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1. Introduction. Congestion games received a lot of attention in the recent game theory and com-
puter science literature [4, 5, 8, 9, 10]. In a classic congestion game [16], each player chooses a subset of
a set of available resources in order to perform his task. The cost of using a particular resource is deter-
mined by its congestion. The important property of congestion games is that they possess pure strategy
Nash equilibria. Monderer and Shapley [10] introduced the notions of potential function and potential
game and proved that the existence of a potential function implies the existence of a pure strategy Nash
equilibrium. They also showed that the classes of finite potential games and congestion games coincide.

Classic congestion games can be viewed as synchronous: the cost suffered by a player when selecting
a particular resource is determined only by the number of users who have chosen that resource, and does
not take into account the actual order in which the assigned tasks are executed. In this paper1 we present
a new class of games – random order congestion games (ROCGs) – that model noncooperative congestion
settings in which resources execute their assigned tasks in a randomly chosen order. The random order
of task execution reflects, for instance, a situation where players and resources are the elements of an
asynchronous distributed system, in which each process has its own independent clock2.

In ROCGs, we consider a finite set of players, each having a unit length task that can be carried out
by any element of a finite set of independent resources (machines). Each resource executes its assigned
tasks in a randomly chosen order. As a result, a player may selfishly assign his task to several resources,
hoping that his task will be completed in a short time by at least one of the resources. It is assumed
that resource usage is costly; that is, every player has to pay for utilizing each of his chosen resources.
More specifically, a player’s aim is to minimize his expected total cost which is composed of the sum of
the fixed costs over the set of his chosen resources and the cost of his task execution which is determined
by the minimum completion time of his task by any of his chosen resources.

The presented model captures a very real issue that of redundant usage of resources, which is often the
case in non-cooperative multi-agent systems, where selfish agents would try and run their jobs on several

1A short version (4 pages), titled “Asynchronous Congestion Games”, appears in Proceedings of AAMAS-08 [15].
2The idea of using random ordering in order to reflect the asynchronous nature of processes in distributed systems is

discussed, for example, in Monderer and Tennenholtz [11].
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resources in parallel, hoping that one would be faster. Therefore, providing theoretical analysis of these
situations is of great importance. The model of ROCGs, perhaps, is one of the simplest to introduce the
problem of wasteful usage of resources and asynchronous task execution into the context of congestion
settings. One may think of a variety of generalizations of the model, some of which we mention in the
concluding section of this paper. However, in these generalized models, most results would cease to hold,
which motivates us to – first – study the relatively simple ROCG-model.

By considering the order of task execution, the study of ROCGs is related to the literature on selfish
scheduling. There are two types of selfish scheduling: scheduling involving selfish machines [2, 6, 12] in
which resources attempt to optimize their own objectives, and scheduling involving selfish tasks [1, 3, 7]
in which each participant’s objective is to minimize the completion time of his task. The latter type is
closely related to congestion games.

Introducing a new class of games raises the important question of the existence of pure strategy
equilibria as well as the computation of such equilibria. There are only few known classes of games which
possess pure strategy equilibria, and there seems to be relatively little work providing efficient and exact
algorithms for computing such equilibria. In this paper we introduce the class of ROCGs and prove
that these games possess a Nash equilibrium in pure strategies, despite the non-existence of a potential
function. In addition, we present a polynomial time algorithm for finding such an equilibrium in a given
ROCG.

The rest of the paper is organized as follows. In Section 2 we define our model. In Sections 3, 4 and 5
we present our results. In 3.1 we show that a 2×2 ROCG is a potential game. In 3.2 we observe that any
ROCG with n > 2 players or m > 2 resources does not admit a potential function. In Section 4 we show
that every ROCG possesses a pure strategy Nash equilibrium, despite the non-existence of a potential
function. In Section 5 we present an O(nm2) algorithm for computing such an equilibrium. We prove
our results in Section 6, and conclude in Section 7.

2. The Model. Let N = {1, . . . , n} be a set of n players and let M = {e1 . . . , em} be a set of
m resources. Player i ∈ N chooses a strategy σi ∈ Σi which is a nonempty subset of the resources:
Σi = P (M)r{∅}. Given a subset S ⊆ N of the players, the set of strategy combinations of the members
of S is denoted by ΣS = ×i∈SΣi, and the set of strategy combinations of the complement subset of
players is denoted by Σ−S (Σ−S = ΣNrS = ×i∈NrSΣi). For any S ⊆ N and σ = (σi)i∈S ∈ ΣS ,
the (m-dimensional) congestion vector that corresponds to S and σ is h(S, σ) = (he(S, σ))e∈M , where
he(S, σ) =

∣∣{i ∈ S : e ∈ σi}
∣∣. To simplify the notation, we denote the set of pure strategy profiles of all

the players by Σ (Σ = ΣN ); similarly, the congestion vector that corresponds to a “full” strategy profile
σ ∈ Σ is denoted by h(σ).

The outcome for player i ∈ N from σ is the vector xi(σ) =
(
xi

e(σ)
)
e∈M

∈ {1, . . . , n,∞}m of the ordering
numbers of player i’s task on all the resources, where xi

e(σ) ∈ {1, . . . , n} for e ∈ σi and xi
e(σ) = ∞ for

e /∈ σi. The player’s objective is to minimize his total cost that consists of the sum of the fixed costs over
the set of resources he uses and the cost of the player’s task execution. The fixed cost for utilizing each
of the resources equals t ≥ 0 units of money. The cost of task execution is a nonnegative, nondecreasing
function of its completion time; thus, the longer it takes to complete the task execution, the greater is
the cost incurred by the player. We assume that each player pays a fixed price, say c, for a unit of time
his task is in the system before completed by at least one of the resources and, w.l.o.g., that this cost is
one unit of money per unit of time. That is, the cost of a player’s task execution is determined by the
minimum among the completion times of his task by his chosen resources. Hence, the cost to player i
from a strategy profile σ and his outcome xi(σ), ci

(
σ, xi(σ)

)
, is defined as follows:

ci

(
σ, xi(σ)

)
= min

e∈σi

xi
e(σ) + |σi|t.

Given a strategy profile σ, for any player i ∈ N and resource e ∈ σi, let Xi
e(σ) denote a random variable

representing the ordering number of player i’s task on resource e. Since it is assumed that each task
requires a unit of time to be processed and each unit of time costs one unit of money, Xi

e(σ) represents
the cost to player i for his task execution by resource e. We assume that Xi

e(σ) is uniformly distributed
over {1, . . . , he(σ)}. The expected cost of player i from strategy profile σ, Ci(σ), is therefore:

Ci(σ) = E

(
min
e∈σi

Xi
e(σ)

)
+ |σi|t
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=
mine∈σi

he(σ)∑
q=1

Pr

(
min
e∈σi

Xi
e(σ) ≥ q

)
+ |σi|t

=
mine∈σi

he(σ)∑
q=1

∏
e∈σi

he(σ)− q + 1
he(σ)

+ |σi|t.

The aim of each player is to minimize his own expected cost.

Note that if t = 0 then the dominant strategy of each player is to assign his task to all of the resources.
As a result, the system is overloaded and less efficient.

3. The (Non)-Existence of a Potential Function. Monderer and Shapley [10] introduced the
notion of potential function (or, potential) as follows. Let G be a game in strategic form with a finite set
of players, N . The set of strategies of player i ∈ N is Σi, and the payoff function of player i is Ci : Σ → R,
where Σ = ×i∈NΣi is the set of strategy profiles. A function P : Σ → R is a potential function of G if for
every i ∈ N and for every σ−i ∈ Σ−i,

Ci(σ−i, x)− Ci(σ−i, y) = P (σ−i, x)− P (σ−i, y),

for any x, y ∈ Σi. G is called a potential game if it admits a potential function. The authors [10] showed
that the classes of finite potential games and congestion games coincide.

