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Abstract

We study the classical newsvendor problem in which the decision-maker must trade-off un-

derage and overage costs. In contrast to the typical setting, we assume that the decision-maker

does not know the underlying distribution driving uncertainty but has only access to historical

data. In turn, the key questions are how to map existing data to a decision and what type

of performance to expect as a function of the data size. We analyze the classical setting with

access to past samples drawn from the distribution (e.g., past demand), focusing not only on

asymptotic performance but also on what we call the transient regime of learning, i.e., per-

formance for arbitrary data sizes. We evaluate the performance of any algorithm through its

worst-case relative expected regret, compared to an oracle with knowledge of the distribution.

We provide the first finite sample exact analysis of the classical Sample Average Approxima-

tion (SAA) algorithm for this class of problems across all data sizes. This allows to uncover

novel fundamental insights on the value of data: it reveals that tens of samples are sufficient to

perform very efficiently but also that more data can lead to worse out-of-sample performance

for SAA. We then focus on the general class of mappings from data to decisions without any

restriction on the set of policies and derive an optimal algorithm (in the minimax sense) as well

as characterize its associated performance. This leads to significant improvements for limited

data sizes, and allows to exactly quantify the value of historical information.

Keywords: Limited data, data-driven decisions, minimax regret, sample average approxi-

mation, empirical optimization, finite samples, distributionally robust optimization.

1 Introduction

The newsvendor problem is a prototypical model of decision-making under uncertainty that cap-

tures the trade-offs emerging in capacity or inventory decisions in the face of uncertainty in future
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outcomes. For example, when setting inventory decisions, a decision-maker typically faces uncer-

tainty with regard to the demand that will materialize. For a given decision, if the demand turns

out to be lower, the decision-maker would incur overage costs and if the demand realization is

higher than the inventory, then some underage costs would be incurred for unsatisfied demand.

Such trade-offs for inventory decisions represent some of the most common operational problems

faced by retailers. Newsvendor type trade-offs also emerge in a variety of other applications, e.g.,

in revenue management for capacity setting or overbooking, or in electricity markets for setting

capacity levels.

The key to solving the trade-offs above and optimizing decisions is a statistical characterization

of the uncertainty the decision-maker faces, typically captured by a distribution. In the inventory

example above, this would correspond to the distribution of demand in the period between replen-

ishments. In practice, the distribution is typically unknown and the only way to solve the trade-offs

above, is through the data that has been collected. The main questions this paper focuses on are

the following: How should a newsvendor decision-maker optimize decisions given the historical data

they have collected? What is the optimal performance they can garner as a function of the data

size? We are interested in understanding the full spectrum of performance of policies across data

sizes and refer to this approach as the transient regime lens for learning.

In more detail, we are interested in analyzing central policies in the literature, in optimizing

data-driven policies, and in understanding whether one could characterize the performance achiev-

able across data sizes, small and large. The motivation to develop a framework for understanding

performance for arbitrary data sizes has strong anchoring in both practice and theory. Despite the

apparent wide availability of demand data, we posit that “relevant” data may be limited in practice

due to the heterogeneity of market characteristics. For example, a year of weekly demand for a

product only represents tens of samples, and assuming homogeneity of demand on a longer period

of time may be too strong of a practical assumption. On the theory front, such a framework would

provide a foundation for a bottom-up approach to data-driven decisions and would reveal the true

robust value of data.

To analyze these questions, we focus on the typical data structure that comes in the form of

past samples from the unknown distribution. This would correspond, for example, to demand

observations in the inventory example. A data-driven policy is then a mapping from historical data

to decisions. For any such policy, we evaluate its performance according to the worst-case (over

all possible distributions) expected relative regret defined as the difference between the expected

out-of-sample cost incurred by the data-driven policy and the expected optimal cost of an oracle
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that knows the distribution, normalized by the latter cost.

It is important to highlight that evaluating the worst-case performance of a given data-driven

algorithm against an arbitrary unknown distribution amounts to an intricate infinite dimensional

optimization problem over the space of distributions. The characterization of an optimal algorithm

and its performance, or even the exact performance of specific data-driven algorithms, have been

mostly elusive to date.

1.1 Main contributions

Sample Average Approximation Analysis. A popular and central approach to such data-driven

problems is the Sample Average Approximation (SAA) algorithm (also typically referred to as

Empirical Optimization) which minimizes the expected cost according to the empirical distribution

induced by the observed samples. This method has been introduced to solve various stochastic

optimization problems and enjoys asymptotic guarantees (Kleywegt et al. (2002)). In the context

of newsvendor decisions, state-of-the-art instance-independent results on the number of samples

required for SAA to achieve a particular confidence level were derived in Levi et al. (2015) and

in Cheung and Simchi-Levi (2019). While they capture the correct dependence on the confidence

level as the number of samples grows large, state-of-the-art lower and upper bounds on the number

of samples required to achieve a particular confidence level differ by orders of magnitude, leading

to significant uncertainty on the value of information, or on the quality of SAA. As such, despite

its wide use and central role in the literature and in practice, to date, a significant gap exists in

the understanding of the actual performance of this policy and the value it can capture from data.

Our first main contribution is the characterization of the exact performance of SAA for newsven-

dor problems for arbitrary data sizes (Theorem 2). While determining the performance of the SAA

algorithm is a priori an infinite dimensional optimization problem over the space of possible dis-

tributions, we actually establish that it is possible to reduce it to a one dimensional optimization

problem and in turn derive a quasi closed-form solution that gives the exact worst-case relative re-

gret of SAA. This worst-case is derived for any number of samples and can be computed efficiently

using a line-search. Our method relies on the structure of the newsvendor problem and develops

an analysis that leads to the SAA performance as a corollary. We establish that for any policy

that can be expressed as an order statistic or a randomization of order statistics of the empirical

distribution, one can transform the initial problem into a pointwise optimization problem of an

appropriate functional, which ultimately leads to identifying the family of worst-case distributions

for such policies (Theorem 1). In particular, we establish, quite interestingly, that across all distri-

butions, the worst case is a Bernoulli distribution whose mean depends on the number of samples
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observed. In turn, this yields the worst-case performance of the SAA policy as the solution of a

one-dimensional search. While our analysis reveals that the worst-case distribution is a Bernoulli,

the induced worst-case performance we obtain can be applied to bound the relative regret of SAA

against any distribution.

Quite notably, this enables, for the first time, to fully characterize the spectrum of performances

achievable by SAA across data sizes. These results highlight many fundamentally novel insights on

the value of information. As examples, with 20 samples, SAA already leads to a relative regret of

26.8%, and with 100 samples, the relative regret shrinks to 8.1%. This highlights the possibility of

making effective decisions already with very limited data. As a matter of fact, in Table 1 below,

we show that the number of samples required by SAA to achieve a certain level of accuracy, as

derived from the analysis in this paper, is actually two orders of magnitudes lower than the number

induced by state-of-the art upper bounds on the expected relative regret in the existing literature

(see Section 3.2.1 and Section 4.4).

Expected relative regret target
25% 20% 15% 10% 5%

SAA This paper 21 23 42 71 210
Best known to date 5,088 7,780 13,530 29,762 100,000+

Optimal Algorithm This paper 14 19 25 50 161

Table 1: Number of samples that ensures a target relative regret. The table reports the
induced number of samples needed to reach a relative regret accuracy level. For SAA, we compare
the best instance-independent known bounds to date (Levi et al., 2015) and the exact worst-case
analysis developed in the present paper. We also report the number of samples needed by an
optimal data-driven algorithm, derived in the present paper. Example with service level of 0.9.

Our analysis of the SAA policy also leads to another striking new insight: the relative regret is

not monotone in the number of samples available. This implies that SAA is suboptimal but also

that SAA is not able to accumulate information appropriately, sometimes “destroying” information.

We highlight that the possibility to uncover this non-monotonic behavior has been enabled by the

transient regime lens for learning we take.

Optimal data-driven policy. In turn, the next question we tackle pertains to optimal worst-

case performance in the space of data-driven policies. Indeed, it is important to note that SAA

is only one possible prescription among all possible mappings from data to decisions. Our next

contribution lies in characterizing the minimal worst-case expected relative regret in the general

space of data-driven policies and across all data sizes. In the remaining of the paper we refer to

the algorithm achieving the minimax optimality for the worst-case expected relative regret as the

optimal algorithm.
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To prove this fundamental optimality result, we first establish a central reduction in the space

of mechanisms. We show that, without loss of optimality, one may restrict attention to mixtures

of order statistics (Theorem 3). In turn, we derive necessary conditions for optimality in that

subspace. This leads to a candidate policy. The last step consists of establishing optimality of this

candidate. For that, we introduce an alternative minimax problem in which we relax the space of

distributions to be distributions over distributions, and show that the candidate, together with a

proper mixture of distributions, is a saddle point for the alternate problem. This yields an optimal

data-driven algorithm and its associated performance for the original problem (Theorem 4).

We establish that an optimal data-driven policy takes actually a simple form: it is a random-

ization between two consecutive order statistics, and we provide a procedure to compute its tuning

parameters as well as its performance. As a corollary, we obtain that an alternative policy, which

prescribes a convex combination of consecutive order statistics, is also minimax optimal while also

(weakly) improving over the optimal mixture of order statistics policy for all possible demand

distributions.

This result has significant implications. First, we can now assess the potential losses stemming

from using the suboptimal SAA policy. We show that these can be significant for small data sizes

and become smaller as the data size increases. Second, it allows to exactly assess the value of the

historical information and to understand how effective one can be as a function of the data at hand

without any assumption on the underlying distribution. This further emphasizes the possibility of

operating effectively with limited data. In Table 1, we report the number of samples required to

reach a particular level of accuracy, and one sees that, compared to SAA, the optimal algorithm

reduces the amount of data needed to reach a particular level significantly (by 17% to 40% across

the targets illustrated). We also note that, as a byproduct of our analysis, we also obtain the

worst-case performance ratio for any Bayesian problem.

We highlight here that there has been significant work on data-driven policies. We discuss

more these in the literature review and refer to Lam (2021) for a very recent overview of various

subfamilies of policies considered in the literature. We also emphasize that when searching for

optimal policies, we consider all possible mappings from data to decisions, and do not restrict

attention to a subfamily of policies.

We note that, while our analysis is tailored around the worst-case relative regret, the minimax

optimal policy that we derive is not overly conservative on “mild” instances. As a matter of fact, we

show numerically in Section 6 that the performance of the optimal policy is typically on par or better

than the one of SAA on a broad range of distributions. As a consequence, the “robustification” of
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SAA in the worst-case comes at no cost and even typically translates into better performance on

many common distributions.

Optimal asymptotic performance. When the data size becomes large, there are various existing

results in the literature, and a corollary of these leads to upper bounds on the rate of convergence

to zero of the expected relative regret of SAA as the data size n grows to infinity: it converges to

zero at rate O(1/
√
n). While this makes progress on capturing the dependence in the data size n,

even asymptotically, there is still limited understanding of the actual performance. In particular,

there is no understanding of the constant characterizing the rate of convergence for SAA, nor for

the best such constant achievable by a data-driven algorithm.

We leverage the exact finite sample analysis to derive, from the bottom up, the exact rate

of convergence to zero, fully characterizing the constant for SAA and optimal performance. In

particular, we show that the optimal relative regret asymptotically scales like C∗/
√
n where the

number of samples n is large and provide a closed form expression for C∗ (Theorem 5). This

highlights how the rate of convergence is affected by the various economic parameters associated

with the newsvendor decision. In addition, we establish that SAA asymptotically achieves rate

optimality with the same limiting constant. As such, while SAA could lead to high suboptimality

gaps for small data sizes, it satisfies a very strong notion of near-optimality for large data sizes.

Stepping back, one may see the present study as building a foundation for a “bottom-up”

approach to data-driven decision-making in newsvendor settings. We highlight that our transient

regime lens for learning and the associated exact analysis account for all the expected out-of-sample

cost implications of deviations, small or large, that SAA (or an optimal policy) could generate

compared to the oracle. As such, it allows to build an understanding of data-driven policies “one

data point at a time.” Compared to existing approaches that are mostly anchored around large

data regimes, this new perspective establishes that it is indeed possible to characterize performance

across data sizes. It leads to new insights for small as well as large data regimes. We hope that the

techniques developed here lead to further the understanding of the transient regime of learning in

richer settings relating to newsvendors, but also across problem classes.

1.2 Related literature

Capacity management problems in the face of uncertainty are central across literatures and the

present paper builds on and contributes to a vast existing literature.

Our work first relates to the study of this class of problems with limited information on the

underlying distribution of demand. In early work, Scarf (1958) and Gallego and Moon (1993)

characterizes the min-max optimal solution for the inventory problem when the mean and the

6



variance of the demand are known. Perakis and Roels (2008) derive robust policies that achieve

minimax regret under various types of partial information on the demand function such as moments

of the distribution, modes or symmetry. Natarajan et al. (2018) carries this robustness analysis for

asymmetric distributions.

Information about the distribution may also be improved by a data-driven approach. Xu et al.

(2021) construct ambiguity sets by using non-parametric information on the distribution along with

observed samples. Saghafian and Tomlin (2016) develop a Maximum Entropy approach to lever-

age information from data combined with moment and tail bounds. Liyanage and Shanthikumar

(2005); Chu et al. (2008) introduce the operational statistic framework which integrates estima-

tion and optimization tasks for newsvendor problems under parametric classes of distributions.

Chu et al. (2008), assuming that the decision-maker knows the distribution of demand up to a

scale parameter, derives a mapping from data to decision that maximizes expected profit for any

value of the unknown scale parameter. In the present work, we do not make any assumption on

the underlying distribution of demand.

When no such information is initially available, the question becomes how to go from data

to decisions. There are various dimensions associated with this problem, first on the level of

uncertainty about the underlying distribution, and second on the offline or online aspect of the

decision-making problem.

The present paper focuses on a non-parametric setting in which little, if anything is known about

the underlying distribution and only data in the form of samples can be used to make decisions. A

first foundational question for this class of problems is one pertaining to sample complexity: How

many samples are needed to achieve a certain level of accuracy? Closest to our work are Levi et al.

(2007), Levi et al. (2015) and Cheung and Simchi-Levi (2019) which establish bounds on proba-

bilistic guarantees of the relative regret of Sample Average Approximation (SAA). In particular

Levi et al. (2015) presents bounds that are problem-independent and apply to any distribution,

and we compare to those in Section 3.2.1. Levi et al. (2015) also improve these bounds by deriving

instance dependent guarantees in cases where the decision-maker has additional information about

the class of distributions to which the demand belongs. In contrast, our work improves the charac-

terization of the worst-case expected relative regret of SAA without any supplementary information

about the distribution. Cheung and Simchi-Levi (2019) provides a lower bound on the number of

samples required to achieve a target relative regret with a probability exceeding a given threshold.

Their result implies that the upper bound derived in Levi et al. (2015) has the correct dependence

in the problem parameters. Ban (2020) establishes consistent estimators for (s, S) policies for both

7



censored and uncensored information regimes. They derive bounds on the regret by constructing

asymptotic confidence intervals around the policy.

In the offline setting, other related papers study the contextual version of the problem in which

the decision-maker observes previous samples of demand along with features that give additional

information on the environment (Ban and Rudin, 2019; Qi et al., 2021). Ban and Rudin (2019)

proposes approaches based on Empirical Risk Minimization and kernel methods to derive gener-

alization bounds for the cost of a feature-based data-driven decision. In the special case without

contexts, their approach recovers the instance-independent bound derived by Levi et al. (2015). In

contextual optimization, we also refer the reader to Elmachtoub and Grigas (2021) for a general

data-driven approach that explicitly accounts for the nature of the optimization problem at hand.

Our paper also relates to the rich literature on the analysis of SAA. This approach has been

applied broadly for discrete stochastic optimization problems when the underlying distribution is

either unknown or when the expected objective function is hard to optimize, Kleywegt et al. (2002),

or for multi-stage stochastic optimization problem (Swamy and Shmoys (2005); Shapiro (2008)).

It has also been used in the specific context of multi-stage inventory planning (Levi et al. (2007);

Cheung and Simchi-Levi (2019)) or for the newsvendor model (Levi et al. (2015); Besbes and Muharremoglu

(2013)).

Gupta and Kallus (2022) share the motivation of limited data sizes, and explore the possibil-

ities associated with pooling data across products. Bertsimas et al. (2018), Esfahani and Kuhn

(2018) develop robust approaches enjoying probabilistic guarantee over the out-of-sample error.

Bertsimas et al. (2018) considers ambiguity sets containing all distributions that pass a statistical

goodness-of-fit test for given historical data. Esfahani and Kuhn (2018) proposes a data-driven

distributionally robust approach by constructing an uncertainty ball around the empirical distri-

bution. They show that the worst-case expectation over a Wasserstein ambiguity set can in fact be

computed efficiently via convex optimization techniques for various loss functions. In contrast to

theses strategies, we highlight that we do not restrict the space of policies to those that construct

uncertainty sets, but explore the entire space of mappings from data to decisions.

More broadly, our work relates to sequential decision-making under uncertainty. In the class of

inventory decisions, a rich line of work on dynamic decisions has been developed. Different informa-

tion structures (observable or censored demand) are studied and adaptive algorithms with desirable

asymptotic properties derived. Godfrey and Powell (2001); Huh and Rusmevichientong (2009);

van Ryzin and McGill (2000) develop gradient based methods to solve this sequential problem

whereas Huh et al. (2011) uses the Kaplan-Meier estimator and Maglaras and Eren (2015) studies
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a maximum entropy approach to dynamically adjust capacity levels. Besbes and Muharremoglu

(2013) studies the price of demand censoring in these sequential decision making problem with

stationary demand, and Lugosi et al. (2021) study censoring in a setting when demand is non-

stationary. Chen et al. (2021) studies the interplay of pricing and inventory decisions. We note

that in all these studies, the performance of policies are characterized asymptotically up to multi-

plicative constants, but there is no characterization of exact optimal performance. We hope that

the exact performance characterization, and optimality results, developed in this work in the offline

case with demand observations, will lead to future progress in this related class of problems.

Our work is also connected to the rich literature in statistics which focuses on the performance

of various quantile estimators, and our problem may be reframed as the one of deriving minimax

quantile estimators for a particular metric (here the relative regret between newsvendor losses). De-

pending on the application and the desired properties, many quantile estimators have been derived,

either as L-estimators based on order statistics (Harrell and Davis, 1982; Kalgh and Lachenbruch,

1982; Yang, 1985) or by using different methods such as Stochastic Approximation (Tierney, 1983).

This profusion of heuristics motivated the study of estimators achieving certain forms of optimal-

ity. In parametric settings, Rukhin and Strawderman (1982), and Rukhin (1983) derive minimax

equivariant quantile estimators for a normalized squared loss. In non-parametric settings, Zieliński

(1999) restricts attention to the set of equivariant estimators and derives an estimator uniformly

better with respect to a particular metric, the worst-case F-Mean Absolute Deviation. Our work

differs from Zieliński (1999) along various crucial dimensions. We focus on the commonly studied

objective of minimax relative regret, on a newsvendor cost, and we do not restrict the space of

decisions.

Our work is also remotely related to the understanding of the learning curve defined as the

expected generalization performance, i.e., the out-of-sample performance, of a learner as a function

of the size of the training set. We refer the reader to the recent review of Viering and Loog (2021).

