
768 Tsafnat and Coiera, Computational Reasoning across Multiple Models
Viewpoint Paper �

Computational Reasoning across Multiple Models

GUY TSAFNAT, MS, PHD, ENRICO W. COIERA, MB BS, PHD

A b s t r a c t Computational support of clinical decisions frequently requires the integration of data in a
variety of formats and from multiple sources and domains. Some impressive multiscale computational models of
biological phenomena have been developed as part of the study of disease and healthcare systems. One can now
contemplate harnessing these models arising from computational biology and using highly interconnected clinical
data to support clinical decision-making. Indeed, understanding how to build computational systems able to
reason across heterogeneous models and datasets is one of the major and perhaps foundational challenges of
translational biomedical informatics. In this paper, the authors examine the use of multimodels (models composed
of several daughter models) and explore three major research challenges to reasoning across multiple models:
model selection, model composition, and computer aided model construction.
� J Am Med Inform Assoc. 2009;16:768–774. DOI 10.1197/jamia.M3023.
Introduction
Clinical decision-making often involves the integration of
data from multiple sources, and harnesses knowledge from
multiple domains. A clinician may need to integrate knowl-
edge from genetic, pharmacological, physiological and or-
ganizational and social domains in working with patients to
decide on the most effective treatment plan, or settle a
difficult diagnostic question. This integration of knowledge
“from cell to system” has been long anticipated, and in the
1980s Blois wrote of the nature of “vertical reasoning” that
takes place in clinical decisions, from low-level biology
through to clinical and organizational levels.1

The computational challenge in pragmatically bringing to-
gether the diverse knowledge bases that extend from sys-
tems biology through to clinical medicine into a single
system is huge. Nonetheless, the last few years have seen
some impressive and ambitious attempts at building de-
tailed computational models in the biosciences, with projects
such as the Physiome,2 e-cell,3 the visible human project,4

and indeed the ongoing program of annotation of genomes
with functional interpretations in computable form.5 McCulloch
and Huber,6 for example, report a computationally complex
model consisting of nine daughter models across eight scales
from the atomic level to the whole heart. In parallel, we are
witnessing the beginning of an international phase of the
large-scale “joining up” of biomedical databases, from tissue
banks and electronic patient records, gene and protein
databases like GenBank,7 Kegg,8 and the biomedical litera-
ture stored in repositories such as PubMed.
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We thus seem to be at a period of historic opportunity in
biomedical informatics, where we can contemplate harness-
ing models from computational biology and highly inter-
connected clinical data to help us model clinical knowledge
domains, in support of model-based reasoning methods for
clinical decision-making. We are moving from a period
when decision-support systems (DSS) had access to a single
homogenous database, to one in which a DSS may access a
variety of knowledge and data services to complete its task,
for example using the Web Services Description Language
(WSDL; http://www.w3.org/TR/wsdl).

If we are to imagine such a systems informatics subdiscipline,
which is all about integrating different biomedical, clinical
and organizational systems,9 then understanding how to
build computational systems able to reason across heteroge-
neous models and datasets becomes one of the foundational
challenges of translational biomedical informatics. In the
remaining sections of this paper we will review the state of
computational modeling in biomedicine, and explore three
major challenges to reasoning across multiple models: Data
Translation or exchange across models, ensuring composi-
tional validity of model assemblies, and computer assisted
model construction.

Modeling Biomedical Systems
The field of systems biology, the modeling of biological
entities as sets of interacting systems, predates computa-
tional biology.10 However, the application of computational
methods in biology has redefined this field and there are
now a wide variety of biological modeling methods.11

For example, Dokos, et al used differential equations to model
the electrochemical activity in a single sinoatrial node cell;12

Fernandez, et al defined a set of finite-element models to
describe the human skeleton-muscular system;13 Schless-
inger and Eddy used System Dynamics to model the physi-
ology of diabetes before and after intervention;14 Friedman,
et al used Bayesian Networks and gene expression data to
model metabolic pathways;15 Regev, et al applied process
algebra (also called �-calculus) originally developed to

model computer processes to model biochemical pathway
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behavior;16 Matsumo, et al used Petri-nets to model a genetic
regulation mechanism;17 Searls used formal languages to
model DNA evolution;18 King et al applied Inductive Logic
Programming and first-order logic to model chemical prop-
erties of molecules;19 and Hau and Coiera used qualitative
differential equations to model the physiology of cardiac
bypass patients.20

