
Flexible Differentiable Optimization via Model
Transformations

Mathieu Besançon∗ besancon@zib.de
Zuse Institute Berlin, Germany

Joaquim Dias Garcia joaqim@psr-inc.com
PSR & PUC-Rio, Rio de Janeiro, Brazil

Benoît Legat blegat@mit.edu
Massachusetts Institute of Technology, MA, USA

Akshay Sharma akshay.s@columbia.edu
Columbia University, NY, USA

Abstract
We introduce DiffOpt.jl, a Julia library to differentiate through the solution of optimiza-
tion problems with respect to arbitrary parameters present in the objective and/or con-
straints. The library builds upon MathOptInterface, thus leveraging the rich ecosystem
of solvers and composing well with modeling languages like JuMP. DiffOpt offers both
forward and reverse differentiation modes, enabling multiple use cases from hyperpa-
rameter optimization to backpropagation and sensitivity analysis, bridging constrained
optimization with end-to-end differentiable programming. DiffOpt is built on two known
rules for differentiating quadratic programming and conic programming standard forms.
However, thanks ability to differentiate through model transformation, the user is not
limited to these forms and can differentiate with respect to the parameters of any model
that can be reformulated into these standard forms. This notably includes programs mix-
ing affine conic constraints and convex quadratic constraints or objective function.

Keywords: differentiable optimization; implicit differentiation; automatic differentiation;
convex optimization; conic optimization

1. Introduction
Differentiable Optimization (𝜕) has become a center of interest in the last years, both as
a stand-alone methodology providing additional information on the sensitivity of generic
optimization problems and as a principled way to integrate complex convex optimization
components in Machine Learning, following a broader trend of differentiable program-
ming which extends the set of computer programs for which derivatives can be computed
(Innes et al., 2019). In that context, 𝜕 can be seen as a form of differentiable program-
ming, where the procedure for which derivatives are computed is the algorithm solving
an optimization problem. We present DiffOpt, a library implementing key methods for

∗. The authors are ordered alphabetically and not by order of contribution

1

ar
X

iv
:2

20
6.

06
13

5v
3

 [
cs

.L
G

]
 3

1
Ju

l 2
02

3

mailto:besancon@zib.de
mailto:joaquim@psr-inc.com
mailto:blegat@mit.edu
mailto:akshay.s@columbia.edu

𝜕 in Julia (Bezanson et al., 2017) based on the MathOptInterface (MOI) abstract data
structure (Legat et al., 2021). Consequently, the extensions to the usual mathematical op-
timization machinery are also available in JuMP (Dunning et al., 2017) with MOI as its
backend. The library associated with this paper is archived at Besançon et al. (2023b).

𝜕 regroups a set of methods to compute derivative information of a function that
includes an optimization problem. We start considering a generic finite-dimensional op-
timization problem parameterized by 𝜃:

(𝜃) ∶ min
𝑥

𝐺0(𝑥, 𝜃)

s.t. 𝐺𝑖(𝑥, 𝜃) ∈ 𝑖 ∀𝑖 ∈ {1, … ,𝑚},

where 𝑥 ⊆ ℝ
𝑛, 𝜃 ∈ Θ ⊆ ℝ

𝑘 , 𝐺𝑖 are functions ℝ𝑛 × Θ → ℝ
𝑛𝑖 and 𝑖 ⊂ ℝ

𝑛𝑖 . For each 𝜃 we
define the solution map Ψ(𝜃) = argmin

𝑥
(𝜃), a set-valued function. We will focus on

the case where the solution map is single-valued: 𝜓(𝜃) = 𝑥
∗
(𝜃) = argmin

𝑥
(𝜃).

Differentiable optimization in its generic form entails computing the derivative of the
output 𝑥∗(𝜃) with respect to all parameters, i.e., computing the Jacobian matrix:

𝜕𝑥
∗

𝜕𝜃

∈ ℝ
𝑘×𝑛
.

Instead of the Jacobian matrix of the solution map, we often reason on the derivative of
the solution map as a linear map denoted as 𝐷𝜓(𝜃), with adjoint 𝐷⊤

𝜓(𝜃). In the gen-
eral case, in which set-valued functions are considered, more sophisticated objects are
required, such as the Generalized Jacobian (Dempe and Vogel, 2001; Stechlinski et al.,
2018), which are based on the seminal works on sensitivity analysis by Fiacco (1983) and
Robinson (1982). On the other hand, even in the single-valued case, the solution is not
smooth in general, which poses further challenges to the derivative computation process.
Some lines of work have investigated non-smooth automatic (sub)differentiation and the
behavior of automatic differentiation in the non-smooth case (Kakade and Lee, 2018; Bolte
and Pauwels, 2020). However, in most cases in differentiable programming, a heuristic
quantity is computed when the limit of the directional derivative is ill-defined1.

The recent survey Kotary et al. (2021) on learning with constrained optimization of-
fers a review of 𝜕 techniques in light of the recent trends of combining optimization and
machine learning. However, the recent works on 𝜕 have been using many techniques
developed for sensitivity analysis of optimization problems. For more information on
previous works regarding the latter, the reader is directed to Fiacco (1983); Fiacco and
Ishizuka (1990); Gal (2010); Bonnans and Shapiro (2000).

For differentiation with respect to arbitrary problem parameters, two main methods
have recently appeared in the literature to handle structured problems. The first method,
from Amos and Kolter (2017), can be applied to convex quadratic optimization problems
with linear equality and inequality constraints. While the second, from Agrawal et al.
(2019b), is applied to conic optimization problems. These two methods are implemented
in DiffOpt.jl as differentiation rules described in Section 3.2. These rules are then com-
bined with model transformations in order to communicate the sensitivity information

1. We point the interested reader to the ChainRules.jl recommendations https://juliadiff.org/
ChainRulesCore.jl/v1.15/maths/nondiff_points.html, accessed March 2023

2

https://juliadiff.org/ChainRulesCore.jl/v1.15/maths/nondiff_points.html
https://juliadiff.org/ChainRulesCore.jl/v1.15/maths/nondiff_points.html

to the form used by the user. As detailed in Section 3.4, this notably enables the users to
obtain the sensitivity with respect to quadratic constraints in a model mixing quadratic
constraints and affine conic constraints.

We briefly go over the lines of work that are closest to the methods of Amos and
Kolter (2017); Agrawal et al. (2019b).

A part of the recent work on 𝜕 has focused on specific optimization problems. In
Blondel et al. (2020), the authors consider a differentiable optimization method for sort-
ing and ranking problems. In Berthet et al. (2020), the differentiation of the solution to
a generic convex optimization problem with respect to a linear objective is considered.
When the feasible set is a polytope, the issue of a Jacobian matrix being zero almost ev-
erywhere arises similarly to the ranking problem from Blondel et al. (2020). The approach
followed is that of perturbed optimization, considering the input cost vector as a random
variable centered around a nominal value. This allows sampling the output solution and
Jacobian matrix from input cost vectors generated from the distribution, yielding unbi-
ased estimators for both while only requiring access to a linear minimization oracle, i.e.,
duality information is not required. That line of work on differentiation through stochas-
tic perturbation has been extended in Dalle et al. (2022), which offers a unified toolbox
for stochastic differentiation with respect to objective parameters.

The methodology of differentiable conic problems has been extended to log-log con-
vex problems inAgrawal and Boyd (2020), using the grammar fromDisciplinedGeometric
Programming and the rules established for parameterized disciplined convex problems in
Agrawal et al. (2019a). A differentiable method has been developed for submodular func-
tions in Djolonga and Krause (2018), opening 𝜕 to optimization problems with discrete
structures. In Gould et al. (2019), deep learning models are studied with nonlinear op-
timization problems as nodes instead of closed-form functions, defining a differentiable
optimization method for nonlinear problems without requiring convexity. The authors
leverage implicit differentiation of the Lagrangian reformulation at the optimal point to
estimate derivative information of the output solution with respect to the input param-
eters of the node. The framework proposed in Paulus et al. (2021) extends 𝜕𝑂 to opti-
mization problems including integer constraints. Similar to previous work in the convex
setting and unlike prior models tackling combinatorial problems, their method handles
the differentiation of constraints using an estimation of active constraints at the optimum
in the backpropagation phase.

In Blondel et al. (2021), differentiable optimization is viewed as a problem of implicit
differentiation. By expressing the solution map of the optimization problem as the root of
a system of equations (such as the KKT conditions) or the solution to a fixed point equa-
tion, the system can leverage automatic differentiation (AD) of the implicit equations to
differentiate the solution map. The approach generalizes the differentiation of quadratic
and conic optimization from Amos and Kolter (2017) and Agrawal et al. (2019a) but re-
quires a user-defined system of equations that are necessary for optimality.

The rest of this paper is structured as follows. Section 2 covers the background and
related research on 𝜕. Section 3 presents the structure of theDiffOpt package and impor-
tant features. Section 4 highlights some applications illustrating the use of the package.

3

2. Differentiating Convex Optimization Problems
We focus nowon the theoretical background of the twomethods implemented in DiffOpt.jl.
First, we detail the convex quadratic optimization case (Amos and Kolter, 2017), and, in
the sequence, we explain the conic optimization case (Agrawal et al., 2019b). Both meth-
ods are based on rewriting necessary optimality conditions for the optimization problem
as a system of nonlinear equations that will locally define the primal-dual solution as
an implicit function and then apply the Implicit Function Theorem, IFT, (Dontchev and
Rockafellar, 2009, Theorem 1B.1, page 17), to obtain the derivative of such implicit func-
tion. This is in line with early methods from Fiacco and McCormick (1968). We highlight
that other versions of the IFT can be used if required.

The above mentioned IFT from Dontchev and Rockafellar (2009) is as follows:
Implicit Function Theorem (Dontchev and Rockafellar, 2009). Let 𝑓 ∶ ℝ

𝑑
×ℝ

𝑛
→ ℝ

𝑛 be
continuously differentiable in a neighborhood of (𝑝∗, 𝑥∗) and such that 𝑓 (𝑝∗, 𝑥∗) = 0. Let
the partial Jacobian of 𝑓 with respect to 𝑥 at (𝑝∗, 𝑥∗), namely𝐷𝑥𝑓 (𝑝

∗
, 𝑥

∗
), be nonsingular.

Then the solution mapping 𝑆(𝑝) = {𝑥 ∈ ℝ
𝑛
| 𝑓 (𝑝, 𝑥) = 0} for 𝑝 ∈ ℝ

𝑑 has a single-valued
localization 𝑠 around 𝑝∗ for 𝑥∗, hence, implicitly defining the function

𝑠 ∶ ℝ
𝑑
→ ℝ

𝑛
, 𝑠(𝑝) = 𝑥,

which is continuously differentiable in a neighborhood𝑄 of 𝑝∗ with a Jacobian satisfying:

𝐷𝑠(𝑝) = −𝐷𝑥𝑓 (𝑝, 𝑠(𝑝))
−1
𝐷𝑝𝑓 (𝑝, 𝑠(𝑝)) ∀𝑝 ∈ 𝑄.

