sham DFT, the total-energy
functional is given as

EKS = Ts[n] + Eext[n] + EH[n] + Exc[n] + Enuc-nuc . (1)

Here, n(r) is the electron density, Ts is the kinetic energy
of non-interacting electrons, while Eext is external energy
stemming from the electron-nuclear attraction, EH is the
Hartree energy, Exc is the exchange-correlation energy, and
Enuc-nuc is the nucleus-nucleus repulsion energy.

The ground state electron density n0(r) (and the
associated ground state total energy) is obtained by
variationally minimizing Eq. (1) under the constraint that
the number of electrons Ne is conserved. This yields the
chemical potential µ = δEKS/δn of the electrons and the
Kohn-Sham single particle equations

ĥKSψi =
[
t̂s + vext(r) + vH + vxc

]
ψi = εpψi (2)

for the Kohn-Sham Hamiltonian ĥKS. In Eq. (2), t̂s denotes
the kinetic energy operator, vext the external potential, vH
the Hartree potential, and vxc the exchange-correlation
potential. Solving Eq. (2) yields the Kohn-Sham single
particle states ψp and their eigenenergies εp. The single
particle states determine the electron density via

n(r) =
∑
i

fi|ψi|2, (3)

in which fi denotes the Fermi-Dirac distribution function.
To solve Eq. (2) in numerical implementations, the Kohn-

Sham states are expanded in a finite basis set. For periodic
systems, the crystalline orbital ψi(k, r) normalized in all
space is a linear combination of Bloch functions φµ(k, r),
defined in terms of atomic orbitals χR

µ (r).

ψi(k, r) =
∑
µ

cµ,i(k)φµ(k, r) (4)

φµ(k, r) =
1√
N

∑
R

χR
µ (r)e

ik·(R+rµ) (5)

where the Greek letter µ is the index of atomic orbitals, i
is the suffix for different bands, R is the origin of a unit
cell, N is the number of unit cells in the system. χR

µ (r) =
χµ(r−R− rµ) is the µ-th atomic orbital, whose center is
displaced from the origin of the unit cell at R by rµ. cµ,i(k)
is the wave function coefficient, which is obtained by solving
the following equation,

H(k)c(k) = E(k)S(k)c(k) (6)

[H(k)]µν =
∑
R

HR
µνe

ik·(R+rν−rµ) (7)

HR
µν =< χ0

µ|Ĥ|χR
ν > (8)

[S(k)]µν =
∑
R

SR
µνe

ik·(R+rν−rµ) (9)
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SR
µν =< χ0

µ|χR
ν > (10)

In Eq. (8), HR
µν is a matrix element of the one-electron

Hamiltonian operator Ĥ between the atomic orbital χµ
located in the central unit cell 0 and χν located in the unit
cell R.

It should be noted that, the exchange-correlation potential
vxc is a local and periodic in semi-local DFT, while
in Hartree-Fock and hybrid functionals, the Hartree-Fock
exchange (HFX) potential matrix element is defined as:

[V X ]Gµλ = −1

2

∑
νσ

∑
N,H

PH−N
νσ [(χ0

µχ
N
ν |χG

λ χ
H
σ )] (11)

where G, N, and H represent different unit cells. The
density matrix element PN

νσ is computed by an integration
over the Brillouin zone (BZ)

PN
νσ =

∑
j

∫
BZ

c∗ν,j(k)cσ,j(k)θ(εF − εj(k))eik·Ndk

(12)
where θ is the step function, εF is the fermi energy and εj(k)
is the j-th eigenvalue at point k.

In order to calculate the following ERI in Eq. (11)

(χ0
µχ

N
ν |χG

λ χ
H
σ ) =

∫ ∫
χ0
µ(r)χ

N
ν (r)χ

G
λ (r′)χH

σ (r
′)

|r− r′|
drdr′

(13)
we use NAO2GTO scheme described in the following
section.

Following the flowchart in Fig.1, the NAO2GTO scheme
is to firstly fit the NAO with GTOs, and then to calculate
ERIs analytically with fitted GTOs. A NAO is a product of a
numerical radial function and a spherical harmonic

φIlmn(r) = ϕIln(r)Ylm(r̂) (14)

The radial part of the numerical atomic orbital ϕIln(r) is
calculated by the following equation:

(−1

2

1

r

d2

dr2
r +

l(l + 1)

2r2
+ V (r) + Vcut)ϕIln(r) = εlϕIln(r)

(15)
where V (r) denotes the electrostatic potential for orbital
ϕIln(r), and Vcut ensures a smooth decay of each radial
function which is strictly zero outside a confining radius rcut.