Our approach complements this line of work and gives a theoretical understanding of the robust

(worst-case) value of data sizes for the newsvendor problem.

Finally, we also note that another related line of work pertains to modeling uncertainty dif-

ferently. Another framework that has been widely studied is parametric and Bayesian, in which

the decision-maker is assumed to have access to a prior about an underlying unknown parameter

that characterizes the distribution. The seminal work of Scarf (1959) analyses a bayesian setting in

which the decision maker has a prior belief on the nature of the distribution and updates his belief

as he observes samples from the demand. The goal is then to analyze methods that use historical
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data to prescribe inventory decisions on the fly. This line of work has also a rich literature dealing

with different information structures (censored versus uncensored) observations. See, e.g., Azoury

(1985), Lariviere and Porteus (1999), Ding et al. (2002) (and the related notes by Lu et al. (2005)

and Bensoussan et al. (2009)) and Besbes et al. (2022).

2 Problem Formulation

We consider a newsvendor problem in which the decision maker decides on a capacity/inventory

decision x in the face of uncertainty on the underlying demand D that will materialize. Any excess

inventory leads to overage costs h > 0 per unit, and any demand that is not satisfied leads to

underage cost of b > 0 per unit. In turn, the cost associated with decision x is given by

c(x,D) := b(D − x)+ + h(x−D)+.

Decision-making with knowledge of the distribution of D. Suppose that demand D is

drawn from a distribution F supported on R+. Then, in the classical newsvendor problem, the

decision-maker minimizes the expected cost given by

cF (x) := ED∼F
[

b(D − x)+ + h(x−D)+
]

. (1)

Let G denote the set of distributions (cdf) with non-negative support. By convention, we assume

that all cdf’s are cadlag. Furthermore, we let

F = {F ∈ G : EF [D] < ∞}

denote the set of distributions with bounded first moment. We will assume that D is drawn from

a distribution in F , so that the above cost always admits a well defined expectation.

When the distribution F is known, the inventory decision minimizing the cost cF (·) is given by

x∗
F := min{x ≥ 0 : F (x) ≥ q},

where

q =
b

b+ h
.
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We will refer to q as the critical quantile, and we will let

opt(F ) := cF (x∗
F )

denote the minimal achievable cost with knowledge of the distribution F .

Data-driven decision-making. In the present paper, we consider a setting in which the distri-

bution F is unknown to the decision-maker and only data is available in the form of past demand

observations. The decision-maker observes n historical samples of demand, Dn
1 := (D1, . . . ,Dn),

where Di are independently sampled from F . In this context, an admissible policy π is a mapping

from observed demand Dn
1 to inventory decision xπ. Formally, we consider the class of policies Πn

of mappings from R
n
+ into the set of distributions F . In particular, a policy π is a mapping

π : Dn
1 7→ GDn

1
,

where GD
n
1

∈ F . That is to say π maps previous demand observations to a randomized inventory

decision. We note that, even when the policy π is a deterministic function of the observed demand

Dn
1 , the inventory decision xπ is a random variable as it depends on Dn

1 .

When using a policy π, given n samples from an underlying distribution F , the out-of-sample

expected cost incurred is defined as,

C(π, F, n) := EDn
1 ∼F

[

Ex∼π(Dn
1 ) [cF (x)]

]

.

Note that the dependence between the underlying demand distribution and the expected cost of a

data-driven algorithm is an intricate one in general, as the demand distribution F affects the history

the decision-maker observes, but also the out-of-sample performance of data-driven decisions.

Objective. We are interested in understanding and quantifying the performance of data-driven

algorithms for newsvendor problems. To that end, we evaluate the performance of a policy π ∈ Πn

through the relative regret defined for every F ∈ F as1,

Rn(π, F ) :=
C(π, F, n) − opt(F )

opt(F )
.

Note that the ratio above is always greater or equal than 0 and takes value in [0,∞) ∪ {∞}. Given

that the decision-maker does not know the distribution, we evaluate its performance through the

1Note that opt(F ) = 0 if and only if the distribution F has all its mass at a single point. In such a case, we set,
by convention, Rn(π, F ) = 0, for any policy π ∈ Πn such that C(π, F, n) = opt(F ) = 0.
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worst-case relative regret defined as follows

sup
F∈F

Rn(π, F ). (2)

It represents the relative loss stemming from the gap between observing data of size n and full

information on the demand distribution. We will be interested in characterizing the performance

of specific policies considered in the literature, but also in the optimal achievable performance

R∗
n := inf

π∈Πn
sup
F∈F

Rn(π, F ). (3)

We note that the above problem involves two infinite dimensional optimization problems, that of the

decision-maker when selecting a policy, and that of nature when selecting a worst-case distribution.

We also remark that there are no restrictions on the class of policy used in (3).

Notation. For any µ in [0, 1], we let B(µ) denote the distribution of a Bernoulli with mean µ. For

any set A, ∆ (A) denotes the set of distributions on A. We further let ∆n denote the simplex in

n dimensions, i.e., ∆n = {λ ∈ R
n : λi ≥ 0, i ∈ {1, . . . , n}, ∑n

i=1 λi = 1}. For any deterministic

sequences (ak)k∈N and (bk)k∈N both indexed by a common index k that goes to ∞, we say that

ak = o(bk) if ak/bk → 0, ak = O (bk) if there exists a finite M > 0 such that |ak| ≤ M |bk| for k large

enough, ak = ω(bk) if |ak/bk| → ∞, ak = Ω(bk) if there exist a finite M > 0, such that |ak| > M |bk|
for k large enough, ak = Θ (bk) if ak = O (bk) and ak = Ω (bk), and ak ∼ bk if ak/bk → 1.

All proofs are deferred to the Online Appendix.

3 Sample Average Approximation: Performance Analysis across

Data Sizes

The data-driven newsvendor problem is a particular instance of a data-driven stochastic opti-

mization problem. One of the most common approaches to solve this type of problems is the

Sample Average Approximation (SAA). As highlighted earlier, this approach has been applied

to a broad set of problems. Previous works derived convergence guarantees for this method

(Kleywegt et al. (2002)) but also bounds on probabilistic finite sample performance (Levi et al.

(2007, 2015); Cheung and Simchi-Levi (2019)). In the newsvendor setting, SAA is also related to

the broader literature of Distributionally Robust Optimization as it happens to be equivalent to

the distributionally robust policy over the Wasserstein ball as noted in (Esfahani and Kuhn, 2018,

Remark 6.7).
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In the context of the newsvendor problem, SAA consists in solving the optimization problem

min
x

1

n

[

n
∑

i=1

b(Di − x)+ + h(x−Di)
+

]

. (4)

This approach approximates the expectation in (1) with the empirical expectation, and solves the

resulting problem. In particular, the solution of problem (4) is the qth-empirical quantile. More

precisely, let us define the order statistics of the historical dataset of demands observed as

D1:n ≤ . . . ≤ Dn:n.

The SAA policy, which we will denote by πSAA prescribes the ⌈qn⌉th order statistic. With some

abuse of notation, we have2

πSAA(Dn
1 ) = D⌈qn⌉:n. (5)

As highlighted in the introduction, this policy has been extensively studied. In particular, as

the number of demand samples n grows, it is known that SAA leads to a solution that ensures that

its worst-case relative regret approaches 0 as n grows to ∞. Previous approaches derived upper

bounds on the rate at which such convergence takes place, leveraging large deviations bounds.

However, despite its widespread use, there is no characterization of its actual performance for a

finite number of samples, and as a result, there is no robust quantification of the amount of data

needed to achieve a particular level of performance.

Analyzing exactly the worst-case performance of SAA, or any policy, as in Problem (2), is

an infinite dimensional optimization problem over a non-parametric class of distributions. For

any policy π ∈ Πn, let Gπ
Dn

1
:= π (Dn

1 ) be the distribution induced by π on the inventory level

conditional on observing historical demand Dn
1 . The cost incurred by a policy π ∈ Πn against a

distribution F ∈ G can be expressed as follows

C (π, F, n) =

∫

Dn
1 ∈[0,∞)n

∫ ∞

0

∫ ∞

0
c(x,D) dF (D) dGπDn

1
(x) dF (D1) . . . dF (Dn) (6)

Therefore, the cost of a data-driven policy has in general a complex dependence on the demand

distribution which appears in the integration measure.

In what follows, for any policy π ∈ Πn, when solving for the worst-case performance, we will be

2Technically speaking, this is the policy that prescribes a point mass at D⌈qn⌉:n.
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working with the epigraph formulation of problem (2) . Note that supF∈F Rn(π, F ) ≥ 0 and

sup
F∈F

Rn(π, F ) = inf
z∈R+

z

s.t. Rn(π, F ) ≤ z ∀F ∈ F .

It is easy to see that the problem can be further written as (this claim is formally established in

Lemma E-1)

sup
F∈F

Rn(π, F ) = inf
z∈R+

z (8a)

s.t. C (π, F, n) − (z + 1)opt(F ) ≤ 0 ∀F ∈ F . (8b)

This problem thus involves infinitely many constraints, and each of the constraints has a complex

dependence in F as highlighted in (6). In Section 3.1, we analyze a general class of order statistic

policies, of which SAA is a special case, and show that for these, the optimization problem (8)

can be significantly simplified and as a matter of fact exactly solved. In particular, we leverage

the structure of order statistic policies to simplify the expression of the cost function described

in (6). This allows us to reduce the set of constraints (8b) to constraints parametrized by a one

dimensional set.

3.1 Order Statistic Policies and Structural Results

As presented in (5), in the context of the newsvendor problem, SAA prescribes an inventory level

according to an order statistic of the samples observed, the ⌈qn⌉th order statistic. This can be seen

as a special case of prescribing an order statistic or even a randomization over order statistics. To

that end, we next define general order statistics policies which will also play a central role when we

discuss optimal performance in Section 4.

Definition 1 (Mixture of Order Statistics). Fix n ≥ 1. For every i ∈ {1, . . . , n}, we let πOSi

denote the policy that uses the ith order statistic Di:n with probability one. Formally,

πOSi : Dn
1 7→ 1 {x ≥ Di:n} .

For any λ ∈ ∆n. We let πλ denote the mixture of order statistics policy defined as follows: πλ
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prescribes the ith order statistic Di:n with probability λi. Formally,

πλ : Dn
1 7→

n
∑

i=1

λi1 {x ≥ Di:n} .

In the following, we denote by ΠOS
n the space of mixture of order statistics policies with n samples.

Another important class of policies are convex combinations of order statistics policies, which

prescribe a deterministic convex combination instead of randomizing between different order statis-

tics. We will relate the performance of policies in this class to the one for mixtures of order statistics

policies in Section 4.3.

For a policy π ∈ Πn, the expression of the relative regret involves the ratio between C (π, F, n)

and opt(F ). In general, both quantities require to compute complex integral expressions in which

the dependence on the demand distribution is intricate. Our first structural result establishes that

for a mixture of order statistics policy, the cost incurred against any demand distribution F can

be expressed as a single integral in which the integrand is a polynomial of the demand distribution

and the integrating measure is the Lebesgue measure. We similarly show that the cost of the oracle

is the integral of a piecewise-linear function of the demand distribution. Formally, we show the

following.

Proposition 1. For any F ∈ F , any n ≥ 1, and any mixture of order statistics policy πλ we have,

C
(

πλ, F, n
)

= (b+ h)

[

∫ ∞

0

n
∑

i=1

λi ((1 −Bi,n(F (y)))(F (y) − q) + q(1 − F (y))) dy

]

,

opt(F ) = (b+ h)

∫ ∞

0
min{(1 − q)F (y), q(1 − F (y))}dy,

where Bi,n is a Bernstein polynomial defined for any y ∈ [0, 1] as

Bi,n(y) =
n
∑

j=i

bj,n(y),

with bj,n(y) =
(n
j

)

yj(1 − y)n−j .

Recall the expression in (6), Proposition 1 shows that for mixture of order statistics policies,

the cost function can be expressed as an integral in which the dependence in F only appears in the

integrand but does not appear in the integrating measure anymore. As we will see, this is a key

step towards the understanding of worst case distributions for this family of policies.

The main step in the proof of this result follows from Riemann–Stieltjes integration by part

and from exploiting the special form of the cumulative distribution function of an order statistic.
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Indeed, for any F ∈ F , n ≥ 1 and r ∈ {1, . . . , n}, the cumulative distribution of Dr:n denoted by

Fr:n satisfies for x ∈ R+,

Fr:n(x) = Br,n (F (x)) .

The new expressions in Proposition 1 imply that the epigraph formulation (8) can be simplified.

In particular, by rewriting the set of constraints (8b), we obtain the following formulation.

inf
z∈R

z (9a)

s.t. sup
F∈F

∫ ∞

0
Ψλ
z (F (y))dy ≤ 0, (9b)

where Ψλ
z is a continuous mapping from [0, 1] to R. The constraint of (9) now involves a nonpara-

metric optimization problem for which the demand distribution only appears in the integrand. This

expression allows us to reduce the functional optimization problem over the class of distributions

F to a pointwise optimization problem. We now present formally this result as our first main

contribution.

Recall that B (µ) denotes a Bernoulli distribution with mean µ. Our first main result is a

characterization of the exact performance of any mixture of order statistics policy.

Theorem 1. Fix n ≥ 1 and πλ ∈ ΠOS
n . The worst-case performance of the policy πλ satisfies

sup
F∈F

Rn(πλ, F ) = sup
µ∈[0,1]

Rn(πλ,B(µ)).

Furthermore for every µ ∈ [0, 1],

Rn(πλ,B(µ)) =
n
∑

i=1

λi
(1 −Bi,n(1 − µ))(1 − µ− q) + q · µ

min {(1 − q)(1 − µ), q · µ} − 1.

This result has many implications. First, it establishes the notable fact that for any data

size n, the worst-case performance of mixture of order statistics policies over the entire space of

distributions F is achieved at a Bernoulli distribution.

Second, in evaluating the worst-case performance of these policies, Theorem 1 leads to a reduc-

tion from a non-parametric general space of distributions F to a space of distributions parametrized

by a single parameter, the mean of the Bernoulli distribution. Moreover, in the case of Bernoulli

distributions, the relative regret has a closed-form expression. Therefore, the exact worst-case

performance of mixture of order statistics policies can be computed for any number of samples n

through a simple line search. In Section 3.2, we analyze the implications of this result for SAA. This
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result will also be instrumental when we analyze optimal policies in the entire space of mappings

from data to decisions in Section 4.

Remark. At first glance, the result of Theorem 1 may seem counter-intuitive as one would expect

that in the broad family of distributions F , a “hard” instance for order statistics policies would

have unbounded support. This result proves that on the contrary, the difficulty of the data-driven

newsvendor problem does not stem from the tail of the distribution. Indeed, for distributions that

are hard to learn, such as heavy-tail distributions, oracle costs are also large. Bernoulli distributions

are flexible enough to lead to a low cost for the oracle due to the simple structure of the distribution,

but also exacerbates the cost of mistakes for a decision-maker that does not know the distribution

as the problem boils down to deciding between two extreme actions: prescribing 0 or 1.

Remark (Absolute vs. relative regret). We highlight here that a similar argument as the one

developed to prove Theorem 1 can be used to establish a parallel result for the worst-case expected

absolute regret metric, C(π, F, n) − opt(F ). In such a case, if one restricts attention to the space of

distributions supported on a bounded interval [0,M ] (for some real value M), then one can show

that the worst-case expected absolute regret for any mixture of order statistics is achieved for a

two point distribution with mass at 0 and M .

3.2 Performance Analysis of SAA across Data Sizes

A direct and important consequence of Theorem 1 is the ability to characterize the transient regime

of learning, or exact performance associated with the central algorithm SAA for an arbitrary number

of samples. Since SAA is a special case of mixture of order statistics policy, the following theorem

is a direct corollary.

Theorem 2 (SAA Finite Sample Performance). For any n ≥ 1, the performance of the SAA policy

is given by

sup
F∈F

Rn(πSAA, F ) = sup
µ∈[0,1]

Rn(πSAA,B(µ)) = sup
µ∈[0,1]

(1 −B⌈qn⌉,n(1 − µ))(1 − µ− q) + q · µ
min {(1 − q)(1 − µ), q · µ} − 1.

Theorem 2 leads to the notable result that one may characterize exactly the worst-case perfor-

mance of the central SAA algorithm across all data sizes by performing a simple line search! As

such, it allows to exactly measure the implications of all possible out-of-sample “mistakes” (com-

pared to the oracle) made by SAA, and this is for any data size. Next, we analyze the implications
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of this result on the value of data, compare this result to earlier bounds in the literature, as well

as uncover novel insights on the quality of SAA as a data-driven policy in this class of problems.

3.2.1 Performance of SAA and Comparison to Existing Related Results

As mentioned earlier, SAA has been widely studied in various settings. In the context of the

newsvendor problem, Levi et al. (2007) establish bounds relying on large deviations arguments to

derive probabilistic results, which were later improved in Levi et al. (2015), with associated relative

regret guarantees. More formally, (Levi et al., 2015, Theorem 2) show that for any ǫ > 0, any n ≥ 1

and any demand distribution F , the relative-regret of SAA satisfies

PπSAA

(

cF (x) − opt(F )

opt(F )
> ǫ

)

≤ 2exp

(

− nǫ2

18 + 8ǫ
min(q, (1 − q))

)

,

with the associated bound on relative regret given by

sup
F∈F

Rn

(

πSAA, F
)

= sup
F∈F

EπSAA

[

cF (x) − opt(F )

opt(F )

]

= sup
F∈F

∫ ∞

0
PπSAA

(

cF (x) − opt(F )

opt(F )
> ǫ

)

dǫ

≤
∫ ∞

0
2exp

(

− nǫ2

18 + 8ǫ
min(q, (1 − q))

)

dǫ =: U(n).

The function U(n) represents state of the art instance-independent bounds for the worst-case per-

formance of SAA as a function of the data size in the literature to date. Our result in Theorem 2

allows to characterize supF∈F Rn

(

πSAA, F
)

, the actual worst-case performance of SAA. In Table 2,

we present a comparison of the number of samples required to guarantee various levels of relative

regret (25%, 20%,...,5%) for different values of the critical fractile. We do so using the induced

number based on Theorem 2 in this paper, and based on U(n). Formally, for a given performance

threshold τ ≥ 0, we define

N exact-SAA(τ) := min

{

m ≥ 1
∣

∣

∣ ∀n ≥ m, sup
F∈F

Rn

(

πSAA, F
)

≤ τ

}

NUB(τ) := min
{

m ≥ 1
∣

∣

∣∀n ≥ m, U(n) ≤ τ
}

.

Notably, the exact analysis developed in the present paper yields a number of samples two orders

of magnitude lower than the best known guarantee to date. The improvements above stem from

the novel type of analysis conducted that enables to quantify the implications of all out-of-sample
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Expected relative regret target (τ)
q Bound used 25% 20% 15% 10% 5%

.7
NUB(τ) (best known to date) 1,696 2,594 4,510 9,921 38,779
N exact-SAA(τ) (this paper) 8 11 15 31 84

.8
NUB(τ) 2,544 3,890 6,765 14,881 58,168
N exact-SAA(τ) 11 16 21 41 116

.9
NUB(τ) 5,088 7,780 13,530 29,762 100,000+
N exact-SAA(τ) 21 23 42 71 210

Table 2: Number of samples ensuring that SAA achieves a target relative regret. The
table reports induced number of samples needed to reach a relative regret accuracy level, comparing
the best instance-independent known bounds to date U(n) (Levi et al., 2015) and the exact worst-
case analysis of SAA developed in Theorem 2, for different values of the critical fractile q.