In this section, we study the existence of a potential function in ROCGs. We show that a 2×2 ROCG
is a potential game but any ROCG with n > 2 players or m > 2 resources does not possess a potential
function. Hence, ROCGs are not congestion games.

3.1 ROCGs with 2 players and 2 resources. Here we present a potential function for an ROCG
with 2 players and 2 resources. Let two players N = {1, 2} share a set of two resources M = {e1, e2}.
In Table 1 we present the payoff matrix of the game. A potential function of the game is presented in
Table 2. By exploring Tables 1 and 2, one can verify that for any two strategy profiles differing by the

{e1} {e2} {e1, e2}

{e1} C1 = 3
2 + t C1 = 1 + t C1 = 3

2 + t

C2 = 3
2 + t C2 = 1 + t C2 = 1 + 2t

{e2} C1 = 1 + t C1 = 3
2 + t C1 = 3

2 + t

C2 = 1 + t C2 = 3
2 + t C2 = 1 + 2t

{e1, e2} C1 = 1 + 2t C1 = 1 + 2t C1 = 5
4 + 2t

C2 = 3
2 + t C2 = 3

2 + t C2 = 5
4 + 2t

Table 1: Players’ payoffs in the 2× 2 ROCG.

{e1} {e2} {e1, e2}

{e1}
3
4

1
4

1
4 + t

{e2}
1
4

3
4

1
4 + t

{e1, e2}
1
4 + t 1

4 + t 2t

Table 2: A potential function of the 2× 2 ROCG.

choice of a single player, the difference in the payoff of that player between the two profiles equals the
corresponding increment in the function presented in Table 2. Therefore, this function is a potential.

3.2 ROCGs with n > 2 players or m > 2 resources. Here we show that any ROCG with
n > 2 players or m > 2 resources does not admit a potential function. To prove this statement we use
the following technical characterization of potential games.

Let G be a game in strategic form with a set N = {1, . . . , n} of players, a set Σ = ×i∈NΣi of strategy
profiles, and a vector C = (C1, . . . , Cn) of payoff functions. A 4-cycle, i.e. a cycle of length 4, in Σ is
a sequence τ = (α → β → γ → δ → α) of strategy profiles, such that α = (xi, xj , z), β = (yi, xj , z),
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γ =(yi, yj , z), δ = (xi, yj , z), where i, j ∈ N , xi, yi ∈ Σi, xj , yj ∈ Σj , and z ∈ Σ−{i,j}. A 4-cycle τ is
zero-sum if

C(τ) = Ci(α)− Ci(β) + Cj(β)− Cj(γ)
+Ci(γ)− Ci(δ) + Cj(δ)− Cj(α) = 0,

and non-zero-sum otherwise. Monderer and Shapley [10] showed that G is a potential game if and only
if it does not possess non-zero-sum 4-cycles.

Based on the above characterization, we show that every ROCG with n > 2 players or m > 2 resources
does not admit a potential function. Let G1 be any ROCG with n > 2 players and m ≥ 2 resources, and
consider the 4-cycle τ1 which is formed by α = ({e1}, {e2}, z), β = ({e2}, {e2}, z), γ = ({e2}, {e1, e2}, z),
δ = ({e1}, {e1, e2}, z), where z ∈ Σ−{1,2} satisfies he1(−{1, 2}, z) < he2(−{1, 2}, z) (see Table 3). By

{e2} {e1, e2}

{e1} C1 =
he1 (−{1,2},z)+2

2 + t C1 =
he1 (−{1,2},z)+3

2 + t

C2 =
he2 (−{1,2},z)+2

2 + t C2 =
he1 (−{1,2},z)+3

2

+
1−(he1 (−{1,2},z)+2)2

6(he2 (−{1,2},z)+1) + 2t

{e2} C1 =
he2 (−{1,2},z)+3

2 + t C1 =
he2 (−{1,2},z)+3

2 + t

C2 =
he2 (−{1,2},z)+3

2 + t C2 =
he1 (−{1,2},z)+2

2

+
1−(he1 (−{1,2},z)+1)2

6(he2 (−{1,2},z)+2) + 2t

Table 3: Non-existence of potentials in ROCGs with n > 2 players.

exploring Table 3, one can verify that C(τ1) is positive, which implies that τ1 is a non-zero-sum 4-cycle.
Hence, G1 is not a potential game.

Now, let G2 be any ROCG with n = 2 players and m > 2 resources. Consider the 4-cycle τ2 which is
formed by α = ({e1}, {e3}), β = ({e1, e2}, {e3}), γ = ({e1, e2}, {e1, e2, e3}), δ = ({e1}, {e1, e2, e3}) (see
Table 4).

{e3} {e1, e2, e3}

{e1} C1 = 1 + t C1 = 3
2 + t

C2 = 1 + t C2 = 1 + 3t

{e1, e2} C1 = 1 + 2t C1 = 5
4 + 2t

C2 = 1 + t C2 = 1 + 3t

Table 4: Non-existence of potentials in ROCGs with m > 2 resources.

Direct calculation shows that C(τ2) = − 1
4 , implying that τ2 is a non-zero-sum 4-cycle and G2 is not a

potential game.

4. The Existence of a Pure Strategy Nash Equilibrium. Despite the fact that ROCGs, in
general, are not potential games, in this section we prove that every ROCG possesses a Nash equilibrium
in pure strategies.

One can easily verify that if the number of resources is greater than or equal to the number of players
(m ≥ n) then the profile σ = (ei)i∈N is a Nash equilibrium as well as an optimal strategy (one that
minimizes the sum of the players’ expected costs). However, if m < n, then proving the existence of such
an equilibrium is not trivial, as is demonstrated below.

We start by showing that simple intuitive algorithms, like one presented in [13] for symmetric taxed
congestion games with failures (STCGs), appear to be inapplicable in ROCGs. The STCG-algorithm
proceeds as follows. It assigns the players to the resources by first assigning player 1 to resource e1, then
player 2 to resource e2, and so on until player m is assigned to the last resource - em. Then it continues
with player m + 1 going to resource e1, and so on until player n gets resource enmodm. A new sequence
starts with player 1 assigned to resource enmodm+1 (or, to resource e2, if m divides n), and so on. The
algorithm halts upon the first decline. Due to the resource and player symmetry of the ROCG-model,
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one may expect the above procedure to be valid for ROCGs as well. However, as the following example
shows, this intuitive procedure does not work for ROCGs.

Example 4.1 Consider an ROCG with 7 resources, M = {e1, . . . , e7}, and 10 players, N =
{1, 2, . . . , 10}. The fixed cost for utilizing each of the resources is t = 199

1200 . The STCG-algorithm of-
fers the players to apply resource additions in the following order:

e1 e2 e3 e4 e5 e6 e7

1 2 3 4 5 6 7
8 9 10 1 2 3 4
5 6 7 8 9 10 1
2 3 4 5 6 7 8
9 10 [1] 2 . . .

