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Bilevel optimization formulates hierarchical decision-making processes that arise in many real-world appli-

cations such as in pricing, network design, and infrastructure defense planning. In this paper, we consider a

class of bilevel optimization problems where the upper level problem features some integer variables while

the lower level problem enjoys strong duality. We propose a dedicated Benders decomposition method for

solving this class of bilevel problems, which decomposes the Benders subproblem into two more tractable,

sequentially solvable problems that can be interpreted as the upper and the lower level problems. We show

that the Benders subproblem decomposition carries over to an interesting extension of bilevel problems,

which connects the upper level solution with the lower level dual solution, and discuss some special cases

of bilevel problems that allow sequence-independent subproblem decomposition. Several novel schemes for

generating numerically stable cuts, finding a good incumbent solution, and accelerating the search tree are

discussed. A computational study demonstrates the computational benefits of the proposed method over

a state-of-the-art bilevel-tailored branch-and-cut method, a commercial solver, and the standard Benders

method on standard test cases and the motivating applications in sequential energy markets.

1. Introduction

A variety of real-world applications involves multiple decision makers. These decision mak-

ers (agents) may have an implicit hierarchy in the sense that the decision made by an

agent at a certain level of the hierarchy precedes and affects the decisions of agents at lower

levels that, in turn, affect the outcomes of the decisions at the higher levels. Hierarchical

optimization models optimization problems that involve the hierarchical decision-making

process of multiple agents.

Bilevel optimization is a subclass of hierarchical optimization with a two-level decision

hierarchy, the upper- and lower-level of which is often referred to as a leader and a follower,

respectively. In these problems, it is assumed that the leader can anticipate how the follower

would respond to her decision. The objective of these problems is, thus, to find an optimal

decision for the leader by solving an optimization problem that embeds the follower problem
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as a constraint (see, e.g., Dempe (2002) for more details). In this paper, we consider a

family of bilevel optimization problems in which the leader problem is modeled as a Mixed-

Integer Second-Order Cone Programming (MISOCP) problem and the follower problem is

modeled as a Second-Order Cone Programming (SOCP) problem. We name this problem

class Bilevel Second-Order Cone Programming (BSOCP)1.

BSOCPs arise in many applications across various sectors including economics, energy

infrastructure, and defense. For instance, a special class of BSOCP with only linear con-

straints, referred to as Bilevel Linear Programming (BLP), models various network plan-

ning/design problems with autonomous agents, e.g., the optimal zonal configuration prob-

lem in zonal-pricing electricity markets (Grimm et al. 2019, Ambrosius et al. 2018, Kleinert

and Schmidt 2019), an urban traffic network design problem (Fontaine and Minner 2014),

and facility location problems for logistics distribution center (Sun et al. 2008). BLP can

also be used to model the evasive flow capturing problem discussed by Arslan et al. (2018)

which has applications in transportation, revenue management, and security management.

In addition, unit scheduling problems under sequentially cleared markets can be modeled

with BSOCP in its extended form where an additional constraint stating the impact of

the follower’s dual solution on the leader problem is added to the leader problem. Such

constraints may be desirable in some sequential market environments where the follower’s

dual solution settles the prices of commodities that are used by the leader; see, e.g., the

unit-commitment problem for interdependent natural gas and electricity markets studied

by Byeon and Van Hentenryck (2019).

Despite the wide applicability of bilevel optimization to problems with multiple decision

makers, the nonconvexity brought by the optimality requirement of the follower makes even

the simplest subclass of bilevel problems, i.e., linear leader and follower problems, NP-hard

(Jeroslow 1985). This inherent complexity of bilevel optimization explains why the design

of tailored algorithms for bilevel optimization problems with integer variables has only a

relatively short history (DeNegre and Ralphs 2009, Xu and Wang 2014, Fischetti et al.

2016a, 2017b, Lozano and Smith 2017, Kleinert et al. 2020). These dedicated methods

adapt branch-and-bound and/or cutting-plane approaches to the bilevel context. However,

1 For clarification, we denote a bilevel optimization problem as ‘mixed-integer’ only when both the leader and follower
are allowed to have integer variables. The class of bilevel problems of interest assumes continuous follower variables,
so we denote the class as BSOCP, even though it is allowed to have integer variables in the leader problem.
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most of them focus on the case of linear or convex quadratic constraints. Moreover, only

the work of Lozano and Smith (2017) considers continuous non-linear constraints, but it

requires all leader variables to be integer-valued for finite termination.

Aside from these bilevel-tailored branch-and-bound and/or cutting-plane methods, an

alternative approach for solving BSOCP is to reformulate the bilevel optimization prob-

lem into a single-level optimization problem. Cao and Chen (2006), Garcés et al. (2009),

Fontaine and Minner (2014), and Zare et al. (2019) reformulated a BLP instance as a

single-level Mixed-Integer Linear Programming (MILP) problem by replacing the lower

level with its optimality conditions. The same technique can be applied to BSOCP, leading

to a single-level MISOCP reformulation. The resulting MISOCP problem, however, is com-

plex since it intertwines the leader problem and the follower’s primal and dual problems.

For large instances, the complexity of the MISOCP formulation often raises significant

challenges for commercial solvers.

Benders decomposition is a solution technique that has been widely used for solving

large-scale MILP and MISOCP problems. Instead of dealing with all the variables and

constraints of a complex MISOCP problem simultaneously, Benders decomposition relaxes

the inner-continuous problem and iteratively discovers the shape and the domain of the

relaxed problem with a set of linear inequalities called optimality and feasibility cuts. At

each iteration, the cuts are generated by solving a Benders subproblem. However, the com-

plexity of the MISOCP formulation of BSOCP also complicates the Benders subproblem,

which often exhibits numerical difficulties and requires significant computational resources.

To address these challenges, we propose a dedicated Benders decomposition for BSOCP

where the complex Benders subproblem is itself decomposed into two more tractable,

sequentially solvable problems that are closely related to the leader and the follower prob-

lems. Moreover, to address applications where the dual variables of the follower problem

have no natural bounds, we propose a new family of cuts that merges no-good and Benders

cuts, removing the need for these bounds and reducing both the computational burden

and the numerical issues. Since this novel decomposition is embedded into a branch and

cut algorithm, we also propose two novel techniques to speed up the solution space. First,

we propose a new branching scheme that targets the optimality gap between the follower

objective and its guess in the leader subproblem. Second, we propose a new method for find-

ing a good incumbent solution in a preprocessing step, which combines the bilevel-tailored
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branching scheme and a heuristic local cut. We also show that the proposed decomposition

applies to applications where the leader problem features constraints on the dual variables

of the follower problem, which is the case in our motivating case study in sequential market

clearing for electricity and gas networks. We also identify cases where the two subproblems

can be solved independently (instead of sequentially) and propose acceleration schemes

that improve the performance of the overall algorithm in this setting.

To the best of our knowledge, tailored algorithms for BSOCP, especially for the case

where the follower problem is a general SOCP, have not been discussed or their computa-

tional studies have focused only on linear cases. Due to the lack of dedicated algorithms and

available code packages for solving the BSOCP instances, we benchmarked the proposed

method against a single-level MISOCP reformulation which will be described in Section

3. In addition, to demonstrate the potential benefits of our proposed approach, we also

conducted extensive experiments on BLP instances, a special case of BSOCP, which were

constructed by relaxing the follower integrality condition from publicly available MIBLP

test sets. The performance of our proposed approach is then compared to a state-of-the-art

bilevel-tailored branch-and-cut algorithm that can be used to solve MIBLP (Fischetti et al.

2017b).

The main contributions of this paper can be summarized as follows.

• The paper proposes a new decomposition technique for BSOCP, which allows for easy

implementation and an intuitive interpretation of Benders cuts.

• The paper proposes a new family of hybrid cuts that combine no-good and Benders

cuts to eliminate the need for bounds on the dual variables of the follower problem.

• The paper proposes a new branching scheme for BSOCP that targets the optimality

gap between the follower objective and its guess in the leader problem, as well as a new

method for finding a high-quality solution before the branch and cut exploration.

• The paper introduces an interesting extension of BSOCP that captures important

real-world problems where the leader is affected by the follower’s dual solution. It is shown

that the decomposition technique carries over to this extension. In addition, the paper

identifies special cases of BSOCP that allow for a sequence-independent decomposition.

The paper also presents some accelerating schemes to further reduce the computational

burden in this case.
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• The paper reports a computational study that demonstrates significant performance

improvement of the proposed method and the accelerating schemes over a commercial

solver and the standard Benders method. Extensive experiments on BLP are also given:

they highlight the benefits of the proposed method and its complementarity with a state-

of-the-art bilevel-tailored branch-and-cut algorithm (Fischetti et al. 2017b).

The rest of the paper is organized as follows: Section 1.1 formally defines BSOCP, as well

as the assumptions of the paper and their justifications. Section 2 discusses previous work

and Section 3 presents the MISOCP formulation of BSOCP. Sections 4 and 5 propose the

dedicated Benders method for BSOCP, and its numerically stable variant. Section 6 pro-

poses a heuristic method for finding an incumbent solution in a preprocessing step. Section

7 discusses an interesting extension of BSOCP that incorporates additional constraints on

the follower’s dual variables in the leader problem. It also identifies some special cases of

BSOCP that allow stronger algorithmic results, as well as some accelerating schemes for

the dedicated Benders method. The computational performance of the proposed method

is demonstrated in Section 8. Section 9 concludes the paper.

1.1. Bilevel Secone-Order Cone Programming (BSOCP) and Assumptions

A BSOCP problem is formally defined as follows:

min
x,y

cTxx+ cTy y (1a)

s.t. Gxx+Gyy≥ h, (1b)

x∈X := {x∈Kx : xi ∈ [xi, xi]Z, ∀i∈ I}, (1c)

y ∈ arg min
y∈Ky
{dTy :Ax+By≥ b}, (1d)

where x and y respectively represent the nx-dimensional leader and ny-dimensional follower

variables. In Equation (1c), xi and xi respectively denote lower and upper bounds on

variable xi, some of which are allowed to be −∞ and ∞. [xi, xi]Z denotes a set of integer

points in the interval, and I ⊆ {1, · · · , nx} represents a set of indices of the leader’s variables

for which the corresponding variable is integer. Each of Kx ⊆ Rnx and Ky ⊆ Rny is the

Cartesian product of a collection of second-order cones and nonnegative orthants, i.e.,

Kx×Ky =Kn1 × · · ·×Knl

where each Kni ⊆ Rni is either a ni-dimensional second-order cone {(u, v) ∈ Rni : ‖u‖2 ≤
v} or a ni-dimensional nonnegative orthant Rni

+ . Gx ∈ Rmx×nx,Gy ∈ Rmx×ny , cx ∈ Rnx, cy ∈
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Rny , h ∈Rmx, d ∈Rny ,A ∈Rmy×nx,B ∈Rmy×ny , and b ∈Rmy are given rational matrices or

vectors.

Remark 1. Note that the leader problem minimizes over x and y, which implies a

cooperative behavior of the leader and the follower, i.e., when there are multiple lower level

optimal solutions for a given upper-level decision x̂, it chooses ŷ that benefits the upper-

level the most, among the follower optimal solutions. Bilevel problems with this property

are said to be optimistic; For more details on this topic, we refer the reader to Colson et al.

(2005).

Throughout this paper, we assume the following:

Assumption 1. The dual of the follower problem is feasible when variables x are

assigned to a leader decision:

The dual of the follower problem for given x̂ is

max
ψ∈Rmy+

(b−Ax̂)Tψ :BTψ�Ky d. (2)

Note that the dual feasible region is not affected by x̂, and thus this assumption implies that

the follower problem is bounded from below for any x̂. Therefore, for any given x̂, strong

duality holds between the primal and dual problems (1d) and (2). This is a reasonable

assumption since, otherwise, the follower problem is either unbounded or infeasible for any

leader decision.

Let J denote the set of indices of the leader variables that appear in the follower problem,

i.e., i∈J if and only if the i-th column of A is nontrivial (a nonzero vector).

Assumption 2. (a) J ⊆ I, and (b) for each i∈J , xi and xi are finite real numbers.

This assumption is required by many other state-of-the-art algorithms for mixed-integer

bilevel problems, e.g, (Xu and Wang 2014, Fischetti et al. 2016a, 2017b, Lozano and Smith

2017, Kleinert et al. 2020).

Consider a single-level optimization problem that gives a lower bound to the bilevel pro-

gram, the so-called high point problem (HPP), that is obtained by relaxing the optimality

requirement of the follower:

min
x∈X ,y∈Ky

cTxx+ cTy y (3a)

s.t. Gxyx+Gyy≥ hy, (3b)

Ax+By≥ b. (3c)
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In order to ensure that Problem (1) is neither infeasible nor unbounded, we make the

following additional assumptions:

Assumption 3. Problem (3) has a bounded feasible region.

Assumption 3 guarantees a finite lower bound of Problem (1); this assumption is not too

restrictive, because we can add auxiliary variables with penalties to guarantee feasibility

and many real-world applications have natural bounds on variables. This assumption holds

in energy systems where it is always possible to shed the load, albeit with a high penalty.

With these assumptions, we use the following definition throughout this paper:

Definition 1. A leader decision x̂ is called bilevel-feasible, if it satisfies all of the fol-

lowing:

1. x̂ is feasible to the follower (i.e., Problem (1d) with x fixed as x̂ is feasible);

2. there exists an optimal response ŷ of the follower to x̂ that is feasible to the leader,

i.e., Gxyx̂+Gyŷ≥ h and ŷ ∈F(x̂), where F(x̂) denotes the set of optimal solutions of the

follower problem for given x̂.

When at least one of the above is not met, we call the pair bilevel-infeasible.

Additionally, based on Assumption 2 (b), we assume, w.l.o.g, that xi and xi are integers

for i∈J . Note that an integer variable xi with finite integral upper and lower bounds can

be replaced by a set of auxiliary binary variables {zij}j=1,··· ,ki , where ki := blog(xi−xi)c+1,

as follows: xi =
∑ki

j=1 2j−1zij +xi. Therefore, w.l.o.g, we assume xi ∈ {0,1},∀i∈J .

2. Literature Review

A widely-studied special class of BSOCP is BLP where both Kx and Ky are nx- and ny-

dimensional nonnegative orthants, respectively. Taking advantage of the strong duality in

the lower level problem, the common solution approach for BLP is to reformulate the bilevel

problem into a single-level MILP problem and to solve the MILP problem via off-the-

shelf solvers. There are two widely-used reformulation schemes: (1) a Karush-Kuhn-Tucker

(KKT) condition approach, and (2) a strong duality approach. The former replaces the

lower level problem by the KKT conditions and linearizes the nonlinear complementary

slackness condition by introducing additional binary variables and logic-based constraints

(see, e.g., Labbé et al. (1998)). However, due to the large number of binary variables and

constraints that should be introduced for the linearization, this approach does not scale

well and is not adequate for solving large instances. The later method, on the other hand,
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replaces the complementary slackness condition with the reversed weak duality inequality

to ensure that the primal and dual objective values of the lower level are the same. Then, the

bilinear terms in the reversed weak duality are linearized using the McCormick relaxation

(Cao and Chen 2006, Garcés et al. 2009, Fontaine and Minner 2014) or some problem-

specific properties (Arslan et al. 2018). Recently, Zare et al. (2019) have compared these

two schemes and have shown that the latter approach significantly outperforms the former

approach for many classes of instances.