METHODS

NAO2GTO scheme
In our NAO2GTO approach, the radial part of the NAO
ϕIln(r) is fitted by the summation of several GTOs, denoted
as χ(r)

χ(r) ≡
∑
m

Dmr
l exp(−αmr2) (16)

Parameters αm and Dm are determined by minimizing the
residual sum of squares of the difference∑

i

(χ(ri)/r
l
i − ϕIln(ri)/rli)2 (17)

In practice of the solid system calculation, too diffused
basis set may cause convergence problemGuidon et al.

Figure 1. The flowchart of the NAO2GTO scheme in HONPAS.

(2008), as a result the exponents smaller than 0.10 are
usually not needed, and we made a constraint, i.e. (α >
0.1) during our minimal search. First we use constrained
genetic algorithmGoldberg (1989); Conn et al. (1991) to do
a global search for initial guess and then do a constrained
local minimal search using trust-region-reflective algorithm,
which is a subspace trust-region method and is based on
the interior-reflective Newton method described in Coleman
and Li (1994) and Coleman and Li (1996). Each iteration
involves the approximate solution of a large linear system
using the method of preconditioned conjugate gradients. We
make N (N > 500) global searches to make sure to have a
global minimal.

Algorithm 1 The algorithm of NAO2GTO fitting scheme.

for iter = 1 to N do
constrained genetic algorithm get initial αiterm andDiter

m

constrained local minimal search to get αiterm and Diter
m

err =
∑
i [
∑
mDm exp(−αmr2i )− ϕIln(ri)/rli]2

if iter = 1 .or. err < best err then
best err = err
αm = αiterm and Dm = Diter

m

end if
end for

Using the above fitting parameters, we build all ERIs
that needed for the HFX. In our implementation, the full
permutation symmetry of the ERIs has been considered for
solid systems:

(µ0νH|λGσN) = (µ0νH|σNλG) =

(ν0µ−H|λG−HσN−H) = (ν0µ−H|σN−HλG−H) =

(λ0σN−G|µ−GνH−G) = (λ0σN−G|νH−Gµ−G) =

(σ0λG−N|µ−NνH−N) = (σ0λG−N|νH−Nµ−N) (18)

In this way, we save a factor of 8 in the number of integrals
that have to be calculated.

When calculating the ERIs with GTOs, the atomic orbitals
are grouped into shells according to the angular momentum.
The list need to be distributed in parallel is in fact the
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shell quartet. For a shell with a angular momentum of l,
the number of atomic orbital basis functions is 2l + 1, so
in a shell quartet integral (IJ |KL), we calculate in total
(2lI + 1)(2lJ + 1)(2lK + 1)(2lL + 1) atomic basis orbital
ERIs together. As a result, the computational expense is
strongly dependent on the angular momenta of the shell
quartet. It is a challenge to distribute these shell ERIs not
only in number but also considering the time-weight.

In our NAO2GTO scheme, two shell pair lists (list-IJ
and list-KL) are firstly preselected according to Schwarz
screeningHser and Ahlrichs (1989),

|(µν|λσ)| 6
√
(µν|µν)(λσ|λσ) (19)

and only the shell list indexes with (IJ |IJ) > τ or
(KL|KL) > τ (here τ is the drop tolerance) are stored. As
shown in Eq. (11), the first index I runs only within the unit
cell, while the indexes (J,K,L) run over the whole supercell,
so the list-IJ is smaller than the list-KL. Then in the ERIs
calculations, the loops run over these two shell lists.

Then before the calculation of every ERI, we use
Schwarz inequality Eq. (19) again to estimate a rigorous
upper bound, that only the ERIs with non-negligible
contributions are calculated, we note this screening method
as Schwarz screening. Using the exponential decay of the
charge distributions, the Schwarz screening reduces the total
number of ERIs to be computed fromO(N4) toO(N2). The
Schwarz screening tolerance is set to 10−5 in the following
calculation. In addition, the NAO screening is also adopted
as the NAO is strictly truncatedShang et al. (2011). The
NAO screening is safe in the calculation of the short-range
ERI because in this case the Hartree-Fock exchange (HFX)
Hamiltonian matrix is sparse due to the screened Coulomb
potentialIzmaylov et al. (2006). As a result, we store this
HFX Hamiltonian with a sparse matrix data structure.