For any strategy profile σ ∈ Σ, and a subset of resources A ⊆ M , let hA(σ) be a restriction of the
congestion vector h(σ) to A, and let C(hA(σ)) denote the expected cost of any player i with σi = A.
Thus,

C(2) =
2∑

q=1

2− q + 1
2

+ t = 1 +
1
2

+ t =
3
2

+ t =
1999
1200

C(2, 2) =
2∑

q=1

(
2− q + 1

2

)2

+ 2t = 1 +
(

1
2

)2

+ 2t =
5
4

+ 2t =
1898
1200

C(3, 2) =
2∑

q=1

3− q + 1
3

· 2− q + 1
2

+ 2t = 1 +
1
2
· 2
3

+ 2t =
4
3

+ 2t =
1998
1200

Since C(2, 2) < C(3, 2) < C(2), the offers proposed by the algorithm at steps 11-17 (see rows 2 and 3)
will be accepted. Furthermore,

C(3) =
3∑

q=1

3− q + 1
3

+ t = 1 +
2
3

+
1
3

+ t = 2 + t =
2599
1200

=
7797
3600

>

C(3, 3) =
3∑

q=1

(
3− q + 1

3

)2

+ 2t = 1 +
(

2
3

)2

+
(

1
3

)2

+ 2t =
14
9

+ 2t =
3397
1800

=
6794
3600

>

C(3, 3, 3) =
3∑

q=1

(
3− q + 1

3

)3

+ 3t = 1 +
(

2
3

)3

+
(

1
3

)3

+ 3t =
13
9

+ 2t =
2197
1200

=
6591
3600

imply additions at steps 18-21 (row 3). Similarly, one can show that C(4, 3, 3) < C(3, 3), C(4, 4, 3) <
C(4, 3) and C(4, 4, 4) < C(4, 4), implying additions at steps 22-27 (row 4).

Consider now row 5. Players 9 and 10 will add resources e1 and e2, respectively, as C(5, 4, 4) < C(4, 4).
At the following step the algorithm will receive decline from player 1 who will refuse to add resource e3.
This is since C(5, 5, 4, 4) > C(5, 4, 4) (follows from t = 199

1200 > 33
200 ). However, t = 199

1200 < 24
125 yields

C(5, 5, 5, 4) < C(5, 5, 4), implying that the resulting strategy profile is not in equilibrium, as player 2
wishes to add a resource (any of e3 – e7, excluded e5). Note that player 1 uses two resources with the
congestion of 4 and one resource with the congestion of 5, and in this situation has no incentive to add
one more resource as the marginal contribution of this operation will not cover the fixed cost for adding
the resource. In contrast, player 2 uses two resources with the congestion of 5 and one resource with the
congestion of 4, and hence his expected completion time is higher than that of player 1, implying larger
marginal contribution from adding a resource, which also turns out to be sufficient to cover the fixed cost.

We now proceed and present our proof. It uses the notion of stability under single moves, previously
presented in [14], and proceeds as follows. Below, in 4.1 we define three types of single moves (A-, D- and
S-moves) and show that a profile which is stable under all these moves is a Nash equilibrium (see Lemma
4.1). In 4.2 we observe that the DS-stable3 profile is easy to find, but the existence of a profile which is

3A strategy profile which is stable under D- and S-moves (see Definition 4.2).
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stable under all three types of single moves is not obvious (see Lemma 4.2 and the discussion following
it). We look for such a profile using two types of addition operations, which are defined in 4.3. Lemma
4.3 in this subsection describes how these additions affect DS-stable profiles. Based on this lemma, in 4.4
we prove that for some DS-stable profiles the above additions do not ruin the DS-stability (see Lemma
4.4). We complete our proof by showing that applying a finite series of addition operations to such a
profile results in an equilibrium (see Lemma 4.5 and Corollary 4.3). The formal proofs of all the lemmas
are presented in Section 6.

4.1 The single profitable move property. As pointed out in [14], in a congestion setting, we
are mainly interested in three types of single moves, where each type is a deviation involving a single
resource, as follows.

Definition 4.1 [14] For any strategy profile σ ∈ Σ and for any player i ∈ N , the operation of adding
precisely one resource to his strategy, σi, is called an A-move of i from σ. Similarly, the operation of
dropping a single resource is called a D-move, and the operation of switching one resource with another
is called an S-move.

The following observation provides technical characterizations of single moves and is heavily utilized in
the presentation and the proofs of our results.

Observation 4.1 Given a profile σ, let h denote its corresponding congestion vector (h = h(σ)), and
assume there exist a, b ∈ M and i ∈ N such that a ∈ σi and b /∈ σi. Then,

(1) If a D-move with a is profitable for i then

t >

mine∈σi−a he∑
q=1

( ∏
e∈σi−a

he − q + 1
he

)
q − 1
ha

.

If mine∈σi−a he = mine∈σi he and the D-move with a is non-profitable for i then

t ≤
mine∈σi−a he∑

q=1

( ∏
e∈σi−a

he − q + 1
he

)
q − 1
ha

.

(2) If an A-move with b is non-profitable for i then

t ≥
mine∈σi

he∑
q=1

(∏
e∈σi

he − q + 1
he

)
q − 1
hb + 1

.

If ∃e ∈ σi such that he ≤ hb + 1 and the A-move with b is profitable for i then

t <

mine∈σi
he∑

q=1

(∏
e∈σi

he − q + 1
he

)
q − 1
hb + 1

.

Note that if mine∈σi he = 1 then there exists resource e ∈ σi such that player i is its only user,
and Ci(σ) = 1 + |σi|t. Therefore, i cannot reduce his cost by applying an A-move.

(3) An S-move from a to b is profitable for i if and only if hb + 1 < ha.

Lemma 4.1 below implies that any strategy profile in which no player wishes unilaterally to apply a single
A-, D- or S-move, is a Nash equilibrium. This property is called the single profitable move property and
it allows us to consider only single moves rather than considering all possible deviations.

Lemma 4.1 (The single profitable move property) Given an ROCG, let σ ∈ Σ be a strategy profile which
is not in equilibrium, and let i ∈ N be a player for which a profitable deviation from σ is available. Then,
i has a profitable A-, D- or S-move from σ.
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4.2 Stability under single moves. By Lemma 4.1, in order to prove the existence of a pure
strategy Nash equilibrium in games possessing the single profitable move property, it suffices to present
a strategy profile for which no player wishes to unilaterally apply an A-, D- or S-move. This observation
motivates the following definition.

Definition 4.2 [14] A strategy profile σ is said to be A-stable (resp., D-stable, S-stable) if there are
no players with a profitable A- (resp., D-, S-) move from σ. An A- and D-stable profile (resp., A- and
S-stable, D- and S-stable) will be termed AD-stable (resp., AS-stable, DS-stable).

In order to investigate stability under single moves in ROCGs we use the notions of light and heavy
resources as well as of even and nearly-even strategy profiles.

Definition 4.3 [14] Given a strategy profile σ, resource e′ is called σ-light if e′ ∈ arg mine∈M he(σ)
and σ-heavy otherwise. A strategy profile σ with no heavy resources will be termed even. An even
strategy profile with a common congestion of k on the resources will be termed k-even. A strategy profile
σ satisfying |he(σ)− he′(σ)| ≤ 1 for all e, e′ ∈ M will be termed nearly-even.

Obviously, every even strategy profile is nearly-even. In addition, in a nearly-even strategy profile all
heavy resources (if such exist) have the same congestion. Moreover, as is shown in the following lemma,
the notions of nearly-evenness and S-stability are strongly connected.

Lemma 4.2 In an ROCG, a strategy profile is S-stable if and only if it is nearly-even.

Note that the pairwise intersections of the set of S-stable strategy profiles with the set of A-stable profiles
or the set of D-stable profiles are not empty. In particular, the strategy profile σM = (M, . . . , M) is
AS-stable, while the profile σ0 = (ei mod m+1)i∈N is DS-stable. However, at first glance, it is not clear
whether there exists a profile which is stable under all three types of single moves, or even if there is an
AD-stable profile.