For large-scale problems, however, solving the resultant MILP is still challenging since

it entangles the leader problem and the follower primal and dual problems. Accordingly,

some problem-specific and generic decomposition/separation techniques for solving the

associated MILP have been proposed. Grimm et al. (2019) proposed a generalized Benders

algorithm that uses a special structure of the given tri-level problem (which has an equiva-

lent BLP counterpart) and Arslan et al. (2018) developed a branch-and-cut approach for a

certain class of BLP, named the Evasive Flow Capturing Problem. For general approaches,

Saharidis and Ierapetritou (2009) proposed a decomposition algorithm which, at every

iteration, fixes the integer variables at some values, reformulates the resultant bilevel linear

subproblem into a MILP problem using the KKT scheme, solves the MILP problem to

construct the associated LP problem with its active constraint set, solves the LP problem

to obtain the dual information, and adds a cut. Since this approach reformulates the bilevel

linear subproblem as a MILP problem using the KKT scheme at every iteration, its applica-

tion to large-scale problems would be computationally expensive. The most relevant work

is by Fontaine and Minner (2014) who applied the Benders decomposition to the MILP

formulation obtained by the strong duality scheme. It proposed an acceleration scheme for

obtaining an optimality Benders cut which sequentially solves three smaller problems: (a)

the follower problem, (b) the leader problem, and (c) the follower dual-related problem to

obtain optimality cut.

Another line of research has developed bilevel-tailored branch-and-bound and/or cutting

plane methods for Mixed-Integer Bilevel Linear Programming (BMILP), which subsumes

BLP, where some of the leader and follower variables are allowed to be integer-valued.

Xu and Wang (2014) proposed a branch-and-bound approach which features a bilevel-

tailored design of the relaxation problem and the branch-and-bound rules. Separately, in

the spirit of cutting-plane approach, DeNegre and Ralphs (2009) and Fischetti et al. (2016a)
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proposed valid cut generation schemes for Integer Bilevel Programming (IBLP) and MIBLP

respectively, which were further improved by Fischetti et al. (2017b). The Branch-and-

Cut (B&C) approach proposed by Fischetti et al. (2017b) features intersection cuts along

with two additional acceleration schemes: (i) locally valid cuts and (ii) a preprocessing

rule that allows for the pre-determination of some follower solutions, which enhances the

algorithmic performance significantly. Another B&C algorithm for MIBLP was proposed

by Caramia and Mari (2015), which solves a BLP problem for generating cuts. Although,

these generic methods solved quite large instances of MIBLP, they focused on the case

of linear follower constraints. Only the work of Kleinert et al. (2020) and Lozano and

Smith (2017) considered a non-linear follower problem: Kleinert et al. (2020) developed an

outer-approximation-based cutting-plane method for solving a special class of BSOCP in

which some of its constraints are allowed to be convex quadratic and Lozano and Smith

(2017) proposed a sampling-based cutting plane method for solving a class of mixed-integer

nonlinear bilevel programming, where all the leader variables are assumed to be integers.

From a computational standpoint, this paper features three main differences from the

existing literature: (i) it proposes a tailored solution approach for solving BSOCP problems;

(ii) it presents a new family of cuts that combines no-good and Benders cuts, removes the

need for bounds of the follower dual variables, and leads to better performance, numerical

stability, and ease of implementation; (iii) it develops a heuristic method for finding a

good incumbent solution of MIBSOCP. From a modeling standpoint, the paper shows that

the decomposition carries over to the interesting case where the leader problem feature

constraints on the follower dual variables. Additional modeling and computational results

are also presented in this more general setting.

3. The MISOCP Reformulation

In this section, we reformulate Problem (1) as a single-level MISOCP problem using the

strong duality approach. Note that, using Assumptions 1, Problem (1) can be expressed

as follows:
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min
x∈X ,t∈R

cTxx+ t (4a)

s.t. t≥ f(x), (4b)

f(x) := min
y∈Ky ,ψ≥0

cTy y (5a)

s.t. Gxyx+Gyy≥ hy, (5b)

Ax+By≥ b, (5c)

BTψ�Ky d, (5d)

dTy≤ψT (b−Ax). (5e)

Constraints (5c) and (5d) respectively ensure primal and dual feasibility of the lower level

problem, Constraint (5e) ensures strong duality in the lower level. Thus, for any x ∈Rn1,

a feasible y to Constraints (5c)-(5e) is an optimal solution of the lower level problem for

the given x. Accordingly, Constraint (5b) models how the lower level reaction affects the

upper level feasible region.

Problem (5) contains a bilinear term, ψTAx =
∑my

i=1

∑nx
j=1Aijψixj, in Constraint (5e).

Note that, due to Assumption 2, each non-trivial bilinear term Aijψixj is a multiplication

of some nonnegative continuous variable ψi and a binary variable xj. Assuming that ψ has

an upper bound of ψ2, each of the nonlinear terms can be linearized. First, introduce an

additional vector of nonnegative variables µ∈Rmy |J |
+ and constraints µ(i−1)|J |+j =ψixj,∀i=

1, · · · ,my, j ∈J to represent ψTAx as µTa, where a is a vector obtained by concatenating

each rows of A. Then, for each i= 1, · · · ,my and j ∈ J , use a McCormick transformation

to replace the additional constraint by a set of linear constraints of the form: −ψi +

µ(i−1)|J |+j ≥ ψixj − ψi, µ(i−1)|J |+j ≤ ψixj, −ψi + µ(i−1)|J |+j ≤ 0. We represent this set of

equations for all i= 1, · · · ,my and j ∈J as

Kψψ+Kµµ≥ k+Kxx, (6)

for some matrices Kψ,Kµ,Kx, and some vector k of appropriate dimensions. Then, f(x)

can be obtained by solving the following problem:

min
(y,ψ,µ)T∈Ky×R

my
+ ×Rmy |J |+

cTy y (7a)

s.t. Gyy≥ hy−Gxyx, (7b)

2 The case where a reasonable ψ is not available is discussed in Section 5
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t ≥ f (x)

t

xx̂

Feasibility cut

[ ]
dom(f)

(a) A feasibility cut

t ≥ f (x)

t

xx̂

Optimality cut

t̂

[ ]

(b) An optimality cut

Figure 1 Illustration of Benders Cuts

By≥ b−Ax, (7c)

−ψTB �Ky −dT , (7d)

− dTy+ψT b−µTa≥ 0, (7e)

Kψψ+Kµµ≥ k+Kxx, . (7f)

In the following, Problem (MISOCP) denotes the resulting MISOCP problem, i.e., Prob-

lem (4) where f(x) is defined by Problem (7).

4. A Dedicated Benders Decomposition Method for BSOCP

This section discusses a dedicated solution method for Problem (MISOCP), which builds

upon the Benders decomposition method—a solution technique that has been widely used

for solving large-scale MILP and MISOCP problems. Benders Decomposition (BD) is

defined by a Relaxed Master Problem (RMP) and a Benders SubProblem (BSP). Initially,

the RMP corresponds to Problem (4) with Constraint (4b) relaxed:

min
x∈X

cTxx+ t

s.t. t∈R.
(8)

At each iteration, BD generates a guess (x̂, t̂) by solving the RMP and then checks

whether (x̂, t̂) violates the relaxed constraint or not by solving the BSP, which is defined by

the dual of f(x̂). There are three possible cases: (i) f(x̂) =∞ (i.e., x̂ is out of the domain

of f); (ii) f(x̂)<∞ but (x̂, t̂) violates Constraint (4b); (iii) f(x̂)<∞ and (x̂, t̂) satisfies

Constraint (4b). For infeasible cases (i) and (ii), BD respectively generates feasibility and

optimality cuts using an unbounded ray and an optimal solution of the BSP to cut off the

current guess, which is illustrated in Figure 1. BD repeats this procedure until it reaches

a predetermined gap or encounter case (iii). The detailed idea behind the Benders cuts
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can be found in many optimization textbooks (e.g., Wolsey (1998), Conforti et al. (2014),

Jünger et al. (2009)).

Specifically, for a guess x̂, the BSP is defined by the dual of Problem (7). We slightly

abuse notation and let uy, ψ, y, w, and v represent the dual variables associated with

Constraints (7b), (7c), (7d), (7e), and (7f) respectively. Then the dual of Problem (7) can

be expressed as follows:

max ψT (b−Ax̂) +uTy (hy−Gxyx̂)−
[
dTy− vT (k+Kxx̂)

]
(9a)

s.t. By−KT
ψ v≥ bw, (9b)

BTψ+GT
y uy �Ky dw+ cy, (9c)

KT
µ v≤ aw, (9d)

ψ≥ 0, uy ≥ 0,w≥ 0, y ∈Ky, v≥ 0. (9e)

Note that, without loss of generality, we can assume that Problem (9) is feasible, since

otherwise, Problem (5) is infeasible for any x̂ ∈X due to Assumption 3, and thus we can

conclude that Problem (1) is infeasible.

Unfortunately, for large-scale bilevel problems, Problem (9) is highly complex since it has

primal-related (e.g., (9b) and (9d)) and dual-related (e.g., (9c)) constraints for Problem

(1d) which are linked by variable w. In this section, we show that Problem (9) does not

need to be solved as a whole. Rather, the Benders cuts of Problem (MISOCP) can be

obtained by solving two more tractable problems, i.e., a problem associated with the lower-

level problem (to be defined as Problem (10)) and a problem related to the upper level

problem (to be defined as Problem (11)).

Theorem 1. Problem (9) can be solved by solving two more tractable problems sequen-

tially, i.e., solve the following problems

min dTy− vT (k+Kxx̂) (10a)

s.t. By−KT
ψ v≥ b, (10b)

KT
µ v≤ a, (10c)

y ∈Ky, v≥ 0, (10d)

max ψT (b−Ax̂) +uTy (hy−Gxyx̂)−Ow (11a)

s.t. BTψ+GT
y uy �Ky dw+ cy, (11b)

ψ≥ 0, uy ≥ 0,w≥ 0, (11c)

where O denotes the optimal objective value of Problem (10).
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Remark 2. Note that Problem (10) has a finite optimum O for any x̂. Consider the

dual of Problem (10): maxψ≥0,µ≥0

{
bTψ−µTa :BTψ�Ky d,Kψψ+Kµµ≥ k+Kxx̂

}
, where

ψ and µ are dual variables associated with Constraints (10b) and (10c) respectively. Note

that, due to the McCormick relaxation, it holds that

Dual of Problem (10)≥ max
0≤ψ≤ψ̄

{ψT (b−Ax̂) :BTψ�Ky d}, (12)

where the inequality holds in equality for any x̂ ∈ X , (i.e., when the integrality condition

is met). Note that Problem (12) has a nonempty bounded feasible region, the feasibility

of which is guaranteed by Assumption 1 and the boundedness follows from 0 ≤ ψ ≤ ψ̄.

Therefore, Problem (10) is always bounded below. Note also that Problem (10) is feasible;

otherwise, Problem (10) is infeasible for any x̂ ∈Rnx, and thus Problem (12) is infeasible

or unbounded for any x̂∈X , which contradicts Assumption 1.

Likewise, Assumption 3 guarantees Problem (11) to be feasible. Consider the dual of

Problem (11):

min
y∈Ky
{cTy y :By≥ b−Ax̂, Gyy≥ hy−Gxyx̂, d

Ty≤O}. (13)

Note that, if Problem (11) is infeasible, Problem (13) is infeasible or unbounded for any

x̂∈X and O∈R∪{∞}, which contradicts Assumption 3.

Theorem 1 implies that Benders cuts can be generated by solving Problem (10) (i.e.,

a lower level-related problem) and Problem (11) (i.e., an upper level-related problem)

sequentially, and leads to the following corollary.

Corollary 1. Problem (MISOCP) is equivalent to the following problem:

min
x∈X

cTxx+ t

s.t. t≥ ψ̂T (b−Ax) + ûTy (hy −Gxyx)− ŵ(dT ŷ− v̂T (k+Kxx)), ∀(ψ̂, ûy, ŵ, ŷ, v̂)∈J2×J1, (14a)

0≥ ψ̃T (b−Ax) + ũTy (hy −Gxyx)− w̃(dT ŷ− v̂T (k+Kxx)), ∀(ψ̃, ũy, w̃, ŷ, v̂)∈R2×J1, (14b)

where J1 is the set of all extreme points of Problem (10) and J2 and R2 are the set of

all extreme points and rays of Problem (11), respectively.

Let C1 and C2 denote the set of all constraints in (14a) and (14b) respectively. At each

iteration, the RMP is a relaxation of Problem (14) with a subset of the constraints, i.e.,

C̃1 ⊆ C1 and C̃2 ⊆ C2. The Benders separation routine at each iteration for an optimal

solution x̂ of the RMP is given by Algorithm 1 instead of by solving Problem (9) and

produces a violated constraints in Ci \ C̃i, for some i= 1,2.
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Algorithm 1: The Benders Separation Algorithm.

1 begin
Input: x̂∈Rn1

2 Solve Problem (10) for x̂;

3 Obtain its optimal solution (ŷ, v̂)∈J1 and let O be its optimal objective value;

4 Solve Problem (11) for x̂ and O;

5 if Problem (11) is unbounded with an unbounded ray (ψ̃, ũy, w̃)∈R2 then

6 Add the feasibility cut 0≥ ψ̃T (b−Ax)− ũTy (hy −Gxyx̂)− w̃(dT ŷ− v̂T (k+Kxx)) to

the RMP;

7 else

8 Obtain its optimal solution (ψ̂, ûy, ŵ)∈J2;

9 Add the optimality cut t≥ ψ̂T (b−Ax)− ûTy (hy −Gxyx̂)− ŵ(dT ŷ− v̂T (k+Kxx)) to

the RMP;

10 Update the best primal bound with the obtained feasible solution;

4.1. Interpretation of Benders Cuts

While the Benders cuts (i.e., Equations (14a)-(14b)) are valid for any x̂ feasible to the

SOCP relaxation of Problem (MISOCP), they allow for an intuitive interpretation when

x̂ ∈ X (i.e., when the integrality condition is met). Recall that Remark 2 indicates, for

x̂∈X ,

O= min
y∈Ky ,s≥0

{dTy+ ψ̄Ts :By+ s≥ b−Ax̂}, (15a)

O(11) = min
y∈Ky
{cTy y :By≥ b−Ax̂, GT

y y≥ hy−Gxyx̂, d
Ty≤O}. (15b)

Note that Equations (15) imply that, for x̂∈X , Problem (10) corresponds to the follower

problem with a penalty term, while Problem (11) represents the leader’s problem condi-

tional on the follower’s reaction, since any y ≥ 0 satisfying the first and third constraints

of Problem (15b) is optimal to the follower.