“mistakes” (compared to the oracle) that SAA could do, compared to the existing approaches for

SAA analysis that are anchored around large deviations bounds to ensure near-optimality of the

SAA solution.

Another fundamental insight from Table 2 stems from the actual values of the minimum number

of samples N exact to ensure a particular relative regret level. For example, less than 71 samples are

sufficient to achieve a relative regret of 10% for the various critical fractiles above! Theorem 2 and

the associated bounds enable to develop a new understanding of the value of data sizes, highlighting

that smaller data sizes are extremely valuable and lead to very effective decisions for this class of

problems. In practice, even in a data-rich environments such as online retail, the time granularity

used to evaluate the demand is usually at a weekly level. As a consequence, a year of demand data

for a single product may only represent tens of samples. The above table highlights that such data

sizes already ensure very strong performance.

3.2.2 Transient Regime of Learning for SAA and Non-Monotonicity

In Figure 1, we depict the exact worst-case performance of πSAA for sample sizes ranging from 2

to 100, with a critical fractile of q in {0.7, 0.8, 0.9}. We emphasize that the performance depicted

is the exact worst-case relative regret of SAA and not a bound on it. Various observations are

striking.

First, we observe that the relative regret decays sharply even after observing very few samples

n. Consider the case where q = .9. With 10 samples, SAA is guaranteed to achieve a relative

regret of 49.3%, with 20 samples it achieves 26.8% and with 100 samples, 8.1%. It highlights again

the impressive guarantees that SAA yields for the newsvendor problem even when the number of

samples is small. It also shows how good SAA is at capturing information relevant to the underlying
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Figure 1: SAA performance. The figure depicts the performance of the SAA policy as a function
of the number of samples n for different critical fractiles.

optimization problem. Indeed, one would not expect such a quick decay when trying to estimate

the entire demand distribution. This in turn leads to a new understanding of the transient regime

of learning and the performance possibilities across data sizes, small or large.

Another highly notable observation in Figure 1 is that the worst-case performance of SAA is

non-monotone in the number of samples n. The performance curve admits various peaks. We

emphasize that the peaks observed are not due to stochasticity when evaluating the performance

of the policy but represent an actual deterioration of the performance in the worst-case for SAA

when adding a sample. This result can seem counter-intuitive and establishes two notable facts: i)

SAA is a suboptimal data-driven policy for various sample sizes; and ii) furthermore, more data is

not synonymous with better worst-case performance when using SAA.

Remark (Non-monotonicity). Note that above, when considering the the worst-case rela-

tive regret, the worst-case distribution can change with the data size n. Another question could

consist in assessing whether there exists a fixed distribution F and a data size n such that the

performance deteriorates from n samples to n + 1 samples (from the same distribution F ). In

a few problem classes, examples have been exhibited such as pricing, from one to two samples

(Babaioff et al., 2018) and misspecified linear regression (Loog et al., 2019). We next argue that

the non-monotonicity observed in the worst-case performance in Figure 1 is actually a stronger
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statement as it implies that there exists a distribution F ∈ F and a data size n such that,

Rn(πSAA, F ) < Rn+1(πSAA, F ).

Indeed, let n be such that the worst-case relative regret is increasing by adding an additional sample

to n. In other words, we have

δ := sup
F∈F

Rn+1(πSAA, F ) − sup
F∈F

Rn(πSAA, F ) > 0.

Then, consider a distribution F ∗ ∈ F such that Rn+1(πSAA, F ∗) > supF∈F Rn+1(πSAA, F ) − δ. We

have

Rn(πSAA, F ∗) ≤ sup
F∈F

Rn(πSAA, F ) = sup
F∈F

Rn+1(πSAA, F ) − δ < Rn+1(πSAA, F ∗).

This shows that the worst-case non-monotonicity of the relative regret implies the existence of an

instance F ∗ for which the relative regret is non-monotonic.

In Section 4, we explore some intuition underlying this shortcoming of SAA, but also characterize

an optimal data-driven algorithm.

4 Optimal Data-Driven Policy

While SAA is a natural and widely used data-driven policy, we observed in Figure 1 that the

performance of SAA is not monotonically decreasing as a function of the number of samples n,

implying that it is suboptimal from a minimax perspective. Therefore a natural question is how

to improve upon SAA and more generally if it is possible to characterize an optimal data-driven

policy in the general space of mappings from data to decisions. Recall that we refer to the optimal

policy as the one that solves the minimax optimization problem defined in (3). In this section,

we investigate the minimax relative regret R∗
n presented in equation (3) and associated optimal

policies. Compared to solving the worst-case distribution for a particular algorithm, solving (3)

now involves two non-parametric and infinite dimensional optimization problems.

We approach the problem as follows. We first establish a fundamental reduction in the space of

policies and show that one can restrict attention to mixture of order statistics policies (introduced in

Definition 1), without loss of optimality. In this class, we leverage the structure of the problem (2)

for mixture of order statistics that we established in Section 3 and we derive a necessary condition

that a mixture of order statistics policy needs to satisfy to be optimal in this subclass. We then
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show that it is possible to construct a “simple” policy that satisfies this necessary condition. This

policy is our candidate optimal policy. The worst-case performance of this policy naturally leads

to an upper bound on R∗
n. To establish that this policy is actually optimal in the entire class of

data-driven policies Πn, we introduce an alternative minimax problem which is equal to R∗
n and

in which we extend the space of strategies that nature may take, to randomized ones. For this

minimax problem, we construct a candidate prior over the space of distributions and show that

the candidate policy above, together with the candidate prior, form a saddle point. This yields the

optimality of the candidate policy but also a characterization of its performance.

4.1 Space Reduction from Arbitrary Mappings to Order Statistics

We first reduce the minimax optimization problem (3) involving two non-parametric infinite di-

mensional optimization problems to a minimax problem over two finite dimensional spaces.

Our next result shows that (3) is equivalent to an optimization problem over the space of mixture

of order statistic policies which has a much simpler structure than the general set of mappings from

data to decisions. More formally, we show the following.

Theorem 3. For any n ≥ 1,

inf
π∈Πn

sup
F∈F

Rn (π, F ) = inf
πλ∈ΠOSn

sup
F∈F

Rn

(

πλ, F
)

.

Theorem 3 enables a crucial space reduction of the policy space. In particular, it allows us

to reduce our optimization problem to the space of mixture of order statistics policies which is

parametrized by the n-dimensional vector of probabilities λ. A notable step in the proof of the

theorem consists in showing that,

inf
π∈Πn

sup
µ∈[0,1]

Rn (π,B (µ)) = inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

. (10)

This equation complements Theorem 1 which states that Bernoulli distributions are the worst-case

distribution against mixture of order statistic policies. On the other hand, (10) implies that mixture

of order statistics policies are the best data-driven policies when facing a Bernoulli distribution.

This result is established through a series of reductions, without loss of optimality, in the space of

policies. We first show that against Bernoulli distributions, one may restrict attention to policies

prescribing inventory in the support of the historical demands. Second, we show that one may

restrict attention to policies that prescribe identical inventory conditional on the number of ones

observed. Third, we show that one may restrict attention to policies that prescribe a monotonically
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increasing inventory as the number of ones observed grows. We finally show that for any policy in

the latter class, there exists a mixture of order statistics policy incurring a (weakly) lower cost.

Moreover, by leveraging the characterization of worst-case performance for mixture of order

statistics policies derived in Theorem 3, we obtain that

R∗
n = inf

π∈Πn
sup
F∈F

Rn (π, F )
(a)
= inf

πλ∈ΠOSn

sup
F∈F

Rn

(

πλ, F
) (b)

= inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

.

where (a) holds by Theorem 3 and (b) follows from Theorem 1.

This implies that Problem (3) is equivalent to the following problem

inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

, (11)

which now involves optimization over two finite dimensional spaces. In Section 4.2 we construct a

candidate optimal policy for (11).

4.2 Candidate Policy for Optimality

In general, prescribing a single order statistic policy can be suboptimal. However, there are par-

ticular cases in which extremal policies (either prescribing the minimum sample or the maximum

one) achieve optimality. We first describe degenerate cases in which extremal order statistics are

optimal.

Proposition 2. For every n,

1. If supµ∈[0,1−q] Rn

(

πOS1,B (µ)
)

> supµ∈[1−q,1] Rn

(

πOS1 ,B (µ)
)

, then πOS1 is optimal for

Problem (3).

2. If supµ∈[0,1−q] Rn

(

πOSn ,B (µ)
)

< supµ∈[1−q,1] Rn

(

πOSn ,B (µ)
)

, then πOSn is optimal for

Problem (3).

This result implies that the optimal performance is obtained by extremal order statistics under

some particular conditions. Note that these two conditions cannot hold simultaneously (we formally

discuss this in Lemma E-2 in Appendix E). We highlight here that the conditions of Proposition 2

do not hold for all data sizes. As a matter of fact, we formally show in Lemma E-3, stated and

proved in Appendix E, that these do not hold for any n ≥ 2
min(q,1−q)2 . Next, we analyze the

structure of optimal policies when the conditions do not hold. To that effect, we introduce the

following assumption.
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Assumption 1. We say that a data size n is non-degenerate if the following two conditions on the

performance of extremal order statistics policies hold

sup
µ∈[0,1−q]

Rn

(

πOS1,B (µ)
)

≤ sup
µ∈[1−q,1]

Rn

(

πOS1,B (µ)
)

(12)

sup
µ∈[0,1−q]

Rn

(

πOSn ,B (µ)
)

≥ sup
µ∈[1−q,1]

Rn

(

πOSn ,B (µ)
)

. (13)

In the case in which Assumption 1 holds, one may benefit from randomization. Next, we

establish a necessary condition satisfied for a mixture of order statistics policies to solve (11).

Proposition 3. For every n such that Assumption 1 holds, for any solution πλ ∈ ΠOS that achieves

the infimum in Problem (11), the solution πλ must satisfy

sup
µ∈[0,1−q]

Rn

(

πλ,B (µ)
)

= sup
µ∈[1−q,1]

Rn

(

πλ,B (µ)
)

. (14)

Proposition 3 establishes a necessary condition for a mixture of order statistics policy to be

optimal for (11). In particular, πλ must balance between worst-cases among Bernoulli distributions

with mean smaller than 1−q and ones with mean larger than 1−q. Intuitively, if the policy does not

satisfy this property, it is possible to improve it by adding mass on lower or higher order statistics.

In Section 3.2.2, we observed that the worst-case performance of SAA is not monotonic as the

number of samples grows and deduced its suboptimality. Proposition 3 highlights why this is the

case. One can show that SAA does not satisfy (14) in general, and by not doing so enables nature

to exploit the imbalance in worst cases to “hurt” the decision-maker. We present in Appendix F.1

a more detailed discussion about the sub-optimality of SAA.

Our next result establishes that it is possible to construct a simple mixture of order statistics

policy that satisfies (14), and randomizes between at most two consecutive order statistics.

Proposition 4. For every n such that Assumption 1 holds, there exist k ∈ {2, . . . , n} and γ ∈ [0, 1]

such that the policy πk,γ that prescribes the order statistic Dk:n w.p γ and Dk−1:n w.p 1−γ satisfies

(14) i.e., there exist µ− ∈ [0, 1 − q] and µ+ ∈ [1 − q, 1] such that,

Rn

(

πk,γ,B(µ−)
)

= Rn

(

πk,γ ,B(µ+)
)

= sup
µ∈[0,1]

Rn

(

πk,γ ,B(µ)
)

. (15)
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Moreover, k satisfies

sup
µ∈[1−q,1]

Rn

(

πOSk−1,B(µ)
)

≥ sup
µ∈[0,1−q]

Rn

(

πOSk−1,B(µ)
)

(16)

sup
µ∈[1−q,1]

Rn

(

πOSk ,B(µ)
)

≤ sup
µ∈[0,1−q]

Rn

(

πOSk ,B(µ)
)

. (17)

In other words, Proposition 4 intuitively characterizes the simplest candidate optimal mixture of

order statistics policy one could consider when no single order statistic policy satisfies the necessary

condition (14).

This candidate policy alleviates the imbalance of the expected relative regret incurred by single

order statistic policies. Indeed, letting k denote the largest order statistic prescribed by the can-

didate policy, we have by (17) that the worst case performance of πOSk on Bernoulli distributions

with relatively small mean supersedes the one for Bernoulli distributions with large ones. On the

contrary, according to (16), this imbalance is reverted for πOSk−1.

Based on Proposition 4, we have a candidate policy πk,γ satisfying a necessary condition for

optimality for Problem (11). This policy induces an upper bound on the value of (11) as we have

inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

≤ sup
µ∈[0,1]

Rn

(

πk,γ,B (µ)
)

.

In Section 4.3, we show that the candidate policy πk,γ not only satisfies a necessary optimality

condition for order statistic policies, but is actually optimal in this space of policies which, by

Theorem 3, implies its optimality in the general space of data-driven policies Πn.

4.3 Optimal Data-Driven Policy and its Performance

After deriving a candidate optimal policy, we now show that this policy is optimal for the initial

Problem (3) by proving its optimality for (11). Remark that for n ≥ 1, Problem (11) is equivalent

to the following problem in which we extend the space of Bernoulli distributions to the space of

distributions over Bernoulli distributions

inf
πλ∈ΠOSn

sup
p∈∆([0,1])

Eµ∼p
[

Rn

(

πλ,B (µ)
)]

, (18)

where ∆ ([0, 1]) is the set of distributions supported on [0, 1]. Furthermore, we have

inf
πλ∈ΠOSn

sup
p∈∆([0,1])

Eµ∼p
[

Rn

(

πλ,B (µ)
)]

≥ sup
p∈∆([0,1])

inf
πλ∈ΠOSn

Eµ∼p
[

Rn

(

πλ,B (µ)
)]

.
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To derive a lower bound matching the upper bound of Section 4.1, it is sufficient to show that there

exists a prior p∗, such that the policy πk,γ introduced in Proposition 4 satisfies,

inf
πλ∈ΠOSn

Eµ∼p∗
[

Rn

(

πλ,B (µ)
)]

= Eµ∼p∗
[

Rn

(

πk,γ,B (µ)
)]

, (19)

Eµ∼p∗
[

Rn

(

πk,γ ,B (µ)
)]

= sup
µ∈[0,1]

Rn

(

πk,γ ,B (µ)
)

. (20)

Equality (19) would imply that the policy πk,γ presented in Proposition 4 is the best response

when Nature selects prior p∗. Equality (20) would ensure that prior p∗ leads to the worst-case

performance of πk,γ .

Consider µ− ∈ [0, 1 − q] and µ+ ∈ [1 − q, 1] as introduced in Proposition 4. Note that (15)

implies that for any prior p0 supported on {µ−, µ+}, we have

Eµ∼p0

[

Rn

(

πk,γ ,B (µ)
)]

= sup
µ∈[0,1]

Rn

(

πk,γ ,B (µ)
)

.

It follows that (20) holds for any such prior. This motivates restricting attention to the set of priors

supported on two Bernoulli distributions. Our next result shows that in the class of priors over two

Bernoulli distributions, there exists a prior for which (19) holds. Formally we show the following.

Proposition 5. For any k ∈ {2, . . . , n}, γ ∈ [0, 1], µ− ∈ (0, 1 − q) and µ+ ∈ (1 − q, 1), there exists

a prior p∗ on {µ−, µ+} such that,

inf
πλ∈ΠOSn

Eµ∼p∗
[

Rn

(

πλ,B (µ)
)]

= Eµ∼p∗
[

Rn

(

πk,γ,B (µ)
)]

.

We are now in a position to state our next main result. The next result provides a character-

ization of an optimal policy and its performance. In particular, we build on Proposition 5 and on

the upper bound derived in Section 4.1 to establish that, when Assumption 1 holds, an optimal

data-driven policy, in the entire space of possible mappings from data to decision, is given by a

randomization over at most two consecutive order statistics of the historical demand samples (in

the case where one of the conditions does not hold, we have already established that an extremal

order statistic is optimal). Formally we show the following.

Theorem 4 (Optimal Data-Driven Policy). For every n such that Assumption 1 holds, there exists

k ∈ {2, . . . , n} and γ ∈ [0, 1] such that the policy πk,γ that prescribes the order statistic Dk:n w.p γ

and Dk−1:n w.p 1 − γ satisfies

sup
F∈F

Rn

(

πk,γ, F
)

= R∗
n.
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Moreover, k satisfies (16) and (17).

Furthermore, if (12) does not hold, πOS1 is optimal for Problem (3). Similarly, if (13) does

not hold, πOSn is optimal for Problem (3).

This result provides a full characterization of an optimal data-driven policy across data sizes.

Notably, i.) an optimal policy and associated optimal performance can be characterized for this

class of problems; and ii.) the optimal data-driven policy takes a surprisingly simple structure:

it randomizes between two consecutive order statistics. This result allows not only to obtain an

optimal algorithm but also to quantify exactly the robust value of data associated with historical

demand for this class of problems.

Remark. (A “better” minimax optimal policy) A corollary of Theorem 4 is that the

deterministic policy which selects the inventory level equal to (1−γ)Dk−1:n+γDk:n is also minimax

optimal (where k and γ are the parameters defined in Theorem 4). In addition, this policy is

uniformly better (across all instances) than the minimax optimal mixture of order statistics policy,

and its performance coincides with the latter against Bernoulli distributions on which it yields the

same worst-case relative regret. We formalize this in Corollary 1 below.

Corollary 1. For every n ≥ 1. Let πk,γ be the minimax optimal policy defined in Theorem 4 and

let πcvx(k,γ) be the policy which prescribes the inventory level γDk−1:n + (1 − γ)Dk:n. Then,

sup
F∈F

Rn

(

πk,γ, F
)

= sup
F∈F

Rn

(

πcvx(k,γ), F
)

= R∗
n.

Furthermore, for every F ∈ F ,

Rn

(

πcvx(k,γ), F
)

≤ Rn

(

πk,γ, F
)

.

Remark. We also observe that a byproduct of our analysis has implications for the value of

data in the Bayesian newsvendor problem. Our analysis shows that there is no gap between the

frequentist problem (3) and its bayesian counterpart in the sense that, against the worst prior

(which is a randomization between two Bernoulli distributions), the Bayesian problem is as hard

(in the sense of the value of data) as the frequentist one and achieves the same worst-case relative

regret.
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4.4 Optimal Performance and the Robust Value of Data

Algorithm 1 (presented in Appendix F.3) enables us to compute the performance of the optimal

policy defined in Theorem 4. Figure 2 presents a comparison of the performance of SAA and the

best achievable performance for a data-driven policy for different critical fractiles.
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Figure 2: Optimal performance. The figure depicts optimal performance versus the performance
of SAA as a function of the number of samples n for different critical fractiles.

In this plot, the curve associated to the optimal policy describes the exact value of historical

demand data in the newsvendor problem. It gives a clear sense of the inherent hardness of this class

of data-driven problems. Deriving the full spectrum of performances for both SAA and the optimal

data-driven policy shows that SAA can be considerably improved when the number of samples is

relatively small. In particular, when q = .9, the relative regret for SAA at n = 9 can be reduced

by more than 50% by using the optimal policy, and for n = 19, it can be reduced by 33%. We also

remark that the performance of SAA matches more closely the optimal one as n becomes large.