2.1 Quadratic programs
A major step towards integrating differentiable optimization into ML pipelines was pre-
sented in Amos and Kolter (2017); Amos (2019) for convex quadratic problems (QP). The
considered optimization models are of the form:

min

𝑥∈ℝ
𝑛

1

2

𝑥
⊤
𝑄𝑥 + 𝑐

⊤
𝑥

𝐺𝑥 ≤ ℎ ∶ (𝜆)

𝐴𝑥 = 𝑏 ∶ (𝜇)

where 𝜆 ∈ ℝ
𝑝 , 𝜇 ∈ ℝ

𝑚 denote the dual variables associated with the inequality and equal-
ity constraints, respectively. Unlike prior work, the solution map is differentiated with
respect to all problem data (𝐴 ∈ ℝ

𝑚×𝑛
, 𝑏 ∈ ℝ

𝑚
, 𝐺 ∈ ℝ

𝑝×𝑛
, ℎ ∈ ℝ

𝑝
, 𝑄 ∈ 𝕊

𝑛

+
, 𝑐 ∈ ℝ

𝑛
). In

particular, differentiating the solution with respect to constraint coefficients open new
applications, including learning the constraints of the convex problem along with solu-
tions as illustrated in Amos (2019) on generic polytopes and combinatorial problems. The
differentiation method starts by representing the solution process as solving a system of
equations. The solution can then be differentiated with respect to its parameters using
implicit differentiation. In the case of QPs, the KKT conditions of the system fully describe
the optimality conditions for a primal-dual solution:

𝑄𝑥 + 𝑐 + 𝐴
⊤
𝜇 + 𝐺

⊤
𝜆 = 0 (∇𝐿)

𝐴𝑥 = 𝑏 (𝑃𝑒𝑞)

0 ≤ ℎ − 𝐺𝑥 ⊥ 𝜆 ≥ 0 (𝐶),

4

where (∇𝐿) represents the gradient of the Lagrangian, (𝑃𝑒𝑞) represents the primal feasi-
bility of equality constraints and (𝐶) includes primal feasibility of inequality constraints,
complementarity and dual feasibility for inequalities. A system of equality constraints
can be derived to compute derivatives:

(∇𝐿), (𝑃𝑒𝑞),

𝜆𝑖(ℎ − 𝐺𝑥)𝑖 = 0 ∀𝑖.

This representation is not equivalent to the KKT conditions but is a sufficient set of equa-
tions to compute sensitivities at a given primal (and dual) solution, as loose inequalities
will not affect such sensitivities. Now, we implicitly differentiate and obtain:

𝑑𝑄𝑥 + 𝑄𝑑𝑥 + 𝑑𝑐 + 𝑑𝐴
⊤
𝜇 + 𝐴

⊤
𝑑𝜇 + 𝑑𝐺

⊤
𝜆 + 𝐺

⊤
𝑑𝜆 = 0

𝑑𝐴𝑥 + 𝐴𝑑𝑥 − 𝑑𝑏 = 0

𝑑𝜆𝑖(ℎ − 𝐺𝑥)𝑖 + 𝜆𝑖(𝑑ℎ − 𝑑𝐺 𝑥 − 𝐺 𝑑𝑥)𝑖 = 0 ∀𝑖,

where differentials 𝑑𝑄, 𝑑𝐺, 𝑑ℎ, 𝑑𝐴, and 𝑑𝑏 will be treated as input sensitivities or the
direction of the desired directional derivative. On the other hand, 𝑑𝑥 , 𝑑𝜆 and 𝑑𝜇 will be
treated as output sensitivities or the directional derivative in the previously-mentioned
direction. Hence, 𝑑𝑄 ∈ ℝ

𝑛×𝑛, 𝑑𝐺 ∈ ℝ
𝑝×𝑛, 𝑑ℎ ∈ ℝ

𝑝 , 𝑑𝐴 ∈ ℝ
𝑚×𝑛, 𝑑𝑏 ∈ ℝ

𝑚, 𝑑𝑥 ∈ ℝ
𝑛, 𝑑𝜆 ∈ ℝ

𝑝

and 𝑑𝜇 ∈ ℝ
𝑚.

Regrouping the differential forms of parameters and solution variables results in the
following system:

⎡

⎢

⎢

⎣

𝑄 𝐺
⊤

𝐴
⊤

𝐷(𝜆)𝐺 𝐷(ℎ − 𝐺𝑥) 0

𝐴 0 0

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑑𝑥

𝑑𝜆

𝑑𝜇

⎤

⎥

⎥

⎦

= −

⎡

⎢

⎢

⎣

𝑑𝑄 𝑥 + 𝑑𝑐 + 𝑑𝐺
⊤
𝜆 + 𝑑𝐴

⊤
𝜇

𝐷(𝜆)𝑑ℎ − 𝐷(𝜆)𝑑𝐺 𝑥

𝑑𝐴𝑥 − 𝑑𝑏

⎤

⎥

⎥

⎦

,

where 𝐷(⋅) denotes the diagonal matrix formed from a given vector. The system above
can be used to compute several quantities of interest. For given values of the parameters
𝜃 = (𝑐, 𝑄, 𝐴, 𝐺, 𝑏, ℎ) , a primal-dual solution 𝑥, 𝜆, 𝜇 and sensitivities 𝑑𝑄, 𝑑𝐺, 𝑑ℎ, 𝑑𝐴, and
𝑑𝑏, solving the system can let us derive sensitivities on 𝑑𝑥 , 𝑑𝜆 and 𝑑𝜇. In other words, we
obtain the directional derivatives of 𝑑𝑥 , 𝑑𝜆 and 𝑑𝜇with respect to the direction 𝑑𝑄, 𝑑𝐺, 𝑑ℎ,
𝑑𝐴, and 𝑑𝑏. By setting the value of one to a single entry among 𝑑𝑄, 𝑑𝐺, 𝑑ℎ, 𝑑𝐴, and 𝑑𝑏 and
zero to all others, we can obtain a column of the Jacobian matrix. Repeating the process,
we can obtain the full Jacobian matrix. However, in most applications where derivative
information is needed, we only need to perform Jacobian-vector products (JVP) or vector-
transpose-Jacobian products (VJP). JVP is equivalent to the above-mentioned directional
derivatives (if the vector in question is the input sensitivity: 𝑑𝑄, 𝑑𝐺, 𝑑ℎ, 𝑑𝐴, and 𝑑𝑏).
VJP, on the other hand, is slightly more complicated, but there is a closed-form solution
that requires a single linear system solution. We omit the formulas and refer the reader
to Amos and Kolter (2017). Thus, exposing the two principal modes of differentiation
present in differentiable libraries or Automatic Differentiation (AD) tools: forward- and
reverse-mode AD.

5

2.2 Conic programs
Although QPs capture numerous problems of interest, many problems require a richer
set of constraints which can be modeled as conic constraints. Convex conic optimization
problems have standard closed-form primal and dual expressions,

Primal Problem Dual Problem
min

𝑥∈ℝ
𝑛

𝑐
⊤
𝑥 max

𝑦∈ℝ
𝑚

− 𝑏
⊤
𝑦

s.t. 𝐴𝑥 + 𝑠 = 𝑏 s.t. 𝐴
⊤
𝑦 + 𝑐 = 0

𝑠 ∈  𝑦 ∈ ∗

where 𝑥 is the primal variable, 𝑦 is the dual variable, 𝑠 ∈ ℝ
𝑚 is the primal slack variable,

 ⊆ ℝ
𝑚 is a closed convex cone and ∗

⊆ ℝ
𝑚 is the corresponding dual cone. Note that

in above form, 𝐴 ∈ ℝ
𝑚×𝑛, 𝑏 ∈ ℝ

𝑚, 𝑐 ∈ ℝ
𝑛 are problem data.

The methodology of 𝜕 has been developed for conic problems in Amos (2019) and
Agrawal et al. (2019b) in parallel and extended in Agrawal et al. (2019a). The conic case
is more involved due to the conic constraints. We follow the notation of Agrawal et al.
(2019b) closely for simpler referencing, but we describe themethod in a complete and self-
contained fashion. Instead of deriving the necessary system of equations from the KKT
conditions, the proposed approach will rely on the Homogeneous Self-Dual Embedding
(HSDE) (O’Donoghue et al., 2016; Busseti et al., 2019). By construction, a solution of the
HSDE will be a solution to the KKT system and the optimization problem in question.
The HSDE is written as:

𝑄𝑢 = 𝑣, 𝑢 = (𝑥, 𝑦, 𝜏) ∈ ℝ
𝑛
× × ℝ+, 𝑣 = (𝑟, 𝑠, 𝜅) ∈ {0}

𝑛
× × ℝ+

Where 𝑟 , 𝜏, 𝜅 are additional variables created to construct the HSDE, and:

𝑄 =

⎡

⎢

⎢

⎣

0 𝐴
⊤

𝑐

−𝐴 0 𝑏

−𝑐
⊤

−𝑏
⊤

0

⎤

⎥

⎥

⎦

We apply the change of variables 𝑀−1
(𝑢, 𝑣) = 𝑢 − 𝑣,𝑀(𝑧) = (Π𝑧, Π𝑧 − 𝑧) from Busseti

et al. (2019), where Π is the projection operator onto the Cartesian product ℝ𝑛 ×∗
× ℝ+,

to obtain a reformulation of the HSDE as a root-finding problem:

 (𝑧, 𝑄) = 0, 𝑧𝑛+𝑚+1 ≠ 0

where:
 (𝑧, 𝑄) = ((𝑄 − 𝐼)Π + 𝐼)

(

𝑧

|𝑧𝑛+𝑚+1|)
,

is the so-called normalized residual map (NRM), defined in Busseti et al. (2019).
In this case, the solution map from the problem data to the primal-dual pair, (𝑥, 𝑦, 𝑠) =

𝜓(𝐴, 𝑏, 𝑐), is represented as a composition of three functions: 𝜓 = 𝜙◦ ◦. The definition
of each of these functions and their derivatives are given by:

6

1.  maps the problem data, (𝐴, 𝑏, 𝑐) to the a skew-symmetric matrix 𝑄 ∈ ℝ
(𝑛+𝑚+1)×(𝑛+𝑚+1):

𝑄 =

⎡

⎢

⎢

⎣

0 𝐴
⊤

𝑐

−𝐴 0 𝑏

−𝑐
⊤

−𝑏
⊤

0

⎤

⎥

⎥

⎦

, and its differential is: 𝑑 =

⎡

⎢

⎢

⎣

0 𝑑𝐴
⊤

𝑑𝑐

−𝑑𝐴 0 𝑑𝑏

−𝑑𝑐
⊤

−𝑑𝑏
⊤

0

⎤

⎥

⎥

⎦

2.  maps the 𝑄 matrix from the HSDE into the zero of the normalized residual map: 𝑧 ∈

ℝ
𝑛+𝑚+1. The key point is that, given a matrix 𝑄, the solution 𝑧 of  (𝑧, 𝑄) = 0 will lead to

the solution of the HSDE and, ultimately, to the primal-dual solution. Hence, it is possible
to implicitly differentiate the equation ((𝑄), 𝑄) = 0 and obtain:

𝐷(𝑄) = −(𝐷𝑧 ((𝑄), 𝑄))−1𝐷𝑄 ((𝑄), 𝑄),

where

𝐷𝑄 (𝑧, 𝑄) [𝑈] = 𝑈Π
(

𝑧

𝑧𝑛+𝑚+1)

𝐷𝑧 (𝑧, 𝑄) =

((𝑄 − 𝐼)𝐷Π(𝑧) + 𝐼)

𝑧𝑛+𝑚+1

− sign(𝑧𝑛+𝑚+1)((𝑄 − 𝐼)Π + 𝐼)
(

𝑧

𝑧
2

𝑛+𝑚+1
)
𝑒
⊤

𝑛+𝑚+1

where 𝐷𝑥𝑓 (𝑥, 𝑦)[𝑤] denotes the directional derivative of 𝑓 at 𝑥 in direction 𝑤 and 𝑒𝑛+𝑚+1
the basis vector with 1 at index 𝑛+𝑚+1. Note that the second term of 𝐷𝑧 (𝑧, 𝑄) vanishes
if 𝑧 is a solution of the HSDE.