As upper bounds ψ̄ on the dual follower variables are not available in most cases, each

entry of ψ̄ is usually set as a sufficiently large numerical value. Therefore, when the follower

problem is infeasible for x̂, some entry of s must take some positive value, incurring a sig-

nificant cost ψ̄Ts in the objective function. Note that in that case, Problem (15b) becomes

infeasible due to the first constraint, generating a cut in the form of (14b), separating the

bilevel-infeasible x̂. When the follower problem has a finite optimum O for given x̂ (i.e.,
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s= 0), the first and the third constraints in Problem (15b) gurantee that y is feasible to

Problem (15b) only when y ∈ F(x̂), i.e., an optimal solution to the follower for given x̂.

Therefore, the unboundedness of Problem (11) (i.e., Problem (15b) is infeasible) implies

that none of the follower’s response to x̂ is feasible to the leader and the cut (14b) cor-

rectly cuts off the bilevel-infeasible point x̂. Lastly, if both Problems (10) and (11) have a

finite optimum at x̂∈X , this implies that x̂ is bilevel-feasible and the optimality cut (i.e.,

Equation (14a)) correctly evaluates the leader’s cost incurred by the follower reaction ŷ

(i.e., f(x̂) = cTy ŷ).

5. Numerically Stable Benders Cut Generation Procedure

Note that, in many cases, there may not be a specific upper bound ψ̄ on ψ available to use

in Equation (6). In those cases, we may use sufficiently large numerical values to set up ψ.

However, these large values of ψ̄ are undesirable as they may lead to a significantly wide

range of coefficients, which not only negatively affects the computation of Problem (10)

but also compromises the effectiveness of the Benders cuts of Equations (14a) and (14b).

This situation may get worse as the degree of coupling between the leader and the follower

problems gets higher.

To address this issue, we propose a numerically stable Benders separation procedure

that combines no-good and Benders cuts. Let gx̂(x) be the function that satisfies gx̂(x) = 0

for x= x̂ and gx̂(x)> 0 for any x 6= x̂. If the domain of g is Bnx, we can define such gx̂ as:

gx̂(x) =
∑

j∈J :x̂j=1(1− xj) +
∑

j∈J :x̂j=0 xj. The idea is to use gx̂(x) to eliminate the term

v̂T (k+Kxx) in the Benders cuts, which is associated with the McCormick relaxation (i.e.,

the term involving an upper bound on ψ); it is motivated by a structural role of the term

v̂T (k+Kxx) that assigns a cost associated ψ̂ to x that deviates from x̂.

Suppose the RMP generates a guess (x̂, t̂). Our objective is to generate a valid inequality

that cuts off (x̂, t̂) if x̂ is bilevel-infeasible or if x̂ is bilevel-feasible but (x̂, t̂) violates

Constraint (4b). Refer to Definition 1 for the definition of bilevel-feasible points used in

this paper.

The modified procedure first solves the follower problem (i.e., Problem (1d)) with given

x̂. If the follower problem is infeasible, we can cut off the point by using the dual unbounded

ray ψ̃1 of the follower at x̂:

ψ̃T1 (b−Ax)≤ 0. (16)
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Note that this inequality is valid, since any x that violates this inequality is infeasible

to the follower, hence bilevel-infeasible. If the follower has an optimal solution ŷ with a

finite optimum O at x̂, the procedure solves Problem (15b) with given x̂ and O (i.e., the

leader problem for the given follower’s reaction). If Problem (15b) is infeasible with a dual

unbounded ray of (ψ̃2, ũy, w̃), it adds

0≥ ψ̃T2 (b−Ax) + ũTy (hy−Gxyx)− w̃
(
dT ŷ+ (M − dT ŷ)gx̂(x)

)
, (17)

whereM is an upper bound on the follower objective value which can be obtained by solving

Problem (3) with the objective function replaced by dTy, and note that such M is guar-

anteed to exist under Assumption 3. Note that it cuts off the bilevel-infeasible solution x̂,

since we have gx̂(x̂) = 0 and thus ψ̃T2 (b−Ax̂)+ ũy(hy−Gxyx̂)−w̃
(
dT ŷ+ (M − dT ŷ)gx̂(x̂)

)
=

ψ̃T2 (b−Ax̂)+ ũy(hy−Gxyx̂)− w̃O> 0. Also, note that it does not cut off any bilevel feasible

solution x′ 6= x̂, since for any extreme ray (ψ̃2, ũy, w̃) of the dual of Problem (15b), the

following holds:

0≥ ψ̃T2 (b−Ax′) + ũTy (hy−Gxyx
′)− w̃O′

≥ ψ̃T2 (b−Ax′) + ũTy (hy−Gxyx
′)− w̃M,

≥ ψ̃T2 (b−Ax′) + ũTy (hy−Gxyx
′)− w̃

(
dT ŷ+ (M − dT ŷ)gx̂(x

′)
)
,

where O′ denote the optimal objective of the follower for the given bilevel-feasible x′.

Similarly, if Problem (15b) is feasible with optimal objective value O2 > t̂, it adds the

following cut:

t≥ ψ̂T2 (b−Ax) + ûTy (hy−Gxyx)− ŵ
(
dT ŷ+ (M − dT ŷ)gx̂(x)

)
, (18)

where (ψ̂2, ûy, ŵ) is the dual solution of Problem (15b). Note that Equation (18) cuts off

(x̂, t̂); since at x̂, we have gx̂(x̂) = 0 and thus

ψ̂T2 (b−Ax̂) + ûTy (hy−Gxyx̂)− ŵ(dT ŷ) = O2 > t̂.

For any other bilevel-feasible x′ 6= x̂, let O′ be the optimal objective value of Problem (15a)

for given x′ and (ψ̂′2, û
′
y, ŵ

′) be the optimal dual solution of Problem (15b) for given x′ and

O′. Then, we have

t≥ ψ̂′T
2 (b−Ax′) + û

′T
y (hy −Gxyx

′)− ŵ′O′ ≥ ψ̂T2 (b−Ax′) + ûTy (hy −Gxyx
′)− ŵO′

≥ ψ̂T2 (b−Ax′) + ûTy (hy −Gxyx
′)− ŵM

≥ ψ̂T2 (b−Ax′) + ûTy (hy −Gxyx
′)− ŵ

(
dT ŷ+ (M − dT ŷ)gx̂(x

′)
)
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Algorithm 2: The Numerically Stable Benders Separation Algorithm.

1 begin
Input: x̂∈X

2 Solve Problem (1d) for x̂;

3 if Problem (1d) is infeasible with a dual unbounded ray ψ̃1 then

4 Add the feasibility cut ψ̃T1 (b−Ax)≤ 0 to the RMP;

5 else

6 Obtain its optimal solution ŷ and let O be its optimal objective value;

7 Solve Problem (15b) with O and x̂;

8 if Problem (15b) is infeasible with a dual unbounded ray (ψ̃2, ũy, w̃) then

9 Add the feasibility cut

0≥ ψ̃T2 (b−Ax)− ũTy (hy −Gxyx̂)− w̃(dT ŷ+ (M − dT ŷ)gx̂(x)) to the RMP;

10 else

11 Obtain its dual optimal solution (ψ̂2, ûy, ŵ);

12 Add the optimality cut

t≥ ψ̂T2 (b−Ax)− ûTy (hy −Gxyx̂)− ŵ(dT ŷ+ (M − dT ŷ)gx̂(x)) to the RMP;

13 Update the best primal bound with the obtained feasible solution;

Therefore, it does not cut-off any valid bilevel-feasible x′. The modified algorithm is

summarized in Algorithm 2.

Note that the benefit of the modified procedure is huge when we do not have a specific

upper bound on the dual variables, which happens in many practical problems; in the cut

generation procedure, we do not have to deal with large coefficients that may be needed to

account for unbounded dual variables. Furthermore, M can be dynamically reduced inside

a callback function depending on the relaxation problem at the current branching node as

the algorithm proceeds.

5.1. A Relatively-Complete Follower

Instead of ensuring the follower feasibility of x using the feasibility cut (16), we may

enforce the follower feasibility in the leader problem, which is often shown to be effective

in the context of stochastic programming. To make the master problem generates x that is

feasible to the follower and likely to be feasible to the leader, we add the follower variable

y to the master problem, along with the leader and the follower constraints. Then, we

add an additional constraint t≥ cTy y to the master. Note that these additions do not alter
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the optimal solution and make the initial master problem become equivalent to the HPP

problem. The resultant initial master problem is:

min
x∈X ,y∈Ky

{
cTxx+ t : t≥ cTy y, Gxyx+Gyy≥ hy, Ax+By≥ b

}
, (19)

which generates follower-feasible incumbent solutions and eliminates the need to add the

feasibility cut (16). We will use this extended master problem for the remainder of this

paper.

6. A Heuristic For Finding MIBSOCP Incumbent Solutions

In this section, we propose a heuristic method for finding an incumbent solution of MIB-

SOCP, which utilizes callback functions available in many commercial branch-and-cut

solvers. Callback functions enable users to alter the solvers behavior, such as maneuvering

branching rules/directions, adding (lazy) constraints on an as-needed basis while the solver

is in process, and updating an incumbent solution.

For example, a user can write a callback function that provides the solver with Benders

cuts in a lazy manner only when a newly-found incumbent solution violates some of the

Benders cuts. To be specific, a branch-and-cut solver begins to solve the initial master

problem without any Benders cuts; and then whenever an incumbent solution x̂ is found

in the solver process, it invokes a user-written callback function that checks whether there

is a Benders cut violated by x̂; if there exists, it adds the cut to cut off x̂.

Users also can control the branching rules/decisions. Unless a user defines a callback

function that alters the branching decision—which node to branch on and how to branch

the selected node—the solver, by default, often chooses an integer variable to branch on.

For bilevel problems, however, it may not be effective since the follower suboptimality can

be a more critical factor in the solution infeasibility than the solution non-integrality. The

following motivating example illustrates the case:

Example 1. Consider the following BLP instance:

min x− 8y (20)

s.t. 0≤ x≤ 11 integer, (21)

y ∈ arg min
y≥0
{y : 3x+ 4y≥ 18, −4x+ 9y≤ 19, 8x+ y≤ 88} , (22)

the bilevel-feasible region of which is illustrated in Figure 2 (a) as a set of filled circles.
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(c) Proposed branching scheme

Figure 2 Motivating Example and Branching Rules for HPP

At the root node of a branching tree, the initial master problem (i.e., the HPP problem)

consists of the leader and the follower constraints, excluding the integrality condition,

which corresponds to the shaded region in Figure 2 (a). The solution at the root node is

(773
76
, 126

19
) denoted by an unfilled circle in Figure 2 (a). Figure 2 (b) illustrates how a solver

would branch, by default, on a fractional solution. Note that, for this example, this way of

branching neither notably enhances the lower bound nor finds a bilevel-feasible solution.

This motivates us to explore a bilevel-tailored branching scheme.

6.1. A Bilevel-Tailored Branching Rule

A branching rule may be used to guide the solver to a more relevant solution space based

on the follower’s reaction in the optimization process. Suppose a branch-and-cut solver

begins to solve the initial master problem (i.e., Problem (19)) and adds lazy Benders cuts

progressively. Let (x̂, ŷ, t̂) be a fractional solution obtained at a branching node. Let y′ be

the follower’s reaction to x̂. If cTy ŷ < c
T
y y
′, then (x̂, ŷ) is not bilevel-feasible; it is mainly due
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to the discrepancy between cy and d. The leader’s optimal follower response ŷ obtained

based on cy may significantly differ from the actual follower response, i.e., dT ŷ > dTy′.

Therefore, a branching scheme on the follower variables that informs the solver of the

follower’s response may help discover a relevant solution space faster. The idea is that

we branch using hyperplanes (d1) dTy ≤ bdT y′+dT ŷ
2
c and (d2) dTy > bdT y′+dT ŷ

2
c. We can

use this branching scheme when the lower bound does not improve notably after some

predetermined number of integer branchings.

This is illustrated in Figure 2 (c). In the example, unlike the conventional branching

rule, a good (essentially optimal) incumbent solution will be found in the node generated

by (d1). Note also that, although the branching direction (d2) does not have any bilevel

feasible solutions, it will keep branching on in the direction. This unnecessary exploration

can be prevented if we can feed the solver a proper follower upper bound. For example, the

follower objective value in Example 1 cannot be greater than 3, and thus if the algorithm

knows dTy≤ 3, it will prune the direction (d2) immediately. Then, the question is how we

can efficiently obtain a meaningful upper bound of the follower problem, which motivates

Section 6.2.

6.2. Local Cuts

A meaningful upper bound of the follower may be obtained in various ways. Let FUB

denote an upper bound of the follower; then, a cut dTy≤FUB may inform the solver of a

bilevel-infeasible region. Note that FUB may decrease as we move from the root node to

a leaf node of a search tree, and thus making the cut stronger. Therefore, if we can find

FUB at each branching node efficiently, a local cut dTy≤FUB (i.e., a cut that is valid for

a node to which it is added and all nodes descending from the node) may prune a direction

with no follower feasible solution like (d2) in Example 1.

Fischetti et al. (2017b) proposed a convenient way of finding a follower upper bound

that utilizes the branching decisions progressively made in branch-and-bound algorithms.

FUB is obtained by solving a restricted follower problem in which the leader variables are

fixed at values that most restrict the follower problem in each branching node. However,

this scheme may not give a meaningful upper bound as the restriction is often too strict.

On the other hand, the least upper bound of the follower at each branching node can

be obtained by solving the following max-min problem:

max
xj∈[x′j ,x

′
j ]Z,∀j∈J ,x∈HPPx

min
y∈Ky

{
dTy :By≥ b−Ax

}
, (23a)
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where x′j and x′j respectively represents the lower and the upper bounds on xj at the

current branching node and HPPx denotes the projection of the feasible region of the

HPP problem onto the space of x. Note that Problem (23) can be solved by replacing the

inner minimization problem with a set of linear inequalities containing the reversed weak

duality constraint and the McCormick relaxation as illustrated in Section 3. However, the

resultant problem is a MISOCP problem, which may be hard to solve efficiently.

Several approximations/relaxations of Problem (23) may be used to improve its solution

time. In this paper, we use an approximation of FUB at each branching node by finding a

fixed point x′ (i.e., an equilibrium point). Consider a relaxation solution x̂ at the current

branching node. First, we solve the inner minimization problem with x fixed at x̂, the

result of which affects the objective value of the outer problem by ψ̂T (b−Ax̂), where ψ̂

is the dual solution of the inner problem. Based on this updated objective information,

the outer problem may respond with a different solution x̂′; we obtain the outer problem’s

next action by solving maxxj∈[x′j ,x
′
j ],∀j∈J ,x∈HPPx

−ψ̂TAx, where HPPx is replaced with its

LP relaxation HPP x to improve the computation time. This procedure is repeated until

we find a fixed point x′ (i.e., x′ remains unchanged after an iteration); we use the objective

value at x′ as FUB.