Intuitively, one can try to achieve a Nash equilibrium by selecting a profile which is stable under two
types of single moves and applying on it a series of single moves of the third type. For instance, one
can pick a DS-stable strategy profile and try to transform it into a Nash equilibrium by applying on it a
series of profitable A-moves. However, such moves may destroy the D- or the S-stability of the selected
profile; moreover, an A-move from the selected profile may initiate a long chain of D- and S-moves (see
Example 4.2 in the sequel). Therefore, the chosen actions have to be picked out in a careful and subtle
way. In this context, we first restrict the set of available A-moves to the subset of one- and two-step
addition operations, as defined in the sequel.

4.3 One- and two-step additions. Let σ ∈ Σ be a strategy profile and let h denote its corre-
sponding congestion vector (h = h(σ)). For each player i ∈ N , let ei ∈ arg mine∈Mrσi he. That is, ei

is a lightest resource not previously chosen by i. Then, one can make the following (straightforward)
observation.

Observation 4.2 If there exists a profitable A-move for player i, then an A-move with ei, a lightest
resource not chosen previously by i, is profitable for i as well.

If no player wishes to change his strategy in this manner, i.e. Ci(σ) ≤ Ci(σ−i, σi + ei) for all i ∈ N , then
by Observation 4.2, Ci(σ) ≤ Ci(σ−i, σi+a) for all i ∈ N and a ∈ M rσi. Hence, σ is A-stable. Otherwise,
let N(σ) denote the subset of all players for which there exists ei such that a unilateral addition of ei

is profitable. Let a ∈ arg minei : i∈N(σ) hei . Let also i ∈ N(σ) be the player for which ei = a. If a is
σ-light, then let σ′ = (σ−i, σi + a). In this case we say that σ′ is obtained from σ by a one-step addition
of resource a, and a is called an added resource. If a is σ-heavy then there exists a σ-light resource b and
a player j such that a ∈ σj and b /∈ σj . Then let σ′ =

(
σ−{i,j}, σi + a, σj − a + b

)
. In this case we say

that σ′ is obtained from σ by a two-step addition of resource b, and b is called an added resource.

We notice that, in both cases, the congestion of each resource in σ′ is the same as in σ, except for
the added resource, with the congestion in σ′ increased by 1. Thus, if σ is nearly-even then σ′ is also
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nearly-even (since the added resource is σ-light). Then, Lemma 4.2 implies the S-stability of σ′. Lemma
4.3 below shows that if, in addition, σ is D-stable then the only potential cause for the non-D-stability
of σ′ is the existence of player i ∈ N with σ′i = σi who wishes to drop the added resource a.

Lemma 4.3 Let σ be a nearly-even and D-stable strategy profile of a given ROCG, and let σ′ be obtained
from σ by a one- or two-step addition of resource a. Then, there are no profitable D-moves for any player
i ∈ N with σ′i 6= σi. For i ∈ N with σ′i = σi, the only possible profitable D-move (if such exists) is to drop
the added resource a.

Note that although we did not succeed in keeping the D-stability, we have significantly reduced the set of
possible post-addition D-moves. However, as we show in the following example, we still may encounter
a situation in which a D-move with the added resources causes a long sequence of (profitable) D-moves
from a current profile.

Example 4.2 Consider an ROCG with 17 players, N = {1, 2, . . . , 17}, and 7 resources, M =
{e1, . . . , e7}. The fixed cost for utilizing each of the resources is given by t = 3

8 . Let σ be a strategy
profile in which the players are allocated to the resources in the following way:

e1 e2 e3 e4 e5 e6 e7

1 2 7 8 1 2 14
3 4 9 10 3 4 15
5 6 11 12 5 6 16

13 13 17

Note that he1(σ) = he2(σ) = he5(σ) = he6(σ) = 3 and he3(σ) = he4(σ) = he7(σ) = 4; that is, σ is
nearly-even and therefore S-stable (by Lemma 4.2). In addition, as we show below, no profitable D-moves
from σ are available.

For any subset of resources, A ⊆ M , let C(hA(σ)), where hA(σ) is a restriction of the congestion
vector h(σ) to A, denote the expected cost of player i with σi = A. Thus,

C(3) =
3∑

q=1

3− q + 1
3

+ t = 1 +
2
3

+
1
3

+ t = 2 + t =
19
8

=
171
72

C(4) =
4∑

q=1

4− q + 1
4

+ t = 1 +
3
4

+
1
2

+
1
4

+ t =
5
2

+ t =
23
8

=
207
72

C(3, 3) =
3∑

q=1

(
3− q + 1

3

)2

+ 2t = 1 +
(

2
3

)2

+
(

1
3

)2

+ 2t =
13
9

+ 2t =
79
36

=
158
72

C(3, 4) =
3∑

q=1

3− q + 1
3

· 4− q + 1
4

+ 2t = 1 +
2
3
· 3
4

+
1
3
· 1
2

+ 2t =
5
3

+ 2t =
29
12

=
174
72

C(4, 4) =
4∑

q=1

(
4− q + 1

4

)2

+ 2t = 1 +
(

3
4

)2

+
(

1
2

)2

+
(

1
4

)2

+ 2t =
15
8

+ 2t =
21
8

=
189
72

The expected cost to each of the players 1 – 6 is C(3, 3) = 158
72 < 171

72 = C(3), and player 13’s cost is
C(4, 4) = 189

72 < 207
72 = C(4). This implies that none of the above players is interested in applying a

D-move with one of his resources. The other players are using a single resource each, hence no D-moves
are available to these players as well. Therefore, σ is a DS-stable profile.

Now, since C(4, 4) < C(4), it follows that player 7 wishes to apply an A-move with any of the re-
sources e1, e2, e5, e6. Let σi = (σ7 ∪ {e1}, σ−7) (note that e1 is σ-light, i.e. σi is obtained from σ by the
one-step addition of e1 by player 7) as presented below:

e1 e2 e3 e4 e5 e6 e7

1 2 7 8 1 2 14
3 4 9 10 3 4 15
5 6 11 12 5 6 16
7 13 13 17
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Notice that since C(3, 4) = 174
72 > 171

72 = C(3), the profile σi is not D-stable, and each of players player
1, 3, 5 wishes to apply a D-move from the added resource, e1 (by Lemma 4.3, this is the only possible
profitable D-move). Let σii = (σ5 r {e1}, σ−5) :

e1 e2 e3 e4 e5 e6 e7

1 2 7 8 1 2 14
3 4 9 10 3 4 15
7 6 11 12 5 6 16

13 13 17

Observe that profile σii is not D-stable as well, since player 7 wishes to drop resource e3, and let σiii =
(σ7 r {e3}, σ−7):

e1 e2 e3 e4 e5 e6 e7

1 2 9 8 1 2 14
3 4 11 10 3 4 15
7 6 13 12 5 6 16

13 17

Note that the moves of player 7 demonstrate the following chain of preferences: utilizing 2 resources
of congestion 4 is preferred by using 1 resource of congestion 4 (his A-move operation); now, after the
D-move of player 5, using 1 resource of congestion 3 is preferred by using 1 resource of congestion 3 and
1 resource of congestion 4 (the D-move of player 7).

Profile σiii is not in-D-stable, too – the D-move with e4 is profitable for player 13 (for the same reason
as previously for players 5 and 7), and let σiv = (σ13 r {e4}, σ−13):

e1 e2 e3 e4 e5 e6 e7

1 2 9 8 1 2 14
3 4 11 10 3 4 15
7 6 13 12 5 6 16

17

Although the resulting profile, σiv, is DS-stable (no more profitable D-moves are available), it is not a
Nash equilibrium, since any of the players 14 – 17 would now benefit from an A-move with any of the
resources in M r {e7} (since C(4, 4) < C(4)), and a new chain of moves will begin.