In practice, it also should be noted that as the angular
part of the NAOs is spherical harmonic while the GTOs
are Cartesian Gaussians, we need to make a transformation
between Cartesian and Spherical harmonic functions. The
difference between these two harmonic functions is the
number of atomic orbitals including in the shells whose
angular momentum are larger than 1. For example, a d-shell
has 5 Spherical orbitals, but have 6 Cartesian orbitals. A
detailed transformation method can be find in Ref.Schlegel
and Frisch (1995).

Parallel schemes
The ERIs have four indexed that can be paralleled. One
possible parallel scheme to make distribution of just one
shell index, however, as the index number in one shell is too
small to make distribution over CPU cores, such shell-one
distribution may cause serious load imbalance.

The other parallel scheme is to make distribution for shell-
pair (list-KL). It is a straightforward way to parallelize the
ERIs as in practice we loop over two pair lists. However,
although the shell-pair can be distributed evenly before
ERIs calculations, ERI-screening is needed during the ERIs
calculations, which also causes load imbalance. The practical
implementation of the described formalism closely follows
the flowchart shown in Algorithm 2. After the building list-
KL is completed, we distributed it into CPU cores with

list-KL-local at every cores. Then in the following ERIs
screening and calculation, only loops over list-KL-local is
needed for every core. The advantage of this scheme is
that it naturally bypasses the the communication process,
and every CPU core only go over and compute its assigned
list-KL-local. However, although the list-KL is distributed
evenly over processors, the ERI screening is located after the
parallelization, which causes different number of shell ERIs
that need to be calculated in every processor. Such different
number of shell ERIs makes load imbalance.

In order to achieve load balance, distribution of individual
shell-quartet(IJ |KL) after the ERI screening process
a possible choice. Even if the computational time is
nonuniformity in the case of the different shell type, this
distribution can also yield an even time over CPU cores
because of its smallest distribution chunks. The practical
implementation of the shell-quartet algorithm is shown in
Algorithm 3. Every CPU core will go over the global pair
lists( list-IJ and list-KL), and make the ERI screening to
determine which ERIs are needed to be computed. Then
a global counter is set to count the number of computed
ERIs, this counter is distributed over CPU cores to make
sure the number of calculated ERIs is evenly distributed. The
disadvantage of this algorithm is that every processor need to
make the whole ERI screening, while in the above parallel-
pair algorithm, only the ERI screening in its local lists is
needed. Such globally calculated ERIs screening decreases
the parallel efficiency.

Algorithm 2 Flowchart of the parallel-pair algorithms for
ERIs. Here the shell-pair-list-KL-local means to distribute
the shell-list-KL over CPU cores at the beginning. The
description of Schwarz screening and NAO screening are in
the text.

get shell-pair-list-KL-local
for list-IJ in shell-pair-list-IJ do

for list-KL in shell-pair-list-KL-local do
if Schwarz screening.and. NAO screening then

compute shell ERI (IJ |KL)
end if

end for
end for

Algorithm 3 Flowchart of the parallel-quartet algorithms for
ERIs. Here N refers to the total number of the CPU cores,
current-core refers to the index of the current processor. The
description of Schwarz screening and NAO screening are in
the text.

for list-IJ in shell-pair-list-IJ do
for list-KL in shell-pair-list-KL do

if Schwarz screening.and. NAO screening then
i ++
if i mod N eq current-core then

compute shell ERI (IJ |KL)
end if

end if
end for

end for
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Table 1. The parameters for each node of Tianhe-2.

Component Value
CPU Intel(R) Xeon(R) CPU E5-2692

Freq. (GHz) 2.2
Cores 12

Table 2. The CPU time (in seconds) for the calculation of the
ERIs of Si 64 system with SZ basis set using different parallel
schemes.

cores parallel-pair parallel-quartet
12 110.9 108.2
24 55.6 57.0
96 15.5 18.2
192 8.6 11.6

RESULTS AND DISCUSSION
In order to demonstrate the performance of the above two
static parallel schemes, we use silicon bulk contained 64
atoms in the unit cell as a test case as shown in Fig. 2. Norm-
conserving pseudopotentials generated with the Troullier-
MartinsTroullier and Martins (1991) scheme, in fully
separable form developed by Kleiman and ByladerKleinman
and Bylander (1982), are used to represent interaction
between core ion and valence electrons. The screened hybrid
functional HSE06Krukau et al. (2006) was used in the
following calculations. Both single-zeta (SZ) contained s and
p shells and double-zeta plus polarization (DZP) basis set
contained s,p and d shells are considered. All calculations
were carried out on Tianhe-2 supercomputer located in
National Supercomputer Center in Guangzhou, China, the
configuration of the machine is shown in Table 1. The
Intel Math Kernel Library(version 10.0.3.020) is used in the
calculations.