As an approximation may produce an invalid FUB, a local cut obtained by this restriction

may not be valid. Therefore, we use the scheme proposed in this section as a heuristic

method for finding a good incumbent solution along with an initial set of Benders cuts in

the preprocessing step, which is illustrated in Algorithm 3. It is worth noting, however,

that if a valid relaxation of Problem (23) is used, the method can be used in the overall

process of the solver.

7. BSOCP with Additional Upper Level Constraints on Dual
Variables of Lower Level

An interesting extension of BSOCP is to add an additional constraint to the upper level

problem which states the impact of the follower dual variables on the leader problem. Such

constraints may be desirable in some sequential market environment where the follower

dual variables settle the prices of commodities that are used by the leader, e.g., a unit-

commitment problem for interdependent natural gas and electricity markets studied by

Byeon and Van Hentenryck (2019). This section discusses how the BSP decomposition

technique carries over to this extension.



22 Byeon, Van Hentenryck: Benders Subproblem Decomposition for Bilevel Problems with Convex Follower

Algorithm 3: The Numerically Stable Benders Separation Algorithm With A Pre-

processing Step.

1 begin

2 Turn on the user-written callback functions for the bilevel-tailored branching scheme

and the heuristic local cut in the numerically stable benders method;

3 Solve the instance within some predetermined time limit (e.g., 150 sec);

4 Turn off the bilevel-tailored branching scheme and the heuristic local cut generation;

5 if Heuristic cut has been added then

6 Resolve the instance from scratch with the incumbent solution and Benders cuts

found in the preprocessing steps;

7 else

8 Resume the solver process;

In order to formulate the situation where the follower’s dual solution affects the leader

problem, BSOCP can be extended as follows:

min
x,y,ψ

cTxx+ cTy y (24a)

s.t. Gxyx+Gyy≥ hy, (24b)

Gxψx+Gψψ≥ hψ, (24c)

x∈X := {x∈Kx : xi ∈B, ∀i∈ I}, (24d)

(y,ψ)∈Q
(

min
y∈Ky
{dTy :Ax+By≥ b}

)
, (24e)

where ψ denote dual variables of the follower, Q(P ) denotes the set of optimal primal and

dual solution pairs of Problem P , and Gxψ,Gψ, hψ are given rational matrices or vectors

of appropriate dimension.

For this extension, the definition of bilevel-feasibility can be naturally extended as fol-

lows:

Definition 2. A leader decision x̂ is called bilevel-feasible, if it satisfies all of the fol-

lowing:

1. x̂ is feasible to the follower (i.e., Problem (1d) with x fixed as x̂ is feasible).

2. there exists an optimal response (ŷ, ψ̂) of the follower for given x̂ that is feasible to

the leader, i.e., Gxyx̂+Gyŷ≥ hy, Gxψx̂+Gyŷ≥ hψ, and (ŷ, ψ̂)∈F(x̂), where F(x̂) denote

the set of optimal primal and dual solution pairs of the follower problem at x̂.
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When at least one of the above is not met, we call the pair bilevel-infeasible.

Let Problem (MISOCP)′ denote the MISOCP reformulation of Problem (24). It is easy

to see that Problem (MISOCP)′ is equivalent to Problem (MISOCP) to which Constraint

(24c) added. Let uψ denote the dual variable associated with Constraint (24c). Then, the

dual of Problem (7) with Constraint (24c) (i.e., the BSP for (MISOCP)′) is expressed as

Problem (9) with additional terms uTψ(hy − Gxψx̂) on the objective and −GT
ψuψ on the

left-hand side of Constraint (9b), which we call Problem (9)′.

Theorem 2. The BSP for (MISOCP)′ can be solved by solving two more tractable prob-

lems sequentially, i.e., solve the problem

min
y∈Ky ,uψ≥0,v≥0

dTy−uTψ(hψ−Gxψx̂)− vT (k+Kxx̂) (25a)

s.t. By−GT
ψuψ−KT

ψ v≥ b, (25b)

KT
µ v≤ a, (25c)

and then solve Problem (11) where

O=

Optimal objective value of Problem (25) if Problem (25) has a finite optimum

∞ otherwise.

Remark 3. Note that Problem (25) is a relaxation of Problem (10) with an additional

vector of variables uψ, so Problem (25) is also guaranteed to be feasible by Remark 2.

Consider the dual of Problem (25):

max
ψ≥0,µ≥0

{
bTψ−µTa :BTψ�Ky d, Gψψ≥ hψ−Gxψx̂, Kψψ+Kµµ≥ k+Kxx̂

}
,

where ψ and µ are dual variables associated with Constraints (25b) and (25c) respectively.

For any x̂ ∈X , the McCormick relaxation is exact and the optimal objective value of the

dual of Problem (25) becomes equivalent to

max
0≤ψ≤ψ̄

{ψT (b−Ax̂) :BTψ�Ky d,Gψψ≥ hψ−Gxψx̂}. (26)

Note that Problem (26) can be infeasible, as it can fail to satisfy Gψψ ≥ hψ − Gxψx̂.

Therefore Problem (25) can be unbounded for some x̂.

As a result of Theorem 2, Corollary 1 also extends to this case as follows:
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Algorithm 4: The Benders Separation Algorithm for (MISOCP)′.

1 begin
Input: x̂∈Rnx

2 Solve Problem (25);

3 if Problem (25) is unbounded with an unbounded ray (ỹ, ũψ, ṽ) then

4 Add the feasibility cut dT ỹ− ũTψ(hψ −Gxψx)− ṽT (k+Kxx)≥ 0 to the RMP;

5 else

6 Obtain its optimal solution (ŷ, ûψ, v̂) and let O be its optimal objective value;

7 Solve Problem (11) for x̂ and O;

8 if Problem (11) is unbounded with an unbounded ray (ψ̃, ũy, w̃) then

9 Add the feasibility cut

0≥ ψ̃T (b−Ax) + ũTy (hy −Gxyx)− w̃
(
dT ŷ− ûTψ(hψ −Gxψx)− v̂T (k+Kxx)

)
10 else

11 Obtain its optimal solution (ψ̂, ûy, ŵ);

12 Add the optimality cut

t≥ ψ̂T (b−Ax) + ûTy (hy −Gxyx)− ŵ
(
dT ŷ− ûTψ(hψ −Gxψx)− v̂T (k+Kxx)

)
to

the RMP;

13 Update the best primal bound with the obtained feasible solution;

Corollary 2. Problem (MISOCP)′ is equivalent to the following problem:

min
x∈X

cTx x+ t

s.t. t≥ ψ̂T (b−Ax) + ûTy (hy −Gxyx)− ŵ
(
dT ŷ− ûTψ(hψ −Gxψx)− v̂T (k+Kxx)

)
, ∀(ψ̂, ûy, ŵ, ŷ, ûψ, v̂)∈J2×J1, (27a)

dT ỹ− ũTψ(hψ −Gxψx)− ṽT (k+Kxx)≥ 0, ∀(ỹ, ũψ, ṽ)∈R1, (27b)

0≥ ψ̃T (b−Ax) + ũTy (hy −Gxyx)− w̃
(
dT ŷ− ûTψ(hψ −Gxψx)− v̂T (k+Kxx)

)
, ∀(ψ̃, ũy, w̃, ŷ, ûψ, v̂)∈R2×J1, (27c)

where J1 and R1 are the set of all extreme points and rays of Problem (25) and J2 and

R2 are the set of all extreme points and rays of Problem (11), respectively.

The Benders separation routine for x̂ is given by Algorithm 4.

7.1. Interpretation of Benders Cuts

Equations (27a)-(27c) also allow for an intuitive interpretation of the Benders cuts for

x̂ ∈X . Recall that Remark 3 indicates, for x̂ ∈X , the optimal objective value of Problem

(25) equals that of Problem (26). Let O(1d) denote the optimal objective value of the

follower at x̂.
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First, consider the case where Problem (25) is unbounded for given x̂∈X , which implies

the infeasibility of Problem (26) for x̂. Note that this means that there is no follower dual

solution that satisfy Gψψ̂ ≥ hψ − Gxψx̂. Therefore, it adds the cut (27b) to cut off the

bilevel-infeasible point x̂.

When Problem (25) has a finite optimum O for given x̂ ∈ X , there are two possible

scenarios: (i) O = O(1d) or (ii) O <O(1d). Note that when Case (ii) is the case, Problem

(15b) must be infeasible (i.e., Problem (11) is unbounded), since O(1d) is the smallest

possible value of dTy while satisfying By ≥ b−Ax̂. Note that Case (ii) occurs when there

is no follower optimal dual solution ψ̂ at x̂ that satisfies the constraint (i.e., Gψψ̂ < hψ −
Gxψx̂,∀(ŷ, ψ̂) ∈Q(x̂)). Any dual optimal solution ψ̂ is no longer feasible to Problem (26)

and needs to be altered so that Gψψ≥ hψ −Gxψx̂ becomes satisfied, lowering the optimal

objective value of Problem (26) than that of the follower problem at x̂. Therefore, Case

(ii) implies that the leader constraint on the follower’s dual response is not met. Therefore,

x̂ is bilevel-infeasible, so the cut (27c) cuts off x̂.

When Case (i) is the case (which implies that there exists the follower’s dual response

ψ̂ to x̂ that satisfies the leader constraint on the follower’s dual response), the dual of

Problem (26) can be considered as the same as the follower problem (1d), hence the same

interpretation as in Section 4.1 holds.

Remark 4. Note that, for this general case, it may be difficult to derive the numerically

stable benders cut generation procedure. In order to obtain numerically stable cuts that

are valid for any bilevel feasible solution, a reasonable value of M—an upper bound on

Problem (25)—is needed, as in Equations (17) and (18). However, as discussed in Remark

3, Problem (25) can be unbounded, and thus for this general case we cannot rely on the

numerically stable Benders decomposition.

Accordingly, we propose a special class of BSOCP that allows for a sequence-independent

decomposition as well as several acceleration schemes that can be applied to improve the

computational performance of Algorithm 4 in Sections 7.2 and 7.3.

7.2. Sequence-Independent BSP Decomposition

Some special cases of BSOCP allow for a stronger alternative to Theorem 2. In this section,

we deal with the extended version of BSOCP discussed in Section 7 (i.e., Problem (24)),

but any result in this section also holds for Problem (1). As noted in Section 7, the BSP

of Problem (MISOCP)′ is decomposed into two problems, i.e., Problems (25) and (11),
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which are solved in a sequential manner. A sequence-independent BSP decomposition is

allowed in two special cases of BSOCP: (i) d= cy (ii) cy = 0. Case (i) subsumes a class of

mixed-integer conic-linear optimization problems that involves additional constraints on

the dual variables of its inner-continuous problem, which is the case of Byeon and Van

Hentenryck (2019).

Corollary 3. Let Problem (11)′ denote Problem (11) with w fixed at zero. Then, the

BSP for Problem (MISOCP)′ with d= cy can be solved by solving Problem (25) and Problem

(11)′ independently.

A similar result holds for Case (ii).

Corollary 4. Let Problem (11)′′ denote Problem (11) with w fixed at zero and the

right-hand side of Equation (11b) replaced with d. Then, the BSP for Problem (MISOCP)′

with cy = 0 can be solved by solving Problem (25) and Problem (11)′′ independently.

Corollary 3 (or 4) implies that the Benders cuts for BSOCP with d= cy (or cy = 0) can

be obtained by solving Problems (10) and (11)′ (or (11)′′) independently and comparing

their objective values; This simplifies the Benders cut generation algorithm as described

in Algorithm 5.

Remark 5. The Benders cuts obtained using Algorithm 5 also allow for an intuitive

interpretation. Note that for both Case (i) and (ii), Problem (11)′ and Problem (11)′′

become equivalent to the following problem:

O(11) = min
y∈Ky
{dTy :By≥ b−Ax̂,GT

y y≥ hy−Gxyx̂}.

Also, for x̂∈X , Problem (25) is equivalent to the dual of Problem (26):

O= min
y∈Ky ,uψ≥0,s≥0

{dTy+uTψ(hψ−Gxψx̂) + ψ̄Ts :By−GT
ψuψ + s≥ b−Ax̂}.

Note that, by construction, O≤O(11) always holds and the equality holds if and only

if x̂ is bilevel-feasible. When O<O(11), for some x̂ ∈X , it implies that either the leader’s

constraint on the follower’s optimal primal solution or that on the follower’s dual solution is

not satisfied. Therefore, the cut (27c) can be replaced by a cut (28) that enforces O≥O(11).

Also, for any bilevel-feasible x̂ (i.e., with O ≤ O(11)), the optimality cut (29) correctly

evaluates the cost incurred.
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Algorithm 5: The Benders Separation Method for BSOCP with d= cy (or cy = 0).

1 begin
Input: x̂∈Rn1

2 Solve Problems (25) and (11)′ (or (11)′′) independently and let O1 and O2 respectively

denote their objective value;

3 if O1 =−∞ with an unbounded ray (ỹ, ũψ, ṽ) then

4 Add the feasibility cut cTy ỹ− ũTψ(hψ −Gxψx)− ṽT (k+Kxx)≥ 0 to the RMP;

5 else

6 if O2 =∞ with an unbounded ray (ψ̃, ũy) then

7 Add the feasibility cut ψ̃T (b−Ax) + ũTy (hy −Gxyx̂)≤ 0 to the RMP;

8 else

9 Obtain the optimal solution (ŷ, ûψ, v̂) of Problem (25);

10 if O1 <O2 then

11 Add the feasibility cut

ψ̂T (b−Ax) + ûTy (hy −Gxyx̂)≤ cTy ŷ− ûTψ(hψ −Gxψx)− v̂T (k+Kxx) (28)

to the RMP;
12 else

13 Add the optimality cut

t≥ ψ̂T (b−Ax) + ûTy (hy −Gxyx̂) (or t≥ 0) (29)

to the RMP; Update the best primal bound with the obtained feasible

solution;

7.3. Acceleration Schemes

This section presents some acceleration schemes for the standard Benders decomposition

method discussed in previous literature (e.g., Fischetti et al. (2010) and Ben-Ameur and

Neto (2007)) and shows that these schemes can be applied to the dedicated Benders method

for the general case described in Section 7.

7.3.1. Normalizing Benders Feasibility Cuts Fischetti et al. (2010) have shown that

normalizing the ray used in Benders feasibility cuts can improve the performance of Benders

decomposition. The Benders subproblem decomposition outlined in Algorithm 4 can be

generalized to produce a normalized ray.