As one may learn from the above example, the addition of a resource a by player i may force player j
to drop the added resource, a. This, in turn, may cause player i to drop another resource, say b. This
is since the D-move of j from a has decreased the congestion of a; hence, the i’s chance to get his task
executed earlier by a (σ-heavy) resource b has been decreased. For the same reason, the D-move of i from
b may cause a chain of D-moves from other heavy resources by different players. Although the length of
such a chain is bounded by m, the number of resources, it is not clear whether the one-/two-step addition
dynamics converges to an equilibrium if it initializes with an arbitrary DS-stable profile. This motivates
us to present the term of post-addition D-stability which plays a central role in our method, as follows.

4.4 Post-addition D-stability. Let σ ∈ Σ be a strategy profile and let σ′ be obtained from σ by
applying a one- or two-step addition operation. Then, based on Lemma 4.3, σ is said to be post-addition
D-stable if σ′ does not admit profitable D-moves with the added resource. Formally, the post-addition
D-stability is defined as follows.

Definition 4.4 A strategy profile σ of a given ROCG is called post-addition D-stable if

t ≤
mine∈σi−a he(σ)∑

q=1

( ∏
e∈σi−a

he(σ)− q + 1
he(σ)

)
q − 1

ha(σ) + 1
, (1)

for every i ∈ N with |σi| > 1 and for every σ-light resource a ∈ σi.

We note that by Observation 4.1, inequality (1) implies the non-profitability of a D-move with the added
resource.
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Let Σ0 ⊆ Σ denote the subset of all D-stable strategy profiles, and let Σ1 ⊆ Σ0 be the subset of all
even and D-stable strategy profiles. By Lemma 4.2, every profile in Σ1 (if such exists) is S-stable. For
any σ ∈ Σ1, let Hσ denote the common congestion on the resources, and let Σ2 ⊆ Σ1 be the subset of Σ1

consisting of all those profiles with maximum congestion on the resources: Σ2 = arg maxσ∈Σ1 Hσ. Then,

Lemma 4.4 Given an ROCG, there exists a strategy profile σ ∈ Σ2 that is either a pure strategy Nash
equilibrium or post-addition D-stable.

It is not clear, by first look, if the existence of a post-addition D-stable strategy profile implies the
existence of a pure strategy Nash equilibrium. To show such an implication, post-addition D-stability
should be preserved while applying a series of addition operations. In addition, such a series of addition
operations should converge to a pure strategy Nash equilibrium in a finite number of steps. In this context,
Lemma 4.5 and Corollary 4.3 below provide the needed steps for completing the proof of existence of a
pure strategy equilibrium.

Lemma 4.5 Given an ROCG, let σ be a nearly-even and post-addition D-stable strategy profile, and
let σ′ be obtained from σ by applying on it a one- or two-step addition operation. If mine∈M he(σ′) =
mine∈M he(σ) then σ′ is also nearly-even and post-addition D-stable.

Corollary 4.3 By Lemma 4.5, if we can find a post-addition D-stable strategy profile σ′ that lies in Σ2,
then a pure strategy Nash equilibrium can be achieved by applying on σ′, in a sequential manner, less
than m one-/two-step addition operations. This is because if we perform m addition operations then an
even D-stable strategy profile σ′′ with Hσ′′ > Hσ′ is obtained, contradicting σ′ ∈ Σ2.

Theorem 4.4 below follows directly from Lemmas 4.4 and 4.5, and Corollary 4.3.

Theorem 4.4 Every ROCG possesses a Nash equilibrium in pure strategies.

5. Computation of a Pure Strategy Nash Equilibrium. We are now ready to present our
Random Order Nash Equilibrium (RONE)-algorithm that constructs a pure strategy Nash equilibrium
in any given ROCG. Let us start with a brief description of the algorithm:

• Based on Lemma 4.5, the goal of the algorithm is to find a strategy profile in Σ2 which is either a
pure strategy Nash equilibrium or post-addition D-stable. In the latter case, the strategy profile can be
turned into a Nash equilibrium by applying on it at most m− 1 one-/two-step addition operations. For
that, the algorithm has to determine a value k∗ = maxσ∈Σ1 Hσ that represents the common congestion
on the resources for any strategy profile in Σ2.

• To find k∗ as above, the algorithm uses a variable k initiated with the value k = n and gradually
decreases until k∗ is found (Steps [0] – [1]).

• For k = n, the only even strategy profile with n being its common congestion is σ = (M, . . . , M),
which is obviously A- and S-stable. If σ is also D-stable then k∗ = n, and the algorithm outputs σ and
halts (Step [0]). Otherwise, k∗ < n and the algorithm proceeds with k = n− 1 (Step [1]).

• Given b n
mc < k < n, the algorithm checks whether a k-even D-stable strategy profile exists. If there

is no such profile then k∗ < k and the algorithm proceeds with the next value of k (repeating Step [1]).
Otherwise, k∗ = k.

• If k∗ = b n
mc then the algorithm constructs a strategy profile σ = (ei mod m)i∈N (Step [2]). As we

show in the proof of Theorem 5.1, σ is a Nash equilibrium.

• Otherwise, k∗ > b n
mc. In this case, the algorithm constructs a k∗-even strategy profile σ with

n∗ = n
(
bk∗m

n c+ 1
)
− k∗m players using bk∗m

n c resources and n − n∗ = k∗m − nbk∗m
n c players using

bk∗m
n c + 1 resources (Step [3]). As we show in the proof of Theorem 5.1, the obtained σ is D- and

S-stable. If σ is also A-stable then the algorithm outputs σ and halts (Step [4]). Otherwise, we show
that σ ∈ Σ2 and is post-addition D-stable. Then, based on Lemma 4.5 and Corollary 4.3, a pure strategy
Nash equilibrium is achieved by applying at most m− 1 one- or two-step additions on σ (Steps [5] – [9]).
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The RONE-algorithm is presented below.

RONE-algorithm

Step [0] If t ≤
∑n

q=1

(
n−q+1

n

)m−1 q−1
n then set

σ := (M, . . . , M) and QUIT;
Otherwise, set k := n− 1 and go to Step [1];

Step [1] If t >
∑k

q=1

(
k−q+1

k

)d km
n e−1

q−1
k then set

k := k − 1; Otherwise go to Step [3];
Step [2] If k = b n

mc then set σ := (ei mod m)i∈N

and QUIT; Otherwise go to Step [1];
Step [3] Set n∗ := n

(
bkm

n c+ 1
)
− km;

For i = 1 to n∗:
Set σi = {er ∈ M : 1 ≤ r ≤ bkm

n c}
and reorder the resources:
for all er ∈ M set er := e(r+b km

n c)mod m ;

If n∗ = n then go to Step [4];
Otherwise, for i = n∗ + 1 to n:

Set σi = {er ∈ M : 1 ≤ r ≤ bkm
n c+ 1}

and reorder the resources:
for all er ∈ M set er := e(r+b km

n c+1)mod m ;

Step [4] If t ≥
∑k

q=1

(
k−q+1

k

)b km
n c

q−1
k+1 then QUIT;

Step [5] For all i ∈ N , select ei ∈ arg mine∈Mrσi
he(σ);

Step [6] Set N(σ) := {i ∈ N : Ci(σ−i, σi + ei) < Ci(σ)};
If N(σ) = ∅ then QUIT;

Step [7] Set M(σ) := {e ∈ M : ∃i ∈ N(σ), e = ei};
Step [8] Select a∗ ∈ arg mine∈M(σ) he(σ)

and i∗ ∈ {i ∈ N(σ) : ei = a∗};
Step [9] If a∗ is σ-light set σi∗ := σi∗ + a∗

and go to Step [5];
Otherwise select a σ-light resource b∗

and j∗ ∈ {i ∈ N : a∗ ∈ σi, b
∗ /∈ σi},

set σi∗ := σi∗ + a∗, σj∗ := σj∗ − a∗ + b∗,
and go to Step [5].