The amplitudes of the peaks decrease as the number of samples increases. We further explore the

asymptotic performance in Section 5.

In Table 3, we present a comparison of the number of samples required to guarantee various

levels of relative regret for different values of the critical fractile for both SAA and the optimal policy.

Recall the definition of N exact-SAA presented in Section 3.2.1. We similarly define, the number of

samples required to achieve a given performance threshold τ ≥ 0 when using the optimal policy, as

Nopt(τ) := min
{

m ≥ 1
∣

∣

∣ ∀n ≥ m, R∗
n ≤ τ

}

.

We observe that the number of samples required to ensure a particular level of accuracy across
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Expected relative regret target (τ)
q Bound used 25% 20% 15% 10% 5%

.7
N exact-SAA(τ) 8 11 15 31 84
Nopt(τ) 5 8 12 21 68

.8
N exact-SAA(τ) 11 16 21 41 116
Nopt(τ) 8 11 16 28 91

.9
N exact-SAA(τ) 21 23 42 71 210
Nopt(τ) 14 19 25 50 161

Table 3: Number of samples required by SAA and by the optimal policy to ensure a
target relative regret. The table reports the exact number of samples needed to reach a relative
regret accuracy level, comparing the exact worst-case analysis of SAA developed in Theorem 2, to
the optimal minimax performance presented in Theorem 4 for different values of the critical fractile
q.

all distributions can be reduced by 17 to 40 % (across the targets tested) when moving from SAA

to the minimax optimal policy.

Remark (Structure of the optimal policy). While Theorem 4 does not provide an exact

characterization of the parameter k, we have observed numerically that k is either equal to ⌈qn⌉ or

⌈qn⌉ + 1. We discuss in more details this aspect in Appendix F.2. As a consequence, the optimal

policy can be interpreted as a correction of SAA.

5 Asymptotic Analysis of Optimal Performance

We derived in Section 4 a characterization of an optimal data-driven policy for an arbitrary finite

number of samples. We now provide a simple approximation of the optimal performance as the

number of samples grows large and derive the exact convergence rate of the minimax relative regret

to 0 with its associated multiplicative constant.

In this section, as we study what happens when n changes, we will introduce the notion of a

policy sequence. A policy sequence is defined as a sequence π := (πn)n≥1 of mappings where for

every n ≥ 1, we have πn ∈ Πn. For example, πSAA denotes the sequence of policies such that for

any n ≥ 1,

πSAA
n (Dn

1 ) = D⌈qn⌉:n.

There are three types of asymptotic results one could consider. A first characterization of the

performance, which is typically referred to as consistency or first order optimality states that the

cost of a data-driven policy converges to the optimal cost as the number of samples goes to infinity.
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In our setting, a policy sequence π is said to be consistent if

sup
F∈F

Rn (π, F ) → 0 as n → ∞.

A second, more refined characterization consists in establishing the rate of convergence of the

worst-case performance of a data-driven policy. In the data-driven newsvendor model, for a given

sequence (un)n∈N converging to 0, we say that the cost of a data-driven policy-sequence π converges

to zero at rate un if

sup
F∈F

Rn (π, F ) = O (un) as n → ∞.

At the rate level, the best result one can aim at is to prove that a policy-sequence converges at a

rate of R∗
n, in which case we say that the policy achieves rate-optimality.

A third, yet more refined characterization enables a sharper understanding of the asymptotic

performance of a data-driven policy. It consists in deriving a sequence equivalent to the relative

regret as the number of samples goes large. In particular, for a given sequence (un)n∈N we say that

the performance of a data-driven policy-sequence π is asymptotically equivalent to un if,

sup
F∈F

Rn (π, F ) = un + o (un) as n → ∞.

Deriving an equivalent sequence is a much stronger result than the rate of convergence as it requires

to characterize the convergence rate as well as the multiplicative constant associated with the rate.

When a policy-sequence has a performance asymptotically equivalent to R∗
n, we say that it is

rate-optimal at the multiplicative constant level.

From the work of Levi et al. (2015) one may derive consistency results and the rate of con-

vergence for supF∈F Rn(πSAA, F ). In particular, we show in Lemma E-5, stated and proved in

Appendix E, that their bound implies that supF∈F Rn(πSAA, F ) scales at a O (1/
√
n) rate.

The next result characterizes the asymptotic equivalent of the relative regret for the optimal

data-driven policy and establishes that SAA is not only rate-optimal but also rate-optimal at the

multiplicative constant level.

Theorem 5 (Optimal Asymptotic Behavior). i.) The optimal performance R∗
n converges to zero

and satisfies

R∗
n =

C∗
√
n

+ o

(

1√
n

)

as n → ∞, (21)

where

C∗ :=
1

√

q(1 − q)
max
p≥0

p (1 − Φ(p)) ≈ .17
√

q(1 − q)
,
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with Φ denoting the cdf of a standard Gaussian distribution.

ii.) In addition, the policy sequence associated with SAA is rate-optimal at the multiplicative

constant level. In particular,

sup
F∈F

Rn

(

πSAA
n , F

)

=
C∗
√
n

+ o

(

1√
n

)

as n → ∞.

This result describes the exact rate of convergence of the optimal relative regret as the number

of samples goes to infinity. While Sections 3 and 4 yield the first exact results for arbitrary sample

sizes, the significant novelty in this section lies in explicitly characterizing more finely the rate of

convergence of the performance of the optimal data-driven policy as data grows. Indeed, we derive

a semi-closed form expression of the exact constant C∗ associated with the rate of convergence of

the optimal policy for this class of problems. This expression highlights the role of the critical

fractile q in affecting optimal relative regret performance. Problems with high and low values of q

are “harder” in that they lead to higher constant C∗, and in turn slower convergence to zero.

In addition, we are able to establish that, while SAA was suboptimal for finite samples in

general, it satisfies a very strong form of near-optimality when the number of samples is large.

While SAA leads to relative regret that converges to zero at rate O (1/
√
n), it also leads to the

optimal constant that one could achieve at this rate of convergence.

By leveraging our novel analysis across all data sizes, we derive new insights in the asymptotic

regime. Therefore, understanding more finely the performance of data-driven policies with finite

data also improves our understanding of their performance as the number of samples goes to infinity.

6 Instance-Dependent Performance

Our approach enables us to develop a sharp understanding of the robust performance of SAA and of

a minimax optimal policy for the data-driven newsvendor problem. Our analysis quantifies exactly

the worst-case performance of these algorithms when the worst-case is taken over the whole class

of distributions with finite first moment without any shape restriction. In this section, to illustrate

the range of possible performances that could emerge, we compute the empirical performances of

both algorithms against various distributions: Uniform, Exponential, Lognormal and Pareto. Note

that these distribution families are the ones used in (Levi et al., 2015, Table 1) which are supported

on [0,∞).

We compute numerically the expected regret of a data-driven policy π that uses n samples

against a fixed distribution by repeating independently M = 105 times the following procedure. For
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every m ∈ {1, . . . ,M}, we first draw n independent samples {dm1 , . . . , dmn } representing in-sample

demand realizations. We then draw independently {d̃m1 , . . . , d̃mK} (where K = 1000) samples to

compute the out-of-sample cost. We finally draw a decision realization x̃m from the distribution

π(dm1 , . . . , d
m
n ) and compute the average realized cost c̃m = 1

K

∑K
k=1 c(x̃

m, d̃mk ). Our estimator of

the expected relative regret for policy π is finally defined as

1

M

M
∑

m=1

(

c̃m

opt(F )
− 1

)

.

Table 4 presents the number of samples3 required to achieve a target accuracy level for both

SAA and the minimax optimal policy presented in Corollary 1.

Expected relative regret target (τ)
Policy Distribution 25% 20% 15% 10% 5%

SAA

Worst-case (Bernoulli) 21 23 42 71 210
Uniform(0,1) 6 11 12 14 25
Exponential(1) 7 10 13 20 40
Log-normal(µ = 1, σ = 1.805) 10 10 10 20 40
Pareto(α = 1.5, xm = 1) 10 16 16 20 93

Minimax Optimal Policy

Worst-case (Bernoulli) 14 19 25 50 161
Uniform(0,1) 6 7 10 13 22
Exponential(1) 6 8 10 18 37
Log-normal(µ = 1, σ = 1.805) 9 11 14 19 36
Pareto(α = 1.5, xm = 1) 10 16 16 18 93

Table 4: Number of samples required by SAA and by the minimax optimal policy
πcvx(k,γ) (cf. Corollary 1) to achieve a target relative regret. The table reports a numerical
estimation of the number of samples needed to reach a relative regret accuracy level against several
fixed distributions. The worst-case line indicates the exact number of samples required to achieve
a certain target performance level.

While the minimax policy is optimized relatively to a rather conservative measure, it is notable

that its performance is on par or most often better than the one of SAA even in “mild” cases. In

other words, the “robustification” of SAA provides significant benefits in the worst case along with

improvements against a variety of “mild” distributions.

7 Conclusion

In this paper, we investigate the central class of data-driven newsvendor problems. We analyze

the performance of the central SAA algorithm across all data sizes and establish a characteriza-

3We report the minimum number of samples such that the upper bound of the 95% confidence interval is below
the desired relative regret target.
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tion of its actual worst-case performance. The exact performance characterization of this widely

studied policy leads to a new understanding of the economics of data sizes, highlighting the very

strong performance achievable with limited data. At the same time, it also demonstrates a notable

phenomenon: when using SAA, more data is not synonymous with better worst-case performance.

In turn, we optimize over the entire space of data-driven algorithms that maps data to decisions

and derive an optimal algorithm (in the minimax sense) and its associated performance. This

provides the first optimality result in this class of data-driven problems. It also perfectly quantifies

the value of data and the potential associated with corrections to the classical SAA algorithm,

especially with smaller data sizes. It further emphasizes that for this class of problems, a decision-

maker may operate efficiently even in environments with limited data.

Finally, we provide a simple approximation of the optimal worst-case performance achievable

by a data-driven algorithm when the number of samples is large. In particular, we leverage our

exact analysis across all data sizes to characterize the exact rate of convergence of the minimax

relative regret and characterize in semi-closed form the multiplicative constant associated with it.

We further show that while SAA is suboptimal in general, it is rate-optimal at the multiplicative

constant level when the number of samples is large.

The present paper offers a new lens, that of the transient regime of learning, through which

some data-driven problems may be approached, but also highlights the possibility to operate ef-

fectively with limited data. There are many avenues for future research, ranging from exploring

the possibility of performance characterization and optimization across data sizes for sequential

decision-making problems with different information structures (e.g., censoring) to exploring the

transient regime of learning in contextual newsvendor problems, or more general stochastic problem

classes.
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Electronic Companion: Appendix for

How Big Should Your Data Really Be?

Data-Driven Newsvendor: Learning One Sample at a Time

A Proofs for Section 3

Proof of Proposition 1. Fix F ∈ F . For every r ∈ {1, . . . , n}, let FDr:n denote the distribution

of the random variable Dr:n. We will use the following alternative expression for cF (x).

Lemma A-1. For any distribution F ∈ F , and any x ≥ 0,

cF (x) = b(EF [D] − x) + (b+ h)

∫ x

0
F (y)dy.

This result is proved in Appendix D. In what follows, we use F̄ to denote the complementary

cumulative distribution, i.e., F̄ = 1 − F .

We have

Ex∼FDr:n
[cF (x)]

(a)
= b(EF [D] − EFDr:n

[Dr:n]) + (b+ h)

∫ ∞

0

∫ s

0
F (y)dydFDr:n(s)

(b)
= b(EF [D] − EFDr:n

[Dr:n]) + (b+ h)

∫ ∞

0

∫ ∞

y
dFDr:n(s)F (y)dy

= b(EF [D] − EFDr:n
[Dr:n]) + (b+ h)

∫ ∞

0
F̄Dr:n(y)F (y)dy

= b

(
∫ ∞

0
F̄ (y)dy −

∫ ∞

0
F̄Dr:n(y)dy

)

+ (b+ h)

∫ ∞

0
F̄Dr:n(y)F (y)dy

= (b+ h)

[

q

(
∫ ∞

0
F̄ (y)dy −

∫ ∞

0
F̄Dr:n(y)dy

)

+

∫ ∞

0
F̄Dr:n(y)F (y)dy

]

= (b+ h)

[
∫ ∞

0

(

F̄Dr:n(y)(F (y) − q) + q(1 − F (y))
)

dy

]

(c)
= (b+ h)

[
∫ ∞

0
((1 −Br,n(F (y)))(F (y) − q) + q(1 − F (y))) dy

]

.

Here, (a) follows from Lemma A-1. Equality (b) follows from Fubini-Tonelli which holds because,

s 7→ 1 is a positive function and (R, dFDr:n) and (R, dx) are complete, σ-finite measure spaces.

Moreover, (c) holds because the cumulative distribution function of Dr:n satisfies

FDr:n(x) = Br,n(F (x)).

Therefore, one can derive the desired expression by decomposing the performance of πλ as follows.

C
(

πλ, F, n
)

= EDn
1 ∼F

[

Ex∼πλ(Dn
1 ) [cF (x)]

]

(a)
=

n
∑

i=1

λiEDn
1 ∼F [cF (Di:n)] =

n
∑

i=1

λiEx∼FDi:n [cF (x)],

where (a) follows from law of total expectation conditioning on the value of πλ (Dn
1 ).
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Next, we analyze opt(F ). Using Lemma A-1 we can rewrite the optimal cost as

opt(F ) = cF (x∗
F )

= b(EF [D] − x∗
F ) + (b+ h)

∫ x∗
F

0
F (y)dy

= b

(

∫ x∗
F

0
F̄ (y)dy +

∫ ∞

x∗
F

F̄ (y)dy − x∗
F

)

+ (b+ h)

∫ x∗
F

0
F (y)dy

= b

(

∫ ∞

x∗
F

F̄ (y)dy −
∫ x∗

F

0
F (y)dy

)

+ (b+ h)

∫ x∗
F

0
F (y)dy

= b

∫ ∞

x∗
F

F̄ (y)dy + h

∫ x∗
F

0
F (y)dy

= (b+ h)

[

q

∫ ∞

x∗
F

F̄ (y)dy + (1 − q)

∫ x∗
F

0
F (y)dy

]

= (b+ h)

∫ ∞

0
(1 − q)F (y)1{y < x∗

F } + q(1 − F (y))1{y ≥ x∗
F }dy

(a)
= (b+ h)

∫ ∞

0
(1 − q)F (y)1{F (y) < q} + q(1 − F (y))1{F (y) ≥ q}dy

= (b+ h)

∫ ∞

0
min{(1 − q)F (y), q(1 − F (y))}dy.

(a) holds by definition of x∗
F .

Proof of Theorem 1. Step 1. For any mixture of order statistics policy πλ, by plugging the

simplified expressions of C
(

πλ, F, n
)

and opt(F ) computed in Proposition 1 in the epigraph for-

mulation derived in Lemma E-1, we obtain that problem (2) is equivalent to,

inf
z∈R

z (A-1a)

s.t. sup
F∈F

∫ ∞

0
Ψλ
z (F (y))dy ≤ 0. (A-1b)

where Ψλ
z : [0, 1] → R is such that for every x ∈ [0, 1],

Ψλ
z (x) =

n
∑

i=1

λi [(1 −Bi,n(x))(x− q) + q(1 − x) − (z + 1) min{(1 − q)x, q(1 − x)}] .

Step 2. We next aim to further simplify Problem (A-1). To that end, we establish the following

equivalence

sup
F∈F

∫ ∞

0
Ψλ
z (F (y))dy ≤ 0 if and only if sup

α∈(0,1)
Ψλ
z (α) ≤ 0. (A-2)

First assume that supα∈(0,1) Ψλ
z (α) ≤ 0. Noting that Ψλ

z (·) is continuous on [0, 1], we also have

supα∈[0,1] Ψλ
z (α) ≤ 0. In such a case, for all F ∈ F , since F (y) ∈ [0, 1], we have that Ψλ

z (F (y)) ≤ 0
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for all y ≥ 0 and it directly follows that

∫ ∞

0
Ψλ
z (F (y))dy ≤ 0.

Conversely, suppose that supF∈F
∫∞

0 Ψλ
z (F (y))dy ≤ 0. Note that for any z ∈ R, Ψλ

z (·) is continuous

on [0, 1] and therefore, it achieves its maximum on [0, 1]. Let α∗ ∈ arg maxα∈[0,1] Ψλ
z (α). Let G be

defined by,

G(x) =



















0 if x < 0

α∗ if x ∈ [0, 1)

1 if x ≥ 1

In turn we have

sup
α∈(0,1)

Ψλ
z (α) = sup

α∈[0,1]
Ψλ
z (α) = Ψλ

z (α∗) =

∫ 1

0
Ψλ
z (G(y))dy

(a)

≤ sup
F∈F

∫ ∞

0
Ψλ
z (F (y))dy ≤ 0,

where (a) holds because G ∈ F . As a consequence, (A-2) holds.

Furthermore, note that (A-2) implies that problem (A-1) is equivalent to,

inf
z∈R

z (A-3a)

s.t. sup
α∈(0,1)

n
∑

i=1

λi [(1 −Bi,n(α))(α − q)) + q(1 − α)] − (z + 1) min {(1 − q)α, q(1 − α)} ≤ 0.

(A-3b)

Remark that (A-3) is the epigraph formulation of

sup
α∈(0,1)

n
∑

i=1

λi

[

(1 −Bi,n(α))(α − q) + q(1 − α)

min {(1 − q)α, q(1 − α)} − 1

]

.

Hence, by equivalence between (E-2) and (A-3) we conclude that,

sup
F∈F

Rn

(

πλ, F
)

= sup
α∈(0,1)

n
∑

i=1

λi

[

(1 −Bi,n(α))(α − q) + q(1 − α)

min {(1 − q)α, q(1 − α)} − 1

]

.

For the last step of the proof, we use the following lemma (whose proof is deferred to Ap-

pendix D), which establishes that the worst-case computed above is achieved by a Bernoulli distri-

bution.

Lemma A-2. For any r ∈ {1 . . . , n} and α ∈ [0, 1],

Rn

(

πOSr ,B (1 − α)
)

=
(1 −Br,n(α))(α − q) + q(1 − α)

min {(1 − q)α, q(1 − α)} − 1.

This completes the proof.
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B Proofs for Section 4

Proof of Theorem 3. Fix n ≥ 1. It is easy to see that

inf
π∈Πn

sup
F∈F

Rn (π, F ) ≤ inf
πλ∈ΠOSn

sup
F∈F

Rn

(

πλ, F
)

.

We now prove that

inf
π∈Πn

sup
F∈F

Rn (π, F ) ≥ inf
πλ∈ΠOSn

sup
F∈F

Rn

(

πλ, F
)

.

To do so, we claim that we only need to show that mixture of order statistics policies are optimal

when reducing the space of distributions to Bernoulli ones. Formally, we need to show that

inf
π∈Πn

sup
µ∈[0,1]

Rn (π,B (µ)) = inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

. (B-1)

Indeed, assuming that (B-1) holds, one concludes the proof by remarking that,

inf
π∈Πn

sup
F∈F

Rn (π, F ) ≥ inf
π∈Πn

sup
µ∈[0,1]

Rn (π,B (µ))

(a)
= inf

πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

(b)
= inf

πλ∈ΠOSn

sup
F∈F

Rn

(

πλ, F
)

,

where (a) would follow from (B-1) and (b) is a consequence of Theorem 1.