When Problem (9)′ is unbounded, the problem at hand consists in solving Problem (9)′

to which an additional normalization constraint of ‖(ψ,uy,w, y,uψ, v)‖1 = 1 is added and

with the right-hand side of other constraints set to zero. Let ubd(9)′ denote the resultant
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problem. The proof of Theorem 2 showed that ubd(9)′ has three different types of extreme

rays:

(i) µ̃1 := (0,0,0, ỹ, ũψ, ṽ) for (ỹ, ũψ, ṽ)∈R1.

(ii) µ̃3 := (ψ̃, ũy, w̃, w̃ŷ, w̃ûψ, w̃v̂) for (ŷ, ûψ, v̂)∈J1 and (ψ̃, ũy, w̃)∈R2 with w̃= 0.

(iii) µ̃3 := (ψ̃, ũy, w̃, w̃ŷ, w̃ûψ, w̃v̂) for (ŷ, ûψ, v̂)∈J1 and (ψ̃, ũy, w̃)∈R2 with w̃ > 0.

Cases (i) and (ii) are simple: It suffices to solve Problem (25) and Problem (11) with

the additional constraint of ‖(y,uψ, v)‖1 = 1 and ‖(ψ,uy,w)‖1 = 1 respectively. Case of

(iii) (i.e., when Problem (25) has a finite optimum O at (ŷ, ûψ, v̂) ∈ J1 and Problem (11)

is unbounded with an unbounded ray of (ψ̃, ũy, w̃) ∈ R2 with w̃ > 0 and U := ψ̃T (b −

Ax̂) + ũTy (hy − Gxyx̂) −Ow̃ > 0) is more difficult and requires to find a normalized ray

r̃′ = (ψ̃′, ũ′y, w̃
′, ỹ′, ũ′ψ, ṽ

′) that maximizes the objective function of ubd(9)′ while satisfying

‖r̃′‖1 = 1 and w̃′ > 0. Note that µ̃3/‖µ̃3‖1 is a feasible solution to ubd(9)′. Hence, ubd(9)′

is feasible and bounded.

Consider the Lagrangian relaxation of ubd(9)′ with w> 0 that penalizes the violation of

the normalization constraint with some λ ∈R. By defining (ψ,uy,w, y,uψ, v) = (ψ
w
, uy
w

, 1,

y
w

,
uψ
w

, v
w

), the Lagrangian relaxation becomes as follows:

min
λ∈R

{
λ+ sup

w>0
{wt(λ)}

}
, (30)

where t(λ) := t2(λ)− t1(λ)−λ and

t1(λ) = min
y∈Ky ,(y+,y−,uψ ,v)T≥0

{
dTy+λ1T (y+ + y−)−uTψ(hψ−Gxψx̂−λ1)

− vT (k+Kxx̂−λ1) :By−GT
ψuψ−KT

ψ v≥ b, KT
µ v≤ a, y= y+− y− } , (31)

and

t2(λ) = max
ψ≥0,uy≥0

{
ψT (b−Ax̂−λ1) +uTy (hy−Gxyx̂−λ1) :BTψ+GT

y uy ≤ d
}
, (32)

Proposition 1. An optimal solution λ∗ of Problem (30) is the solution of t(λ) = 0.

Since t(λ) is a convex piecewise linear function of λ, the solution of t(λ) = 0 can be found

via a subgradient-based Newton’s method as shown in Algorithm 6. At each iteration

k, −(ψ̂k, ûky,1, ŷ
+k, ŷ−k, ûkψ, v̂

k)T1, where (ŷ+k, ŷ−k, ûkψ, v̂
k) and (ψ̂k, ûky) are the solutions of
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Algorithm 6: The Subgradient Newton’s Method for Problem (39).

1 begin

Input: λ0 = 0, t(λ0) = U
w̃

, k= 0;

2 while t(λk)> ε do

3 Calculate δt(λk) (a subgradient of t at λ= λk);

4 λk+1 = λk− t(λk)

δt(λk)
;

5 Solve t1(λk+1) and t2(λk+1) and calculate t(λk+1) = t2(λk+1)− t1(λk+1)−λk+1;

6 k← k+ 1;

t1(λk) and t2(λk) respectively, is a subgradient of t at λk and is denoted by δt(λk). λk+1 is a

solution of a linear approximation of t(λ) at λk (i.e., λk+1 is the solution of δt(λk)(λ−λk)+

t(λk) = 0). Observe that Problems (31) and (32) are the counterparts to Problem (25) and

(11), demonstrating that the subproblem decomposition carries over to the decomposition.

7.3.2. An In-Out Approach Ben-Ameur and Neto (2007) proposed an acceleration

scheme (the in-out method) for general cutting-plane algorithms. The method carefully

chooses the separation point, rather than using the solution obtained from the RMP. The

method considers two points: a feasible point xin to Problem (14) and the optimal solution

xout of the RMP. It uses a convex combination of these two points when generating the

separating cut, i.e., it solves Problem (9) with x̂= λxin + (1−λ)xout for some λ∈ (0,1).

Fischetti et al. (2016b) applied the in-out approach with an additional perturbation to

solve facility location problems:

x̂= λxin + (1−λ)xout + ε1, (33)

for some λ∈ (0,1) and ε > 0, and showed a computational improvement.

This paper also employs the in-out approach equipped with some perturbation as Fis-

chetti et al. (2016b). It periodically finds xin in a heuristic manner and chooses the sep-

aration point according to Equation (33). The implementation starts with λ = 0.5 and

ε= 10−6 and decrease λ by half if the BD halts (i.e., it does not improve the optimality gap

for more than 3 consecutive iterations). If the algorithm halts and λ is smaller than 10−5,

ε is set to 0. After 3 more consecutive iterations without a lower bound improvement, the

algorithm returns to the original BD. Whenever a new best incumbent solution is found,

the in-out approach is applied again with this new feasible point.
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8. Computational Results

This section studies the performance of the numerically stable Benders cut generation

procedure, proposed in Section 5, along with the performance of the heuristic method in

Section 6, and that of the dedicated Benders method for problems with leader’s constraints

on follower’s dual, proposed in Section 7.

8.1. Performance Analysis of the Numerically Stable Benders Method

Benchmark: Fischetti et al. (2017b). We compare the proposed algorithm with a publicly

available state-of-the-art solver for MIBLP (Fischetti et al. 2017a), which implements the

algorithm proposed by Fischetti et al. (2017b) along with some acceleration schemes. As

the benchmark algorithm can only be applied to linear cases, we run experiments only for

BLP in this section, and the result on BSOCP will be presented in Section 8.2.

Test cases. We obtained BLP test instances by relaxing the follower integrality constraints

of general bilevel test cases XUWANG proposed by Xu and Wang (2014) and XUWANG-LARGE,

MIPLIB produced by Fischetti et al. (2017b); the original instances are available at an

open-source repository (Fischetti et al. 2017a).

Implementation : The numerically stable Benders method, proposed in Section 5, is imple-

mented with the C++/Cplex interface and all the experiments were executed on a virtual

Linux machine with 13.5 GB of memory allocated on an Intel Core i7 PC at 2.3 GHz. Each

run has a wall-time limit of 1 hour. As the current version of the benchmark algorithm

cannot be run on a Cplex with a version higher than 12.7.1, we used the Cplex 12.7.1

library for the benchmark algorithm. For the proposed Benders method, we used Cplex

20.1.0 due to some technical issues in callback functions encountered when implementing

the heuristic method with older versions of Cplex. When the heuristic method is not used,

we observed that there was no noticeable difference between the results obtained by the

proposed method using Cplex 12.7.1 and 20.1.0.

The Benders cuts are implemented using a user-defined callback class, inherited from

LazyConstraintCallbackI; whenever the master problem finds an incumbent solution

ẑ = (x̂, ŷ, t̂), the callback class instance is called during the optimization process and checks

whether ẑ violates any of the feasibility or optimality cuts by solving the subproblems

(Problems (1d) and (15b)); if there exists such a Benders cut that cuts off ẑ, it is added to

the master problem as a lazy constraint. In addition, if an optimality cut is found to cut

off ẑ, then x̂ combined with the solution y′ to Problem (15b) is a bilevel-feasible solution;
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Figure 3 Computational comparison on XUWANG and XUWANG-LARGE instances

thus, if its objective value (i.e., cTx x̂ + cTy y
′) improves the current upper bound, we use

another user-defined callback class, inherited from HeuristicCallbackI, to update the

best incumbent solution.

The heuristic method proposed in Section 6 is also implemented using callback. The

bilevel-tailored branching rule discussed in Section 6.1 is implemented using user-written

callback classes, inherited from BranchCallbackI and NodeCallbackI. If the best lower

bound does not improve for 3 consecutive nodes, it solves the follower problem with given

solution x̂ at the current node and obtain its optimal objective value dTy′. Then, it branches

on (i) dTy≤ bdT y′+dT ŷ
2
c and (ii) dTy > bdT y′+dT ŷ

2
c. UserCutCallbackI is used to implement

the heuristic local cut proposed in Section 6.2; at each branching node, the solver calls

a user-written function that obtains an approximate FUB and adds a heuristic local cut

dTy≤ FUB. For computationally hard instances, the numerical Benders method is initially

equipped with the branching and the local cut callbacks for at most 150 seconds, as in

Algorithm 3.

Other than callbacks, we set the integrality and feasibility tolerances as 1e-9, and other

parameters were set as default values. We also applied a preprocessing step proposed in

Fischetti et al. (2017b) which fixes some of y-variables if it is guaranteed to have a fixed

value due to the optimality.

Result on XUWANG and XUWANG-LARGE. The result on XUWANG and XUWANG-LARGE is displayed

in Figure 3. The horizontal and vertical axes respectively represent the computation time

of Fischetti et al. (2017b) and the proposed algorithm without the upper-bounding method

in seconds, and each point on the figure shows the computation times taken by the bench-

mark algorithm (horizontal axis) and the proposed algorithm (vertical axis) for solving an
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instance. Therefore, points under the red line represent the instances where the proposed

algorithm was faster than the benchmark algorithm. Note that, for all instances, the pro-

posed algorithm solved the instances about 3 times faster than the benchmark algorithm

on average.

Result on MIPLIB. Table 1 in Appendix G summarizes the computational performance

of Fischetti et al. (2017b), the numerically stable Benders method (denoted by N), and N

equipped with the heuristic proposed in Section 6 (denoted by N+H). Note that the heuristic

method improves the optimality gap of N in many instances, notably for air03-5, cap6000-1,

cap6000-5, cap6000-9, harp2-1, and harp2-5.

For N+H and the benchmark algorithm, the instances that N+H outperforms are denoted

by boldface letters, i.e., better optimality gap or better computation time when their opti-

mality gaps tie. It is hard to tell which one is better; the benchmark algorithm performed

notably better on air04-9, air05-9, cap6000-1, enigma-5, harp2-9, and N+H does on cap6000-

5, cap6000-9, harp2-5, nw4-5, nw4-9, p0201-1, and p0201-5. It is worth noting that the

Benders cut itself does not take account of integrality of the master problem, thus the

Benders cuts may not be as tight as the cuts that employ the integrality information of

the problem. This may be the reason why the Benders method takes more time to close

the gap for enigma-5 than the benchmark algorithm does, which avails intersection cuts,

and did not solve cap6000-1 to the optimality while the benchmark algorithm does, even

though N+H finds the optimal solution in an early stage. On the other hand, N+H gives

incumbent solutions on p0201-1 and p0201-5 for which the benchmark algorithm suffers

from numerical issues and finds a better incumbent solution on the instances that it out-

performs. The result suggests that a hybrid of the proposed method and the benchmark

algorithm may improve the computation time further.

8.2. Performance Analysis of the Dedicated Benders Method proposed in Section 7

This section studies the performance of the decomposition approach (Section 4) and the

benefits of the acceleration schemes explained in Sections 7.3.1 and 7.3.2. All algorithms

were implemented with the C++/Gurobi 8.0.1 interface and executed on an Intel Core i5

PC at 2.7 GHz with 8 GB of RAM. Each run has a wall-time limit of 1 hour.

8.2.1. Test Instances A recent paper by Byeon and Van Hentenryck (2019) introduced

the unit commitment problem with Gas Network Awareness (UCGNA), a tri-level opti-

mization problem where the first and second levels determine how to commit and dispatch
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electric power generating units; The third level decides how to operate the gas network

given the natural gas demands of committed gas-fueled generators that are determined in

the first and second levels. The economic feedback from the gas network, i.e., the natural

gas zonal prices, is given by the dual solution ψ of the third-level optimization and the

first-level optimization is subject to constraints over both ψ and commitment decisions x

in order to ensure the robustness of the unit commitment decisions against the economic

feedback from the gas system. Byeon and Van Hentenryck (2019) showed that the tri-level

problem can be reformulated as a special case of BSOCP discussed in Section 7.2. The

detail of the model is given in Appendix H. The evaluation of the proposed method is

performed on the instances of the UCGNA problem.

The instances are based on the gas-grid test system, which is representative of the

natural gas and electric power systems in the Northeastern United States (Bent et al.

2018). There are 42 different instances, each of which constructed by uniformly increasing

the demand of each system by some percentage; ηp denotes the stress level imposed on the

power system which takes values from {1,1.3,1.6} and ηg denotes the stress level of the

gas system that has values of {1,1.1, · · · ,2.2,2.3}. For example, (ηp, ηg) = (1.3,2.3) means

the demands of the power and natural gas systems are increased uniformly by 30% and

130% respectively. Before we experiment with the solution approaches on the instances

of the UCGNA problem, we apply some preprocessing step which eliminates invalid bids

with regard to a lower bound on natural gas zonal prices. A detailed description of the

instances and the preprocessing step can be found in (Byeon and Van Hentenryck 2019).

8.2.2. Computational Performance This section compares three different solution

approaches for BSOCP:

D: the proposed dedicated Benders method with the acceleration schemes (Section 7);

G: an off-the-shelve solver (Gurobi 8.0.1);

B: the standard Benders method with the acceleration schemes (Section 7.3).

The implementation of D is sequential, although Problems (11)′ and (25) can be solved

independently (See Corollary 3). All solution approaches use the same values for the Gurobi

parameters, i.e., the default values except NumericFocus set at 3, DualReductions at 0,

ScaleFlag at 0, BarQCPConvTol at 1e-7, and Aggregate at 0 for more rigorous attempts

to detect and manage numerical issues.
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(a) Computation Time (sec). (b) Optimality Gap (%, logarithmic scale).

Figure 4 D vs G.

Tables 6-8 in Appendix I report the computation times and optimality gaps of the three

solution methods. The symbol † indicates that a method reaches the time limit and the

symbol ‡ that the method did not find any incumbent solution. The results for ηp = 1

are summarized in Table 6; D timed out for two instances, G reached the time limit for 5

instances, and B timed out for all the instances. For the two instances with ηg = 1.8,1.9,

where all methods time out, D found incumbent solutions within optimality gaps of 1.8%

and 1.3% and B found solutions with gaps of 6.7% and 10.6%. On the other hand, G did not

find any incumbent solution. For easy instances that both D and G found optimal solutions

within two minutes, G is faster than D by a factor of 2 in average.