Theorem 5.1 The RONE-algorithm finds a pure strategy Nash equilibrium in any given ROCG, and its
time complexity is O(nm2).

6. Proofs. Here we provide the proofs of our results. We start by making some technical observations
that will help us in their presentation. Let σ ∈ Σ be a strategy profile and let h denote its corresponding
congestion vector (h = h(σ)). Let i ∈ N and a ∈ σi. If a D-move with a is profitable for i then
Ci(σ−i, σi − a) < Ci(σ). That is,

mine∈σi−a he∑
q=1

∏
e∈σi−a

he − q + 1
he

+ (|σi| − 1) t <

mine∈σi
he∑

q=1

∏
e∈σi

he − q + 1
he

+ |σi|t

⇔ t >

mine∈σi−a he∑
q=1

∏
e∈σi−a

he − q + 1
he

−
mine∈σi

he∑
q=1

∏
e∈σi

he − q + 1
he

.

Since mine∈σi−a he ≥ mine∈σi he, the above implies

t >

mine∈σi−a he∑
q=1

( ∏
e∈σi−a

he − q + 1
he

)
q − 1
ha

≥
mine∈σi

he∑
q=1

( ∏
e∈σi−a

he − q + 1
he

)
q − 1
ha

.
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If the D-move with a is non-profitable for i then Ci(σ) ≤ Ci(σ−i, σi − a) and if the move is strictly
non-profitable then the inequality is strict. Hence, if the D-move with a is non-profitable for i then

t ≤
mine∈σi−a he∑

q=1

∏
e∈σi−a

he − q + 1
he

−
mine∈σi

he∑
q=1

∏
e∈σi

he − q + 1
he

.

We also notice that if mine∈σi−a he = mine∈σi he then the above is equivalent to

t ≤
mine∈σi−a he∑

q=1

( ∏
e∈σi−a

he − q + 1
he

)
q − 1
ha

=
mine∈σi

he∑
q=1

( ∏
e∈σi−a

he − q + 1
he

)
q − 1
ha

.

Similar inequalities can be derived for A- and S-moves as is demonstrated in Observation 4.1.

Below we present the proofs of Lemmas 4.1 – 4.5 and Theorem 5.1. We use the following notation.
For any X ⊆ M such that he < n for all e ∈ X, we denote by hX the congestion vector with the
congestion of each resource in X being increased by 1, while the congestion of all other resources remains
unchanged. That is, hX

e = he + 1 for all e ∈ X and hX
e = he for all e ∈ M r X.

Proof of Lemma 4.1. Let h be the congestion vector of σ. Let i ∈ N be a player who can benefit
from a unilateral deviation from σ. We have to show that there is a profitable A-, D- or S-move is
available for i.

Clearly, if player i deviates from strategy σi to strategy σ′i by applying a single A-, D- or S-move, then
max {|σi r σ′i|, |σ′i r σi|} = 1, and vice versa, if max {|σi r σ′i|, |σ′i r σi|} = 1 then σ′i is obtained from
σi by applying exactly one such move. For simplicity of exposition, for any pair of sets A and B, let
µ(A,B) = max {|A r B|, |B r A|}.

Let PDi(σ) denote the set of all profitable deviations of i from σ, that is

PDi(σ) = {xi ∈ Σi : Ci(σ−i, xi) < Ci(σ)},

and let yi ∈ arg minxi∈PDi(σ) µ(xi, σi). We have to show that µ(yi, σi) = 1, implying the existence of a
profitable A-, D- or S-move.

Assume on the contrary that there is no profitable A-, D- or S-move. That is, µ(yi, σi) > 1 (clearly, if
µ(yi, σi) < 1 then yi = σi). Then, the following three inequalities hold for any a ∈ σi and b /∈ σi:

Ci(σ) ≤ Ci(σ−i, σi + b). (2)

Ci(σ) ≤ Ci(σ−i, σi − a); (3)

Ci(σ) ≤ Ci (σ−i, σi − a + b) ; (4)

Let a ∈ σi and b /∈ σi. By (4) and Observation 4.1, for any a and b as above we have

hb + 1 ≥ ha. (5)

By (2) and Observation 4.1, for any b /∈ σi we get

t ≥
minσi

he∑
q=1

(∏
e∈σi

he − q + 1
he

)
q − 1
hb + 1

. (6)

By (3), for any a ∈ σi,

minσi
he∑

q=1

∏
e∈σi

he − q + 1
he

+ |σi|t ≤
minσi−a he∑

q=1

∏
e∈σi−a

he − q + 1
he

+ (|σi| − 1) t

⇒ t ≤
minσi−a he∑

q=1

∏
e∈σi−a

he − q + 1
he

−
minσi

he∑
q=1

∏
e∈σi

he − q + 1
he

. (7)

We consider separately each of the following three cases: (i) |σi r yi| = 0, (ii) |yi r σi| = 0, and (iii) both
|yi r σi| and |σi r yi| are positive.
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(i) |σi r yi| = 0:
If |σi ryi| = 0 (i.e., σi ( yi), then let b̂ ∈ arg maxe∈yirσi

hyirσi
e , and consider the strategy profile

y′i = yi − b̂ which is obtained by a D-move of i from (σ−i, yi). Clearly,

µ(y′i, σi) = |y′i r σi| < |yi r σi| = µ(yi, σi).

We show below that y′i is a profitable deviation of i from σ, and thus contradicts the choice of
yi. Specifically, we demonstrate that Ci(σ−i, y

′
i) ≤ Ci(σ−i, yi), which implies that y′i ∈ PDi(σ).

Assume on the contrary that Ci(σ−i, y
′
i) > Ci(σ−i, yi). By (5) and the choice of b̂, Observation

4.1 implies that

t <

minyi
h

yirσi
e∑

q=1

 ∏
e∈yi−b̂

hyirσi
e − q + 1

hyirσi
e

 q − 1
hb̂ + 1

(8)

=
minyi

h
yirσi
e∑

q=1

 ∏
e∈yi∩σi

he − q + 1
he

∏
e∈(yirσi)−b̂

hyirσi
e − q + 1

hyirσi
e

 q − 1
hb̂ + 1

.

Since σi ( yi and |yi r σi| > 1 then yi ∩ σi = σi, minyi
hyirσi

e ≤ minσi
he and∏

e∈(yirσi)−b̂
h

yirσi
e −q+1

h
yirσi
e

< 1 for any 1 < q ≤ minyi hyirσi
e . This, coupled with (8), yields

t <

minσi
he∑

q=1

(∏
e∈σi

he − q + 1
he

)
q − 1
hb̂ + 1

,

which contradicts (6).

(ii) |yi r σi| = 0:
If |yi r σi| = 0 (i.e., yi ( σi), then let â ∈ arg maxe∈σiryi

he, and consider the strategy profile
y′i = yi + â which is obtained by an A-move of i from (σ−i, yi). Clearly,

µ(y′i, σi) = |σi r y′i| < |σi r yi| = µ(yi, σi) .

As before, we show that y′i is a profitable deviation of i from σ, and thus contradicts the choice of
yi. Specifically, we demonstrate that Ci(σ−i, y

′
i) ≤ Ci(σ−i, yi), which implies that y′i ∈ PDi(σ).