Life scientists well understand that models of individual
biological systems such as gene networks or metabolic
pathways do not reflect the true complexity and intercon-
nectedness of whole organism biological systems and are
hence always in some way incomplete or inaccurate. Thus,
models of large biological systems have an inherent com-
plexity, compounded by the fact that interrelated biological
systems can operate at different temporal and spatial
scales.21

Multimodeling
An engineering approach to managing such complexity and
diversity is to build many independent subsystem models
and to then compose them as needed into higher-level
models, and is called multimodeling.22 The strength of the
approach comes from a loose coupling of daughter models
using a separate additional integration model. We can more
formally define a multimodel as any two or more independently
validated daughter models that interchange information to create a
new, composite model.

Multimodeling allows each individual system to be modeled
independently, using the most suitable computational envi-
ronment. Candidate systems for multimodeling are ones in
which two or more complex and interacting systems are to
be modeled, especially if the interactions are themselves
complex. Typically the daughter models will be of entities
that are of different scales, use different data sources and/or
use different computational representation or inference
methods. Daughter models can have different physical
properties such as scale (Example I) and/or computational
properties, such as representation language or inference
method (Example II). While multimodeling is still in its
infancy, anecdotal evidence23,24 shows the approach has
promise for biomedical informatics and work is underway
to standardize mechanisms for model integration.25–27

The process of constructing a multimodel follows the same
general steps used in any modeling process: a design and
construction phase, a parameterization and configuration
phase and validation. With multimodeling, design and
construction consists of selecting daughter models and the
methods to interchange data. Parameterization and config-
uration consists of implementation of the interchange, which
may include translation between coordinate systems, units,
file formats, databases and data. The behavioral validation
of multimodels should be identical to other model valida-
tions, but specific challenges exist in ensuring the validity
and legality of compositions.28

Example I: A Multimodel of Diabetes Management
The Archimedes system29 uses system dynamics to model
multiple related biomedical systems at a wide range of
scales, from tissue through to disease, patient and comor-
bidity, clinical tests, health system administration, and

economic models. Archimedes allows a clinician to proba-
bilistically evaluate the utility, risk, and ramifications of a
given treatment.

Interaction between the daughter models in Archimedes is
straightforward as all models share a common simulation
method and environment. The daughter models can inter-
change information simply by passing variables. While this
blurs the line between the multimodel and its daughters,
this is a multimodel because each daughter model is devel-
oped, tested, and validated independently of the multimo-
del.29 The models run over mixed temporal scales with some
operations taking longer than others and lag can be intro-
duced between components. For example, a change in diet
may take some time to affect a patient’s LDL level.

The Archimedes model is implemented in the Smalltalk
programming language. Daughter models are represented
as Smalltalk objects and communicate through ad hoc inter-
faces. While Smalltalk is recognized as a standard language,
its objects are not easily accessible from other languages.
Therefore, while the multimodel is extensible through addi-
tion of more daughter models, such models have to be
implemented in Smalltalk.

Example II: A Multimodel of Liver Cancer
Treatment
New radiation and heat therapies for liver cancer are based
on the injection and deposition of ultra-fine particles into the
tumor and depend on accurate models of tumor location
and size to determine the required dose. Multimodels have
been explored as an approach to computing the optimal
therapy plan for these complex clinical treatments.30

This treatment planning multimodel combines (1) a stochas-
tic fractal model of tumor microvasculature,31 (2) a proba-
bilistic drug delivery and deposition model, and (3) a
finite-element dose delivery model. While the models are all
the same spatial scale, the temporal scales differ widely.
Each stage in the simulation assumes that the previous stage
is in steady state: angiogenesis is much slower than the drug
delivery rate, so the delivery model can assume that the
vasculature is static for the duration of the drug delivery
simulation and, similarly, the treatment simulation assumes
that the microparticle deposition is complete at the start of
the treatment.

For the vasculature and deposition models to communicate,
an interchange model is created to allow the values of
shared parameters in the two models to be passed between
them (Figure 1). The interchange model is a simple tree
representation of the full vasculature model. This inter-
change vasculature tree model describes structures starting
from the arterioles that enter a tumor. Each branch of the
arteriole is represented by a node element that records its
radius and the branches immediately downstream from it.
Thin capillaries are modeled as leaf nodes in the tree with
their radius and their 3D position in the space of the tumor.