3. 𝜙 maps the solution of the HSDE to the primal-dual pair:

(𝑥, 𝑦, 𝑠) = 𝜙(𝑧) = (𝑧1∶𝑛, Π∗(𝑧𝑛+1∶𝑛+𝑚), Π∗(𝑧𝑛+1∶𝑛+𝑚) − 𝑧𝑛+1∶𝑛+𝑚)/𝑧𝑛+𝑚+1.

Its derivative is given by:

𝐷𝜙(𝑧) =

⎡

⎢

⎢

⎣

𝐼 0 −𝑥

0 𝐷Π∗(𝑧𝑛+1∶𝑛+𝑚) −𝑦

0 𝐷Π∗(𝑧𝑛+1∶𝑛+𝑚) − 𝐼 𝑠

⎤

⎥

⎥

⎦

where Π∗ is the projection onto ∗. The derivatives of projections onto classic cones like
the positive orthant, second-order, positive semidefinite, and exponential cones are given in
Busseti et al. (2019) and implemented for DiffOpt in MathOptSetDistances.jl (Besançon
et al., 2023a). Exponential cone projections are performed using the technique from Friberg
(2023).

Finally, we obtain:

(𝑑𝑥, 𝑑𝑦, 𝑑𝑠) = 𝐷𝜓(𝐴, 𝑏, 𝑐)(𝑑𝐴, 𝑑𝑏, 𝑑𝑐) = 𝐷𝜙(𝑧)𝐷(𝑄)𝐷𝑄(𝐴, 𝑏, 𝑐)(𝑑𝐴, 𝑑𝑏, 𝑑𝑐),

which can be used directly to compute JVP (directional derivatives) from the sensitivities
(𝑑𝐴, 𝑑𝑏, 𝑑𝑐) by performing the above-described computations. Again, VJP is slightly more
complex but also has closed-form solutions that require a single linear system solution.
For more details, see Agrawal et al. (2019b).

7

3. Package structure
DiffOpt is a Julia package that offers differentiable optimization algorithms to the JuMP
ecosystem. In order to integrate seamlessly with other packages, DiffOpt is built on top
of MathOptInterface.jl (MOI), a foundational unifying package for constrained opti-
mization, designed to be a backend formodeling interfaces such as JuMP.jl or Convex.jl.
MOI allows the user to describe structured optimization problems in a unified format
based on the constraint representation of functions of variables belonging to sets. This
abstraction covers a wide variety of problems, including linear, quadratic, and conic con-
straints, as well as more specific sets, such as Special Ordered Sets or complementarity
constraints. Moreover, MOI includes a bridging mechanism turning the user-provided
problem into a problem structure that the chosen solver accepts through successive trans-
formations (or bridges) of the function-set pairs. As detailed in Legat (2020, Section 2.1.2),
the constraint types and bridges form a directed hypergraph where each function-set pair
is a node and each bridge is a single source hyperedge. The source of the hyperedge is the
constraint type that is transformed by the bridge and the targets of the hyperedge are the
set of constraints that are created by the transformation. Illustrations of such hypergraph
can be found in Legat (2020, Figure 2.2, 2.3). Given a constraint of the user model, the
choice of transformation to apply can then be reformulated as the search for a hyperpath
starting at the corresponding node and ending at nodes corresponding to constraint types
supported by the solver.

The design of MOI enables extending its interface through various mechanisms. First,
constraints are defined as pairs func-in-set where func is a function of the decision
variables and set is a set in which the value of the function should belongwhen evaluated
at feasible points. Solvers that can exploit special problem structure can therefore allow
the user to communicate it by defining new function or set types.

Second, most of the MOI interface is built on top of attributes. This enables both
the user to communicate custom information to the solver, such as starting values or
callbacks, but also the solver to communicate custom results, such as basis status for
simplex solvers or Irreducible Inconsistent Subsystems (IIS) for infeasible instances.

Third, MOI optimizers support a layered structure to combine several features. These
layers also support custom constraints and attributes that are typically defined by an
inner layer thanks to the well-posed API of MOI. These layers are commonly referred to
as meta-solvers as they form solvers parameterized by other solvers. Bridges are defined
as MOI layers that transform constraints into constraints of different types for their inner
layer. When defining a new constraint type, defining bridges to transform it into classical
constraint types allows the user to encode this special structure in models while still
being able to use solvers not supporting this structure. Below are a few examples of MOI
extensions that illustrate this.

Some or all of the above features of MOI were previously used in extensions and
motivated the design of DiffOpt in its current form. We highlight some:

1. SumOfSquares.jl defines the Sum-of-Squares cone as a new set type (Weisser et al., 2019)
and Gram matrices, Moment matrices and Sum-of-Squares decompositions as new attributes.
It then defines a bridge for transforming Sum-of-Squares constraints into semidefinite con-
straints. This bridge is then automatically applied only if the solver does not support

8

Sum-of-Squares constraints but does support semidefinite constraints. For instance, it will
be applied for classical semidefinite programming solvers for all semidefinite program-
ming solvers with the exception of Hypatia.jl (Coey et al., 2022) which supports Sum-
of-Squares constraints natively.

2. Dualization.jl (Bodin et al., 2021) offers a dualization meta-solver. The optimization
problem is automatically converted to its dual form and reaches the internal solver only in
dual form, of which the solution is then mapped back to the user.

3. QuadraticToBinary.jl (Garcia, 2021) is another meta-solver that converts quadratically-
constrained problems intoMixed Integer Linear Programs by automatically applying binary
expansions.

4. ConstraintSolver.jl (Kröger, 2020) is a constraint programming solver that has defined
new sets and functions following the MOI standard.

DiffOpt can be viewed as five main components and aspects that are covered in the
following sections. First, it extends MOI by creating new attributes allowing the user and
solver to communicate forward or reverse differentiation input and output (Section 3.1).
Second, it implements the quadratic and conic problem differentiation rules described in
Section 2 asMOImodels implementing these attributes (Section 3.2). Third, it implements
the communication of these attributes through the MOI caching and bridging layers (Sec-
tions 3.3 and 3.4). Fourth, it implements a meta-solver that implements the computation
of the differentiation attributes and is parameterized by a solver that should support solv-
ing the problem (Sections 3.5 and 3.6). Fifth, it allows to integrate optimization layers into
AD systems in Julia using the ChainRulesCore.jl package (Section 3.7).

3.1 Interface
After the problem is solved, the user can pass parameter perturbations in case of for-
ward differentiation or sensitivities with respect to solution variable values in the case
of reverse differentiation (or even both). These are passed to the DiffOpt.Optimizer
using the attributes detailed in Table 1. After sensitivities are loaded, the user might call
DiffOpt.forward_differentiate! or DiffOpt.reverse_differentiate! to com-
pute the derivatives with respect to the input sensitivities. The resulting derivatives are
queried again as typical solver attributes, detailed in Table 2.

ForwardObjectiveFunction Forward-mode tangent for the objective function
ForwardConstraintFunction Forward-mode tangent for a constraint function
ReverseVariablePrimal Reverse-mode tangent for a variable value

Table 1: Differential Optimization attributes (DiffOpt attributes for short) for passing per-
turbations and sensitivities.

Perturbations are passed and queried in the form of MOI functions (affine functions
and quadratic functions) associated with constraints or the objective. The coefficients of
variables (or quadratic terms) are the perturbations related to those variables (or quadratic

9

ForwardVariablePrimal Forward-mode tangent for a variable value
ReverseObjectiveFunction Reverse-mode tangent for the objective function
ReverseConstraintFunction Reverse-mode tangent for a constraint function

Table 2: Differentiable optimization attributes (DiffOpt attributes for short) for querying
resulting derivatives.

terms) and the respective associated constraint or objective. This API allows the pertur-
bation to flow through model transformations defined by the above-mentioned bridges.
To keep the API efficient, the returned functions are lazily computed so that only the
coefficients required by the final user are actually evaluated.

DiffOpt integrates smoothly with JuMP just like any solver implementing the MOI in-
terface. Because derivative-related attributes are slightly more complex than traditional
attributes, JuMP was added as a dependency so that we could overload a small subset of
the JuMP API to achieve a better user experience. Moreover, DiffOpt can communicate
with any solver that has an MOI interface, more than 40 of them are listed in the JuMP
Manual (JuMP Developers, 2021). The only computationally demanding step other than
solving the optimization problem is the linear system solution. Since the special structure
of the constraint and Hessian matrices can be exploited to accelerate the linear system
solve, the DiffOpt model exposes the attribute LinearAlgebraSolver that can be set
to implement a specialized solving method for the linear system resulting from the con-
straints, allowing users to swap and try different methods and linear algebra solvers. This
generic method to handle and solve the linear system was inspired by LinearSolve.jl
(SciML, 2023) with a simplified interface.

3.2 Differentiation rules as MOI models
DiffOpt implements the differentiation rules for QPs (resp. CPs) described in Section 2 as a
differentiable optimizationMOImodel (DiffOptmodel for short) DiffOpt.QuadraticProgram.
Model (resp. DiffOpt.ConicProgram.Model). TheseDiffOptmodels represent QPs (resp.
CPs) in the matrix standard form described in Section 2. They do not support solving the
QP (resp. CP) but they support having the primal and dual solution being set by the user.
Then, they support the differentiation API described in Section 3.1.

The QP and CP standard forms described in Section 2 are, however, strict on the con-
straints accepted for optimization models. For instance, the QP form supports inequality
constraints𝐺𝑥 ≤ ℎ, i.e., MOI.ScalarAffineFunction-in-MOI.LessThan, but not𝐺𝑥 ≥ ℎ,
i.e., MOI.ScalarAffineFunction-in-MOI.GreaterThan. This requires the user to trans-
form their model in order to fit the solver-compatible representation. It is then tedious
and error-prone to map both the primal and dual solutions through these transforma-
tions as well as the DiffOpt attributes. Fortunately, as described in the next section, the
transformation of these attributes is implemented through bridges.

Therefore, adding a bridging outer layer on top of DiffOpt.QuadraticProgram.Model
or DiffOpt.ConicProgram.Model allows the user to model the QP or CP in the most
convenient form while all these transformations are carried out transparently. More-
over, it also allows extending DiffOpt to new problem classes through bridges. For in-

10

stance, as SumOfSquares.jl defines the transformation from a Sum-of-Squares con-
straint to a semidefinite constraint using a bridge, defining how to transform the Dif-
fOpt attributes through these bridges automatically broadens the class of programs sup-
ported by DiffOpt.ConicProgram.Model to Sum-of-Squares programs. Another ex-
ample of the proposed design generality is a possible integer programming differenti-
ation methodology, in this case, the basic foundations of DiffOpt would be ready, but
a new DiffOpt model named IntegerDiffProblem would be required, analogous to
DiffOpt.QuadraticProgram.Model and DiffOpt.ConicProgram.Model.