For instances with ηp = 1.3, reported in Table 7, D and G timed out for 7 instances and

B reached the time limit for all the instances. For the 7 instances with ηg = 1.6, · · · ,2.2,

where all methods reached the time limit, D found incumbent solutions within 4.3% of

optimality and B found worse solutions. On the other hand, G did not find any incumbent

solution except the two instances with ηg = 1.6 and 2. For easy instances that both D and

G found optimal solutions within two minutes, G is faster than D by a factor of around 7 in

average.

Instances with ηp = 1.6 display similar behaviors. While B failed to find optimal solutions

for all the instances, D and G found optimal solutions for 7 instances. For the hard instances

where all methods timed out, D found incumbent solutions with optimality gaps less than

7.5%, B found worse solutions, and G failed to find any incumbent solution. For the instances

where both D and G found optimal solutions, G is faster than D.

To compare the computational performance of D and G more precisely, Figure 4 visualizes

the performance of D and G for all the instances. Figure 4a reports the computation times
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of D and G, Figure 4b displays the optimality gaps of the two methods for all the instances,

and the reference lines (in red) serve to delineate when a method is faster than the other.

For Figure 4b, the axes are in logarithmic scale and a 100% optimality gap is assigned to

instances with no incumbent. The figure indicates that, although D is slower than G for

some easy instances (the points at the bottom left corner of Figure 4a), it has notable

benefits for hard instances (the points in the upper left side of Figures 4a and 4b).

8.2.3. Benefits of the Acceleration Schemes This section studies the benefits of the

acceleration schemes by comparing the performance of the dedicated Benders method with

different combinations of acceleration schemes applied. It uses D(nk,ik) to denote the

dedicated Benders method with acceleration schemes (nk,ik) where

• nk: k= 1 if the normalization scheme is applied; k= 0 otherwise;

• ik: k= 1 if the in-out approach is applied; k= 0 otherwise.

Tables 9-11 in Appendix I summarize the computational performance of the dedicated

Benders methods with the four combinations of acceleration schemes. Table 9 displays

the computation times and optimality gaps for instances with ηp = 1. Without the in-out

approach, D(n1, i0) and D(n0, i0) timed out for all instances. Although both D(n1, i0) and

D(n0, i0) reach the time limit for all instances, the normalization scheme does improve opti-

mality gaps. On the other hand, with the in-out approach, D(n0, i1), solves 10 instances

within 100 seconds. However, D(n0, i1) still cannot solve the two instances with ηg = 2.1,2.2.

The slight increase in computation time of D(n1, i1) for some instances, compared to

D(n0, i1), is due to the additional computation time required to find a normalized ray.

The results for instances with ηp = 1.3 are reported in Table 10. Again, without the in-

out approach, D(n1, i0) and D(n0, i0) timed out for all instances, but D(n1, i0) has significant

improvement in optimality gaps for some instances. With the in-out approach, D(n0, i1)

solved 7 instances within 150 seconds and so did D(n1, i1). The normalization scheme does

have some computational benefits, as D(n1, i1) has smaller optimality gaps than D(n0, i1)

for the remaining 7 instances except one instance with ηg = 2.2. Moreover, for some hard

instances where D(n0, i1) reached the time limit, D(n1, i0) has smaller optimality gaps (i.e.,

ηg = 1.7, · · · ,2).

The acceleration schemes display similar behaviors for instances with ηp = 1.6. With-

out the in-out approach, D(n0, i0) timed out for all instances, while D(n1, i0) solves one

instance to optimality and has significant improvements in optimality gaps. With the in-out
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Figure 5 Statistics on Computation Times for Cut Generation.

approach, both D(n0, i1) and D(n1, i1) solve 7 instances within 350 seconds, and D(n1, i1) has

smaller optimality gaps for the unsolved instances. Again, for some hard instances for which

D(n0, i1) reached the time limit, D(n1, i0) has smaller optimality gaps (i.e., ηg = 1.7, · · · ,2.2).

8.2.4. Benefits of the Decomposition Method Section 8.2.2 indicated that the decom-

position method has significant benefits for solving BSOCP. The decomposition method

not only shortens computation times required for solving the dual of the inner-continuous

problem, but also allows us to address the numerical issues of BSOCP.

Figure 5 displays the average computation time for generating a Benders cut, where the

error bars represent the standard deviation. On average, the cut generation time of D is

faster than B by a factor of 3.94. Since the subproblems that D solves to generate cuts

(i.e., Problems (11)′ and (10)) can be solved independently, implementation in parallel

computing would improve the computation time even further.

Moreover, the decomposition method deals better with numerical issues arising from

the complex inner-continuous problem of BSOCP. Figure 6 in Appendix I displays the

convergence behavior of D and B for two instances, (ηp, ηg) = (1,1.2), (1.6,1.8). For instance

(ηp, ηg) = (1,1.2) (i.e., Figure 6a and Figure 6b), D closes the gap in 30 seconds, but B does

not improve its lower bound even if it finds a good incumbent solution early. For instance

(ηp, ηg) = (1.6,1.8) (i.e., Figure 6c and Figure 6d), although both D and B timed out, B

improves its lower bound much slower than D. This behavior of B is explained by the fact

that it suffers from numerical issues when solving Problem (9); it sometimes terminates

with an optimal solution even if there exists an unbounded ray. This incorrect evaluation

of the first-stage variable leads to ineffective cut generation and a slower convergence rate.
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On the other hand, the decomposition method effectively decomposes Problem (9) into

two more stable and smaller problems, which addresses the numerical issues effectively.

9. Conclusion

BSOCP is an important class of hierarchical optimization models that arises in many

practical contexts, including network planning/design problems in energy systems and

transportation networks, facility location problems, and unit scheduling problems under

interdependent markets. This paper proposed a dedicated Benders decomposition algo-

rithm to solve BSOCP models, recognizing that the Benders subproblem cannot necessar-

ily be solved efficiently for large BSOCP problems. The dedicated approach decomposes

the Benders subproblem into two more tractable, sequentially solvable problems that are

closely related to the leader and the follower problems. The paper showed that the Ben-

ders subproblem decomposition can also be applied to the extension of BSOCP where the

upper-level problem has additional constraints on the leader variables and the follower

dual variables. The paper also discussed a couple of subclasses of BSOCP that allows the

subproblems to be solved independently. In addition, the paper showed how to (i) gener-

ate numerically stable cuts by hybridizing no-good and Benders cuts, (ii) obtain a good

incumbent solution, and (iii) adapt existing acceleration schemes to this decomposition. In

particular, the paper (i) eliminated the need of arbitrarily large big-M values arising from

McCormick reformulations, (ii) made use of novel branching decisions and local cuts that

exploit the nature of bilevel optimization, and lastly (iii) showed how to normalize Benders

feasibility cuts using a Newton’s (subgradient) method and how to carefully choose the

separation points using the in-out approach (Ben-Ameur and Neto 2007).

The proposed method was compared with a state-of-the-art bilevel-tailored branch-and-

cut algorithm Fischetti et al. (2017b), demonstrating the benefits of the numerically-stable

cuts and the heuristic method on BLP instances. The result suggests a potential benefit of

a hybrid use of Benders and intersection cuts for bilevel problems, which is left to future

research. Also, the proposed decomposition significantly improves the performance of a

standard Benders method and outperforms a state-of-the-art mathematical-programming

solvers for hard BSOCP instances. The experimental results highlighted the benefits of

acceleration schemes—normalizing feasibility rays and the in-out approach—and demon-

strated that decomposing the Benders subproblem not only shortens the computation time

for generating Benders cuts but also addresses the numerical issues arising when solving

complex Benders subproblems.
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Fischetti M, Ljubić I, Monaci M, Sinnl M (2017a) Bilevel integer programming and interdiction problems.

URL https://msinnl.github.io/pages/bilevel.html.
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Appendix A: Proof of Theorem 1.

The proof strategy is to show that there is a surjective mapping from the possible outcomes of Problems

(10) and (11) to those of Problem (9), which implies that Problem (9) is completely determined by Problems

(10) and (11).

Let U(i) and F(i) respectively denote the unbounded and finite outcome of Problem (i) for i ∈ {9,10,11}.

Due to Remark 2, the combination of all possible outcomes of Problems (10) and (11) are given by

A=
{

(F(10),U(11)), (F(10), F(11))
}
.

Likewise, the possible outcomes of Problem (9) can be expressed as B = {U(9), F(9)}. The proof gives a

surjective mapping g : A→ B, showing the solution of Problem (9) can be obtained from the solutions of

Problems (10) and (11).

Let (ŷ, v̂) be the optimal solution of Problem (10) and O denotes its optimal objective value.

1. Outcome U(11): Let (ψ̃, ũy, w̃) denote the unbounded ray of Problem (11). Note that µ̃3 :=

(ψ̃, ũy, w̃, w̃ŷ, w̃v̂) is a feasible ray to Problem (9) and has a positive objective value of U(11) := ψ̃T (b−Ax̂) +

ũTy (hy −Gxyx̂)−Ow> 0. Therefore µ̃3 is an unbounded ray of Problem (9) and Problem (9) is unbounded.

2. Outcome F(11): Let (ψ̂, ûy, ŵ) denote the optimal solution of Problem (11) and denote its optimal

objective value as O(11).

The proof is by a case analysis over two versions of Problem (9) in which w > 0 and w = 0. Note first that

µ̂ := (ψ̂, ûy, ŵ, ŵŷ, ŵv̂) is a feasible solution to Problem (9) and has an objective value of O(11). Suppose

w> 0, then by stating (y, v) = ( y
w
, v
w

), Problem (9) becomes as follows:

max
w>0

O(w), (34)

where

O(w) := max ψT (b−Ax̂) +uTy (hy −Gxyx̂)−wO

s.t. BTψ+GT
y uy �Ky dw+ cy,

ψ≥ 0, uy ≥ 0.

Note that Problem (34) is equivalent to Problem (11) where the nonnegativity constraint for w is restricted

by strict inequality. Therefore, maxw>0O(w)≤O(11).

When w = 0, Problem (9) can be decomposed into Problem (11) with w fixed at 0 (i.e., a restriction of

Problem (11)) and

min{dT y− vT (k+Kxx̂) :By−KT
ψ v≥ 0, KT

µ v≤ 0, y ∈Ky, v≥ 0}. (36)

Note that Problem (36) is either unbounded or zero at optimality, since it has a trivial solution with all

variables at zeros. Therefore, its optimum must be zero since otherwise Problem (10) is unbounded. This

implies that the optimal objective value of Problem (9) when w = 0 is also bounded above by O(11), which

proves that µ̂ is the optimal solution of Problem (9). Q.E.D.
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Appendix B: Proof of Corollary 1.

The proof of Theorem 1 implies that µ̂ is an extreme point of Problem (9) if and only if µ̂= (ψ̂, ûy, ŵ, ŵŷ, ŵv̂)

for some (ψ̂, ûy, ŵ, ŷ, v̂) ∈ J2 ×J1. Therefore, Equation (14a) holds. Likewise, the proof of Theorem 1 also

indicates that µ̃ is an extreme ray of Problem (9) if and only if µ̃ = (ψ̃, ũy, w̃, w̃ŷ, w̃v̂) for (ŷ, v̂) ∈ J1 and

(ψ̃, ũy, w̃) ∈R2. Thus, Equation (14b) holds. This implies that Equations (14a) and (14b) are equivalent to

Constraint (4b). Q.E.D.

Appendix C: Proof of Theorem 2.

The proof strategy is similar to Theorem 2: to show that there is a surjective mapping from the possible

outcomes of Problems (25) and (11) to those of the BSP of (MISOCP)′, denoted by Problem (BSP).

Let U(i) and F(i) respectively denote the unbounded and finite outcome of Problem (i) for i∈ {BSP,25,11}.
Due to Remark 3, the combination of all possible outcomes of Problems (25) and (11) are given by

A=
{
U(25), (F(25),U(11)), (F(25), F(11))

}
.

Likewise, the possible outcomes of Problem (BSP) can be expressed as B= {U(BSP ), F(BSP )}. The proof gives

a surjective mapping g :A→B, showing the solution of Problem (BSP) can be obtained from the solutions

of Problems (25) and (11).

1. Outcome U(25): Let (ỹ, ũψ, ṽ) be the unbounded ray of Problem (25) and U := dT ỹ− ũTψ(hψ −Gxψx̂)−
ṽ(k + Kxx̂) < 0. Note that, by construction, O =∞, and thus we can assume w.l.o.g., w = 0. Note that

the feasibility of Problem (11) with w = 0 is guaranteed due to Assumption 3. Let (ψ′, u′y,0) and O′ <∞
respectively be any feasible solution of Problem (11) and its corresponding objective value. Then, for any

α> 0, (ψ′, u′y,0,0,0,0) +α(0,0,0, ỹ, ũψ, ṽ) is a feasible solution to Problem (BSP) and has an objective value

of O′−αU, which increases as α increases. Hence µ̃1 = (0,0,0, ỹ, ũψ, ṽ) is an unbounded ray of Problem (BSP)

and Problem (BSP) is unbounded.

2. Outcome F(25): Similar arguments as in Theorem 1 apply. Q.E.D.

Appendix D: Proof of Corollary 3.

Built upon Theorem 2, it suffices to show that solving Problem (11)′ is sufficient to obtain the optimal

solution or unbounded ray of Problem (11). Note that, by defining (ψ′, u′y) = ( ψ

w+1
,
uy

w+1
), Problem (11)

becomes as follows:

max ψ′T (b−Ax̂) +u′y
T (hy −Gxyx̂) +w

[
ψ′T (b−Ax̂) +u′y

T (hy −Gxyx̂)−O
]

(37a)

s.t. BTψ′+GT
y u
′
y ≤ cy, (37b)

ψ′, u′y,w≥ 0. (37c)

Suppose Problem (11)′ has a finite optimum O(11)′ at (ψ̂, ûy) and O(11)′ > O. Then, for any α > 0,

(ψ′, u′y,w) = (ψ̂, ûy, α) is feasible to Problem (37) and its objective value increases as α increases, and thus

Problem (37) is unbounded, so is Problem (11). Note that by converting (ψ′, u′y,w) to the solution of Prob-

lem (11) using (ψ′, u′y) = ( ψ

w+1
,
uy

w+1
), we can see that (ψ̂, ûy,1) is an unbounded ray of Problem (11). When

O(11)′ ≤O, the term associated with w in Problem (37) can be disregarded, thus Problems (37) and (11)′ have

a finite optimum O(37) at (ψ̂, ûy,0). Otherwise, i.e., when Problem (11)′ is unbounded with an unbounded

ray of (ψ̃, ũy), Problem (11) is unbounded by (ψ̃, ũy,0). Q.E.D.
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Appendix E: Proof of Corollary 4.