The deposition simulation takes the vascular geometry it
obtains via the interchange model to calculate the probabi-
listic behavior of each microparticle as it reaches each
branching of the tree, until it lodges in a vessel smaller than
itself. The deposition model uses the radii of the vessels at
each branch intersection that a particle passes through, to
determine the proportion of microspheres that move further

down a branch, until they lodge as a cluster in a capillary.



770 Tsafnat and Coiera, Computational Reasoning across Multiple Models
Each cluster is used as a data point in a microsphere
deposition field.

The resulting concentration of microparticles is subse-
quently shared across a further interchange model with the
treatment model to calculate volumetric heat generation
rates.30 The volumetric heat generation of each tetrahedral
element in the finite element tumor heating model is calcu-
lated using the integral over the corresponding volume in
the deposition model.

Challenges in Multimodeling Research
In the multimodelling setting, we are essentially creating a
world where we have one or more libraries of models, each
potentially created by different authors, using different
representations and for different initial purposes. Our rea-
soning task begins with identifying which model or models
are best suited to our current purpose, and then assembling
a composite model and reasoning with that composite.

Such a multimodelling setting poses a number of challenges,
both in constructing individual models, and then reasoning
across multiple models. At the heart of the challenge is the
need to capture information about each model in our library
that describes what the model is about, and how it might be
used. The idea that we need to capture such meta-level
knowledge about models is nothing new, and indeed has
been much explored from the early days of AI and expert
systems. For example, in the 1970’s the Teiresias system,
part of the broader MYCIN research program, explicitly
sought to define meta-level knowledge that would allow an
expert system to “know what it knows” so that it could
effectively manage different types of knowledge.32

Three kinds of meta-knowledge are needed to support
multimodelling—knowledge that supports the choice of
most appropriate model for a given task from a library of
models; knowledge about how to compose individual mod-
els into multimodels, and knowledge about how to auto-
mate the process of model construction.

Reasoning about Model Choice
It is likely that many alternate models will be available to
help with a given task, perhaps overlapping in the phenom-
ena they model, just as there will be parts of the model space
which are sparsely populated. Picking the right model from
a model space for a particular reasoning task would require

the library to store meta-knowledge about each model,
describing attributes such as conformance with standards
including controlled vocabularies, ontologies and knowl-
edge representations, the purpose for which the model is
constructed, and other classes of model with which it can be
composed.

We can conceive of this meta-knowledge about a particular
model as an abstraction layer or wrapper, that exposes the
public properties of a model such as inputs and outputs (e.g.
force tensors, neural network topology, disease symptoms)
in a uniform manner so that users of the model don’t require
a detailed understanding of it’s internal structure. The
abstraction layer could be a simplified interface that is
directly a part of the model, or it could be a separate model
sitting in another part of the library. The abstraction layer
should also accommodate formal specifications of a model’s
capabilities and the context for which it is designed, e.g.
acceptable ranges for inputs and outputs, temporal or phys-
ical scale, or anatomic location (Table 1).

Long-standing research challenges in navigating a model
space remain unexplored. For example, a reasoning system
might have a number of resource constraints, such as time or
memory, which bound its operation for a particular task.
Picking the model representation that best meets the needs
of the reasoning task will require some mechanism to
calculate the trade-offs when picking one model over an-
other.33 In the situation where there is a family of similar
models, each differing only in level of detail represented, we
have proposed that the provision of intra-representational
measures of the model space should allow a reasoner to
draw conclusions about the level of model granularity that is
most likely to produce an answer for a given query. Such
metrics might be based upon internal attributes such as
model completeness or complexity, or upon external mea-
sures such as behavioural adequacy. In the situation where
there is a family of dissimilar models, each differing in
representation (e.g., statistical vs. logical), then inter-repre-
sentational measures are needed to allow a reasoner to draw
conclusions about the likelihood that a specific model is best
suited to the needs of a task. These might include estimates
that a particular task is adequately represented in the model
(are all the key concepts present?) as well as behavioural
metrics (e.g., is a task computationally tractable using a

F i g u r e 1. Interchange between vascular and
particle deposition models is mediated by a
simpler interchange model that passes values
for common parameters. In this example (see
Example II), a simplified XML representation of
the full vasculature model is used by the depo-
sition model to obtain the values it needs to
calculate microsphere concentrations and
positions.
particular representation?).