Assume on the contrary that Ci(σ−i, y
′
i) > Ci(σ−i, yi). Then, by Observation 4.1,

t >

minyi
he∑

q=1

(∏
e∈yi

he − q + 1
he

)
q − 1
hâ

. (9)

By the choice of â and since |σi r yi| > 1 we conclude that there exists e ∈ σi r yi ⊆ σi such that
he ≤ hâ, which implies that mine∈σi−â = minσi . Then, (7) implies that

t ≤
minσi

he∑
q=1

( ∏
e∈σi−â

he − q + 1
he

)
q − 1
hâ

. (10)

Since yi ( σi − â then minσi he ≤ minyi he and
∏

e∈σi−â
he−q+1

he
<
∏

e∈yi

he−q+1
he

for all 1 ≤ q ≤
minσi he, which implies that (10) contradicts (9).

(iii) |yi r σi| > 0 and |σi r yi| > 0:
If both |yirσi| and |σiryi| are positive, then let a ∈ σiryi and b ∈ yirσi, and consider a strategy
profile y′i = (yi − b + a) which is obtained by an S-move from (σ−i, yi). By (5) and Observation
4.1 we get Ci(σ−i, y

′
i) ≤ Ci(σ−i, yi), implying that y′i ∈ PDi(σ). Clearly, |y′i r σi| < |yi r σi|

and |σi r y′i| < |σi r yi|. Therefore, µ(y′i, σi) < µ(yi, σi), which contradicts the choice of yi. This
completes the proof.

�

Proof of Lemma 4.2. The lemma follows directly from Observation 4.1 and the discussion below.
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⇒ Let σ be an S-stable strategy profile with its corresponding congestion vector h. Assume on the
contrary that there are a, b ∈ M such that hb +1 < ha. Then, there exists i ∈ N such that a ∈ σi

and b ∈ M r σi, and

Ci (σ−i, σi − a + b) =
minσi−a+b hb

e∑
q=1

∏
e∈σi−a+b

hb
e − q + 1

hb
e

+ |σi|t

<

minσi
he∑

q=1

∏
e∈σi

he − q + 1
he

+ |σi|t = Ci(σ),

in contradiction to the S-stability of σ.

⇐ Let σ be a profile with a nearly even congestion on the resources, and let h be its corresponding
congestion vector. Assume on the contrary that there exist i ∈ N and a ∈ σi, b ∈ M r σi, such
that Ci (σ−i, σi − a + b) < Ci(σ). Then,

minσi−a+b hb
e∑

q=1

∏
e∈σi−a+b

hb
e − q + 1

hb
e

+ |σi|t <

minσi
he∑

q=1

∏
e∈σi

he − q + 1
he

+ |σi|t. (11)

Since σ is nearly-even then hb +1 ≥ ha, implying that minσi−a+b hb
e ≥ minσi

he. Therefore, there
exists 1 ≤ q ≤ minσi he such that

∏
e∈σi−a+b

hb
e−q+1

hb
e

<
∏

e∈σi

he−q+1
he

, implying hb + 1 < ha, a
contradiction.

�

Proof of Lemma 4.3. We prove the lemma for the one- and the two-step addition, separately.

(i) One-step addition:
Suppose σ′ is obtained from σ by a one-step addition of a by player i, that is, σ′ = (σ−i, σi + a).
Then, Ci(σ′) < Ci(σ) ⇒ Ci(σ′) < Ci(σ′−i, σ

′
i − a), i.e. dropping resource a is not a profitable

policy for i. Since ha(σ′) = ha(σ)+1 ≥ hb(σ) = hb(σ′) for any b ∈ σi = σ′i−a then mine∈σ′i−a ≤
mine∈σ′i−b and hb(σ

′)−q+1
hb(σ′)

≤ ha(σ′)−q+1
ha(σ′) for any 1 ≤ q ≤ mine∈σ′i−a. Therefore,

Ci(σ′−i, σ
′
i − a) =

mine∈σ′
i
−a he(σ′)∑

q=1

∏
e∈σ′i−a

he(σ′)− q + 1
he(σ′)

+ (|σ′i| − 1) t

≤
mine∈σ′

i
−b he(σ′)∑

q=1

∏
e∈σ′i−b

he(σ′)− q + 1
he(σ′)

+ (|σ′i| − 1) t = Ci(σ′−i, σ
′
i − b),

implying Ci(σ′) < Ci(σ′−i, σ
′
i − b). That is, no profitable D-move is available for player i.

Let k 6= i. Then, σ′k = σk. We have to show that dropping any resource b 6= a is not profitable
for player k. Assuming on the contrary that Ck

(
σ′−k, σ′k − b

)
< Ck(σ′), by Observation 4.1 we

get

t >

mine∈σ′
k

he(σ′)∑
q=1

 ∏
e∈σ′k−b

he(σ′)− q + 1
he(σ′)

 q − 1
hb(σ′)

. (12)

Let b̂ ∈ arg maxe∈σk−a he(σ). By the D-stability of σ, Ck(σ) ≤ Ck

(
σ−k, σk − b̂

)
, implying

mine∈σk
he(σ)∑

q=1

∏
e∈σk

he(σ)− q + 1
he(σ)

+ |σk|t

≤
mine∈σk−b̂ he(σ)∑

q=1

∏
e∈σk−b̂

he(σ)− q + 1
he(σ)

+ (|σk| − 1) t.
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Since a is σ-light then hb̂(σ) ≥ ha(σ), implying b̂ ∈ arg maxe∈σk
he(σ). Then, mine∈σk−b̂ he(σ) =

mine∈σk
he(σ). Therefore, by Observation 4.1 the above yields

t ≤
mine∈σk

he(σ)∑
q=1

 ∏
e∈σk−b̂

he(σ)− q + 1
he(σ)

 q − 1
hb̂(σ)

. (13)

By (12) and (13),

mine∈σ′
k

he(σ′)∑
q=1

 ∏
e∈σ′k−b̂

he(σ′)− q + 1
he(σ′)

 q − 1
hb̂(σ

′)

<

mine∈σk
he(σ)∑

q=1

 ∏
e∈σk−b̂

he(σ)− q + 1
he(σ)

 q − 1
hb̂(σ)

.

Since σ′k = σk and he(σ′) ≥ he(σ) for all e ∈ M then mine∈σ′k
he(σ′) ≥ mine∈σk

he(σ), implying
that  ∏

e∈σ′k−b̂

he(σ′)− q + 1
he(σ′)

 q − 1
hb̂(σ

′)
<

 ∏
e∈σk−b̂

he(σ)− q + 1
he(σ)

 q − 1
hb̂(σ)

for some 1 ≤ q ≤ mine∈σk
he(σ). The above yields he(σ′) < he(σ) for some e ∈ σk−b̂, a contradic-

tion. Hence, dropping resource b̂ is not a profitable policy for k. Since b̂ ∈ arg maxe∈σk−a he(σ),
σ′k = σk and he(σ′) = he(σ) for all e 6= a then b̂ ∈ arg maxe∈σ′k−a he(σ′). As before, this yields
Ck(σ′−k, σ′k− b̂) ≤ Ck(σ′−k, σ′k− b) for any b ∈ σ′k−a, implying Ck(σ′) ≤ Ck(σ′−k, σ′k− b). Hence,
the only possible profitable D-move for player k is with the added resource a.

ii. Two-step addition:
Now suppose that σ′ is obtained by a two-step addition of a. More precisely, let σ′ =(
σ−{i,j}, σi + a′, σj − a′ + a

)
, where a′ is σ-heavy and a is σ-light. Then, Ci(σ−i, σi +a′) < Ci(σ)

yields

t <

mine∈σi
he(σ)∑

q=1

∏
e∈σi

he(σ)− q + 1
he(σ)

−

mine∈σi+a′ h
(σ−i,σi+a′)
e∑

q=1

(∏
e∈σi

he(σ)− q + 1
he(σ)

)
ha′(σ)− q + 2

ha′(σ) + 1
.