For the parallel-pair and parallel-quartet algorithms, which
are fully parallelized and involve no communication, load
imbalance is one of factors that may affect the parallel
efficiency. To examine the load balance, the timing at every
cores are shown in Fig. 3-Fig. 6. It is clearly shown that the
parallel-pair algorithm (red line) is load imbalance, for SZ
basis set, the time difference between cores is around 10%
in 12 cores (Fig. 3) case and around 80% in 192 cores (Fig.
4). For DZP basis set, d shells have been considered, which
caused more serious load imbalance, the time difference
between cores is even around 22% in 12 cores (Fig.5) and
around 100% in 192 cores (Fig.6). On the other hand, the
load balance in parallel-quartet algorithm is quite well, the
time difference between cores is within 1%. However, in this
algorithm, as the ERIs screening part is made for the whole
ERIs by all the CPU cores. which is a constant time even with
the increasing CPU cores, there are replicate calculations for
the ERIs screening which decrease the parallel efficiency. As
shown in Fig.4), for small basis set at large number of CPU
cores, the average CPU time of the parallel-quartet is around
twice as the parallel-pair algorithm.

Such global ERI screening in parallel-quartet algorithm
also contributes significantly to lowering the parallel speedup
and efficiency for SZ basis set, as shown in Table2 and
Fig.7. The parallel efficiency is only 58% at 192 CPU core
for parallel-quartet while holds around 80% for parallel-pair
algorithm.

basis set shells NAOs
Si64 SZ 128 256
Si64 DZP 320 832

Figure 2. The silicon bulk contained 64 atoms in the unit cell
that used as benchmark system in this work. In the upper table,
the number of shells as well as the number of the NAO basis
functions for different basis sets are listed.
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Figure 3. The load balance for bulk silicon supercell with 64
atoms using SZ basis set at 12 CPU cores.

Table 3. The CPU time (in seconds) for the calculation of the
ERIs of Si 64 system with DZP basis set using different parallel
schemes.

cores parallel-pair parallel-quartet
12 1645.1 1572.9
24 904.0 806.1
96 251.3 225.9

192 129.6 128.0

For DZP basis set, the load imbalance caused by d shells
become another factor of lowering the parallel efficiency,
so in this case, as shown in Table2 and Fig.8, the parallel
speedup and efficiency are similar for both parallel-pair and
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Figure 4. The load balance for bulk silicon supercell with 64
atoms using SZ basis set at 192 CPU cores.
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Figure 5. The load balance for bulk silicon supercell with 64
atoms using DZP basis set at 12 CPU cores.
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Figure 6. The load balance for bulk silicon supercell with 64
atoms using DZP basis set at 192 CPU cores.

parallel-quartet algorithms, that around 80% at 192 CPU
cores.
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Figure 7. (Color online) Parallel Speedups and efficiency for
ERIs calculation formation using different parallel schemes.
Speedups were obtained on Tianhe-2 for bulk silicon supercell
with 64 atoms using SZ basis set. The speedup is referenced to
a run on 12 CPUs.
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Figure 8. (Color online) Parallel Speedups and efficiency for
ERIs calculation using different parallel schemes. Speedups
were obtained on Tianhe-2 for bulk silicon supercell with 64
atoms using DZP basis set The speedup is referenced to a run
on 12 CPUs.

CONCLUSIONS
In summary, we have shown our two static parallel
algorithms for the ERIs calculations in NAO2GTO method.
We have also analyzed the performance of these two parallel
algorithms for their load balance and parallel efficiency. On
the basis of our results, the static distribution of ERI shell
pairs, produces load imbalance that causes the efficiency
to decrease, limiting the number of CPU cores that can be
utilized. On the other hand, the static distribution of ERI
shell quartet can yield very high load balance, however,
because the need of the global ERI screening calculation, the
parallel efficiency has been dramatically reduced for small
basis set. We have also tried another static method that firstly
create a need-to-calculate ERIs list by considering all the
screening methods as well as the eight-fold permutational
symmetry and secondly distribute the ERIs in the need-to-
calculate list over a number of processes. However, we find
the time to build the need-to-calculate ERIs list is even larger
than the global ERI screening calculation. On the next step,
we need to distribute the ERI screening calculation while
keep the load balance of the ERI calculation, and a dynamic
distribution could enables load balance with little loss of
efficiency.
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