We now prove (B-1).

We first reduce the set of policies π ∈ Πn without loss of optimality for the following problem.

inf
π∈Πn

sup
µ∈[0,1]

Rn (π,B (µ)) (B-2)

We show that one may restrict attention to policies such that the support of the distribution of

inventory is included in the interval defined by the smallest observed demand and the largest one.

Formally, the following result in proved in Appendix D.

Lemma B-1. For any policy π ∈ Πn there exists a policy π′ ∈ Πn with a lower cost such that for

every Dn
1 ∈ {0, 1}n, the support of π′ (Dn

1 ) is a subset of [D1:n,Dn:n].

Note that Lemma B-1 implies that π′ (0n1 ) = 0 and π′ (1n1 ) = 1 where 0n1 (resp. 1n1 ) is the

sequence of historical data in which all demand observations are 0 (resp. 1). In turn, we leverage

this result to further reduce the space of policies without loss of optimality to the (n+1)-dimensional

space of sum-based policies defined as follows.

Definition 2. (Sum-based policies) Consider a sequence e = (ei)i∈{0,...,n} ∈ [0, 1]n+1. We say

that a policy πΣe is a sum-based policy if for any i ∈ {0, . . . , n} and any Dn
1 ∈ {0, 1}n, such that

∑n
j=1Dj = i, we have that,

πΣe (Dn
1 ) = ei.
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Let π ∈ Πn be a policy which support is included in the interval defined by the smallest

observed demand and the largest one. By Lemma B-1 this restriction is without loss of optimality.

We construct a sum-based policy that ensures the same cost as π against any Bernoulli distribution.

Define for every i ∈ {0, . . . , n} the set Di
n as

Di
n :=







Dn
1 ∈ {0, 1}n

∣

∣

∣

n
∑

j=1

Dj = i







.

Moreover, consider the sequence e = (ei)i∈{0,...,n} ∈ [0, 1]n+1 such that for every i ∈ {0, . . . , n}

ei =
1

|Di
n|

∑

Dn
1 ∈Di

n

Ex∼π(Dn
1 ) [x] .

By Lemma B-1 we have that ei ∈ [0, 1] for all i ∈ {0, . . . , n}, e0 = 0 and en = 1 which implies that

πΣe is a well defined sum-based policy.

To ease notations, let Sj denote the event {∑n
i=1 Di = j} for every j ∈ {0, . . . , n}. We note

that for every µ ∈ [0, 1] the cost of the policy π satisfies

C (π,B (µ) , n)

b+ h

(a)
=

1

b+ h
EDn

1 ∼B(µ)

[

Ex∼π(Dn
1 ) [µb (1 − x) + (1 − µ)hx]

]

= µ · q +
n
∑

i=0

(1 − µ− q) · EDn
1 ∼B(µ)

[

Ex∼π(Dn
1 ) [x]

∣

∣

∣Si
]

· P (Si)

(b)
= µ · q +

n
∑

i=0

(1 − µ− q) · 1

|Di
n|

∑

Dn
1 ∈Di

n

Ex∼π(Dn
1 ) [x] · P (Si)

= µ · q +
n
∑

i=0

(1 − µ− q) · ei · P (Si) = C
(

πΣe ,B (µ) , n
)

, (B-3)

where (a) holds because the support of π (Dn
1 ) is a subset of [D1:n,Dn:n], which is included in

[0, 1] for Bernoulli distributions and (b) follows from the fact that, for Bernoulli distributions, the

distribution of Dn
1 conditional on {∑n

j=1Dj = i} is that of a uniform law on Di
n.

Lemma B-1 along with (B-3) imply that the minimax problem across the general set of data-

driven policies is actually equivalent to a minimax problem in which the space of policies is param-

eterized by a (n+ 1) dimensional space. Namely, we have showed that

inf
π∈Πn

sup
µ∈[0,1]

Rn (π,B (µ)) = inf
e∈[0,1]n+1

e0=0, en=1

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

. (B-4)

Recall that for a policy πΣe , ei represents the inventory prescribed by the policy after observing

i ones. Natural candidate policies in this space are ones for which the inventory level prescribed

is increasing as a function of the number of ones observed in historical data. Our next result

formalizes this idea.
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Lemma B-2. For any n ≥ 1,

inf
e∈[0,1]n+1

e0=0, en=1

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

= inf
e∈[0,1]n+1

e0=0, en=1
(ei) non-decreasing

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

.

The proof is deferred to Appendix D.

The last step of our proof consists in showing that the performance of any policy πΣe ∈ ΠDS
n

such that e0 = 0, en = 1 and (ei)i∈{0,...,n} is non-decreasing, can be reproduced by a mixture of

order statistics policy. Consider a sequence (ei)i∈{0,...,n} satisfying these assumptions and define

the vector of probabilities λ such that for all i ∈ {1, . . . , n},

λi = en−i+1 − en−i.

Note that for all i ∈ {1, . . . , n}, λi ≥ 0 by monotonicity of (ei)i∈{0,...,n} and
∑n
i=1 λi = en − e0 = 1.

Hence λ is a well defined probability vector. We now show that the mixture of order statistics

policy πλ incurs the same cost as πΣe against any Bernoulli distribution. Let µ ∈ [0, 1], then the

cost of πλ is

C
(

πλ,B (µ) , n
)

b+ h
= µ · q +

n
∑

i=0

(1 − µ− q) · EDn
1 ∼B(µ)

[

Ex∼πλ(Dn
1 ) [x]

∣

∣

∣Si
]

· P (Si)

(a)
= µ · q +

n
∑

i=0

(1 − µ− q) ·
n
∑

k=1

λk · EDn
1 ∼B(µ)

[

Dk:n

∣

∣

∣Si
]

· P (Si)

(b)
= µ · q +

n
∑

i=0

(1 − µ− q) · P (Si) ·
n
∑

k=n−i+1

λk

= µ · q +
n
∑

i=0

(1 − µ− q) · P (Si) · ei = C
(

πΣe,B (µ) , n
)

,

where (a) holds because πλ prescribes Dk:n with probability λk for any k ∈ {1, . . . , n} and (b)

follows from the fact that for every k ∈ {1, . . . , n},

Dk:n =







0 a.s. if
∑n
j=1Dj ≤ n− k

1 a.s. if
∑n
j=1Dj ≥ n− k + 1.

As a consequence,

inf
e∈[0,1]n+1

e0=0, en=1
(ei) non-decreasing

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

≥ inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

. (B-5)
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We finally conclude that,

inf
π∈Πn

sup
µ∈[0,1]

Rn (π,B (µ))
(a)
= inf

e∈[0,1]n+1

e0=0, en=1

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

(b)
= inf

e∈[0,1]n+1

e0=0, en=1
(ei) non-decreasing

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

(c)

≥ inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

,

where (a) holds by (B-4), (b) follows from Lemma B-2 and (c) is a consequence of (B-5). This

completes the proof.

Proof of Proposition 2. Assume that,

sup
µ∈[0,1−q]

Rn

(

πOS1,B (µ)
)

> sup
µ∈[1−q,q]

Rn

(

πOS1,B (µ)
)

. (B-6)

We show that πOS1 is an optimal mixture of order statistics policy. Note that for every r ∈ {2, . . . , n}
we have

sup
µ∈[0,1]

Rn

(

πOS1 ,B (µ)
)

(a)
= sup

µ∈[0,1−q]
Rn

(

πOS1 ,B (µ)
)

(b)
< sup

µ∈[0,1−q]
Rn

(

πOSr ,B (µ)
)

≤ sup
µ∈[0,1]

Rn

(

πOSr ,B (µ)
)

,

where (a) follows from (B-6) and (b) holds by Lemma E-4 stated and proved in Appendix E.

In turn, for every πλ ∈ ΠOS
n such that λ1 < 1, we have that,

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

= sup
µ∈[0,1]

n
∑

i=1

λiRn

(

πOSi ,B (µ)
)

> sup
µ∈[0,1]

Rn

(

πOS1 ,B (µ)
)

.

As a consequence, πOS1 is optimal and satisfies,

R∗
n = inf

πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

= sup
µ∈[0,1]

Rn

(

πOS1,B (µ)
)

.

Similarly, assuming that (13) does not hold, we show by a similar argument that πOSn is optimal

for Problem (3).

Proof of Proposition 3. Suppose first that

sup
µ∈[0,1−q]

Rn

(

πλ,B (µ)
)

> sup
µ∈[1−q,1]

Rn

(

πλ,B (µ)
)

. (B-7)

In such a case, we show that there exists an alternative policy with strictly lower worst-case per-
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formance.

We first argue that λ must be such that λ1 < 1. Indeed, note that, by assumption, we have

sup
µ∈[0,1−q]

Rn

(

πOS1,B (µ)
)

≤ sup
µ∈[1−q,1]

Rn

(

πOS1,B (µ)
)

, (B-8)

The conjunction of (B-7) and (B-8) implies that λ1 < 1.

Next we argue that the policy πOS1 is strictly better than πλ if µ ∈ [0, 1 − q]. We have

sup
µ∈[0,1−q]

Rn

(

πλ,B (µ)
)

= sup
µ∈[0,1−q]

n
∑

i=1

λiRn

(

πOSi ,B (µ)
)

(a)
> sup

µ∈[0,1−q]

n
∑

i=1

λiRn

(

πOS1,B (µ)
)

= sup
µ∈[0,1−q]

Rn

(

πOS1,B (µ)
)

. (B-9)

where (a) follows from the fact that λ1 < 1, together with Lemma E-4 stated and proved in

Appendix E.

Next, we construct an explicit policy that improves upon πλ.

For any ν ∈ [0, 1], consider the policy π̃ν which chooses the policy πOS1 with probability ν and

the policy πλ with probability 1 − ν. Remark that π̃ν is a mixture of order statistics policy and for

any F ∈ F ,

Rn (π̃ν , F ) = ν · Rn

(

πOS1, F
)

+ (1 − ν) · Rn

(

πλ, F
)

.

Define the mapping L from [0, 1] to R such that,

L : ν 7→ sup
µ∈[0,1−q]

Rn (π̃ν ,B (µ)) − sup
µ∈[1−q,1]

Rn (π̃ν ,B (µ)) .

We first show that L is continuous. Remark that it is sufficient to show that, the following mapping

g is continuous.

g : ν 7→ sup
µ∈[0,1−q]

f(ν, µ),

where f(ν, µ) := Rn (π̃ν ,B (µ)). First remark that by Lemma A-2, the mapping µ 7→ Rn

(

πλ
′
,B (µ)

)

is continuous for every mixture of order statistic πλ
′
. Hence, f is continuous in its second compo-

nent. Moreover, f is affine in its first component, and f (·, µ) is M - Lipschitz for every µ ∈ [0, 1−q],
where M := supµ∈[0,1−q] |Rn

(

πλ,B (µ)
)

− Rn

(

πOS1,B (µ)
)

|. Remark that M < ∞ as it is the

supremum of a continuous function on a compact. By continuity of f(ν, ·) on a compact set we

also have that, for every ν1, ν2 ∈ [0, 1], there exists µ1 and µ2 achieving the maximum for f(ν1, ·)
and f(ν2, ·) and

g(ν1) − g(ν2) = f(ν1, µ1) − f(ν2, µ2)

= f(ν1, µ1) − f(ν1, µ2) + f(ν1, µ2) − f(ν2, µ2) ≤ f(ν1, µ2) − f(ν2, µ2) ≤ M |ν1 − ν2|.
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Which implies that g is M -Lipschitz on [0, 1] and thus continuous.

Hence L is continuous. Moreover, it satisfies L(0) > 0 and L(1) ≤ 0 so, by the intermediate

value theorem, we conclude that there exists ν∗ ∈ (0, 1] such that L(ν∗) = 0.

We now show that π̃ν∗ strictly improves on πλ. Indeed, we have

sup
µ∈[0,1]

Rn (π̃ν∗ ,B (µ))
(a)
= sup

µ∈[0,1−q]
Rn (π̃ν∗ ,B (µ))

(b)
< sup

µ∈[0,1−q]
Rn

(

πλ,B (µ)
)

,

where (a) holds because L(ν∗) = 0 and (b) follows from (B-9) and from the fact that ν∗ > 0. This

shows that, πλ is suboptimal.

Suppose that

sup
µ∈[0,1−q]

Rn

(

πλ,B (µ)
)

< sup
µ∈[1−q,1]

Rn

(

πλ,B (µ)
)

.

In this case, the same reasoning, but by increasing the weight on the nth order statistic would lead

to a strict improvement. Therefore, if an optimal policy πλ exists for problem (11) it must satisfy,

sup
µ∈[0,1−q]

Rn

(

πλ,B (µ)
)

= sup
µ∈[1−q,1]

Rn

(

πλ,B (µ)
)

.

Proof of Proposition 4. It follows from (12) and (13) that there exists a k ∈ {2, . . . , n} such

that

sup
µ∈[0,1−q]

Rn

(

πOSk−1,B (µ)
)

≤ sup
µ∈[1−q,1]

Rn

(

πOSk−1,B (µ)
)

sup
µ∈[0,1−q]

Rn

(

πOSk ,B (µ)
)

≥ sup
µ∈[1−q,1]

Rn

(

πOSk ,B (µ)
)

.

Pick a k verifying these two relations. We now construct a policy πk,γ randomizing between

Dk−1:n and Dk:n and which satisfies the necessary condition (14). Consider the family of policies
(

πk,λ
)

λ∈[0,1]
prescribing Dk:n w.p λ and Dk−1:n w.p 1 − λ.

We consider the function L defined from [0, 1] to R as,

L : λ 7→ sup
µ∈[0,1−q]

Rn

(

πk,λ,B (µ)
)

− sup
µ∈[1−q,1]

Rn

(

πk,λ,B (µ)
)

,

and note that L(0) ≤ 0 and L(1) ≥ 0. Moreover, L is continuous on [0, 1] (see proof of Proposi-

tion 3). Thus by the intermediate value theorem, L(γ) = 0 for some γ ∈ [0, 1]. We denote by πk,γ

our candidate policy that prescribes the order statistic Dk:n w.p γ and Dk−1:n w.p 1−γ. We define

µ− ∈ arg maxµ∈[0,1−q] Rn

(

πk,γ ,B (µ)
)

and µ+ ∈ arg maxµ∈[1−q,1] Rn

(

πk,γ ,B (µ)
)

which exists by

continuity on a compact. By construction of µ+, µ− and because L(γ) = 0, we conclude that,

Rn

(

πk,γ ,B(µ−)
)

= Rn

(

πk,γ,B(µ+)
)

= sup
µ∈[0,1]

Rn

(

πk,γ,B(µ+)
)

.
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Proof of Proposition 5. Consider the family of priors (pδ)δ∈[0,1] supported on
{

µ−, µ+
}

and such

that for any δ ∈ [0, 1],

pδ(µ) =







δ if µ = µ+

1 − δ if µ = µ−.

We now show that there exists δ such that πk,γ is optimal for the problem,

inf
πλ∈ΠOSn

Eµ∼pδ
[

Rn(πλ,B(µ))
]

. (B-10)

We first establish a sufficient condition for a policy πλ to be optimal for problem (B-10).

Remark that policies in ΠOS
n observe samples prior to decision hence,

inf
πλ∈ΠOSn

Eµ∼pδ [Rn(π,B(µ))] =
n
∑

j=0

P

(

n
∑

i=1

Di = j

)

inf
πλ∈ΠOSn

Eµ∼pδ

[

Rn

(

πλ,B(µ)
)
∣

∣

∣

n
∑

i=1

Di = j

]

,

where the equality holds because πλ observes the historical samples and because the posterior
distribution of pδ only depends on the number of ones observed, i.e.

∑n
i=1 Di is a sufficient statistic.

To ease notations, let Sj denote the event {∑n
i=1 Di = j} for every j ∈ {0, . . . , n}. To solve the

inner optimization problem, we first notice that for every j ∈ {0, . . . , n} we have

Eµ∼pδ
[

Rn(πλ,B(µ))|Sj
]

= P
(

µ = µ+|Sj
)

µ+ − (1 − q) + (1 − µ+ − q)EDn
1 ∼B(µ+)

[

E
x∼πλ(Dn

1 )[x]
∣

∣

∣Sj
]

(1 − µ+) (1 − q)

+ P
(

µ = µ−|Sj
)

(1 − µ− − q)EDn
1 ∼B(µ−)

[

Ex∼πλ(Dn
1 )[x]

∣

∣

∣Sj
]

µ−q
(a)
= aj · E

Dn
1 ∼B( 1

2 )

[

E
x∼πλ(Dn

1 )[x]
∣

∣

∣Sj
]

+ bj ,

where (a) holds because EDn
1 ∼B(µ)

[

Ex∼πλ(Dn
1 )[x]

∣

∣

∣Sj
]

= EDn
1 ∼B(µ′)

[

Ex∼πλ(Dn
1 )[x]

∣

∣

∣Sj
]

for any µ, µ′ ∈
(0, 1). This follows from the fact that for Bernoulli distributions, the distribution of Dn

1 conditional

on Sj is the same for every µ ∈ (0, 1). Moreover,

aj := P

(

µ = µ+ |Sj
) 1 − q − µ+

(1 − µ+)(1 − q)
+ P

(

µ = µ− |Sj
) 1 − q − µ−

µ−q

and bj = P
(

µ = µ+ |Sj
) µ+−(1−q)

(1−µ+)(1−q) .

Note that, by definition of mixture of order statistics policies, we must have that, πλ (Dn
1 ) has

a support included in [0, 1] since Dn
1 ∈ {0, 1}n. Hence, we obtain that for any x0 ∈ [0, 1] if a policy

πλ satisfies the following property,

E
Dn

1 ∼B( 1
2)

[

Ex∼πλ(Dn
1 ) [x]

∣

∣

∣Sj
]

=



















0 if aj > 0

x0 if aj = 0

1 if aj < 0,

then it is optimal for problem (B-10). We now aim at proving that there exists a prior such that
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πk,γ satisfies this sufficient condition. The challenge is that the sufficient condition involves the sign

of the coefficients (aj)j∈{0,...,n} depending on µ−, µ+ and δ. We simplify this dependence with our

next lemma by showing that for any choice of µ− < 1 − q ≤ µ+, we can construct a prior such that

the sequence (aj)j∈{0,...,n} is decreasing and hits 0 exactly once. Formally, we show the following.

Lemma B-3. For any µ− ∈ [0, 1 − q), µ+ ∈ [1 − q, 1), and for any j0 ∈ {1, . . . , n}, there exists

δ′ ∈ [0, 1] such that under prior pδ′ , the sequence (aj)j∈{0,...,n} is strictly decreasing and aj0 = 0.

The proof is deferred to Appendix D. Lemma B-3 implies that for any j0 ∈ {1, . . . , n} and

x0 ∈ [0, 1], any policy πλ ∈ ΠOS
n that satisfies

E
Dn

1 ∼B( 1
2)

[

Ex∼πλ(Dn
1 ) [x]

∣

∣

∣Sj
]

=



















0 if j ≤ j0 − 1

x0 if j = j0

1 if j ≥ j0 + 1,

is optimal for problem (B-10). We finally prove that πk,γ satisfies this simplified sufficient condition.