3.3 Affine model transformations
Most model transformations rely on an affine relation between two sets 1 ⊆ ℝ

𝑛, 2 of
the form

1 = { 𝑥 ∈ ℝ
𝑛
∣ ∃𝑢 ∈ ℝ

𝑚 s.t. 𝐴𝑥 + 𝐵𝑢 + 𝑐 ∈ 2 }. (1)

As detailed in Legat (2020, Section 2.1.2), there is an automated way to implement
the transformation for primal and dual results given the transformation data 𝐴, 𝐵 and 𝑐.
Similarly, we develop in this section the transformation for the DiffOpt attributes.

Consider the extension of MOI to new sets 1 and 2 satisfying Equation (1). The two
sets are created as MOI.AbstractSets S1 and S2. The scalar products ⟨𝑥, 𝑦⟩𝑖 between a
vector 𝑥 of 𝑖 and a vector 𝑦 of its dual are defined by implementing a new method to
MOI.Utilities.set_dot(x, y, Si()). By default, if nomethod MOI.Utilities.set_-
dot is defined for Si, the inner product falls back to 𝑥⊤𝑦. These scalar products can be
arbitrary since MathOptInterface, Dualization and DiffOpt never assume it to be
𝑥
⊤
𝑦 and always use the generic set_dot function. A different scalar product is, for in-

stance, defined for the set MOI.PositiveSemidefiniteConeTriangle so that the scalar
product between the vectorization upper triangular matrices corresponds to the Frobe-
nius inner product between them.

The transformation allowed by Equation (1) is implemented as a bridge that, given
a constraint 𝑓1(𝑥) ∈ 1, creates variables 𝑢 ∈ ℝ

𝑚 and transforms the constraint into a
constraint 𝑓2(𝑥, 𝑢) ∈ 2 where 𝑓2(𝑥, 𝑢) = 𝐴𝑓1(𝑥) + 𝐵𝑢 + 𝑐.

We have d𝑓2 = 𝐴d𝑓1. Therefore, we see that the ForwardConstraintFunction
forward-mode tangentΔ𝑓1 should bemapped to𝐴Δ𝑓1 and the ReverseConstraintFunction
reverse-mode tangent Δ𝑓2 should be mapped to 𝐴∗

Δ𝑓2, with 𝐴∗ the adjoint matrix of 𝐴
satisfying

⟨𝐴𝑥, 𝑦⟩2 = ⟨𝑥, 𝐴
∗
𝑦⟩1

for all 𝑥 in the space of 1 and 𝑦 in the dual space of 2.

3.4 Quadratic and second-order cone model transformations
At the time of writing, the only bridge in MOI not based on such an affine relation of the
form (1) is the transformation from a convex quadratic constraint:

1

2

𝑥
⊤
𝑄𝑥 + 𝑎

⊤
𝑥 + 𝛽 ≤ 0,

to the affine conic constraint:

(1, −𝑎
⊤
𝑥 − 𝛽, 𝑈𝑥) ∈ ,

11

where  is the rotated second order cone of appropriate dimension and 𝑈 is obtained
from the Cholesky decomposition 𝑄 = 𝑈

⊤
𝑈 . Indeed, the Cholesky decomposition is not

a linear map from 𝑄 to 𝑈 .
The transformation of an optimal dual vector for the conic constraints into the dual of

the quadratic constraint is quite different from bridges based on affine relations discussed
in Section 3.3. In MOI, its implementation relies on the complementary slackness and a
geometric property of the second-order cone (Legat, 2020, Example 2.1.2). Transforming
DiffOpt attributes requires solving Lyapunov-like matrix equations we detail below.

The ability to transform DiffOpt attributes through this bridge automatically enables
convex quadratically-constrained quadratic programs (QCQPs) to be differentiated, even
though they do not correspond to either of the original forms of differentiable models.
Indeed, these can be transformed into a conic form and then differentiated using the
conic DiffOpt model. Moreover, quadratic objectives and quadratic constraints can also
be mixed with arbitrary conic constraints as well. While the user could have reformu-
lated these quadratic constraints and quadratic objective into the conic form manually,
they would have obtained the sensitivities in the conic form. With the transformation
presented in this section, the user does not have to perform this reformulation manually
and, more importantly, can obtain the sensitivities in the quadratic form.

In the reformulation, the only part that is not an affine transformation (which can be
dealt with Section 3.3) is the Cholesky decomposition 𝑄 = 𝑈

⊤
𝑈 . We show in Section 3.4.1

(resp. Section 3.4.2) how to differentiate through this decomposition in forward-mode
(resp. reverse-mode).

3.4.1 Forward-mode
For forward-mode differentiation, given a symmetric matrix d𝑄, we want to find the
corresponding tangent matrix d𝑈 for the Cholesky factor. Differentiating the Cholesky
decomposition relation 𝑄 = 𝑈

⊤
𝑈 , we obtain:

d𝑄 = d𝑈
⊤
𝑈 + 𝑈

⊤
d𝑈 . (2)

Equation (2) has a Lyapunov-like form that has been extensively studied in De Terán and
Dopico (2011); Djordjević (2007); Braden (1998). Typical models tackled in optimization
are large and sparse, the positive definite matrix 𝑄 is therefore represented in a sparse
data structure inMOI; the Cholesky factor 𝑈 is obtained with the SuiteSparse CHOLMOD
library (Davis, 2019). The factor 𝑈 can then be assumed to be invertible and have an upper
triangular structure. The unique upper triangular solution d𝑈 can therefore be obtained
using Proposition 1 below. As the right-hand side of Equation (4) only depends on the
𝑘−1 first columns of d𝑈 , this allows computing each column of d𝑈 , in increasing column
index order, by solving the triangular linear system Equation (4). Let [𝑘] denote the set
{1, … , 𝑘}.

Proposition 1 Given a symmetric matrix 𝐵 ∈ ℝ
𝑛×𝑛 and a matrix 𝐴 ∈ ℝ

𝑛×𝑛 such that 𝐴
[𝑘],[𝑘]

is
invertible for all 𝑘 ∈ [𝑛], the equation

𝑋
⊤
𝐴 + 𝐴

⊤
𝑋 = 𝐵. (3)

12

has a unique upper triangular solution 𝑋 . This solution satisfies

𝐴
⊤

[𝑘],[𝑘]
𝑋
[𝑘],𝑘

=
[

𝐵
[𝑘−1],𝑘

− 𝑋
⊤

[𝑘−1],[𝑘−1]
𝐴
[𝑘−1],𝑘

𝐵𝑘,𝑘/2]
. (4)

Proof As 𝐵 is symmetric, Equation (3) only has to be verified for 𝐵
[𝑘],𝑘

for all 𝑘 = 1,… , 𝑛. For any
𝑘 = 1,… , 𝑛, we have

𝑋
⊤

[𝑛],[𝑘]
𝐴
[𝑛],𝑘

+ 𝐴
⊤

[𝑛],[𝑘]
𝑋
[𝑛],𝑘

= 𝐵
[𝑘],𝑘

So
𝐴
⊤

[𝑛],[𝑘−1]
𝑋
[𝑛],𝑘

= 𝐵
[𝑘−1],𝑘

− 𝑋
⊤

[𝑛],[𝑘−1]
𝐴
[𝑛],𝑘

and
𝐴
⊤

[𝑛],𝑘
𝑋
[𝑛],𝑘

= 𝐵𝑘,𝑘/2.

Since 𝑋 is upper triangular, this is equivalent to Equation (4). As 𝐴
[𝑘],[𝑘]

is invertible, Equation (4)
holding for all 𝑘 ensures the existence and unicity of the solution.

3.4.2 Reverse-mode
For reverse-mode differentiation, given a matrix Δ𝑈 , we want to find a symmetric matrix
Δ𝑄 such that, for any symmetric matrix d𝑄, we have

⟨d𝑄 , Δ𝑄⟩ = ⟨d𝑈 , Δ𝑈⟩. (5)

where d𝑈 is the unique lower triangular solution of Equation (2) and ⟨⋅, ⋅⟩ is the scalar
product ⟨𝐴, 𝐵⟩ = tr(𝐴

⊤
𝐵). By Equation (2), Equation (5) is equivalent to

⟨d𝑈
⊤
𝑈 + 𝑈

⊤
d𝑈 , Δ𝑄⟩ = ⟨d𝑈 , Δ𝑈⟩. (6)

As Δ𝑄 is symmetric, Equation (6) is equivalent to

2⟨𝑈
⊤
d𝑈 , Δ𝑄⟩ = ⟨d𝑈 , Δ𝑈⟩

2⟨d𝑈 , 𝑈Δ𝑄⟩ = ⟨d𝑈 , Δ𝑈⟩. (7)

Let triu(⋅) denote the upper-triangular part of a matrix. Equation (7) is satisfied for all
upper triangular d𝑈 if and only if 2 triu(𝑈Δ𝑄) = triu(Δ𝑈). Since 𝑈 is invertible and upper
triangular (as discussed in Section 3.4.1), Proposition 2 allows computing each column of
Δ𝑄, in decreasing column index order, by solving the triangular linear systems (9).

Proposition 2 Given a matrix 𝐵 ∈ 𝕊
𝑛 and an invertible upper triangular matrix 𝐴 ∈ ℝ

𝑛×𝑛 such that
𝐴
[𝑘],[𝑘]

is invertible for all 𝑘 ∈ [𝑛], the equation

triu(𝐴𝑋) = triu(𝐵) (8)

has a unique symmetric solution 𝑋 . This solution satisfies

𝐴
[𝑘],[𝑘]

𝑋
[𝑘],𝑘

= 𝐵
[𝑘],𝑘

−

𝑛

∑

𝑖=𝑘+1

𝐴
[𝑘],𝑖

𝑋𝑘,𝑖. (9)

13

for all 𝑘 ∈ [𝑛]

Proof As the equation is on the upper-triangular part of the matrix, Equation (3) only has to be
verified for 𝐵

[𝑘],𝑘
for all 𝑘 = 1,… , 𝑛. For any 𝑘 = 1,… , 𝑛, we have

𝐴
⊤

[𝑘],[𝑛]
𝑋
[𝑛],𝑘

= 𝐵
[𝑘],𝑘

hence

𝐴
⊤

[𝑘],[𝑘]
𝑋
[𝑘],𝑘

= 𝐵
[𝑘],𝑘

−

𝑛

∑

𝑖=𝑘+1

𝐴
[𝑘],𝑖

𝑋𝑖,𝑘 .

Since 𝑋 is symmetric, 𝑋𝑖,𝑘 is equal to 𝑋𝑘,𝑖 so this is equivalent to (9). Since 𝐴[𝑘],[𝑘]
is invertible, Equa-

tion (9) holding for all 𝑘 ensures the existence and unicity of the solution.