Similar to the proof of Corollary 3, it suffices to show that solving Problem (11)′′ is sufficient to obtain the

optimal solution or unbounded ray of Problem (11). We define (ψ′, u′y) = (ψ
w
,
uy

w
), then Problem (11) becomes

as follows:

max w
[
ψ′T (b−Ax̂) +u′y

T (hy −Gxyx̂)−O
]

(38a)

s.t. BTψ′+GT
y u
′
y �Ky d, (38b)

ψ′, u′y,w≥ 0. (38c)

The same analysis as in the proof of Corollary 3 holds; If Problem (11)′′ has a finite optimum O(11)′′ at

(ψ̂, ûy) and O(11)′′ > O, (ψ̂, ûy,1) gives an unbounded ray of Problem (11). If O(11)′′ ≤ O, (0,0,0) is an

optimal solution of Problem (11). Otherwise, i.e., Problem (11)′′ is unbounded by a feasible ray of (ψ̃, ũy),

Problem (11) is also unbounded by the feasible ray of (ψ̃, ũy,0). Q.E.D.

Appendix F: Proof of Proposition 1.

If t(λ)< 0, the optimal objective value of the inner optimization problem of Problem (30) approaches zero as

w converges to 0. If t(λ)> 0 then the inner optimization problem of Problem (30) is unbounded. Therefore,

Problem (30) becomes equivalent to the following problem:

min
λ∈R
{λ : t(λ)≤ 0} . (39)

Note that t(λ) is non-increasing in λ. In addition, (ŷ, ûψ, v̂) and ( ψ̃
w̃
,
ũy

w̃
) are respectively feasible to Problems

(31) and (32) when λ= 0, and thus t(0)≥ U(11)

w̃
> 0. Therefore, the optimal solution λ∗ of Problem (39) is

the solution of t(λ) = 0. Q.E.D.
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Appendix G: Results on MIPLIB Instances

Table 1 Computational Performance Comparison on MIPLIB Instances.

Fischetti et al. (2017b) N N+H

Instance Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

air03-1 † 9.0 † 11.5 † 11.5
air03-5 † 29.5 † 35.9 † 26.1

air03-9 † 56.9 † 54.1 † 54.9

air04-1 † 0.8 † 0.7 † 1.3
air04-5 † 5.1 † 7.2 † 9.4

air04-9 † 19.6 † 27.6 † 25.1

air05-1 † 0.8 † 0.8 † 0.8
air05-5 † 17.5 † 18.8 † 18.7

air05-9 † 35.9 † 42.7 † 40.7

cap6000-1 478.27 0.0 † 35.9 † 24.6
cap6000-5 † 106.9 † 91.0 † 50.0

cap6000-9 † 562.2 † 552.1 † 365.4
enigma-1 0.48 0.0 0.29 0.0 0.38 0.0

enigma-5 55.99 0.0 678.85 0.0 718.11 0.0

enigma-9 0.09 0.0 0.04 0.0 0.07 0.0
fast0507-1 7.92 0.0 0.43 0.0 0.56 0.0

fast0507-5 5.47 0.0 0.39 0.0 0.56 0.0

fast0507-9 3.78 0.0 0.47 0.0 0.67 0.0
harp2-1 † 5.0 † 7.3 † 1.7

harp2-5 † 25.1 † 68.4 † 18.2

harp2-9 † 130.5 †† - †† -
l152lav-1 8.35 0.0 3.36 0.0 30.78 0.0

l152lav-5 † 1.5 † 4.2 † 4.1

l152lav-9 † 5.5 † 6.5 † 6.5
lseu-1 0.44 0.0 0.26 0.0 0.59 0.0

lseu-5 † 48.2 † 54.8 † 54.7
lseu-9 0.97 0.0 0.34 0.0 0.52 0.0

mitre-1 † 5.4 † 5.7 † 5.5

mitre-5 † 21.5 † 21.7 † 21.2
mitre-9 † 31.6 † 31.8 † 31.6

mod010-1 † 0.04 † 0.15 † 0.07

mod010-5 † 2.0 † 3.9 † 3.9
mod010-9 † 13.5 † 14.1 † 16.5

nw04-1 906.94 0.0 348.19 0.0 488.62 0.0

nw04-5 † 45.1 † 35.4 † 35.3
nw04-9 † 65.7 † 59.8 † 59.5

p0033-1 0.10 0.0 0.04 0.0 0.07 0.0
p0033-5 0.15 0.0 0.03 0.0 0.08 0.0
p0033-9 0.04 0.0 0.02 0.0 0.05 0.0
p0201-1 † ‡ † 37.2 † 36.1
p0201-5 † ‡ † 42.1 † 41.5

p0201-9 1.07 0.0 0.22 0.0 9.95 0.0

p0282-1 † 0.9 † 1.1 † 1.1
p0282-5 † 5.6 † 5.9 † 5.9

p0282-9 † 33.5 † 40.3 † 39.8
p0548-1 † 25.1 † 23.7 † 22.1
p0548-5 † 56.3 † 56.0 † 55.5

p0548-9 † 36.3 † 39.9 † 39.6

p2756-1 † 76.2 † 77.5 † 74.1
p2756-5 † 85.7 † 85.9 † 84.2

p2756-9 † 88.4 † 88.5 † 87.8
seymour-1 † 1.1 † 0.9 † 1.1
seymour-5 3.83 0.0 0.88 0.0 1.93 0.0

seymour-9 0.31 0.0 0.06 0.0 0.05 0.0
stein27-1 0.75 0.0 0.19 0.0 1.04 0.0

stein27-5 0.02 0.0 0.01 0.0 0.02 0.0

stein27-9 0.01 0.0 0.006 0.0 0.01 0.0
stein45-1 8.38 0.0 1.94 0.0 11.98 0.0

stein45-5 0.14 0.0 0.03 0.0 0.05 0.0

stein45-9 0.01 0.0 0.005 0.0 0.02 0.0

†: The method times out; solution time > 3,600 seconds); ‡: Numerical error occurs. The method is terminated with an
infeasible solution; ††: Terminated with memory issues.
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Table 2 Parameters of the Electricity System.

Ge = (N ,E) Undirected graph where N is a set of buses indexed by i= 1, · · · ,N and E is a set of lines indexed
with l= 1, · · · ,E

U Set of generators, indexed by u= 1, · · · ,U
Ug ⊆U Set of GFPPs
U(i)⊆U Set of generators located at i∈N
Bu Set of supply bids submitted by u∈ U , indexed by b= 1, · · · ,Bu
ceu,b Bid price of b∈Bu
su,b Amount of real power generation of b∈Bu
µu,b Maximum allowable gas price for bid b to be profitable

p
u
, pu Minimum/maximum real power generation of u∈ U

Ru,Ru Ramp-down/-up rate of u∈ U
cu No-load cost of u∈ U
{Hu,i}i=0,1,2 Coefficients of the heat rate curve of u∈ Ug
αu Maximum allowable percentage of the expense on natural gas over its marginal bid price for u∈ Ug
Ψu Set of counts of time periods with distinct start-up costs of u indexed by h
Cu,h Start-up cost of u∈ U when u is turned on after it has been offline for some time ∈ [Ψu,h,Ψu,h+1]

ou,0, pu,0 Initial on-off status/real power generation of u∈ U
τu, τu Minimum-down/-up time of u∈ U
τu,0, τu,0 The time that generator u∈ U has to be inactive/active from t= 0
αu
bl Line susceptance of l ∈ E
f l Real power limit of l ∈ E
(dei,t)i∈N Electricity load profile during t∈ T
∆l Maximum voltage angle difference between two end-points of l ∈ E
θi, θi Minimum/maximum voltage angle at i∈N

Appendix H: Unit Commitment With Gas Awareness (UCGNA)

The UCGNA is a tri-level optimization problem where the first and second levels determine how to commit

and dispatch electric power generating units; The third level decides how to operate the gas network given

the natural gas demands of committed gas-fueled generators that are determined in the first and second

levels. The economic feedback from the gas network, i.e., the natural gas zonal prices, is given by the dual

solution ψ of the third-level optimization and the first-level optimization is subject to constraints over both

ψ and commitment decisions x in order to ensure the robustness of the unit commitment decisions against

the economic feedback from the gas system.

Byeon and Van Hentenryck (2019) showed that the tri-level problem can be reformulated as a special case

of BSOCP discussed in Section 7.2, which is in the form of Problem (24) with cy = d. The bilevel problem

has a leader problem that decides the commitment decision (a subvector of x) and the follower problem is a

joint network flow problem for dispatching electricity and natural gas with the given commitment decision

x. Based on the follower’s dual solution ψ, which approximates the gas price, an additional constraint on

both x and ψ is enforced in the leader problem to find a robust commitment decision against volatile natural

gas prices in the gas system.

H.1. Mathematical Model

This section specifies how the leader and the follower problem is formulated. In what follows, the electricity

transmission grid is represented by an undirected graph Ge = (N ,E) and the natural gas transmission system

is by a directed graph Gg = (V,A). The letter T denotes the set of time periods {0,1, · · · , T}, and Tables

2 and 3 summarize the parameters of the electricity and gas systems. [a, b]Z denotes the set of integers in

interval [a, b], and [n] denotes the set {1, · · · , n} for some integer n≥ 1.
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Table 3 Parameters of the gas system

Gg = (V,A) Directed graph representing a natural gas transmission network, where V is a set of junctions,
indexed with j = 1, · · · , V , and A⊆V ×V is a set of connections, indexed with a= 1, · · · ,A

Ac ⊆A Set of compressors
Av ⊆A Set of control valves

sgj , s
g
j Lower/Upper limit on natural gas supply at j ∈ V

Sj Set of non-overlapping intervals covering [sgj , s
g
j ], each with a distinct slope cj,s satisfying cj,s ≤ cj,s+1

for all consecutive intervals s, s+ 1∈ Sj
κj Cost of demand shedding at j ∈ V
(dgj,t)j∈V Gas demand profile during t∈ T
Wa Pipeline resistance (Weymouth) factor of a∈A
πj , πj Minimum/maximum squared pressure at j ∈ V
αca, α

c
a Lower/upper compression ratio of a∈Ac

αva, α
v
a Lower/upper control ratio of a∈Av

K Set of pricing zones, indexed with k= 1, · · · ,K
V(k) Set of junctions that belong to k ∈K

Table 4 Variables of the Leader Problem.

Binary variables
ou,t 1 if u∈ U is on during t∈ T , 0 otherwise
v+u,t 1 if u∈ U becomes online during t∈ T , 0 otherwise
v−u,t 1 if u∈ U becomes offline during t∈ T , 0 otherwise
wu,b,t 1 if b∈Bu is selected during t∈ T , 0 otherwise
Continuous variables
ru,t Start-up cost of u∈ U during t∈ T
ϕu,t Maximum allowable natural gas price for u ∈ Ug to generate power at its scheduled level during

t∈ T

H.1.1. The Leader Problem The variables of the leader problem is summarized in Table 4. With these

notations, the leader model is specified in Problem (40).

The objective function includes the objective of the unit-commitment problem (i.e., the no-load

costs, the start-up costs, and the costs of the selected supply bids of each electrical power gen-

erating units
∑

t∈[T ]

∑
u∈U

(
cuou,t + ru,t +

∑
b∈Bu c

e
u,bs

e
u,b,t

)
) and the cost of dispatching natural gas

(
∑

t∈[T ]

∑
j∈V(

∑
s∈Sj

cgj,ss
g
s,t + κjqj,t)), which are respectively scaled by β ∈ (0,1) and 1− β. Equation (40b)

computes the start-up cost ru,t of a generator u for time period t based on how long u has been offline

(Morales-España et al. 2013). The expression ou,t −
∑h

n=1 ou,t−n is one when generator u becomes online

after it has been turned off for h time periods. Equation (40c) states the nonnegativity requirement on ru,t.

Equation (40d) specifies the initial on-off status of each generator. The minimum-up and -down constraints

are specified in Equations (40e) and (40f) respectively. The relationship between the variables for the on-off,

start-up, and shut-down statuses of each generator is stated in Equation (40g). Equation (40h) states that

the bid of a generator can be selected only when it is committed. Equation (40l) is bound constraints for the

bids submitted by the GFPPs, which ensures that the indicator variable wb,t is one whenever bid b is used

for time period t (i.e., seb,t > 0). In Equation (40m), the (b+1)th bid is selected only if the bid b is fully used.

Accordingly, Equation (40i) states that ϕu,t is the maximum allowable gas price for u ∈ Ug to be profitable

when generating its scheduled amount. The binary requirements for logical variables v+u,t, v
−
u,t, ou,t and wb,t

are specified in Equations (40j) and (40k). The economic coupling between the electricity and gas networks

is enforced by bid-validity constraints (Equation (40n)) that state that the power generation of a committed

gas-fired power plant u∈ Ug, which receives natural gas at junction k ∈ V, should be profitable with regard to
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min
∑
t∈[T ]

β∑
u∈U

(cuou,t + ru,t) +

β∑
u∈U

∑
b∈Bu

ceu,bs
e
u,b,t + (1−β)

∑
j∈V

(
∑
s∈Sj

cgj,ss
g
s,t +κjqj,t)

 (40a)

s.t. ru,t ≥Cu,h(ou,t−
∑
n∈[h]

ou,t−n), ∀h∈Ψs, u∈ U , t∈ [T ], (40b)

ru,t ≥ 0, ∀u∈ U , t∈ [T ], (40c)

ou,t = ou,0, ∀u∈ U , t∈ [0, τu,0 + τu,0]Z, (40d)∑
t′∈[t−τu+1,t]Z

v+u,t′ ≤ ou,t, ∀u∈ U , t∈ [max{τu, τu,0 + 1}, T ]Z, (40e)

∑
t′∈[t−τu+1,t]Z

v+u,t′ ≤ 1− ou,t−τu , ∀u∈ U , t∈ [max{τu, τu,0 + 1}, T ]Z, (40f)

v+u,t− v−u,t = ou,t− ou,t−1, ∀u∈ U , t∈ [T ], (40g)

wu,b,t ≤ ou,t, ∀b∈Bu, u∈ Ug, t∈ [T ], (40h)

ϕu,t =
∑

b∈[Bu−1]

µu,b(wb,t−wu,b+1,t) +µu,Buwu,Bu,t, ∀u∈ Ug, t∈ [T ], (40i)

v+u,t, v
−
u,t, ou,t ∈ {0,1}, ∀u∈ U , t∈ [T ], (40j)

wu,b,t ∈ {0,1}, ∀b∈Bu, u∈ Ug, t∈ [T ], (40k)

0≤ seu,b,t ≤ su,bwu,b,t, ∀b∈Bu, u∈ Ug, t∈ [T ], (40l)

su,bwu,b+1,t ≤ seu,b,t, ∀b∈ [1,Bu− 1]Z, u∈ Ug, t∈ [T ], (40m)

ϕu,t ≥ψk,tou,t, ∀k ∈K, i∈ V(k), u∈ U(i)∩Ug, t∈ [T ], (40n)

(y,ψ)∈Q (Problem (42)) . (40o)

the realized natural gas price ψk,t. The nonlinear term in the right-hand side of Equation (40n) is linearized

by employing an exact McCormick relaxation: For each k ∈K, i∈ V(k), u∈ U(i)∩Ug, t∈ [T ],

ϕu,t ≥ υu,k,t, (41a)

υu,k,t ≥ψk,t−ψk,t(1− ou,t), (41b)

υu,k,t ≤ψk,t−ψk,t(1− ou,t), (41c)

υu,k,t ≤ψou,t, (41d)

υu,k,t ≥ψou,t. (41e)

Although the natural gas system is operated in a decentralized manner, the zonal price of natural gas ψ can

be approximated with the dual solution of the follower problem. In Equation (40o), Q denotes the projection

of optimal pairs of primal and dual solutions of the follower problem (Problem (42)) onto the space of se

and ψ. The bid validity constraints use the maximum natural gas price (e.g., $200 per mmBtu) as ψ and 0

as ψ.