Journal of the American Medical Informatics Association Volume 16 Number 6 November / December 2009 771
Model Interchange Methods
In order for two independently developed models to ex-
change information, an interchange model needs to be
constructed which has the following requirements. For any
two communicating daughter models A and B, the inter-
change of their inputs and outputs requires (Figure 2):

1. An interchange language IL that is able to express the
superset of variables and values that are communicated
between A and B;

2. The generation of an interchange model C, which
serves as a translator of the inputs and outputs be-
tween A and B;

3. A validation of the interchange model C.

Interchange Languages
The public abstraction layer of a daughter model is repre-
sented using an interchange language. The U.S. National
Library of Medicine’s Unified Medical Language System
(UMLS) provides a good example of ‘Rosetta Stone’ func-
tionality by serving as an intermediary among different
terminological systems. Several model interchange lan-
guages are currently under development or in use, for
example, the Field Representation Language27 (FRL), Sys-
tem Biology Mark-up Language25 (SBML), and the Gene
Feature Format v. 3 (GFF3; http://sequenceontology.org/
gff3.shtml). Each is proposed as a standard for interchange
with specific types of data or problem and thus can only
interchange information between models of the same repre-
sentation and type. For example, CellML26 uses public
interfaces to facilitate interchange between CellML entities;
FRL uses a special class of fields to represent field compo-
sitions.

Table 1 y Example of Abstraction Layer Elements for
Property Name Value Type Units R

Parameter:
Microspere diameter scalar �m

Input:
Vasculature tree vessel diameter �m
Position (x,y,z) 3D point mm x:[�150,150

z:[�150,1

Output:
Type - value 3D scalar field Proportion
Type - domain 3D point mm x:[�150,150

z:[�150,1

The abstraction layer specifies the constant values used in the mode
assumed and acceptable range (input), and the form of the output th
element enables a human modeler to decide how the model can be
and calculations made by the model.

F i g u r e 2. The composition of two daughter
models is accomplished by the creation of a
third interchange.
Interchange languages need to be both portable and expres-
sive. Portability implies that the interchange methods are
independent of hardware, authoring tools and operating
environment. Portability can be achieved by standardization
of the language through international standards organiza-
tions or by relying on underlying portable language struc-
tures such as XML (http://www.w3.org/XML) and HDF5
(http://hdf.ncsa.uiuc.edu).

Expressiveness is a crucial issue,34 as it is unlikely that each
daughter model in a multimodel composition will always be
built using the same knowledge representation, and there-
fore the representations of the different daughter models
may have different expressive powers. By definition then,
when multiple representations are used, we will always be
in a situation in which interchange is potentially a ‘lossy’
process of translation from one model to another, as con-
cepts expressed in one daughter model are transformed into
a less expressive concept for use by a second model.

Expressiveness thus captures the notion that any inter-
change language should be able to represent the superset of
concepts needed to support the exchange of values between
any two models. While this might seem to imply an ex-
tremely large language, interchange languages need only act
as translators of data types and values, so that the output of
one model can be input into another. There should be no
need for such a language to model other internal aspects of
a daughter model’s structure or function. Consequently,
interchange language expressiveness is a more bounded
requirement than the much larger, perhaps intractable prob-
lem of expressing the superset of all concepts expressed
across different model representations.

icrosphere Deposition Model in Example II
Description

The diameter of each micro-particle to be deposited by
the model. Allows the model to determine in which
vessels the microspheres lodge.

Morphology of the blood vessels. The relative diameter
of the branches of the same parent determines the
proportion of microspheres travelling through each.
The position of the branch determines the location of a
microsphere cluster in that vessel if there is one.

150,150],

The output of the model is the lodgement locations of
clusters of microspheres in the space of the tumour.
The field consists of the location of each cluster and
the proportion of the microspheres in it.