3.5 Meta-solver
DiffOpt is designed as a meta-solver with a structure illustrated in Figure 1. The main
structure made available by the package is DiffOpt.Optimizer that is parameterized by
a mathematical programming inner solver. This inner solver may be any object support-
ing storing and solving the problem provided by the user. As shown in Figure 1, the entry
point is a cache that is added to ensure efficient storage and access to the user model. Also,
bridge layers are added as the user model may use constraint types that are not natively
supported by the inner solver (or the DiffOpt models) and need to be transformed. The
solution found by the inner solver is communicated to the DiffOpt model that caches ma-
trix form data as described in Section 3.2. This DiffOpt model is then used to compute
forward and/or reverse differentiation tangents.

Note that the bridges used for the inner solver and for the DiffOpt model are com-
pletely independent. They can be entirely different as the primal and dual results are
automatically transformed through the inner solver bridge layer from the solver solution
into the solution corresponding to the user model and then through the DiffOpt model
bridges into the solution corresponding to the DiffOpt model standard form.

This design of DiffOpt.Optimizer also enables adding new DiffOpt models in ad-
dition to DiffOpt.QuadraticProgram.Model and DiffOpt.ConicProgram.Model in
order to further broaden the class of supported models.

DiffOpt.Optimizer

Cache

Bridges

ConicProgram.ModelQuadraticProgram.Model

Bridges

Inner solver

Figure 1: Design of the DiffOpt.Optimizer structure

14

Because MOI does not distinguish between the two considered classes, QP and CP,
the user can pass any of the two problem classes to DiffOpt without ever having to know
which of the two methods will be used. DiffOpt automatically selects the appropriate
problem class based on the type of constraints and objective function.

In the following code excerpt, we demonstrate the usage of DiffOpt, starting from a
simple JuMP model, then going through a reverse differentiation procedure.� �

using JuMP, DiffOpt, Clp

model = JuMP.Model(() -> diff_optimizer(Clp.Optimizer))
@variable(model, x)
@constraint(model, cons, x >= 3)
@objective(

model,
Min,
2x,

)

optimize!(model) # solve

MOI.set.(# set perturbations / gradient inputs
model,
DiffOpt.ReverseVariablePrimal(),
x,
1.0,

)
DiffOpt.reverse_differentiate!(model) # differentiate

fetch expression of the gradient of constraint
grad_exp = MOI.get(# -3x+1

model,
DiffOpt.ReverseConstraintFunction(),
cons

)
JuMP.constant(grad_exp) # 1
JuMP.coefficient(grad_exp, x) # -3� �

3.6 Differentiable solvers
Solvers may have information that would help in computing derivative information that
is not part of the primal and dual results. For instance, they may have computed an
LDLT factorization that could speed up the differentiation of the problem. As a matter of
fact, OSQP (Stellato et al., 2020) is implementing differentiation with respect to problem
data by reusing parts of the computation carried out when solving the problem. Another
example is sIpopt (Pirnay et al., 2012) which reuses matrix factorizations computed by
Ipopt. As the DiffOpt interface is built on MOI attributes, it can naturally be implemented
on the solver side.

3.7 Building differentiable pipelines with ChainRules primitives
Automatic Differentiation (AD) has become a cornerstone of machine learning, evolv-
ing from the static transformation of program sources to a fully dynamic process (Innes
et al., 2019). The Julia AD landscape has been evolving rapidly (Schäfer et al., 2021) and is
now converging toward a shared set of derivative primitives implemented for elementary

15

functions. These elementary derivatives are then exploited by AD libraries to compute
derivatives of full programs by the chain rule. The primitives are defined with a com-
mon interface in the ChainRules.jl library (JuliaDiff, 2021), including rule definitions
for forward-, reverse- or mixed-mode AD. In addition to defining a grammar to declare
rules for elementary functions, it implements these rules for functions from Julia Base
and standard libraries. Specifically, the methods that have to be implemented to provide
derivative information are defined in ChainRulesCore.jl (JuliaDiff, 2021) and imple-
mented in ChainRules.jl for Julia Base and standard library functions.

The ChainRules.jl system reasons on the differentiation of a function’s output with
respect to its inputs while the DiffOpt interface is based on MOI and, thus, on the incre-
mental construction of a model represented as a single mutable object. One approach
is to construct an implementation of the solution map, which takes as an argument the
model parameters, builds and optimizes the model object, and returns the optimal solu-
tion. The solution map is a pure function and its derivatives can be expressed in terms of
ChainRules.jl primitives and implemented using derivative information from DiffOpt.

This implementation allows external users to effortlessly bring any MOI model built
directly or through a modelling interface like JuMP or Convex.jl to a differentiable
pipeline, regardless of the underlying solver used to produce the optimal solution. How-
ever, the user still needs towrite down the solutionmap and implement the ChainRules.jl
interface functions frule or rrule for forward or reverse differentiation, respectively.
We will provide an example of building such a differentiable pipeline in Section 4.2.

4. Application examples
We discuss how differentiating an optimization program allows a variety of applications
for different computational tasks. These examples use various convex solvers to compute
the primal and dual solutions in order to highlight the ease to swap a solver for another
in a single line.

All the following examples can be seen in detail in the Tutorials section of the DiffOpt
manual. The code and data use version 0.4 of the package.

4.1 Sensitivity Analysis
Sensitivity analysis (Saltelli et al., 2004; Bonnans and Shapiro, 2000; Fiacco, 1983; Robin-
son, 1982) focuses on studying how the changes in the inputs of a mathematical model
affects its output. Sensitivities of a JuMP model can be computed automatically using the
previously described methods. We illustrate sensitivity analysis for a classification and a
regression task.

4.1.1 Classification using SVM
Support vector machines (SVM) classify labeled data points with the hyperplane mini-
mizing the norm of classification errors on all points (or achieving the largest margin if
the two classes are separable). Assuming 𝑋 ∈ ℝ

𝑛×𝑑 the feature matrix of 𝑛 data points
with 𝑑 features and 𝑦 their labels, a soft-margin 𝓁1-SVM with 𝓁2 regularization can be

16

modelled as:

min

𝜉 ,𝑤,𝑏

𝑛

∑

𝑖=1

𝜉𝑖 + 𝜆‖𝑤‖
2

s.t. 𝑦𝑖(𝑤⊤
𝑋𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ∀𝑖 ∈ 1..𝑛

𝜉𝑖 ≥ 0 ∀𝑖 ∈ 1..𝑛,

where 𝑒𝑖 is the soft margin loss on the 𝑖 − 𝑡ℎ data point, 𝑤⊤
𝑥 = 𝑏 is the SVM hyperplane,

𝜆 is the regularization parameter.
The plots and code transcripts are from Sensitivity Analysis of SVM tutorial. The

model is implemented below and solved using Ipopt (Wächter and Biegler, 2006).� �
N, D, X, y are given
𝜆 = 0.05
model = Model(() -> DiffOpt.diff_optimizer(Ipopt.Optimizer))

Add the variables
@variable(model, 𝜉[1:N] >= 0)
@variable(model, w[1:D])
@variable(model, b)

Add the constraints.
@constraint(model,

con[i in 1:N],
y[i] * (dot(X[i,:], w) + b) >= 1 - 𝜉[i]

)

Define the objective and solve
@objective(model, Min, 𝜆 * dot(w, w) + sum(𝜉))
optimize!(model)� �

Using the forward differentiation mode of DiffOpt, we compute the partial Jacobian with
respect to each 𝑖-th individual data point and use its norm as the point size in Figure 2:

‖
‖
‖
‖

𝜕𝑤

𝜕𝑋𝑖

‖
‖
‖
‖2

+

|
|
|
|

𝜕𝑏

𝜕𝑋𝑖

|
|
|
|2

.

The computation is performed as follows:

17

� �
MOI.set(model, DiffOpt.ModelConstructor(), DiffOpt.QuadraticProgram.Model)
∇ = zeros(N)
for i in 1:N

for j in 1:N
if i == j

identical perturbations on all x_i
MOI.set(

model,
DiffOpt.ForwardConstraintFunction(),
con[j],
y[j] * sum(w),

)
else

MOI.set(
model,
DiffOpt.ForwardConstraintFunction(),
con[j],
0.0,

)
end

end
DiffOpt.forward_differentiate!(model)
dw = MOI.get.(

model,
DiffOpt.ForwardVariablePrimal(),
w,

)
db = MOI.get(

model,
DiffOpt.ForwardVariablePrimal(),
b,

)
∇[i] = norm(dw) + norm(db)

end� �
A perturbation of the feature matrix 𝑋 affects the solution and can induce a change

in the separating hyperplane decisions (𝑤, 𝑏). Unlike other classification models, not
all points affect the hyperplane with small enough perturbations, the optimal solution
depends only on a few data points, the support vectors that name the method. The impact
of these perturbations is displayed in Figure 2.

Note that, thanks to Section 3.4, the sensitivities can be obtained by the quadratic
DiffOpt model but also using conic DiffOpt models. Indeed, in view of Section 3.5, even
if the model is solved by Ipopt in QP form, the dual of the constraint provided by Ipopt
can be transformed into the dual of the rotated second-order cone constraint through
the bridge so that the conic DiffOpt model has the dual information needed to compute
the DiffOpt attributes. The DiffOpt attribute in conic form can then be transformed into
quadratic form using the results developed in Section 3.4. That transparently decouples
themodels used by the differentiation, the solver and the user. Themodel used depends on
whether DiffOpt.ModelConstructor was set to DiffOpt.QuadraticProgram.Model
or DiffOpt.ConicProgram.Model in the first line.

4.1.2 Ridge regression sensitivity
Ridge regression avoids overfitting with an 𝓁2-norm penalty added to a linear regression
model and is particularly advantageous when the number of features is as large as the

18

Figure 2: Learned SVM and sensitivities. Data points colors indicate the class and marker
size denotes the sensitivity of the hyperplane to 𝑥𝑖.

number of observations. Assume 𝑋 = {(𝑥, 𝑦)} ⊂ ℝ
𝑑+1 to be the set of 𝑛 data points. Then

a ridge regression fitting problem can be modeled as:

min

𝑤,𝑏

𝑁

∑

𝑖=1

(𝑦𝑖 − 𝑤
⊤
𝑥𝑖 − 𝑏)

2
+ 𝛼‖𝑤‖

2

2

with 𝛼 the regularization constant.
The plots and code transcripts are from Sensitivity Analysis of Ridge Regression tuto-

rial. We implement and solve below a univariate example with DiffOpt using Ipopt as the
underlying QP solver.� �

X, Y, N are given

model = Model(() -> diff_optimizer(SCS.Optimizer))

@variable(model, w)
@variable(model, b)
alpha = 0.8 # regularization constant
@expression(model, e[i=1:N], Y[i] - w * X[i] - b)

@objective(
model,
Min,
1 / N * dot(e, e) + alpha * (wˆ2),

)

optimize!(model)� �
Similar to the SVM example, a change in a single independent or dependent variable

value 𝑥𝑖 or 𝑦𝑖 for a given data point can affect the learned model. We use DiffOpt in

19

forward mode to quantify these sensitivities to individual data points:

𝜕𝑤

𝜕𝑥𝑖

and 𝜕𝑤

𝜕𝑦𝑖

.