Note that by construction, for any j ∈ {1, . . . , n},

E
Dn

1 ∼B( 1
2 )

[

Ex∼πk,γ(Dn
1 ) [x]

∣

∣

∣Sj
]

= λE
[

Dk:n

∣

∣

∣Sj
]

+ (1 − λ)E
[

Dk−1:n

∣

∣

∣Sj
]

which implies that,

E
Dn

1 ∼B( 1
2 )

[

Ex∼πk,γ(Dn
1 ) [x]

∣

∣

∣Sj
]

=



















0 if j ≤ n− k

λ if j = n− k + 1

1 if j ≥ n− k + 2.

(B-11)

Therefore, Lemma B-3 applied with j0 = n − k + 1 implies that there exists δk such that, πk,γ is

optimal for problem (B-10). Setting p∗ = pδk , we showed that,

inf
πλ∈ΠOSn

Eµ∼p∗
[

Rn(πλ,B(µ))
]

= Eµ∼p∗
[

Rn(πk,γ ,B(µ))
]

.

Proof of Theorem 4. First assume that, (12) and (13) hold and consider k ∈ {2, . . . , n}, γ ∈
[0, 1], µ− ∈ [0, 1 − q] and µ+ ∈ [1 − q, 1] as defined in Proposition 4. We have that πk,γ satisfies the

necessary condition (15).

We now show that πk,γ is optimal for the problem

inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

.

First, we remark that,

Rn

(

πk,λ,B(µ−)
)

= sup
µ∈[0,1]

Rn

(

πk,γ ,B (µ)
)

≥ inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)
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because πk,γ ∈ ΠOS
n . To prove the lower bound, we note that for these choices of k, γ, µ− and µ+,

Proposition 5 ensures that there exists a prior p∗ supported on {µ−, µ+} such that,

inf
πλ∈ΠOSn

Eµ∼p∗
[

Rn(πλ,B(µ))
]

= Eµ∼p∗
[

Rn(πk,γ ,B(µ))
]

. (B-12)

Therefore,

inf
πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

= inf
πλ∈ΠOSn

sup
p∈∆([0,1])

Eµ∼p
[

Rn

(

πλ,B (µ)
)]

(c)
≥ sup

p∈∆([0,1])
inf

πλ∈ΠOSn

Eµ∼p
[

Rn

(

πλ,B (µ)
)]

≥ inf
πλ∈ΠOSn

Eµ∼p∗
[

Rn

(

πλ,B (µ)
)]

(d)
= Eµ∼p∗

[

Rn(πk,γ ,B(µ))
]

(e)
= Rn

(

πk,λ,B(µ−)
)

,

where (c) holds by weak duality, (d) is a consequence of (B-12) and (e) follows from (15). The

lower bound matches our upper bound. Thus all inequalities are equalities and we have exhibited

a saddle point for (18). This implies that,

R∗
n

(a)
= inf

πλ∈ΠOSn

sup
µ∈[0,1]

Rn

(

πλ,B (µ)
)

= Rn

(

πk,γ ,B(µ−)
)

= sup
F∈F

Rn

(

πk,γ , F
)

,

where (a) follows from Theorem 3.

In other words, πk,γ is an optimal minimax data-driven algorithm and its performance can be

explicitly computed by evaluating it against a specific Bernoulli distribution.

Proof of Corollary 1. Fix n ≥ 1. We note that it is sufficient to show that, for every F ∈ F ,

Rn

(

πcvx(k,γ), F
)

≤ Rn

(

πk,γ, F
)

. (B-13)

We then conclude the proof by remarking that,

R∗
n ≤ sup

F∈F
Rn

(

πcvx(k,γ), F
) (a)

≤ sup
F∈F

Rn

(

πk,γ , F
) (b)

= R∗
n,

where (a) follows from (B-13) and (b) is a consequence of Theorem 4.

We now prove (B-13). Fix F ∈ F . We have that,

C(πcvx(k,γ), F, n) = EDn
1 ∼F

[

Ex∼πcvx(k,γ)(Dn
1 ) [cF (x)]

]

= EDn
1 ∼F [cF ((1 − γ)Dk−1:n + γDk:n)]

(a)
≤ EDn

1 ∼F [(1 − γ) cF (Dk−1:n) + γcF (Dk:n)] = C(πk,γ , F, n),

where (a) holds because x 7→ cF (x) is the expectation of a family of convex functions and is thus

convex.
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C Proofs for Section 5

Proof of Theorem 5. The proof of this theorem goes as follows. We first establish, in Lemma C-1,

a characterization of the asymptotic behavior of single order statistic policy sequences for different

regimes. As a corollary, we derive the asymptotic approximation of the worst-case performance of

SAA.

Finally, we leverage the characterization of the optimal policy derived in Theorem 4 to reduce

the understanding of the optimal performance to a problem involving mixture of order statistics.

We finally, conclude by applying again Lemma C-1.

Step 1: We characterize the performance of a sequence of single order statistic policies. We

first remark that a sequence of single order statistic policies can be characterized by a sequence

r := (rn)n≥1 where for each n ≥ 1, rn ∈ {1, . . . , n}. We denote by π
r, the sequence of policies such

that for any n ≥ 1, πr
n = πOSrn .

The next result characterizes the asymptotic behavior of the worst-case performance of πr.

Lemma C-1. i) If r is such that, limn→∞
|rn−qn|√

n
= ℓ < ∞, then

lim
n→∞

√
n · sup

F∈F
Rn (πr

n, F ) = max

[

max
δ≥0

H+(δ, ℓ),max
δ≥0

H−(δ, ℓ)

]

.

where, H+(δ, ℓ) := δ
q(1−q)

(

1 − Φ

(

δ−ℓ√
q(1−q)

))

, H−(δ, ℓ) := δ
q(1−q)

(

1 − Φ

(

δ+ℓ√
q(1−q)

))

and Φ

is the cdf of the standard gaussian distribution.

Furthermore,

• If the sequence µn is such that limn→∞
√
n (1 − q − µn) = δ > 0, then

lim
n→∞

√
nRn(πr

n,B(µn)) = H+ (δ, ℓ) .

• If the sequence µn is such that limn→∞
√
n (µn − (1 − q)) = δ > 0, then

lim
n→∞

√
nRn(πr

n,B(µn)) = H− (δ, ℓ) .

ii) If r is such that, limn→∞
|rn−qn|√

n
= ∞ then,

lim
n→∞

√
n · sup

F∈F
Rn (πr

n, F ) = ∞

and there exists a sequence of elements {µn}n≥1 in [0, 1] such that

lim
n→∞

√
nRn(πr

n,B(µn)) = ∞.

The proof is presented in Appendix D.

Lemma C-1 establishes that there are two notable regimes driving the asymptotic worst-case

performance. In the first regime where the sequence of order statistics is asymptotically “close”
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to ⌈qn⌉, in the sense that rn = qn + O (
√
n), the worst-case relative regret decreases at a rate

of Θ (1/
√
n). We also establish a closed form expression of the exact limiting constant associated

to the rate of convergence and characterize the family of near worst-case distributions, namely

Bernoulli distributions whose means go to 1 − q at a rate Θ (1/
√
n).

In the second regime for which the sequence of order statistics is asymptotically “far” from ⌈qn⌉,

we show that the worst-case relative regret decreases at a slower rate as it converges at a rate of

ω (1/
√
n). This naturally implies that this family of policy sequences is necessarly suboptimal and

strictly dominated by sequences of order statistics asymptotically “close” to ⌈qn⌉.

Step 2: We now characterize the asymptotic performance of SAA. Let rSAA = (⌈qn⌉)n∈N
and

recall that for every n ∈ N, we have πSAA
n = πr

SAA

n . Note that limn→∞
|rSAA
n −qn|√

n
= 0. Therefore, by

(i) in Lemma C-1 we conclude that,

lim
n→∞

√
n sup
F∈F

Rn

(

πSAA
n , F

)

= max

[

max
δ≥0

H+(δ, 0),max
δ≥0

H−(δ, 0)

]

= C∗. (C-1)

Step 3: We finally derive an asymptotic approximation of the optimal performance. We use the

characterization of the optimal policy derived in Theorem 4 and denote by (kn)n≥1 and (γn)n≥1 the

sequences of parameters that describe the optimal policy when facing n samples. For any n ∈ N,

we have πk,γ
n = πkn,γn . For every n ∈ N, and every µn ∈ [0, 1] remark that,

sup
F∈F

Rn

(

πSAA
n , F

)

≥ R∗
n

(a)
= sup

F∈F
Rn

(

πk,γ
n , F

)

(b)

≥ γnRn

(

πkn ,B (µn)
)

+ (1 − γn)Rn

(

πkn−1,B (µn)
)

, (C-2)

where (a) holds by Theorem 4 and (b) is by definition of πk,γ
n .

Remark that, (C-1) together with the first inequality of (C-2) imply that,

lim sup
n→∞

√
nR∗

n ≤ C∗. (C-3)

We now compute a lower bound on the limit of
√
nR∗

n that matches the upper bound derived in (C-3). We

only need to show that lim infn→∞
√
n supF∈F Rn

(

πk,γ
n , F

)

≥ C∗. Consider an increasing function ψ such

that
√

ψ(n) supF∈F Rψ(n)

(

πk,γ

ψ(n), F
)

converges. By inequality (b) in (C-2), one only need to show that there

exists a sequence (µn)n∈N
such that,

lim sup
n→∞

√

ψ(n)
(

γψ(n) · Rψ(n)

(

πkψ(n) ,B
(

µψ(n)

))

+ (1 − γψ(n)) · Rψ(n)

(

πkψ(n)−1 ,B
(

µψ(n)

)))

≥ C∗.

We prove that this lower bound holds by considering different scenarios for the sequence k. Consider an

increasing function ψ̃ such that
|kψ̃(ψ(n))−qψ̃(ψ(n))|√

ψ̃(ψ(n))
converges to a limit ℓ in R ∪ {∞}. To ease notations , we

let f := ψ̃ ◦ ψ and kf :=
(

kf(n)

)

n∈N
.

Case 1: ℓ = ∞. Note that,

lim
n→∞

|kf(n) − qf(n)|
√

f(n)
= lim
n→∞

|kf(n) − 1 − qf(n)|
√

f(n)
= ∞.
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Hence, by (ii) in Lemma C-1 we conclude that there exists a sequence µn such that

lim
n→∞

√

f(n)Rn

(

πkf(n) ,B
(

µf(n)

))

= lim
n→∞

√

f(n)Rf(n)

(

πkf(n)−1 ,B
(

µf(n)

))

= ∞.

and so,

lim
n→∞

√

f(n)
(

γf(n) · Rf(n)

(

πkf(n) ,B
(

µf(n)

))

+ (1 − γf(n)) · Rf(n)

(

πkf(n)−1 ,B
(

µf(n)

)))

= ∞.

Case 2: ℓ < ∞. In this case, (i) in Lemma C-1 establishes the asymptotic behavior of the worst-case

expected relative regret. We remark that the limit depends only on ℓ. Therefore,

lim
n→∞

√

f(n)Rn

(

πkf(n) ,B
(

µf(n)

))

= max

[

max
δ≥0

H+(δ, ℓ),max
δ≥0

H−(δ, ℓ)

]

lim
n→∞

√

f(n)Rf(n)

(

πkf(n)−1 ,B
(

µf(n)

))

= max

[

max
δ≥0

H+(δ, ℓ),max
δ≥0

H−(δ, ℓ)

]

.

Let δ+ ∈ arg maxδ≥0 H
+(δ, ℓ) and δ− ∈ arg maxδ≥0 H

−(δ, ℓ). Assume that H+(δ+, ℓ) ≥ H−(δ−, ℓ) (the

other case is proved by a similar argument) and consider the sequence (µn)n∈N
defined as, µn = 1 − q − δ+

√
n

for every n ≥ 1. By Lemma C-1 we conclude that,

lim
n→∞

√

f(n)Rn

(

πkf(n) ,B
(

µf(n)

))

= lim
n→∞

√

f(n)Rn

(

πkf(n)−1 ,B
(

µf(n)

))

= H+
(

δ+, ℓ
)

.

Hence,

lim
n→∞

√

f(n)
(

γf(n) · Rf(n)

(

πkf(n) ,B
(

µf(n)

))

+ (1 − γf(n)) · Rf(n)

(

πkf(n)−1 ,B
(

µf(n)

)))

= H+
(

δ+, ℓ
)

.

To conclude the proof, we need to show that H+ (δ+, ℓ) ≥ C∗. This is a straightforward consequence of the

definition of δ+ together wit the following lemma.

Lemma C-2. For any ℓ ∈ R,

max

[

max
δ≥0

H+(δ, ℓ),max
δ≥0

H−(δ, ℓ)

]

≥ C∗.

The proof is deferred to Appendix D.

We hence conclude that

lim sup
n→∞

√

ψ(n)
(

γψ(n) · Rψ(n)

(

πkψ(n) ,B
(

µψ(n)

))

+ (1 − γψ(n)) · Rψ(n)

(

πkψ(n)−1 ,B
(

µψ(n)

)))

≥ C∗.

Therefore we showed that,

C∗ = lim
n→∞

√
n sup
F∈F

Rn

(

πSAA
n , F

)

≥ lim sup
n→∞

R∗
n ≥ lim inf

n→∞
R∗
n ≥ C∗,

which concludes the proof.
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D Proofs of Auxiliary Results

Proof of Lemma A-1. Fix F ∈ F . We next analyze cF (x) by decomposing the expected cost.

We have

cF (x) = ED∼F
[

b(D − x)+ + h(x−D)+
]

= h

∫

[0,x]
(x− y)dF (y) + b

∫

(x,∞)
(y − x)dF (y)

= (b+ h)

∫

[0,x]
(x− y)dF (y) + b

∫

[0,∞)
(y − x)dF (y)

= (b+ h)

(

xF (x) −
∫

[0,x]
ydF (y)

)

+ b(EF [D] − x)

(a)
= b(EF [D] − x) + (b+ h)

∫

[0,x]
F (y)dy,

where equation (a) is a consequence of Riemann-Stieltjes integration by part.

Proof of Lemma A-2. For every α ∈ [0, 1], let Fα := B(1 − α). For every r ∈ {1, . . . , n} we

have,

C
(

πOSr , Fα, n
)

= EDn
1 ∼Fα

[

Ex∼πOSr(Dn
1 ) [cFα(x)]

]

= EDn
1 ∼Fα [cFα(Dr:n)]

= EDn
1 ∼Fα [αhDr:n + (1 − α)b (1 −Dr:n)]

= (b+ h)
[

(α− q)EDn
1 ∼Fα [Dr:n] + q(1 − α)

]

.

When α ≤ q, we observe that x∗
Fα

= 1 and opt(Fα) = αh. Therefore,

Rn(πOSr ,B(1 − α)) =
(q − α)

(

1 − EDn
1 ∼Fα [Dr:n]

)

(1 − q)α
.

We have

EDn
1 ∼Fα [Dr:n] = PDn

1 ∼Fα (Dr:n = 1) = 1 − PDn
1 ∼Fα (Dr:n = 0) = 1 −Br,n(α),

where the last equality follows from the definition of the Bernstein polynomial. In turn, we conclude

that for α ∈ [0, q),

Rn(πOSr ,B(1 − α)) =
(q − α)Br,n(α)

(1 − q)α
. (D-1)

When α ∈ [q, 1], we observe that x∗
Fα

= 0 , opt(Fα) = (1 − α)b and we establish similarly that,

Rn(πOSr ,B(1 − α)) =
(α− q) (1 −Br,n(α))

q(1 − α)
. (D-2)
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We conclude the proof by remarking that (D-1) and (D-2) imply that for every α ∈ [0, 1],

Rn

(

πOSr ,B (1 − α)
)

=
(1 −Br,n(α))(α − q) + q(1 − α)

min {(1 − q)α, q(1 − α)} − 1.

Proof of Lemma B-1. Consider a policy π ∈ Πn such that for some D̂n
1 ∈ {0, 1}n, the support

of π
(

D̂n
1

)

is not a subset of [D̂1:n, D̂n:n]. We now construct a policy π′ ∈ Πn such that the support

of π′
(

D̂n
1

)

is a subset of [D̂1:n, D̂n:n] and which ensures a cost at least as good as the one incurred

by π against any Bernoulli distribution.

Assume first that D̂1:n = 0 and D̂n:n = 1.

Recall that Gπ
D̂n

1

is the cdf of the distribution π
(

D̂n
1

)

. We define π′ such that for all Dn
1 ∈

{0, 1}n, if Dn
1 6= D̂n

1 , we have π′ (Dn
1 ) = π (Dn

1 ) and we construct the cdf of π′
(

D̂n
1

)

in order to

ensure that the support is [0, 1] as follows.

Gπ
′

D̂n
1
(y) =



















0 if y < 0

Gπ
D̂n

1

(y) if y ∈ [0, 1)

1 if y ≥ 1.

For any µ ∈ [0, 1], let Fµ be the cdf of the Bernoulli distribution B (µ). We have for any x < 0,

cFµ(x) = µ · b · (1 − x)+ + (1 − µ) · b · (−x)+ > µ · b = cFµ(0).

Similarly, one can show that for any x > 1, cFµ(x) > cFµ(1).
Therefore, for every µ ∈ [0, 1], the difference in costs between π and π′ satisfies,

C (π,B (µ) , n) − C (π′,B (µ) , n)
(a)
= PDn

1 ∼B(µ)

(

Dn
1 = D̂n

1

)(

E
x∼π(D̂

n
1 )
[

cFµ(x)

]

− E
x∼π′(D̂

n
1 )
[

cFµ(x)

]

)

= PD
n
1 ∼B(µ)

(

Dn
1 = D̂n

1

)

(

∫

R

cFµ(y) dGπ
D̂n

1

(y) −
∫

[0,1]

cFµ(y) dGπ
′

D̂n
1

(y)

)

(b)

≥ PDn
1 ∼B(µ)

(

Dn
1 = D̂n

1

)

(

∫

(−∞;0)

cFµ(0) dGπ
D̂n

1

(y)

+

∫

[0,1)

cFµ(y) dGπ
D̂
n
1

(y) +

∫

[1,∞)

cFµ(1) dGπ
D̂
n
1

(y) −
∫

[0,1]

cFµ(y) dGπ
′

D̂
n
1

(y)

)

(c)
= 0,

where (a) holds because for all Dn
1 ∈ {0, 1}n, such that Dn

1 6= D̂n
1 , we have π′ (Dn

1 ) = π (Dn
1 ), (b)

follows from the fact that cFµ(x) < cFµ(0) for x < 0, and cFµ(x) > cFµ(1) for x > 1. (c) is a

consequence of the constructions of Gπ
′

D̂n
1

. Hence, this shows that we weakly improve the cost of

policy π with the policy π′.
We now consider the case where D̂1:n = D̂n:n = 0. In that case, we have that C (π,B (0) , n) > 0.

Remarking that opt (B (0)) = 0, we conclude that Rn (π,B (0)) = ∞, which shows the strict sub-

optimality of π.
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A similar reasoning holds for D̂1:n = D̂n:n = 1.

We conclude the proof by repeating this process for every value of D̂n
1 .

Proof of Lemma B-2. It is clear that,

inf
e∈[0,1]n+1

e0=0, en=1

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

≤ inf
e∈[0,1]n+1

e0=0, en=1
(ei) non-decreasing

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

.

We now show that,

inf
e∈[0,1]n+1

e0=0, en=1

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

≥ inf
e∈[0,1]n+1

e0=0, en=1
(ei) non-decreasing

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

.