Note that Equations (40b)-(40k) are the specification of X in Equation (24d) and Equations (40l) and

(40m) are that of Equation (24b). Equation (24c) is specified by Equations (41).

H.1.2. The Follower Problem Based on the commitment decisions decided in the leader problem,

the follower problem (i.e., Equations (42a) - (42w)) decides the hourly operating schedule of each com-

mitted generators and the gas transmission network in order to minimize the system costs for electricity
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Table 5 Variables of the Follower Problem.

Variables on the electricity system
seb,t Real power generation from b∈Bu of u∈ U during t∈ T
pu,t Real power generation of u∈ U during t∈ T
fl,t Real power flow on l ∈ E during t∈ T
θi,t Voltage angle on i∈N during t∈ T
Variables on the gas system
sgj,t Amount of gas supplied at j ∈ V during t∈ T
sgj,s,t Amount of gas supply from s∈ Sj during t∈ T
πj,t Pressure squared at j ∈ V during t∈ T
φa,t Gas flow on a∈A during t∈ T
lj,t Satisfied gas demand at j ∈ V during t∈ T
qj,t Shedded gas demand at j ∈ V during t∈ T
γj,t Total amount of gas consumed by the GFPP located at j ∈N ∩V during t∈ T

min
∑
t∈[T ]

β∑
u∈U

∑
b∈Bu

ceu,bs
e
u,b,t + (1−β)

∑
j∈V

(
∑
s∈Sj

cj,ss
g
j,s,t +κjqj,t)

 (42a)

s.t.
∑
u∈U(i)

pu,t− dei,t =
∑

l∈E:lt=i

fl,t−
∑

l∈E:lh=i

fl,t, ∀i∈N , t∈ [T ], (42b)

pu,t =
∑
b∈Bu

seb,t ∀u∈ U , t∈ [T ], (42c)

0≤ seb,t ≤ sb, ∀b∈Bu, u∈ U , t∈ [T ], (42d)

p
u
ou,t ≤ pu,t ≤ puou,t, ∀u∈ U , t∈ [T ], (42e)

pu,0 = pu,0, ∀u∈ U , (42f)

pu,t− pu,t−1 ≤Ruou,t−1 + puv
+
u,t, ∀u∈ U , t∈ [T ], (42g)

pu,t−1− pu,t ≤Ruou,t−1 + p
u
v−u,t, ∀u∈ U , t∈ [T ], (42h)

fl,t =−bl(θlh,t− θlt,t), ∀l ∈ E , t∈ [T ], (42i)

− f l ≤ fl,t ≤ f l, ∀l ∈ E , t∈ [T ], (42j)

θi ≤ θi,t ≤ θi, ∀i∈N , t∈ [T ], (42k)

−∆l ≤ θlh,t− θlt,t ≤∆l ∀l ∈ E , t∈ [T ], (42l)

sgj,t− lj,t− γj,t =
∑

a∈A:at=j

φa,t−
∑

a∈A:ah=j

φa,t, ∀j ∈ V, t∈ [T ], (42m)

sgj,t =
∑
s∈Sj

sgj,s,t, ∀j ∈ V, t∈ [T ], (42n)

lj,t = dgj,t− qj,t, ∀j ∈ V, t∈ [T ], (42o)

0≤ qj,t ≤ dgj,t, ∀j ∈ V, t∈ [T ], (42p)

φa,t ≥ 0, ∀a∈A, t∈ [T ], (42q)

sgj ≤ s
g
j,t ≤ s

g
j , ∀j ∈ V, t∈ [T ], (42r)

αcaπah,t ≤ πat,t ≤ α
c
aπah,t, ∀a∈Ac, t∈ [T ], (42s)

αvaπah,t ≤ πat,t ≤ α
v
aπah,t, ∀a∈Av, t∈ [T ], (42t)

πah,t−πat,t ≥Waφ
2
a,t, ∀a∈A\ (Av ∪Ac), t∈ [T ], (42u)

πj ≤ πj,t ≤ πj , ∀j ∈ V, t∈ [T ] (42v)

γj,t ≥
∑

u∈U(i)∩Ug
Hu,2p

2
u,t +Hu,1pu,t +Hu,0, ∀j ∈N ∩V, t∈ [T ]. (42w)

(
∑

t∈[T ]

∑
u∈U

∑
b∈Bu c

e
u,bs

e
u,b,t) and gas (

∑
t∈[T ]

∑
j∈V(

∑
s∈Sj

cj,ss
g
j,s,t + κjqj,t)) which are respectively scaled

by β ∈ (0,1) and 1− β. Equation (42b) states the flow conservation constraints for real power at each bus,

using lh and lt to represent the head and tail of l ∈ E . Equation (42c) states that the total real power gen-
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eration of a generator u is equal to the production of its selected bids. Equation (42d) constrains the power

generation seb,t from bid b ∈ Bu to be no more than the submitted amount s̄b. Equation (42e) enforces the

bound on the real power generation of each generator. Equation (42f) specifies the initial generation amount

of each generator, and Equations (42g) and (42h) state the ramp-up and -down constraints of each generator.

Equation (42i) captures the DC approximation of the power flow equations and Equation (42j) specifies the

thermal limit on each line. Equations (42k) and (42l) state the voltage angle bounds on each bus and the

bounds on the angle difference of two adjacent buses respectively.

A steady-state natural gas model is specified in Equations (42m)-(42v), which is similar to those in Bent

et al. (2018), Sánchez et al. (2016), Borraz-Sánchez et al. (2016) and uses the Weymouth equation to capture

the relationship between pressures and flux. The flux conservation constraint is given in Equation (42m),

where ah and at represent the head and tail of a∈A. Equation (42n) calculates the total gas production at

junction j ∈ V, and Equation (42o) determines the demand served at each junction: It captures the amount of

gas load shedding which must be nonnegative and cannot exceed the demand at the corresponding junction

(Equation (42p)). The model assumes that gas flow directions are predetermined and Equation (42q) enforces

the sign of gas flow variables, i.e., it constrains φa,t to be nonnegative. Equation (42r) specifies the upper

and lower limits of natural gas supplies. The change in pressure through compressors and control valves are

formulated in Equations (42s) and (42t) and the model use a single compressor machine approximation as

in prior work. The steady-state physics of gas flows is formulated with the Weymouth equation in Equation

(42u). Equation (42v) states the bounds on nodal pressures. Equation (42u) is a second-order cone relaxation

of the Weymouth equation (πah,t−πat,t =Waφ
2
a,t) from Borraz-Sánchez et al. (2016), and the result therein

empirically showed the relaxation is very tight.

Gas-fired power plants also play as a physical interface between the electrical power and gas networks. The

real power generation p of a gas-fired power plant induces a demand γ in the natural gas system. Equation

(42w) specifies the relationship between the real power generation of a gas-fueled generator and the amount

of natural gas needed for the generation. In the equation, this relationship is approximated by a quadratic

heat-rate curve (γj,t =
∑

u∈U(i)∩Ug Hu,2p
2
u,t+Hu,1pu,t+Hu,0,∀j ∈N ∩V, t∈ [T ]), whose coefficients are given

as Hu. The equation is convexified like the Weymouth equation in Equation (42w).

Appendix I: Results on UCGNA Instances
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Table 6 Computational Performance Comparison (ηp = 1).

Instance D G B

ηp ηg Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1

1 25.42 0.0 15.28 0.0 † 6.8
1.1 25.91 0.0 23.24 0.0 † 4.3
1.2 25.86 0.0 14.78 0.0 † 2.2
1.3 29.33 0.0 31.17 0.0 † 4.4
1.4 26.60 0.0 6.76 0.0 † 2.6
1.5 25.80 0.0 13.24 0.0 † 6.2
1.6 27.01 0.0 33.56 0.0 † 3.1
1.7 100.82 0.0 22.78 0.0 † 4.5
1.8 † 1.8 † ‡ † 6.7
1.9 † 1.3 † ‡ † 10.6
2.0 67.13 0.0 † 1.3 † 10.8
2.1 1091.88 0.0 † 3.2 † 20.0
2.2 566.94 0.0 † 3.6 † 19.1
2.3 31.52 0.0 15.94 0.0 † 8.4

Table 7 Computational Performance Comparison (ηp = 1.3).

Instance D G B

ηp ηg Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1.3

1 31.01 0.0 4.37 0.0 † 1.9
1.1 28.93 0.0 3.20 0.0 † 2.8
1.2 30.87 0.0 3.28 0.0 † 2.9
1.3 48.22 0.0 2.93 0.0 † 3.3
1.4 32.69 0.0 12.07 0.0 † 3.8
1.5 44.13 0.0 23.89 0.0 † 2.2
1.6 † 0.3 † 0.2 † 4.1
1.7 † 3.5 † ‡ † 11.0
1.8 † 3.2 † ‡ † 10.9
1.9 † 3.3 † ‡ † 17.4
2 † 4.2 † 19.9 † 14.9

2.1 † 4.3 † ‡ † 9.7
2.2 † 4.0 † ‡ † 14.8
2.3 43.23 0.0 10.43 0.0 † 5.7

Table 8 Computational Performance Comparison (ηp = 1.6).

Instance D G B

ηp ηg Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1.6

1 43.51 0.0 4.33 0.0 † 5.8
1.1 27.88 0.0 5.46 0.0 † 2.8
1.2 26.63 0.0 7.67 0.0 † 3.9
1.3 22.19 0.0 6.25 0.0 † 2.7
1.4 29.75 0.0 6.35 0.0 † 4.7
1.5 330.88 0.0 21.08 0.0 † 7.0
1.6 † 2.1 † ‡ † 9.7
1.7 † 2.0 † ‡ † 8.1
1.8 † 6.2 † ‡ † 17.1
1.9 † 7.4 † ‡ † 11.5
2 † 3.7 † ‡ † 8.7

2.1 † 5.0 † ‡ † 9.1
2.2 † 5.0 † ‡ † 9.0
2.3 12.44 0.0 3.76 0.0 † 3.9
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Table 9 Benefits of the Acceleration Schemes (ηp = 1).

D(n1, i1) D(n0, i1) D(n1, i0) D(n0, i0)

ηg Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1 25.42 0.00 30.61 0.00 † 49.38 † 52.65
1.1 25.91 0.00 25.39 0.00 † 50.70 † 52.53
1.2 25.86 0.00 25.35 0.00 † 51.13 † 53.59
1.3 29.33 0.00 28.19 0.00 † 50.82 † 52.67
1.4 26.60 0.00 26.74 0.00 † 53.15 † 53.20
1.5 25.80 0.00 27.51 0.00 † 51.99 † 52.63
1.6 27.01 0.00 25.90 0.00 † 38.88 † 53.36
1.7 100.82 0.00 98.52 0.00 † 19.33 † 53.30
1.8 † 1.77 † 1.42 † 3.09 † 52.81
1.9 † 1.32 † 1.47 † 1.52 † 53.36
2 67.13 0.00 58.85 0.00 † 9.17 † 52.96

2.1 1091.88 0.00 † 4.80 † 4.52 † 52.56
2.2 566.94 0.00 † 4.45 † 5.23 † 53.46
2.3 31.52 0.00 23.85 0.00 † 38.59 † 52.97

Table 10 Benefits of the Acceleration Schemes (ηp = 1.3).

D(n1, i1) D(n0, i1) D(n1, i0) D(n0, i0)

ηg Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1 31.01 0.00 30.83 0.00 † 63.96 † 63.78
1.1 28.93 0.00 27.83 0.00 † 54.30 † 63.93
1.2 30.87 0.00 143.36 0.00 † 60.95 † 63.65
1.3 48.22 0.00 52.89 0.00 † 56.01 † 64.09
1.4 32.69 0.00 31.04 0.00 † 51.67 † 64.85
1.5 44.13 0.00 44.98 0.00 † 53.98 † 64.80
1.6 † 0.31 † 1.08 † 1.94 † 65.07
1.7 † 3.53 † 5.34 † 3.42 † 65.99
1.8 † 3.15 † 4.01 † 3.73 † 65.92
1.9 † 3.26 † 8.28 † 7.97 † 66.22
2 † 4.24 † 4.59 † 4.51 † 64.58

2.1 † 4.27 † 4.12 † 4.29 † 63.36
2.2 † 4.03 † 4.07 † 4.08 † 64.46
2.3 43.23 0.00 48.06 0.00 † 14.51 † 62.93

Table 11 Benefits of the Acceleration Schemes (ηp = 1.6).

D(n1, i1) D(n0, i1) D(n1, i0) D(n0, i0)

ηg Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

1 43.51 0.00 44.01 0.00 † 45.17 † 69.59
1.1 27.88 0.00 26.88 0.00 † 59.44 † 69.33
1.2 26.63 0.00 26.84 0.00 † 14.54 † 69.51
1.3 22.19 0.00 30.55 0.00 † 34.22 † 69.81
1.4 29.75 0.00 30.51 0.00 † 6.91 † 69.95
1.5 330.88 0.00 208.22 0.00 † 2.58 † 71.69
1.6 † 2.10 † 2.09 † 2.13 † 71.43
1.7 † 2.05 † 3.84 † 2.11 † 71.73
1.8 † 6.16 † 7.80 † 6.68 † 71.86
1.9 † 7.43 † 7.62 † 7.49 † 71.80
2 † 3.75 † 3.81 † 3.77 † 67.66

2.1 † 5.04 † 5.15 † 5.05 † 68.12
2.2 † 5.01 † 5.15 † 5.01 † 67.27
2.3 12.44 0.00 13.75 0.00 73.32 0.00 † 67.84
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(a) D, (ηp, ηg) = (1,1.2). (b) B, (ηp, ηg) = (1,1.2).

(c) D, (ηp, ηg) = (1.6,1.8). (d) B, (ηp, ηg) = (1.6,1.8).

Figure 6 Convergence Behaviors of D and B.
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