A ForwardObjectiveFunction attribute can be set for the perturbation of the objective
function. It takes as input the expression proportionally dependent on the perturbed pa-
rameter 𝜃. Given a generic expression 𝑓 (𝑥; 𝜃) = 𝜃𝑔(𝑥) with parameter 𝜃, the expected
input is 𝑔(𝑥). A particular aspect here is that the 𝑥𝑖 and 𝑦𝑖 values appear as linear and
quadratic terms in the loss function. If the parameter 𝜃 appears both linearly and quadrat-
ically, the corresponding objective perturbation can be derived with a first-order Taylor
expansion:

𝑓 (𝑥; 𝜃) = 𝜃𝑔(𝑥) + 𝜃
2
ℎ(𝑥)

𝑓 (𝑥; 𝜃 + 𝛿) = (𝜃 + 𝛿)𝑔(𝑥) + 𝜃
2
ℎ(𝑥) + 2𝛿𝜃ℎ(𝑥) + 𝛿

2
ℎ(𝑥)

𝑓 (𝑥; 𝜃 + 𝛿) ≈ 𝑓 (𝑥; 𝜃) + 𝛿(𝑔(𝑥) + 2𝜃ℎ(𝑥)).

When applied to the loss function, the perturbation 𝛿(𝑥)
𝑖

, 𝛿(𝑦)
𝑖

on 𝑥𝑖, 𝑦𝑖 respectively results
in first-order perturbation approximations:

𝛿
(𝑥)

𝑖
(2𝑤

2
𝑥𝑖 + 2𝑏𝑤 − 2𝑤𝑦𝑖),

𝛿
(𝑦)

𝑖
(2𝑦𝑖 − 2𝑏 − 2𝑤𝑥𝑖)

respectively. Using these input perturbations, we can extract the output sensitivity of the
slope 𝑤 using the DiffOpt.ForwardVariablePrimal variable attribute:� �

MOI.set(model, DiffOpt.ModelConstructor(), DiffOpt.QuadraticProgram.Model)
∇y = zero(X)
∇x = zero(X)
for i in 1:N

MOI.set(
model,
DiffOpt.ForwardObjectiveFunction(),
2wˆ2 * X[i] + 2b * w - 2 * w * Y[i]

)
DiffOpt.forward_differentiate!(model)
∇x[i] = MOI.get(

model,
DiffOpt.ForwardVariablePrimal(),
w,

)
MOI.set(

model,
DiffOpt.ForwardObjectiveFunction(),
(2Y[i] - 2b - 2w * X[i]),

)
DiffOpt.forward_differentiate!(model)
∇y[i] = MOI.get(model, DiffOpt.ForwardVariablePrimal(), w)

end� �
20

(a) 𝑥 sensitivity of the regression slope 𝑤. (b) 𝑦 sensitivity of the regression slope 𝑤.

Figure 3: Sensitivity analysis of the data points in ridge regression. The radius of the
markers is proportional to the sensitivity of the slope to x or y perturbations.
Blue markers indicate a negative sensitivity, red markers a positive one.

Figure 3 shows how sensitive in amplitude and direction is the slope 𝑤 to perturbations
of each data point.

Similarly to Section 4.1.1, the sensitivities can be obtained either using the quadratic
or conic DiffOpt models. The main difference with Section 4.1.1 is that we now use a
conic solver. The dual solution for the conic constraint is therefore transformed into the
dual of the quadratic constraint as detailed in Legat (2020, Example 2.1.2).

4.2 Convex Optimization for Neural Network Layers
Most of the common neural network layers are either simple closed-form operators or
a composition of several operators. 𝜕 opens new possibilities by providing derivatives
for layers defined as solutions to optimization problems. This example demonstrates such
a use case of 𝜕, as originally motivated in Amos (2019). The derivatives computed by
DiffOpt can be used to backpropagate through the optimization layer, declaring it as a
differentiable solution map with ChainRules. Such an example is already an advanced
use case, and the differentiable solution map and its ChainRules derivatives would real-
istically be defined by an intermediate modeling layer.

4.2.1 Custom ReLU layer
This example will follow the tutorial Custom ReLU layer of the documentation. The Rec-
tified Linear Unit or ReLU, a commonly used linear layer in machine learning networks,
is defined as 𝑓 (𝑥) = max{𝑥, 0}. It can be interpreted as projecting a point 𝑥 ∈ ℝ

𝑛 onto the
non-negative orthant: 𝑦 ∈ argmin

𝑦≥0
‖𝑥 − 𝑦‖

2

2
where 𝑦 is the optimization variable and 𝑥

is the input.
Using the above definition, we model ReLU as a layer in a neural network created in

Flux.jl (Innes, 2018). The model was trained on MNIST image dataset (LeCun et al., 2010)
with 60 000 greyscale training bitmaps of size 28 × 28. We define the function matrix_-
relu with a matrix input because it allows training in batches, the first dimension of

21

the matrix is the layer size, while the second dimension is the size of the batch. We
note that, as in the other examples, everything is being executed on CPUs, no GPUs are
involved. We use batches in CPUs because we empirically noticed that, for this par-
ticular example, it is faster to solve a single large problem than multiple small ones.� �

function matrix_relu(
y::Matrix;
model = Model(() -> DiffOpt.diff_optimizer(Ipopt.Optimizer)),

)
layer_size, batch_size = size(y)
empty!(model)
set_silent(model)
@variable(model, x[1:layer_size, 1:batch_size] >= 0)
@objective(model, Min, x[:]'x[:] -2y[:]'x[:])
optimize!(model)
return value.(x)

end� �
Using our function as a neural network layer requires a corresponding derivative

implementation to differentiate the model and propagate the gradients backward. This
can be achieved using DiffOpt in conjunction with ChainRules by defining a method for
the reverse-mode primitive function rrule.� �

function ChainRulesCore.rrule(::typeof(matrix_relu), y::Matrix{T}) where {T}
model = Model(() -> DiffOpt.diff_optimizer(Ipopt.Optimizer))
pv = matrix_relu(y, model = model)
function pullback_matrix_relu(dl_dx)

x = model[:x] # load decision variable `x` into scope
dl_dy = zeros(T, size(dl_dx))
dl_dq = zeros(T, size(dl_dx))
set sensitivities
MOI.set.(model, DiffOpt.ReverseVariablePrimal(), x[:], dl_dx[:])
compute grad
DiffOpt.reverse_differentiate!(model)
return gradient wrt objective parameters
obj_exp = MOI.get(model, DiffOpt.ReverseObjectiveFunction())
coeff of `x` in q'x = -2y'x
dl_dq[:] .= JuMP.coefficient.(obj_exp, x[:])
dq_dy = -2 # dq/dy = -2
dl_dy[:] .= dl_dq[:] * dq_dy
return (ChainRulesCore.NoTangent(), dl_dy)

end
return pv, pullback_matrix_relu

end� �
Note the ChainRulesCore.NoTangent term, which corresponds to the derivative of the
output w.r.t. the function matrix_relu itself. We can now define the neural network
architecture including our custom layer and train it on the MNIST data.

22

� �
using MLDatasets
using Flux

neural network definition
layer_size = 10
m = Flux.Chain(

Flux.Dense(784, layer_size), # 784 being image linear dimension (28 x 28)
matrix_relu,
Flux.Dense(layer_size, 10), # 10 being the number of outcomes (0 to 9)
Flux.softmax,

)

dataset preprocessing
N = 1000 # batch size
imgs = MLDatasets.MNIST.traintensor(1:N)
labels = MLDatasets.MNIST.trainlabels(1:N)
train_X = float.(reshape(imgs, size(imgs, 1) * size(imgs, 2), N))
train_Y = Flux.onehotbatch(labels, 0:9);
epochs = 50
dataset = repeated((train_X, train_Y), epochs)

optimization of the neural network
custom_loss(x, y) = crossentropy(m(x), y)
opt = Flux.ADAM()
Flux.train!(custom_loss, params(m), dataset, opt)� �

Implementing a custom layer for a known closed-form function is not directly useful, and
solving a quadratic problem is costly in contrast with a simple ReLU operation. However,
it opens the door to more flexible variations of the layer.

4.2.2 Polyhedral projection layer
We generalize the custom layer defined as an optimization problem from the ReLU exam-
ple. This use case is available in the tutorials as Polyhedral QP layer. Given𝑚 vector-scalar
pairs (𝑤𝑖, 𝑏𝑖) ∀𝑖 ∈ 1..𝑚, we define the layer taking 𝑦 as input and projecting it on the poly-
tope defined by the 𝑚 hyperplanes:

min
𝑥

‖𝑥 − 𝑦‖
2

2

s.t.𝑤⊤

𝑖
𝑥 ≥ 𝑏𝑖 ∀𝑖 ∈ 1..𝑚.

Instead of a function, we will represent the layer with a functor (or callable object).� �
struct Polytope{N}

w::NTuple{N, Vector{Float64}}
b::Vector{Float64}

end

Polytope(w::NTuple{N}) where {N} = Polytope{N}(w, randn(N))� �
We define a “call” operation on the polytope, making it a so-called functor. Calling the

polytope with a matrix y operates an Euclidean projection of each of the matrix columns
onto the polytope.

23

� �
function (polytope::Polytope{N})(

y::AbstractMatrix;
model = direct_model(DiffOpt.diff_optimizer(Ipopt.Optimizer)),

) where {N}
layer_size, batch_size = size(y)
empty!(model)
@variable(model, x[1:layer_size, 1:batch_size])
@constraint(model,

greater_than_cons[idx in 1:N, sample in 1:batch_size],
dot(polytope.w[idx], x[:, sample]) ≥ polytope.b[idx]

)
@objective(model, Min, dot(x - y, x - y))
optimize!(model)
return JuMP.value.(x)

end

Flux.@functor Polytope� �
The @functor macro from Flux implements auxiliary functions for collecting the

parameters of our custom layer and operating backpropagation. Similarly to the ReLU
example, ChainRulesCore.rrule is used to implement the reverse-mode differentiation
of the layer.

� �
function ChainRulesCore.rrule(

polytope::Polytope{N},
y::AbstractMatrix) where {N}

model = direct_model(DiffOpt.diff_optimizer(Ipopt.Optimizer))
xv = polytope(y; model = model)
function pullback(dl_dx)

layer_size, batch_size = size(dl_dx)
dl_dx = ChainRulesCore.unthunk(dl_dx)
`dl_dy` is the derivative of `l` wrt `y`
x = model[:x]
grad wrt input parameters
dl_dy = zeros(size(dl_dx))
grad wrt layer parameters
dl_dw = zero.(polytope.w)
dl_db = zero(polytope.b)
set sensitivities
MOI.set.(model, DiffOpt.ReverseVariablePrimal(), x, dl_dx)
compute grad
DiffOpt.reverse_differentiate!(model)
compute gradient wrt objective function parameter y
obj_expr = MOI.get(model, DiffOpt.ReverseObjectiveFunction())
dl_dy .= -2 * JuMP.coefficient.(obj_expr, x)
greater_than_cons = model[:greater_than_cons]
for idx in 1:N, sample in 1:batch_size

cons_expr = MOI.get(model,
DiffOpt.ReverseConstraintFunction(),
greater_than_cons[idx, sample])

dl_db[idx] -= JuMP.constant(cons_expr)/batch_size
dl_dw[idx] .+= JuMP.coefficient.(cons_expr, x[:,sample])/batch_size

end
dself = ChainRulesCore.Tangent{Polytope{N}}(; w = dl_dw, b = dl_db)
return (dself, dl_dy)

end
return xv, pullback

end� �
24

Note that the inner pullback returns a ChainRulesCore.Tangent that represents
the tangent of a composite type. This will allow Flux to operate gradient descent on the
parameters of the Polytope struct directly. Similarly to the previous example, we can
now build and train the network (we omit other details like dataset preprocessing):� �

layer_size = 20
m = Flux.Chain(

Flux.Dense(784, layer_size), # 784 being image linear dimension (28 x 28)
Polytope((randn(layer_size), randn(layer_size), randn(layer_size))),
Flux.Dense(layer_size, 10), # 10 being the number of outcomes (0 to 9)
Flux.softmax,

)
Flux.train!(custom_loss, Flux.params(m), dataset, opt)� �

The capacity to embed a convex problem as a neural network layer enables formu-
lations of SVMs or regression layers with custom constraints, which have direct applica-
tions in meta-learning (Lee et al., 2019).