150,150],

meters), the types of the variables that the model expects, the units
ulation using the model calculates. The textual description of each
a composition without understanding the internal representations
the M
ange

[1,�]
], y:[�
50]

[0,1]
], y:[�
50]

l (para
at a sim

used in

http://sequenceontology.org/gff3.shtml
http://sequenceontology.org/gff3.shtml
http://www.w3.org/XML
http://hdf.ncsa.uiuc.edu


772 Tsafnat and Coiera, Computational Reasoning across Multiple Models
We can also impose bounds on the need for expressiveness
in an interchange language by requiring daughter models to
use standard representations, minimizing the diversity of
representations needing accommodation. When model au-
thors agree to adopt common standards, they trade off the
expressive power of more locally appropriate model lan-
guages against broader utility of any models they build. In
other words, we can build models to suit our local purposes
very well, or build models that are slightly less well crafted,
but can be more widely used by others. SBML,25 for exam-
ple, is a fairly general language that can be used to describe
and integrate any model expressible as a set of ordinary
differential equations (ODEs). By contrast, the Model De-
scription Language35 is specific to neural synapse modelling
of a type solvable through Monte-Carlo simulations. Be-
cause the language is so specialized it is also very expressive
with high-level constructs (e.g., “postsynaptic membrane”)
relevant to its problem domain. In many ways this is the
standard problem facing medical informatics in other do-
mains e.g., exchange of clinical messages, or medical
records. In the likely absence of a single universally stan-
dard model representation, interchange languages will al-
ways be needed.

The trade-off of expressive vs. reusable interchange lan-
guage might need to be decided for each interchange within
a multimodel. In the hyperthermia example (Example II),
FRL was used to interchange data between the microsphere
deposition model and heat transfer model because it
conveys geometrical information in 3D space and pro-
vides a method to translate between coordinate systems.
However, for the interchange of trees from the vascula-
ture model to the microsphere deposition model a logical
representation that includes connection between blood
vessels was required and so an ad hoc XML tree repre-
sentation was used.

Interchange Models
It is unlikely that a simple mapping exists between the
public interfaces of any two models, and the act of translat-
ing values between them will require a third interchange
model to be constructed. The interchange model maps
variables that may have different names because of nomen-
clature and value differences in use by the builders of
different models. Thus, the translation of numerical models
will need to use rules about value types, unit conversion,
and/or coordinate systems. For example, CellML26 allows
the specification of units so that the software that reads the
files can validate them and provide a conversion when
possible. The Field Representation Language’s mathematical
library, the Abstract Field Layer36 verifies that the cardinal-
ity of composed fields’ value types are the same across a
composition or that an appropriate mapping is given.

An interchange model may also utilize knowledge about
variable type, dimension, and mapping functions to trans-
late a number of variables in one model to a smaller set of
variables in another. For example, the physical variable force
(f) can be mapped to the variables mass (m) and acceleration
(a) using Newton’s second law f � ma. Similarly, we might
expect any temporal integration to conform to Allen’s thir-

teen temporal relations.37
Validating Interchange Models
While an interchange model provides syntactic composition
control, it is not sufficient to ensure that the overall compo-
sition is semantically valid. That two models can be assem-
bled does not mean that the new assembly is meaningful.
The challenge of ensuring composite entities represent legal
concepts is not a new one to biomedical informatics. There is
a long history of the use of compositional rules to ensure the
combinations of terms from a terminological system repre-
sent meaningful clinical concepts, for example preventing
syntactically correct but semantically invalid sentences such
as “tibia treats penicillin”.38

Consequently, there is a need to develop methods that assist
composition, preventing illegal compositions to occur, or
identifying which portions of a composition are problematic.
Such semantic composition controls use background knowl-
edge about the type and purpose of models and model
components, to ensure that syntactically well-formed assem-
blies are also meaningful. For example, we need to make
sure that composite metabolic pathways obey the laws of
chemistry and physics, that anatomical relationships are
correct, or that models operate across compatible temporal
scales.

Semantic constraints are often captured in an ontology. For
example, an anatomical ontology may formally record the
legal relationships between tissues at different developmen-
tal stages.39 While much work is devoted to developing
ontologies in single domains,40 we would expect multimo-
delling to require a higher-level integrating-ontology to
describe the relationships among genetic, transcriptional,
proteomic, metabolic, and physiological systems. For exam-
ple logical constraints can allow deductive systems to decide
if a model is appropriate for a particular composition. Thus,
a model of a mouse with a constraint “organism belongs to
class Murine” would prevent an interaction with incompat-
ible human models, whilst a more general constraint like
“organism belongs to class Mammal” would permit such
interactions.