Consider e = (ei)i∈{0,...n+1} and assume that there exists j ∈ {0, . . . n− 1} such that ej > ej+1.

We consider the sequence f := (fi)i∈{0,...n+1} such that,

fi =











ei if i ∈ {0, . . . , n} \ {j, j + 1}
1

q
n−j+ 1−q

j

(

q
n−j ej + 1−q

j ej+1

)

if i ∈ {j, j + 1}.

We show that the cost of πΣf is weakly lower than the one of πΣe . We have, for any µ ∈ [0, 1],

C
(

πΣe ,B (µ) , n
)

− C
(

πΣf ,B (µ) , n
)

(a)
= PDn

1 ∼B(µ)

(

n
∑

i=1

Di = j

)

(

cFµ (ej) − cFµ (fj)
)

+ PDn
1 ∼B(µ)

(

n
∑

i=1

Di = j + 1

)

(

cFµ (ej+1) − cFµ (fj+1)
)

= Cµ · (1 − µ− q) ·
(

1 − µ

n− j
(ej − fj) +

µ

j + 1
(ej+1 − fj+1)

)

,

where Cµ = (b+ h)·µj ·(1 − µ)n−j−1 n!
j! (n−j−1)! and (a) holds because ei = fi for any i different from

j and j + 1. Note that Cµ ≥ 0 for all µ ∈ [0, 1]. Letting L (µ) = 1−µ
n−j (ej − fj) + µ

j+1 (ej+1 − fj+1)

for all µ ∈ [0, 1], we only need to show that

L (µ) ≥ 0 for µ ∈ [0, 1 − q]

L (µ) ≤ 0 for µ ∈ [1 − q, 1].

Note that L is a linear function of µ, L (0) =
ej−fj
n−j ≥ 0 and L (1) =

ej+1−fj+1

j ≤ 0, therefore, one

only need to check L (1 − q) = 0. The latter equality holds by definition of fj and fj+1.

We hence conclude that for any µ ∈ [0, 1]

C
(

πΣe ,B (µ) , n
)

− C
(

πΣf ,B (µ) , n
)

≥ 0.
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By iterating this process for any i such that ei > ei+1, we conclude that

inf
e∈[0,1]n+1

e0=0, en=1

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

≥ inf
e∈[0,1]n+1

e0=0, en=1
(ei) non-decreasing

sup
µ∈[0,1]

Rn

(

πΣe ,B (µ)
)

.

This completes the proof.

Proof of Lemma B-3. To ease notations, let p+
j (δ) := P(µ = µ+ | ∑n

i=1Di = j) for j ∈ {1, . . . , n},

and remark that,

aj = p+
j (δ)

1 − q − µ+

(1 − µ+)(1 − q)
+
(

1 − p+
j (δ)

) 1 − q − µ−

µ−q
.

Step 1: We first show that the sequence (aj)j∈{0,...,n} is decreasing. By assumption, 0 < µ− <

1 − q < µ+ < 1, therefore, 1−q−µ−

µ−q > 0 and 1−q−µ+

(1−µ+)(1−q) < 0. Hence, to show that (aj)j∈{0,...,n} is

decreasing, it is sufficient to show that (p+
j (δ))j∈{0,...,n} is increasing. For every j ∈ {0, . . . , n} we

have,

p+
j (δ) =

P(
∑n
i=1Di = j|µ = µ+)P

(

µ = µ+
)

P(
∑n
i=1 Di = j|µ = µ−)P (µ = µ−) + P(

∑n
i=1 Di = j|µ = µ+)P (µ = µ+)

=
δ
(n
j

)

(µ+)j(1 − µ+)n−j

(1 − δ)
(n
j

)

(1 − µ−)n−j(µ−)j + δ
(n
j

)

(1 − µ+)n−j(µ+)j
.

Therefore, for j ∈ {0, . . . , n− 1}, we have

p+
j+1(δ) − p+

j (δ) = δ(µ+)j(1 − µ+)n−j−1µ
+dj − (1 − µ+)dj+1

djdj+1
,

where dj := δ(1 − µ+)n−j(µ+)j + (1 − δ)(1 − µ−)n−j(µ−)j ≥ 0. Furthermore,

µ+dj − (1 − µ+)dj+1 = (1 − δ)µ+(1 − µ−)n−j(µ−)j − (1 − δ)(1 − µ+)(1 − µ−)n−j−1(µ−)j+1

= (1 − δ)(1 − µ−)n−j−1(µ−)j
(

µ+ − µ−
)

> 0.

Step 2: Let j ∈ {0, . . . , n} and remark that p+
j (0) = 0 whereas, p+

j (1) = 1. Hence by making

explicit the dependency of aj(δ) in δ, we have that, aj(0) > 0, aj(1) < 0 and δ 7→ aj(δ) is continuous.

Hence, by the intermediate value theorem, there exists δ′ ∈ [0, 1] such that aj(δ
′) = 0.

Proof of Lemma C-1. To prove this lemma we characterize two regimes for the sequence of

order statistic policies π
r. These two regimes depends on the value of the following limit

lim
n→∞

|rn − qn|√
n

:= ℓ.

When ℓ < ∞, we show that the worst-case expected regret scales at a rate Θ
(

1√
n

)

and we derive

an exact closed form characterization of the limiting constant, along with a family of candidate

hard cases that nature may select.
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We also show that for ℓ = ∞, the worst-case expected regret scales at a rate ω
(

1√
n

)

, which

naturally implies sub-optimality of this class of order statistic policies.

First remark that Theorem 1 implies that,

sup
F∈F

Rn (πr

n, F ) = sup
µ∈[0,1]

Rn (πr

n,B (µ)) .

Furthermore, we derive from Lemma A-2 a closed form expression of the relative-regret of an order

statistic policy against a Bernoulli distribution. Namely, we have that

Rn (πr

n,B (µ)) =
µ− (1 − q)

(1 − q)(1 − µ)
P (Drn:n = 0) if µ ≥ 1 − q (D-3)

Rn (πr

n,B (µ)) =
1 − q − µ

qµ
P (Drn:n = 1) if µ ≤ 1 − q (D-4)

Step 1: ℓ < ∞. We show that in this case,

lim
n→∞

√
n · sup

F∈F
Rn (πr

n, F ) = max

[

max
δ≥0

H+(δ, ℓ),max
δ≥0

H−(δ, ℓ)

]

,

where, H+(δ, ℓ) := δ
q(1−q)

(

1 − Φ

(

δ+ℓ√
q(1−q)

))

and H−(δ, ℓ) := δ
q(1−q)

(

1 − Φ

(

δ−ℓ√
q(1−q)

))

.

It follows from Theorem 1 that it is sufficient to show that

lim
n→∞

√
n · sup

µ∈[0,1]
Rn (πr

n,B (µ)) = max

[

max
δ≥0

H+(δ, ℓ),max
δ≥0

H−(δ, ℓ)

]

. (D-5)

We analyze the worst-case expected regret incurred by a sequence policy of order statistics

policies against different regimes of Bernoulli distribution with means (µn)n∈N. These regimes are

defined by the limit of the following sequence,

lim
n→∞

√
n (µn − (1 − q)) = δ,

where δ ∈ R ∪ {−∞,∞}. We show that if δ ∈ {0,−∞,∞}, meaning that µn does not converge to

1 − q at a rate of 1√
n

, the asymptotic performance decreases at a faster rate than 1√
n

.

Case (a): δ = 0.

In this cases, we have that µn → 1 − q as n → ∞. Let N+ := {n |µn ≥ 1 − q} and N− :=

{n |µn < 1 − q} and consider the subsequences (µ′
n)n∈N + and (µ′′

n)n∈N − . Since N = N+ ∪ N−,

one of these two sets must be infinite. If one of them is finite, one only need to compute the

limit for the second subsequence. When both are infinite, we establish the existence of the limit of√
nRn (πr

n,B (µn)) and compute its value, by deriving the limit of the relative regret against both

subsequence (µ′
n)n∈N + and (µ′′

n)n∈N − and prove that the limit coincides.

In particular, remark that (D-3) implies that, for every n ∈ N+,

√
nRn

(

πr

n,B
(

µ′
n

)) ≤ √
n

µ′
n − (1 − q)

(1 − q)(1 − µ′
n)

(a)→ 0 as n → ∞,
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where (a) holds because the numerator goes to 0 as δ = 0 and the denominator converges to a

constant. Similarly, (D-4) implies that for every n ∈ N−,

√
nRn

(

πr

n,B
(

µ′′
n

)) ≤ √
n

1 − q − µ′′
n

qµ′′
n

→ 0 as n → ∞.

Therefore,

lim
n→∞

√
nRn (πr

n,B (µn)) = 0.

Case (b): δ ∈ {−∞,∞}.

This case is handled by the following lemma proved at the end of Appendix D.

Lemma D-1. If rn is such that, limn→∞
|rn−qn|√

n
= ℓ < ∞, then for any sequence µn such that

lim
n→∞

√
n|1 − q − µn| = ∞,

we have that

lim
n→∞

√
nRn(Πr

n,B(µn)) = 0.

Case (c): δ ∈ R \ {0}.

Assume first that δ > 0. This implies that, µn − (1 − q) ∼ δ√
n

.

Remark that for n large enough, µn ≥ 1 − q and by (D-3),

√
nRn(πr

n,B(µn)) =
√
n

µn − (1 − q)

(1 − q)(1 − µn)
P (Drn:n = 0) .

By assumption,
√
n

µn − (1 − q)

(1 − q)(1 − µn)
→ δ

(1 − q)q
as n → ∞.

Moreover,

P(Drn:n = 0) = P

(

n
∑

i=1

Di ≤ n− rn

)

= P

(

1
√

nµn(1 − µn)

n
∑

i=1

(Di − µn) − n(1 − µn) − rn
√

nµn(1 − µn)
≤ 0

)

. (D-6)

To conclude the proof, we show that

1
√

nµn(1 − µn)

n
∑

i=1

(Di − µn) − n(1 − µn) − rn
√

nµn(1 − µn)
=⇒ N

(

δ + ℓ
√

q(1 − q)
, 1

)

as n → ∞. (D-7)

Remark that,

n(1 − µn) − rn
√

nµn(1 − µn)
=
n(1 − q − µn) + qn− rn

√

nµn(1 − µn)
→ − δ + ℓ

√

q(1 − q)
as n → ∞.
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Hence, it also converges in distribution. Moreover, for all n ≥ 1 and m ≤ n, let

Zn,m :=
1

√

nµn(1 − µn)
(Dm − µn) .

We have that for every 1 ≤ m ≤ n,

E

[

Z2
n,m

]

=
µn(1 − µn)2 + (1 − µn)µ2

n

nµn(1 − µn)
=

1

n
.

Hence, for any n ≥ 1,
n
∑

m=1

E

[

Z2
n,m

]

=
µn(1 − µn)

(1 − q)q
→ 1 as n → ∞. (D-8)

Furthemore, let ǫ > 0 then, for n large enough, |Zn,m| < ǫ almost surely for every m ≤ n. Hence,

lim
n→∞

n
∑

m=1

E

[

Z2
n,m; |Zn,m| > ǫ

]

= 0. (D-9)

By (D-8) and (D-9) and Theorem D-1 stated below, we conclude that,

1
√

nµn(1 − µn)

n
∑

m=1

(Di − µn) =
n
∑

m=1

Zn,m =⇒ N (0, 1) as n → ∞. (D-10)

Theorem D-1 (Linderberg-Feller theorem (see Theorem 3.4.10 in Durrett (2019))). For each n,

let Xn,m, 1 ≤ m ≤ n, be independent random variables with E[Xn,m] = 0. Suppose,

1.
∑n
m=1 E

[

X2
n,m

]

→ σ2 > 0,

2. For all ǫ > 0, limn→∞
∑n
m=1 E

[

X2
n,m; |Xn,m| > ǫ

]

= 0.

Then,
∑n
m=1 Xn,m =⇒ N (0, σ2) as n → ∞.

We thus conclude from Slutsky’s theorem that (D-7) is satisfied and for any δ′ > 0 such that

µn − (1 − q) ∼ δ√
n

, we have,

√
nRn(πr

n,B(µn)) → δ

q(1 − q)

(

1 − Φ

(

ℓ+ δ
√

q(1 − q)

))

as n → ∞.

We now consider the case where there exists δ > 0, such that 1 − q−µn ∼ δ√
n

. Note that (D-4)

together with (D-6) implies that

√
nRn(πr

n,B(µn)) =
√
n

1 − q − µn
qµn

P

(

1
√

nq(1 − q)

n
∑

i=1

(Di − µn) − n(1 − µn) − rn
√

nq(1 − q)
> 0

)

.

We hence conclude by a similar argument that

P

(

1
√

nq(1 − q)

n
∑

i=1

(Di − µn) − n(1 − µn) − rn
√

nq(1 − q)
> 0

)

→ 1 − Φ

(

δ − ℓ
√

q(1 − q)

)

as n → ∞
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and
√
nRn(πr

n,B(µn)) → δ

q(1 − q)

(

1 − Φ

(

δ − ℓ
√

q(1 − q)

))

as n → ∞.

Conclusion of step 1. We now prove that (D-5) holds.

For any n ∈ N, let µ∗
n := arg maxµ∈[0,1] Rn(πr

n,B(µ)). Note that this sequence is well defined

because µ 7→ Rn(πr
n,B(µ)) is continuous on a compact set. First remark that for any sequence

(µ′
n)n∈N, if there exists a sequence (µ′′

n)n∈N such that

lim
n→∞ Rn(πr

n,B(µ′
n)) < lim

n→∞ Rn(πr

n,B(µ′′
n)),

then, one cannot have µ′
n ∈ arg maxµ∈[0,1] Rn(πr

n,B(µ)) for all n ∈ N. We will use this property to

characterize the asymptotic behavior of (µ∗
n)n∈N.

We consider the sequence, (
√
n|µ∗

n − (1 − q)|)n∈N
and first assume that it is unbounded. There-

fore, we can consider an increasing mapping ψ from N to N such that the induced subsequence
(

√

ψ(n)|µ∗
ψ(n) − (1 − q)|

)

n∈N
converges to ∞. Moreover, let rψ denote the subsequence defined as

(

rψ(n)

)

n∈N
. By case (b) defined above, this implies that

lim
n→∞

√
nRn(Π

rψ
n ,B(µ∗

ψ(n))) = 0.

In turn, consider the sequence (µ̂ψ(n))n∈N
such that,

√

ψ(n)|µ̂ψ(n) − (1 − q)| → δ ∈ R
∗. It follows

from case (c) that

lim
n→∞

√
nRn(Π

rψ
n ,B(µ̂ψ(n))) > 0,

which contradicts the optimality of µ∗
ψ(n) for n large enough.

Hence, (
√
n|µ∗

n − (1 − q)|)n∈N
is bounded. By Bolzano Weirestrass, we can consider a subse-

quence that converges. Remark that, if the limit of this subsequence is 0, we obtain a contradiction

by the same argument using case (a) and case (c). We thus conclude that any subsequence has to

satisfy,

lim
n→∞

√

ψ(n)
(

µ∗
ψ(n) − 1 − q

)

= δ,

with δ ∈ R \ {0}. Case (c) implies that,

lim
n→∞

√
nRn(Π

rψ
n ,B(µ∗

ψ(n))) = H+ (δ, ℓ) if δ > 0

lim
n→∞

√
nRn(Π

rψ
n ,B(µ∗

ψ(n))) = H− (−δ, ℓ) if δ < 0,

where H+(δ, ℓ) := δ
q(1−q)

(

1 − Φ

(

δ+ℓ√
q(1−q)

))

and H−(δ, ℓ) := δ
q(1−q)

(

1 − Φ

(

δ−ℓ√
q(1−q)

))

. Further-

more, remark that if δ > 0, we must have H+ (δ, ℓ) = max
(

maxδ′≥0 H
+ (δ′, ℓ) ,maxδ′≥0 H

− (δ′, ℓ)
)

otherwise, we can construct a sequence that strictly improves the limit. A similar result holds if

δ < 0.
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Therefore, for any converging subsequence
(

√

ψ(n)|µ∗
ψ(n) − (1 − q)|

)

n∈N
we have that

lim
n→∞

√
nRn(Π

rψ
n ,B(µ∗

ψ(n))) = max

[

max
δ≥0

H+(δ, ℓ′),max
δ≥0

H−(δ, ℓ′)
]

,

which implies that,

lim
n→∞ sup

F∈F

√
nRn(πr

n, F ) = lim
n→∞

√
nRn(Πr

n,B(µ∗
n)) = max

[

max
δ≥0

H+(δ, ℓ′),max
δ≥0

H−(δ, ℓ′)
]

.

Step 2: ℓ = ∞. We show that in this case,

lim
n→∞ sup

F∈F
Rn (πr

n, F ) = ∞.

Remark that, it is sufficient to construct a sequence µn such that,

lim
n→∞ Rn (πr

n,B (µn)) = ∞

We assume that for n large enough, rn ≤ qn (the case rn ≥ qn is similar).

Let’s consider the sequence of means such that for each n ≥ 1, µn = 1 − rn
n . For n large enough

we have that rn ≤ qn which implies that µn ≥ 1 − q. Therefore, for n large enough the expected

relative regret of πr
n against B (µn) is given by (D-3). Remark that,

P (Drn:n = 0) = P

(

n
∑

i=1

Di ≤ n− rn

)

(a)
= P

(

n
∑

i=1

(Di − µn) ≤ 0

)

= P

(

1
√

nµn (1 − µn)

n
∑

i=1

(Di − µn) ≤ 0

)

(b)→ 1

2
as n → ∞, (D-11)

where (a) holds as µn = 1 − rn
n and (b) follows from (D-10). We further remark that,

√
n

µn − (1 − q)

(1 − q)(1 − µn)
≥ √

n
µn − (1 − q)

(1 − q)q
=

(qn− rn)

(1 − q)q
√
n

→ ∞ as n → ∞, (D-12)

where the limit holds because ℓ = ∞. Finally, (D-10) and (D-12) imply that

lim
n→∞

√
nRn

(

πOSrn , B(µn)
)

= ∞.

Proof of Lemma C-2. Define the function H from R to R as,

H : ℓ 7−→ max

[

max
δ≥0

H+(δ, ℓ),max
δ≥0

H−(δ, ℓ)

]

.
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We show that H is an even function increasing on [0,∞).

We remark that for any ℓ ∈ R,

H+(δ, ℓ) = H−(δ,−ℓ),

which shows that H is even. To show that it is increasing on [0,∞), consider ℓ ≥ 0. As Φ is

increasing, we have for any δ ≥ 0 that Φ

(

δ+ℓ√
q(1−q)

)

≥ Φ

(

δ−ℓ√
q(1−q)

)

and , H(ℓ) = maxδ≥0 H
−(δ, ℓ).

Let δ∗ ∈ arg maxδ≥0 H
−(δ, ℓ). For any ℓ′ ≥ ℓ, we note that Φ

(

δ∗−ℓ√
q(1−q)

)

≥ Φ

(

δ∗−ℓ′√
q(1−q)

)

. Therefore,

H−(δ∗, ℓ) ≤ H−(δ∗, ℓ′). We conclude that,

H(ℓ) = H−(δ∗, ℓ) ≤ H−(δ∗, ℓ′) ≤ H(ℓ′).