4.3 Hyperparameter optimization
Most machine learning algorithms involve hyperparameters that require tuning to accel-
erate the training process and reach good out-of-sample performance, helping achieve a
balance betweenmodel variance and bias. In the past few years, many developments were
made in gradient-based methods (Maclaurin et al., 2015) where researchers typically in-
troduced extra hyperparameters for tuning. Recent interest in automated machine learn-
ing (AutoML) has resulted in a resurgence of research in this field (Feurer and Hutter,
2019).

When the learning process can be formulated as solving an optimization problem of
which the hyperparameters are parameters, the problem of out-of-sample optimization
can be formulated as a bilevel optimization problem (Guyon et al., 2019):

min

𝜃

𝑓 (𝑋𝑡𝑒𝑠𝑡 , 𝑤̂, 𝜃)

s.t. 𝑤̂ ∈ argmin

𝑤

𝑓 (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑤, 𝜃),

with 𝑤 the learned weights of the prediction model, 𝑋
𝑡𝑟𝑎𝑖𝑛/𝑡𝑒𝑠𝑡

the training and testing
data, 𝑓 the loss function and 𝜃 the hyperparameter. Depending on the expression of
𝜕𝑓 /𝜕𝜃, computing (even local) optima of the bilevel optimization problem can be chal-
lenging. We showcase how DiffOpt can be used to meta-optimize the weights and the
hyperparameters following the DiffOpt tutorial Auto-tuning Hyperparameters.

4.3.1 Optimization problem
Let 𝑋 = {(𝑥, 𝑦)|𝑥 ∈ ℝ

𝑑
, 𝑦 ∈ ℝ} be the set of 𝑁 data points of dimension 𝑑 + 1. The

regularized linear model can be modeled as an optimization problem of the form:

min
𝑤

1

2𝑛𝑑

𝑛

∑

𝑖=1

(𝑦𝑖 − 𝑤
⊤
𝑥𝑖)

2
+

𝛼

2𝑑

‖𝑤‖
2

2
(10)

25

where 𝑤 ∈ ℝ
𝑑 are the learned weights and 𝛼, the regularization parameter, is the only

hyperparameter. Since the problem is strongly convex, it admits a unique minimum 𝑤
∗.

Its implementation in JuMP is given below.� �
import JuMP

function fit_ridge(model, X, y, 𝛼)
JuMP.empty!(model)
N, D = size(X)
@variable(model, w[1:D])
@expression(model, err_term, X * w - y)
@objective(

model, Min,
dot(err_term, err_term) / (2 * N * D) + 𝛼 * dot(w, w) / (2 * D),

)
optimize!(model)
return w

end� �
4.3.2 Model differentiation

We want to find the optimal regularization parameter for the loss on a test set that was
not used to find the optimal weights. We will apply gradient descent of the unregularized
test loss with respect to 𝛼, for which we compute its gradient 𝜕𝑙

𝜕𝛼
using the chain rule:

𝜕𝑙

𝜕𝛼

(𝑤, 𝛼) =

𝜕𝑙

𝜕𝑤

(𝑤, 𝛼)

𝜕𝑤

𝜕𝛼

(𝛼),

where ∇𝛼𝑤(𝑤, 𝛼) is the derivative of the optimal solution of Problem (10) w.r.t. the pa-
rameter and can be found using DiffOpt as follows:� �

function compute_dw_d𝛼(model, w)
D = length(w)
dw_d𝛼 = zeros(D)
MOI.set(

model,
DiffOpt.ForwardObjectiveFunction(),
dot(w, w) / (2 * D),

)
DiffOpt.forward_differentiate!(model)
for i in 1:D

dw_d𝛼[i] = MOI.get(
model,
DiffOpt.ForwardVariablePrimal(),
w[i],

)
end
return dw_d𝛼

end
function d_testloss_d𝛼(model, X_test, y_test, w, ŵ)

N, D = size(X_test)
dw_d𝛼 = compute_dw_d𝛼(model, w)
err_term = X_test * ŵ - y_test
return sum(eachindex(err_term)) do i

dot(X_test[i,:], dw_d𝛼) * err_term[i]
end / (N * D)

end� �
26

Figure 4: Mean squared error on the training
and test set against 𝛼

Figure 5: Gradient descent on the test set for
𝛼 using DiffOpt

4.3.3 Hyperparameter gradient descent
The value of 𝛼 is updated using a fixed-step gradient descent scheme implemented below:� �

function descent(𝛼0, max_iters=100; fixed_step = 0.01, grad_tol=1e-3)
𝛼s = Float64[]
𝜕𝛼s = Float64[]
test_loss = Float64[]
𝛼 = 𝛼0
N, D = size(X_test)
model = Model(() -> DiffOpt.diff_optimizer(Ipopt.Optimizer))
for iter in 1:max_iters

w = fit_ridge(model, X_train, y_train, 𝛼)
ŵ = value.(w)
err_term = X_test * ŵ - y_test
𝜕𝛼 = d_testloss_d𝛼(model, X_test, y_test, w, ŵ)
push!(𝛼s, 𝛼)
push!(𝜕𝛼s, 𝜕𝛼)
push!(test_loss, norm(err_term)ˆ2 / (2 * N * D))
𝛼 -= fixed_step * 𝜕𝛼

if abs(𝜕𝛼) ≤ grad_tol
break

end
end
return 𝛼s, 𝜕𝛼s, test_loss

end� �
4.3.4 Numerical results

The mean squared error of the regression on the training and test sets is displayed in
Figure 4, normalized for display. As no DiffOpt model is specified, the QP differentiation
rules described in Section 2.1 are used. For values of 𝛼 below ≈ 0.23, the model is under-
regularized, i.e., overfitted to the training data. Increasing 𝛼 improves the test error. After
that point, increasing 𝛼 excessively shrinks the regression coefficients, increasing the
error.

27

Figure 5 displays the trajectory of the gradient descent procedure described in Sec-
tion 4.3.3, starting from 𝛼0 = 0.1 and performing about 120 iterations.

Cross-validation is the typical procedure applied to tune the hyperparameters of
learning models. Leveraging 𝜕 lets us replace black-box optimization procedures that
are typical for hyperparameters with any first-order method that leverages the gradient
obtained from DiffOpt.

4.4 Nearest correlation matrix
In finance, the correlation matrix is often only known approximately due to missing data
and this approximation may fail to be positive semidefinite. As studied in Higham (2002);
Anjos et al. (2003); Malick (2004), the projection of this matrix onto a valid correlation
matrix is a weighted least-squaresminimization problem on the elliptopeDeza et al. (1997)
i.e. the set of valid correlation matrices:

min

𝑋∈𝕊
𝑛

+

‖𝐻 ⊙ (𝑋 − 𝐴)‖
2

𝐹
s.t. 𝑋𝑖𝑖 = 1 ∀𝑖 ∈ 1..𝑛,

where ⊙ is the element-wise multiplication, ‖ ⋅ ‖𝐹 is the Frobenius norm of a matrix and
𝕊
𝑛

+
is the set of positive semidefinite matrices with side dimension 𝑛.
Other examples of semidefinite least-squares problems include preconditioning of

linear systems and error analysis of Jacobi methods for the symmetric eigenvalue prob-
lem (Davies and Higham, 2000). Consider the distance between a given matrix and its
projection onto a closed convex cone , Malick (2004, Theorem 2.2) shows that the gra-
dient of this distance with respect to the matrix to project𝐴 is given by its projection onto
the polar cone of . However, the derivative with respect to the least-squares weights 𝐻
has not been explored to the best of our knowledge.

Because of the semidefinite constraint, the model cannot be formulated as a quadratic
program. However, thanks to the ability to differentiate through the second-order cone
reformulation of the least-squares objective developed in Section 3.4, we can differentiate
it using the conic differentiation rules detailed in Section 2.2. We show below howDiffOpt
obtains the differentiation with respect to the least-squares weights 𝐻 of the objective
function as discussed in (Higham, 2002, (1.3)).� �

function projection(A, H, dH)
n = LinearAlgebra.checksquare(A)
model = Model(() -> DiffOpt.diff_optimizer(solver))
@variable(model, X[1:n, 1:n] in PSDCone())
@constraint(model, [i in 1:n], X[i, i] == 1)
@objective(model, Min, sum((H .* (X - A)) .ˆ 2))
MOI.set(

model,
DiffOpt.ForwardObjectiveFunction(),
sum((dH .* (X - A)) .ˆ 2),

)
optimize!(model)
DiffOpt.forward_differentiate!(model)
dX = MOI.get.(model, DiffOpt.ForwardVariablePrimal(), X)
return value.(X), dX

end� �
28

5. Conclusion
DiffOpt allows users to differentiate through optimization problems implemented using
MathOptInterface, formulated with high-level modelling systems like JuMP or
Convex.jl. The package brings a flexible differentiable optimization framework beyond
disciplined convex optimization, separating the underlying implementation from theMOI
idiomatic interface. This separation of concerns opens the possibility for the integration
of novel differentiable optimization techniques for classes of problems not already cov-
ered. As a first example, we highlight integer programming for which there is still not a
mature method to be implemented. A second case is the one of nonlinear programming
for which there is a sound theoretical background, but we lack support on MOI which
does not yet represents nonlinear constraints as first-class citizens. Once this challenge
is overcome, it would be feasible to create a NonlinearDiffProblem DiffOpt model anal-
ogous to what we discussed in Section 3.2.

Future work will also consider performance improvements. In particular, using Dif-
fOpt to tune hyperparameters or construct a convex optimization layer requires fast com-
putation of derivatives and reoptimization of a perturbed primal problem. The two steps
could be integrated to cache more information and reduce the computational burden per
iteration. Finally, solvers like OSQP and sIpopt, which have special versions supporting
differentiable optimization natively, will be able to implement the interface defined by
DiffOpt and expose the functionality once the low-level Julia wrappers are ready for it.

Acknowledgments
The work of A. Sharma on DiffOpt.jl was funded by the Google Summer of Code pro-
gram through NumFocus. M. Besançon was partially supported through the Research
Campus Modal funded by the German Federal Ministry of Education and Research (fund
numbers 05M14ZAM,05M20ZBM). J. Dias Garcia was supported in part by the Coorde-
nação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code
001. B. Legat was supported by a BAEF Postdoctoral Fellowship and the NSF grant OAC-
1835443. The authors would like to thank all contributors and users of the package for
their feedback and improvements, and in particular, Frames Catherine White, Will Teb-
butt, and Raphael Saavedra for support, feedback on the API and documentation, and the
integration with ChainRules. We would also like to thank Andreas Varga for his help in
solving the matrix equations (3). We thank Guillaume Dalle for the discussion on an early
version of this manuscript, and the anonymous reviewers for valuable feedback during
the revision process.