Model compositions also have to satisfy criteria to ensure
the functional validity of the multimodel41 which require
additional information to that available in the public inter-
faces of the daughter models. For example, the integration of
two metabolic pathway models in the same cell model
may be invalid because intermediate products of one
pathway (hidden from the public interface) may actually
interact with the other pathway. Similarly, when compos-
iting two chemotherapy models for a patient with co-
morbidity, drug-drug interactions must be checked to
avoid adverse effects.

As a consequence, while we can strive for standardization of
model and interchange languages, the act of model compo-
sition will often require additional background information
to ensure that the composition is a valid one, and that
knowledge may unfortunately be unique to the specific
composition. Just how much of a problem this issue will
become remains to be seen, as it is likely that for most
compositions, a standard set of compositional validation
rules will be more than sufficient. How we detect or manage

the exceptions will remain an ongoing research question.
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Automatically Generated Multimodels
We distinguish between multimodels composed by human
modellers and ones composed automatically by computer.
The former include systems in which computational support
was available to the modeller, for example in the form of
automatic model validation. The latter is restricted to mul-
timodels in which the daughter models and their interac-
tions were selected by automata.

Machine learning has been applied with some success to
model building problems in system biology.23 These algo-
rithms systematically examine a hypothesis space, and select
models that are consistent with a training corpus (the
maximised refutation principle), following a Popperian pro-
cess42 of conjecture and refutation. Working with multimo-
dels generates several additional challenges to the machine
learning task, when trying to develop models of complex
systems, whether at the molecular, cellular or indeed human
organisational levels.

Working with biological data sets at different temporal or
spatial scales raises particular challenges. Firstly, some fea-
tures or variables may demonstrate time varying behaviour
at one scale and not at another. Consequently, relationships
between variables may be present at a particular sampling
rate, but disappear at slower or faster sampling rates.20 For
example, models that include the skin-to-core temperature
gradient, representing the level of vasoconstriction in the
body generally appeared with slower time scales than the
responses of other parameters like blood pressures.

Secondly, the effects of noise in a data set may mean that
models learned at one scale are more or less affected by
noise, and have different statistical validity. Typically, the
finer the scale level, the lower we would expect to find the
signal to noise ratio. Consequently we might be able to learn
multiple models of the same system at different temporal
abstractions, but will need to treat these models with differ-
ent degrees of confidence. Variables present in a model at
one scale may not appear in another, challenging the sharing
of values across scales.

Learning time-varying behaviors is also challenging for a
number of other pragmatic reasons. If a physiological sys-
tem moves to a new state e.g., from normal to left ventricular
failure, then the models that can be learnt also change.
Trying to learn across a period of change will mean we are
trying to induce a single explanatory model when more than
one is needed. This class of problem becomes more likely,
the finer the temporal scale being looked at. Understanding
when to segment data in a way that recognises a new system
state needs to be modelled is a substantial challenge, as yet
unanswered.

Inductive Logic Programming (ILP)43 is a machine learning
approach which may assist in this challenging learning
environment. The ILP systems can integrate arbitrary back-
ground knowledge when learning models and this capabil-
ity may make them suitable when knowledge is needed in
order to recognise when different models are being learned,
or assist in mapping between variables at different scales.
The ILP systems are able to internalise syntactic composition
rules, as well as semantic knowledge at an ontological level.

Model authorship remains a process that appears often to

require innovation and creativity that can’t currently be
replicated by computational systems. However, by incre-
mentally defining classes of compositions and the assump-
tions that need to be made by automatic model composition
algorithms, we will make significant contributions to multi-
modelling and biomedical research, and our capabilities to
automate these processes should also increase with time.
Consequently for now it is likely that most multimodelling
decisions will be made by humans assisted by the composi-
tional metrics described here, and that the level of assistance
provided by automated systems will increase as our under-
standing of the science of model composition grows.

Conclusions
The recent availability of high-throughput biological data,
ontologies, and biomedical systems models has reinvigo-
rated the idea of model-based reasoning. However, the
complexity of the models requires novel approaches to
organising and even generating new models.

Multimodelling is a promising approach for translational
medicine because of its power to integrate data in arbitrary
formats and from a variety of sources such as DNA sequence
data, physiological first principles, and scientific literature.
However, new approaches are needed to facilitate reasoning
tasks over multimodels.
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