Since H is an even increasing function, its minimum is achieved at 0 and we conclude that, for

every ℓ ∈ R

max

[

max
δ≥0

H+(δ, ℓ),max
δ≥0

H−(δ, ℓ)

]

= H(ℓ) ≥ H(0) = C∗.

Proof of Lemma D-1. For the sake of simple notations, consider the sequence αn = 1 − µn and

consider a converging sequence (βn)n∈N that is a subsequence of (αn)n∈N. Let β denotes its limit.

We assume that for n large enough βn ∈ [0, q] therefore, β ∈ [0, q]. (The case where βn ∈ [q, 1] is

treated by similar arguments).

For every r ∈ {1, . . . , n}, and α ∈ [0, 1], let

φnr (α) = Rn

(

πOSr ,B(1 − α)
)

and remark that since βn ≤ q for n large enough, we have by Lemma A-2 that

φnr (βn) =
√
n

(q − βn)

(1 − q)βn
Brn,n(βn).

Case 1: β = 0. By Taylor expansion, we obtain that for every n ≥ 1, there exists ξn ∈ [0, βn]

such that,

φnrn(βn) = φnrn(0) + φ
′n
rn(ξn)βn. (D-13)

Since B′
rn,n(α) = nbrn−1,n−1(α), we obtain that for α ∈ [0, q],

φ
′n
rn(α) =

n (q − α)αbrn−1,n−1(α) − qBrn,n(α)

(1 − q)α2
≤ qnbrn−1,n−1(α)

(1 − q)α
.
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Furthermore,

φ
′n
rn(ξn)βn ≤ qn

1 − q

(

n− 1

rn − 1

)

ξrn−2
n (1 − ξn)n−rnβn

≤ qn

1 − q

(

n− 1

rn − 1

)

ξrn−2
n βn

(a)

≤ qn

1 − q

(

n− 1

rn − 1

)

βrn−1
n , (D-14)

where (a) holds as ξn ≤ βn and rn ≥ 2 for n large enough. The latter holds because q > 0 and

limn→∞
|qn−rn|√

n
< ∞ which implies that rn → ∞ as n gets large.

Remarking that φnrn(0) = 0 and that
( n−1
rn−1

) ∼ q
( n
rn

)

, we conclude from (D-13) and (D-14) that

it is sufficient to show that, n3/2
( n
rn

)

βrn−1
n → 0. Note that, rn = qn+O(

√
n) therefore,

(

n

rn

)

∼
√

n

2πrn (n− rn)

nn

rrnn (n− rn)n−rn ∼ 1
√

2πq(1 − q)n

nn

rrnn (n− rn)n−rn .

Furthermore, we have that, rn
n → q. Therefore,

nn

rrnn (n− rn)n−rn = exp

(

rn log

(

n

rn

)

+ (n− rn) log

(

n

n− rn

))

(a)
= exp (O(n)) ,

where (a) holds because n
rn

→ 1
q and n

n−rn → 1
1−q . Moreover, note that n = o (rn log(βn)) because

βn → 0. As a consequence,

n3/2

(

n

rn

)

βrn−1
n ∼ 1

√

2πq(1 − q)
· n · exp (O(n)) · βrn−1

n

=
1

√

2πq(1 − q)
· n · exp ((rn − 1) log(βn) + o(rn log(βn)) → 0,

where the limit holds because (rn − 1) log(βn) → −∞ and n = exp(o (rn log(βn))).

Case 2: β > 0. Note that, by assumption on the sequence (αn)n∈N, we have that for n large

enough, βn ≤ rn
n . Indeed, if βn >

rn
n , we would have that

√
n(q−βn) ≤ √

n(q− rn
n ) which, in turn,

would contradict that limn→∞
|qn−rn|√

n
< ∞ since limn→∞

√
n|q − βn| = ∞. Therefore, for n large

enough, we have,

P (Drn:n = 0) = P

(

n
∑

i=1

Di < n(1 − βn) − rn + nβn

)

= P

(

n
∑

i=1

Di < nE [D] − (rn − nβn)

)

(a)

≤ e−2(βn− rn
n

)2n = e
−2

(√
n(βn−q)+ qn−rn√

n

)2

,

where (a) follows from Hoeffding inequality for bounded random variables (Theorem 2 in Hoeffding

(1994)). Moreover, note that
(√

n(βn − q) + qn−rn√
n

)2
= (

√
n(βn − q))

2
(1 + o(1)). Hence,

√
nRn(πr

n,B(1 − βn)) ∼ √
n

(q − βn)

(1 − q)β
P (Drn:n = 0) ≤ √

n
(q − βn)

(1 − q)β
e−2(

√
n(βn−q))2

(1+o(1)) → 0,
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where the limit holds because
√
n|βn − q| → ∞ as n → ∞. Therefore, for any converging subse-

quence (βn)n∈N of the sequence (αn)n∈N, we have
√
nRn(πr

n,B(1 −βn)) → 0. This implies the same

result on the sequence (αn)n∈N itself.

E Additional Results and their Proofs

Lemma E-1. Fix n ≥ 1 and π ∈ Πn. Then, problem (2) of finding the worst case performance for

the policy π is equivalent to

sup
F∈F

Rn(π, F ) = inf
z∈R+

z

s.t. C (π, F, n) ≤ (z + 1)opt(F ) ∀F ∈ F ,

in the sense that both problems admit the same value.

Proof of Lemma E-1. Fix π ∈ Πn. We have that supF∈F Rn(π, F ) ≥ 0 and

sup
F∈F

Rn(π, F ) = inf
z∈R+

z (E-2a)

s.t. Rn(π, F ) ≤ z ∀F ∈ F . (E-2b)

We first show that for every F ∈ F and z ∈ R+, the following equivalence holds.

Rn(π, F ) ≤ z if and only if C (π, F, n) ≤ (z + 1)opt(F ).

Recall that, for every F ∈ F , we have Rn(π, F ) = C(π,F,n)

opt(F )
− 1. Moreover, opt(F ) ≥ 0 for all

F ∈ F . When opt(F ) > 0, the equivalence holds trivially. If opt(F ) = 0, we consider two cases.

If C (π, F, n) > 0, we remark that both inequalities do not hold for any z ∈ R+. If C (π, F, n) = 0,

recall that by convention we set Rn(π, F ) = 0. Hence, both inequalities are satisfied for all z ∈ R+.

As a consequence, problem (E-2) is equivalent to

sup
F∈F

Rn(π, F ) = inf
z∈R+

z

s.t. C (π, F, n) ≤ (z + 1)opt(F ) ∀F ∈ F .

Lemma E-2. For every n, the following two conditions cannot hold simultaneously.

sup
µ∈[0,1−q]

Rn

(

πOS1,B (µ)
)

> sup
µ∈[1−q,1]

Rn

(

πOS1,B (µ)
)

sup
µ∈[0,1−q]

Rn

(

πOSn ,B (µ)
)

< sup
µ∈[1−q,1]

Rn

(

πOSn ,B (µ)
)

.
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Proof of Lemma E-2. Assume by contradiction that there exists n such that,

sup
µ∈[0,1−q]

Rn

(

πOS1,B (µ)
)

> sup
µ∈[1−q,1]

Rn

(

πOS1,B (µ)
)

sup
µ∈[0,1−q]

Rn

(

πOSn ,B (µ)
)

< sup
µ∈[1−q,1]

Rn

(

πOSn ,B (µ)
)

.

We have that,

sup
µ∈[0,1−q]

Rn

(

πOS1,B (µ)
) (a)

≤ sup
µ∈[0,1−q]

Rn

(

πOSn ,B (µ)
)

(b)
< sup

µ∈[1−q,1]
Rn

(

πOSn ,B (µ)
) (c)

≤ sup
µ∈[1−q,1]

Rn

(

πOS1,B (µ)
)

,

where (a) and (c) follow from Lemma E-4, and (b) holds by assumption. We therefore obtain a

contradiction.

Lemma E-3. For n ≥ 2
min(q,(1−q))2 ,

sup
µ∈[0,1−q]

Rn

(

πOS1,B (µ)
)

≤ sup
µ∈[1−q,1]

Rn

(

πOS1,B (µ)
)

sup
µ∈[0,1−q]

Rn

(

πOSn ,B (µ)
)

≥ sup
µ∈[1−q,1]

Rn

(

πOSn ,B (µ)
)

.

Proof of Lemma E-3. For each r ∈ {1, . . . , n} we define φnr such that for every α ∈ [0, 1],

φnr (α) = Rn

(

πOSr ,B(1 − α)
)

.

We first show that,

sup
α≤q

φn1 (α) ≥ sup
α≥q

φn1 (α). (E-4)

Note that by Lemma A-2 we have for all r ∈ {1, . . . , n},

φnr (α) =







(q−α)Br,n(α)
(1−q)α if α ∈ [0, q],

(α−q)(1−Br,n(α))
(1−α)q if α ∈ [q, 1].

Observe that by definition, B1,n(α) =
∑n
j=1

(n
j

)

αj(1 − α)n−j = 1 − (1 − α)n. Hence, for α ≥ q

φn1 (α) =
(α− q)(1 − α)n

q(1 − α)
≤ (1 − q)n

q
.

Moreover, n ≥ 2
min(q,(1−q))2 implies that 1

n ≤ min(q, (1 − q))2 ≤ q2 ≤ q. Therefore, we have that,

sup
α≤q

φn1 (α) ≥ φn1

(

1

n

)

=
(q − n−1)(1 − (1 − n−1)n)

(1 − q)n−1

(a)

≥ q(1 − q)(1 − e−1)

(1 − q)q2
=

1 − e−1

q
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where inequality (a) holds because n−1 ≤ q2 and
(

1 − 1
n

)n
≤ e−1. When q ≥ 1

2 , we remark that

since n ≥ 4, (E-4) must hold because,

1 − e−1 ≥ 1

2n
≥ (1 − q)n.

To prove equation (E-4) for q ≤ 1
2 , as n ≥ 2q−2, we remark that, (1 − q)n ≤ (1 − q)q

−2
, therefore it

is sufficient to show that

(1 − e−1) ≥ (1 − q)q
−2
.

This holds because q 7→ (1 − q)q
−2

is non-decreasing on [0, 1
2 ] and the inequality is true at q = 1

2 .

We similarly show that,

sup
α≤q

φnn(α) ≤ sup
α≥q

φnn(α).

To do so, we first remark that, Bn,n(α) = αn and, for any α ≤ q, φnn(α) ≤ qn

1−q and,

sup
α≥q

φnn(α) ≥ 1 − e−1

1 − q
.

We then conclude in a similar way.

Lemma E-4. For any µ ≤ 1 − q and any r ∈ {1, . . . , n− 1},

Rn

(

πOSr ,B(µ))
)

≤ Rn

(

πOSr+1,B(µ))
)

.

Inequality is strict for µ 6∈ {0, 1 − q}. Furthermore,

sup
µ∈[0,1−q]

Rn

(

πOSr ,B(µ))
)

< sup
µ∈[0,1−q]

Rn

(

πOSr+1,B(µ))
)

.

Similarly, for any µ ≥ 1 − q and any r ∈ {1, . . . , n − 1},

Rn

(

πOSr ,B(µ))
)

≥ Rn

(

πOSr+1,B(µ))
)

.

Inequality is strict for µ 6∈ {1 − q, 1}. Furthermore

sup
µ∈[1−q,1]

Rn

(

πOSr ,B(µ))
)

> sup
µ∈[1−q,1]

Rn

(

πOSr+1,B(µ))
)

.

Proof of Lemma E-4. For each r ∈ {1, . . . , n} we define φnr such that for every α ∈ [0, 1],

φnr (α) = Rn

(

πOSr ,B(1 − α)
)

.
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Remark that for all r ∈ {1, . . . , n− 1} and α ≤ q we obtain from Lemma A-2 that,

φnr (α) =
(q − α)Br,n(α)

(1 − q)α

=
(q − α)Br+1,n(α)

(1 − q)α
+

(q − α)br+1,n(α)

(1 − q)α

= φnr+1(α) +
(q − α)br+1,n(α)

(1 − q)α
≥ φnr+1(α).

Note that, br+1,n(α) > 0 for α ∈ (0, 1) thus the above inequality is an equality only for α ∈ {0, q}.

Moreover, let α∗ ∈ arg maxα∈[0,q] φ
n
r (α) (which exists by continuity of φnr ). Remark that α∗ ∈ (0, q)

because, φnr (0) = φnr (q) = 0 and φnr (q/2) > 0. Therefore, we have

sup
α∈[0,q]

φnr (α) = φnr (α∗) > φnr+1(α∗) ≥ sup
α∈[0,q]

φnr+1(α).

Similarly, we have that for α ≥ q,

φnr (α) =
(α− q) (1 −Br,n(α))

q(1 − α)

=
(α− q) (1 −Br+1,n(α))

q(1 − α)
− (α − q)br+1,n(α)

q(1 − α)

= φnr+1(α) − (α− q)br+1,n(α)

q(1 − α)
≤ φnr+1(α).

We conclude by an argument similar to the one derived in the case where α ∈ [0, q] that equality

holds only for α ∈ {q, 1} and that, supα∈[q,1] φ
n
r (α) < supα∈[q,1] φ

n
r+1(α).

Lemma E-5. Let U(n) =
∫∞

0 2 exp
(

− nǫ2

18+8ǫ min(q, 1 − q)
)

dǫ. Then, U(n) = O
(

1√
n

)

.

Proof of Lemma E-5. Remark that

U(n) =

∫ ∞

0
2 exp

(

− nǫ2

18 + 8ǫ
min(q, 1 − q)

)

dǫ

≤ 2

(

∫ 18
8

0
exp

(

−nǫ2

18
min(q, 1 − q)

)

dǫ+

∫ ∞

18
8

exp

(

−nǫ

8
min(q, 1 − q)

)

)

dǫ

= 2

∫ 18
8

0
exp

(

−nǫ2

18
min(q, 1 − q)

)

dǫ+ O
(

1

n

)

≤ 2√
n

+ 2

∫ 18
8

1√
n

ǫ

ǫ
exp

(

−nǫ2

18
min(q, 1 − q)

)

dǫ+ O
(

1

n

)

≤ 2√
n

+ 2
√
n

∫ 18
8

1√
n

ǫ exp

(

−nǫ2

18
min(q, 1 − q)

)

dǫ+ O
(

1

n

)

=
1√
n

(

2 +
18

min (q, 1 − q)
exp

(

−min(q, 1 − q)

18

))

+ o

(

1√
n

)

.

App-30



F Discussion: Algorithms and Performance

F.1 Suboptimality of SAA

Proposition 3 provides a necessary condition for a policy to be optimal. We present in Figure 3

a counter-example showing that SAA is not always achieving this necessary condition. Figure 3

presents the performance of SAA against Bernoulli distributions with different means with a value

of q = .9 and n = 20.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

mean of the Bernoulli µ

R
n
(π
,B

(µ
))

πOS⌈qn⌉(SAA)

πOS⌈qn⌉+1

Figure 3: Performance of the ⌈qn⌉th (SAA) and (⌈qn⌉ + 1)th order statistic policies
against Bernoulli distributions. The figure depicts the performance of two order statistic
policies against Bernoulli distribution as the mean µ varies (q = .9, n = 20).

We observe in that case that

sup
µ∈[0,1−q]

Rn

(

πSAA,B (µ)
)

< sup
µ∈[1−q,1]

Rn

(

πSAA,B (µ)
)

.

This implies the suboptimality of SAA according to Proposition 3. We note from Figure 3 that,

in this example, SAA suffers from a larger regret in the mode associated with large values of µ

compared to the mode associated with smaller values of µ. In contrast, the (⌈qn⌉ + 1)th order

statistic policy suffers from a larger regret than SAA on the mode associated with the small values

of µ and from a smaller one in the regime where µ is large. This observation implies that a carefully

chosen randomization of both policies would perform strictly better than SAA.

F.2 Insight on the Minimax Optimal Policy

The algorithm derived in Theorem 4 is defined as a randomization of the (k − 1)th and kth order

statistics for some k ∈ {2, . . . , n}. However, Theorem 4 does not provide any quantification of
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the value of k. We present in Table 5 the values of k for different critical quantiles obtained by

computing the minimax optimal policy for sample size smaller than 200. Recall that SAA uses the

k = ⌈qn⌉ k = ⌈qn⌉ + 1

q = .7 40.5% 59.5%

q = .8 41% 59%

q = .9 42.5% 57.5%

Table 5: Parameter of the minimax optimal policy. The table presents the proportion of
time the parameter k (defined in Theorem 4) is respectively equal to ⌈qn⌉ and ⌈qn⌉+1 for different
values of q. This proportion is derived by computing the parameters of the optimal policy for any
data size smaller than 200.

⌈qn⌉th order statistic. Therefore, Table 5 shows that for the first 200 samples, the minimax optimal

policy always has in its support SAA and a neighboring order statistic. The relation between k

and ⌈qn⌉ is further discussed in the proof of Theorem 5. We show in the proof that k has to scale

as ⌈qn⌉ + o(
√
n).

F.3 Algorithmic Implementation of the Optimal Policy

Theorem 4 presents the structure of the optimal data-driven policy. We next detail how to find the

optimal tuning parameters k and γ for an optimal policy. To that end, we establish an additional

structural result on single order statistic policies. We show that for any r ∈ {1, . . . , n − 1},

Rn

(

πOSr ,B(µ))
)

≤ Rn

(

πOSr+1,B(µ))
)

for all µ ≤ 1 − q (F-5)

Rn

(

πOSr ,B(µ))
)

≥ Rn

(

πOSr+1,B(µ))
)

for all µ ≥ 1 − q. (F-6)

This is formally stated by Lemma E-4 presented in Appendix E.

Equations (F-5) and (F-6) formalize the fact that, against Bernoulli distributions, the perfor-

mance of smaller order statistics is worse than larger ones when the mean is large, as they tend to

underestimate the optimal inventory quantity. On the contrary, they perform better than larger

order statistics when the mean is smaller than 1 − q since underestimating is valuable in that case.

Given equations (F-5) and (F-6) , we now present an efficient algorithm to compute the param-

eters of the optimal policy. Algorithm 1 only needs to perform O (log(n)) line searches in order to

find an order statistic k such that (16) and (17) are satisfied.
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Data: critical fractile q, number of samples n
Result: Order statistic ranking k, weight γ and optimal value R∗

n

if (12) and (13) hold then
Set j = 1 and k = n;
while j < k do

m = (j + k)/2;

if supµ∈[1−q,1] Rn

(

πOSm,B(µ))
)

− supµ∈[0,1−q] Rn

(

πOSm ,B(µ))
)

≥ 0 then

j = m+ 1;
else

k = m;
end

end
Find the solution γ of the following equation by performing a line search to solve

supµ∈[1−q,1] γRn

(

πOSk ,B(µ))
)

+ (1 − γ)Rn

(

πOSk−1 ,B(µ))
)

=

supµ∈[0,1−q] γRn

(

πOSk ,B(µ))
)

+ (1 − γ)Rn

(

πOSk−1 ,B(µ))
)

;

else
γ = 1;
If (12) does not hold, k = 1, whereas if (13) does not hold, k = n;

end

Set R∗
n = supµ∈[1−q,1] γRn

(

πOSk ,B(µ))
)

+ (1 − γ)Rn

(

πOSk−1,B(µ))
)

;

return k, γ, R∗
n;

Algorithm 1: Optimal data-driven policy
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