References
Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., and Kolter, J. Z. (2019a). Differentiable

convex optimization layers. Advances in neural information processing systems, 32.

Agrawal, A., Barratt, S. T., Boyd, S. P., Busseti, E., and Moursi, W. M. (2019b). Differentiating
through a cone program. Journal of Applied and Numerical Optimization.

29

Agrawal, A. and Boyd, S. (2020). Differentiating through Log-Log Convex Programs.
arXiv:2004.12553 [math]. arXiv: 2004.12553.

Amos, B. (2019). Differentiable optimization-based modeling for machine learning. PhD Thesis, PhD
thesis. Carnegie Mellon University.

Amos, B. and Kolter, J. Z. (2017). Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pages 136–145. PMLR.

Anjos, M., Higham, N., Takouda, P., and Wolkowicz, H. (2003). A semidefinite programming ap-
proach for the nearest correlation matrix problem. University of Waterloo, Waterloo, Ontario,
Canada, Preliminary Research Report.

Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.-P., and Bach, F. (2020). Learning with
differentiable pertubed optimizers. Advances in neural information processing systems, 33:9508–
9519.

Besançon, M., Diamandis, T., Sharma, A., Garcia, J. D., and Legat, B. (2023a). matbesancon/Math-
OptSetDistances.jl: v0.2.7.

Besançon, M., Garcia, J. D., Legat, B., and Sharma, A. (2023b). Flexible differ-
entiable optimization via model transformations. Available for download at
https://github.com/INFORMSJoC/2022.0283.

Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM review, 59(1):65–98.

Blondel, M., Berthet, Q., Cuturi, M., Frostig, R., Hoyer, S., Llinares-López, F., Pedregosa, F., and
Vert, J.-P. (2021). Efficient and modular implicit differentiation. arXiv preprint arXiv:2105.15183.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J. (2020). Fast differentiable sorting and ranking.
In International Conference on Machine Learning, pages 950–959. PMLR.

Bodin, G., Garcia, J. D., Legat, B., Besançon, M., Lubin, M., Dowson, O., and Cornejo, M. (2021).
Dualization.jl: v0.3.4. https://doi.org/10.5281/zenodo.4718987.

Bolte, J. and Pauwels, E. (2020). A mathematical model for automatic differentiation in machine
learning. Advances in Neural Information Processing Systems, 33:10809–10819.

Bonnans, J. F. and Shapiro, A. (2000). Perturbation analysis of optimization problems. Springer
Science & Business Media.

Braden, H. (1998). The Equations 𝐴⊤𝑋 ± 𝑋
⊤
𝐴 = 𝑏. SIAM Journal on Matrix Analysis and Applica-

tions, 20(2):295–302.

Busseti, E., Moursi, W. M., and Boyd, S. (2019). Solution refinement at regular points of conic
problems. Computational Optimization and Applications, 74(3):627–643. Publisher: Springer.

Coey, C., Kapelevich, L., and Vielma, J. P. (2022). Solving natural conic formulations with Hypatia.
jl. INFORMS Journal on Computing, 34(5):2686–2699.

30

https://doi.org/10.5281/zenodo.4718987

Dalle, G., Baty, L., Bouvier, L., and Parmentier, A. (2022). Learning with combinatorial optimization
layers: a probabilistic approach. arXiv e-prints, pages arXiv–2207.

Davies, P. I. and Higham, N. J. (2000). Numerically stable generation of correlation matrices and
their factors. BIT Numerical Mathematics, 40:640–651.

Davis, T. A. (2019). Algorithm 1000: SuiteSparse: GraphBLAS: Graph algorithms in the language
of sparse linear algebra. ACM Transactions on Mathematical Software (TOMS), 45(4):1–25.

De Terán, F. and Dopico, F. (2011). Consistency and efficient solution of the Sylvester equation
for*-congruence. The Electronic Journal of Linear Algebra, 22:849–863.

Dempe, S. and Vogel, S. (2001). The generalized Jacobian of the optimal solution in parametric
optimization. Optimization, 50(5-6):387–405.

Deza, M. M., Laurent, M., and Weismantel, R. (1997). Geometry of cuts and metrics, volume 2.
Springer.

Djolonga, J. and Krause, A. (2018). Differentiable learning of submodular models. Advances in
Neural Information Processing Systems 30, 2:1014–1024.

Djordjević, D. S. (2007). Explicit solution of the operator equation A* X+ X* A= B. Journal of
Computational and Applied Mathematics, 200(2):701–704.

Dontchev, A. L. and Rockafellar, R. T. (2009). Implicit functions and solution mappings, volume 543.
Springer.

Dunning, I., Huchette, J., and Lubin, M. (2017). JuMP: A Modeling Language for Mathematical
Optimization. SIAM Review, 59(2):295–320.

Feurer, M. and Hutter, F. (2019). Hyperparameter optimization. Automated Machine Learning,
pages 3–33.

Fiacco, A. V. (1983). Introduction to sensitivity and stability analysis in non linear programming.

Fiacco, A. V. and Ishizuka, Y. (1990). Sensitivity and stability analysis for nonlinear programming.
Annals of Operations Research, 27(1):215–235.

Fiacco, A. V. and McCormick, G. P. (1968). Nonlinear programming: sequential unconstrained min-
imization techniques. SIAM.

Friberg, H. A. (2023). Projection onto the exponential cone: a univariate root-finding problem.
Optimization Methods and Software, pages 1–17.

Gal, T. (2010). Postoptimal Analyses, Parametric Programming, and Related Topics: degeneracy, mul-
ticriteria decision making, redundancy. Walter de Gruyter.

Garcia, J. D. (2021). QuadraticToBinary.jl: v0.2.4. https://doi.org/10.5281/zenodo.4718981.

31

https://doi.org/10.5281/zenodo.4718981

Gould, S., Hartley, R., and Campbell, D. (2019). Deep declarative networks: A new hope. arXiv
preprint arXiv:1909.04866.

Guyon, I., Sun-Hosoya, L., Boullé, M., Escalante, H. J., Escalera, S., Liu, Z., Jajetic, D., Ray, B.,
Saeed, M., Sebag, M., et al. (2019). Analysis of the automl challenge series. Automated Machine
Learning, page 177.

Higham, N. J. (2002). Computing the nearest correlation matrix—a problem from finance. IMA
Journal of Numerical Analysis, 22(3):329–343.

Innes, M. (2018). Flux: Elegant machine learning with julia. Journal of Open Source Software.

Innes, M., Edelman, A., Fischer, K., Rackauckas, C., Saba, E., Shah, V. B., and Tebbutt, W. (2019). A
differentiable programming system to bridge machine learning and scientific computing. arXiv
preprint arXiv:1907.07587.

JuliaDiff (2021). Chainrules.jl, recipes for ad. https://www.juliadiff.org/ChainRulesCore.
jl/stable/.

JuMP Developers (2021). JuMPManual. https://jump.dev/JuMP.jl/v0.21.9/installation/
#Supported-solvers.

Kakade, S. M. and Lee, J. D. (2018). Provably correct automatic sub-differentiation for qualified
programs. Advances in neural information processing systems, 31.

Kotary, J., Fioretto, F., Van Hentenryck, P., and Wilder, B. (2021). End-to-end constrained opti-
mization learning: A survey. arXiv preprint arXiv:2103.16378.

Kröger, O. (2020). ConstraintSolver.jl. https://github.com/Wikunia/ConstraintSolver.jl.

LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist handwritten digit database. ATT Labs [Online].
Available: http://yann.lecun.com/exdb/mnist, 2.

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. (2019). Meta-learning with differentiable con-
vex optimization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10657–10665.

Legat, B. (2020). Set programming: theory and computation. PhD thesis, UCLouvain.

Legat, B., Dowson, O., Garcia, J., and Lubin, M. (2021). Mathoptinterface: a data structure for
mathematical optimization problems. INFORMS Journal on Computing (in press).

Maclaurin, D., Duvenaud, D., and Adams, R. (2015). Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pages 2113–2122.
PMLR.

Malick, J. (2004). A dual approach to semidefinite least-squares problems. SIAM Journal on Matrix
Analysis and Applications, 26(1):272–284.

32

https://www.juliadiff.org/ChainRulesCore.jl/stable/
https://www.juliadiff.org/ChainRulesCore.jl/stable/
https://jump.dev/JuMP.jl/v0.21.9/installation/#Supported-solvers
https://jump.dev/JuMP.jl/v0.21.9/installation/#Supported-solvers
https://github.com/Wikunia/ConstraintSolver.jl

O’Donoghue, B., Chu, E., Parikh, N., and Boyd, S. (2016). Conic optimization via operator split-
ting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,
169(3):1042–1068.

Paulus, A., Rolínek, M., Musil, V., Amos, B., and Martius, G. (2021). Comboptnet: Fit the right
np-hard problem by learning integer programming constraints. In International Conference on
Machine Learning, pages 8443–8453. PMLR.

Pirnay, H., López-Negrete, R., and Biegler, L. T. (2012). Optimal sensitivity based on ipopt. Mathe-
matical Programming Computation, 4:307–331.

Robinson, S. M. (1982). Generalized equations and their solutions, part II: applications to nonlinear
programming. Springer.

Saltelli, A., Tarantola, S., Campolongo, F., and Ratto, M. (2004). Sensitivity analysis in practice: a
guide to assessing scientific models, volume 1. Wiley Online Library.

Schäfer, F., Tarek, M., White, L., and Rackauckas, C. (2021). Abstractdifferentiation.jl: Backend-
agnostic differentiable programming in julia. arXiv preprint arXiv:2109.12449.

SciML (2023). LinearSolve.jl: High-Performance Unified Interface for Linear Solvers in Julia.
https://github.com/SciML/LinearSolve.jl.

Stechlinski, P., Khan, K. A., and Barton, P. I. (2018). Generalized sensitivity analysis of nonlinear
programs. SIAM Journal on Optimization, 28(1):272–301.

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2020). OSQP: an operator splitting
solver for quadratic programs. Mathematical Programming Computation, 12(4):637–672.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical programming, 106(1):25–57.

Weisser, T., Legat, B., Coey, C., Kapelevich, L., and Vielma, J. P. (2019). Polynomial and Moment
Optimization in Julia and JuMP. In JuliaCon.

33

https://github.com/SciML/LinearSolve.jl

	Introduction
	Differentiating Convex Optimization Problems
	Quadratic programs
	Conic programs

	Package structure
	Interface
	Differentiation rules as MOI models
	Affine model transformations
	Quadratic and second-order cone model transformations
	Forward-mode
	Reverse-mode

	Meta-solver
	Differentiable solvers
	Building differentiable pipelines with ChainRules primitives

	Application examples
	Sensitivity Analysis
	Classification using SVM
	Ridge regression sensitivity

	Convex Optimization for Neural Network Layers
	Custom ReLU layer
	Polyhedral projection layer

	Hyperparameter optimization
	Optimization problem
	Model differentiation
	Hyperparameter gradient descent
	Numerical results

	Nearest correlation matrix

	Conclusion