Since h
(σ−i,σi+a′)
a′ = ha′(σ) + 1 > he(σ) = h

(σ−i,σi+a′)
e for all e ∈ M − a′, by Observation 4.1 the

above yields

t <

mine∈σi
he(σ)∑

q=1

(∏
e∈σi

he(σ)− q + 1
he(σ)

)
q − 1

ha′(σ) + 1
. (14)

Since a′ is σ-heavy and a is σ-light, then ha′(σ′) = ha′(σ) ≥ he(σ′) ≥ he(σ), for all e ∈ M . Then,
by (14), we get

t <

mine∈σ′
i

he(σ′)∑
q=1

 ∏
e∈σ′i−a′

he(σ′)− q + 1
he(σ′)

 q − 1
ha′(σ′)

,

implying Ci(σ′) < Ci(σ′−i, σ
′
i − a′), i.e. dropping resource a is not a profitable policy for i. Since

ha′(σ′) ≥ he(σ′) for all e ∈ M then the above yields Ci(σ′) < Ci(σ′−i, σ
′
i − e) for any e ∈ σ′i,

implying that no profitable D-move is available for player i.
Consider now player j. We have to show that no profitable D-move is available for j. We
demonstrate below that the required follows directly from the D-stability of σ. That is, Cj(σ) ≤
Cj(σ−j , σj−e) for all e ∈ σj , implies Cj(σ′) ≤ Cj(σ′−j , σ

′
j−e′) for all e′ ∈ σ′j . Since a′ is σ-heavy,
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a is σ-light and σ is nearly-even, then ha(σ′) = ha(σ) + 1 = ha′(σ). Recall that σ′j = σj − a′ + a
and he(σ′) = he(σ) for all e ∈ M − a. Then, for any e ∈ σj , e′ ∈ σ′j , we have

Cj(σ′) = Cj(σ) ≤ Cj(σ−j , σj − e) = Cj(σ′−j , σ
′
j − e′),

as required.
For any player k 6= i, j, the proof we provided in the first case, is valid as well.

�

Proof of Lemma 4.4. If Σ2 contains a pure strategy Nash equilibrium strategy profile, we are done.
Otherwise, let us first show that Σ2 is not empty. By the definition of Σ2, it suffices to show that Σ1 – the
set of even D-stable profiles – is not empty. Recall that m < n and consider the D-stable strategy profile
σ = (ei mod m+1)i∈N . If m divides n then σ is n

m -even, and thus Σ1 is not empty. Otherwise, m does not
divide n, and σ is nearly-even, but not even. Observe that in σ, each player uses exactly one resource,
and n mod m resources are chosen by d n

me = b n
mc+ 1 players, while the other m− (n mod m) resources

are selected by b n
mc players. We modify σ to a d n

me-even strategy profile in the following way. We divide
the n players into two groups. The first group {1, . . . ,m− (n mod m)} contains m− (n mod m) players,
and the remaining n − (m− (n mod m)) players form the second group {m − (n mod m) + 1 , . . . ,n}.
Player i in the first group assigns his task to two resources, ei mod m+1 and e(i+n) mod m+1; player i in the
second group assigns his task to a single resource ei mod m+1. We denote the modified profile by σ′. We
show below that σ′ is D-stable, implying that Σ1 is not empty.

By our assumption, the previously considered profile σ = (ei mod m+1)i∈N is not A-stable, i.e. there
exists a player i ∈ N such that Ci(σ) > Ci(σ−i, σi + a) for some a ∈ M r σi. We claim that there
exist i ∈ N and a ∈ M , as above, such that a is σ-light. If n mod m < m − 1 then our claim follows
immediately. Otherwise, there is only one σ-light resource, e1. If no player in N wishes to add e1 to his
strategy then player i, who wishes to apply an A-move with some σ-heavy resource a, currently uses the
resource e1. In this case Ci(σ) > Ci(σ−i, σi + a) = Ci(σ−i, e1 + a), which yields

b n
m c∑

q=1

b n
mc − q + 1
b n

mc
+ t >

b n
m c∑

q=1

b n
mc − q + 1
b n

mc
·
d n

me − q + 2
d n

me+ 1
+ 2t

⇒ t<

b n
m c∑

q=1

b n
mc − q + 1
b n

mc
· q − 1
d n

me+ 1
<

d n
m e∑

q=1

d n
me − q + 1
d n

me
· q − 1
d n

me

⇒
d n

m e∑
q=1

d n
me − q + 1
d n

me
+ t >

d n
m e∑

q=1

(d n
me − q + 1
d n

me

)2

+ 2t,

implying that an A-move with the σ-light resource e1 is profitable for any player currently using some
σ-heavy resource. Thus, there are player i ∈ N and a σ-light resource a /∈ σi such that an A-move with
a is profitable for i.

We turn now to show the D-stability of σ′. We do so by observing that if player i uses in σ a heavy
resource with the congestion of d n

me, and it is profitable for him to use two such resources instead of
one (note that if player i joins a σ-light resource a, the congestion of a increases by 1, from b n

mc to
d n

me), then there is no profitable D-move from the modified profile, σ′, for any player j ∈ N . Namely, if
Ci(σ) > Ci(σ−i, σi + a), where a is a σ-light resource and σi consists of a single σ-heavy resource, then
Cj(σ′) < Cj(σ′−j , σ

′
j − b) for any j ∈ N with |σ′j | > 1 and b ∈ σ′j . Otherwise, if player i uses in σ a light

resource with the congestion of b n
mc, and it is beneficial for him to add a σ-light resource a, then using

two resources, one with the congestion of b n
mc and one with the congestion of d n

me, is better for i than
using only a single σ-light resource. This in turn yields that

b n
m c∑

q=1

b n
mc − q + 1
b n

mc
+ t >

b n
m c∑

q=1

b n
mc − q + 1
b n

mc
·
b n

mc − q + 2
b n

mc+ 1
+ 2t

⇒ t<

b n
m c∑

q=1

b n
mc − q + 1
b n

mc
· q − 1
b n

mc+ 1
<

d n
m e∑

q=1

d n
me − q + 1
d n

me
· q − 1
d n

me
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⇒
d n

m e∑
q=1

(d n
me − q + 1
d n

me

)2

+ 2t <

d n
m e∑

q=1

d n
me − q + 1
d n

me
+ t.

Hence, Cj(σ′) < Ci(σ′−j , σ
′
j − b) for any j ∈ N with |σ′j | > 1 and b ∈ σ′j . Therefore, σ′ is D-stable. Thus,

we have shown that Σ1, the set of even D-stable strategy profiles, is not empty. Therefore, Σ2 is not
empty as well.

Let CN (σ) =
∑

j∈N Cj(σ) denotes the group cost of the players, and let Σ3 ⊆ Σ2 be the non-empty
subset of all profiles in Σ2 of minimum group cost. That is,

Σ3 = arg min
σ∈Σ2

∑
j∈N

Cj(σ) = arg min
σ∈Σ2

CN (σ).

We show below that Σ3 contains a post-addition D-stable strategy profile. That is, by Definition 4.4, it
should be shown that there is σ ∈ Σ3 such that for all j ∈ N with |σj | > 1,

t ≤
Hσ∑
q=1

(
Hσ − q + 1

Hσ

)|σj |−1

· q − 1
Hσ + 1

. (15)

Let σ ∈ Σ3 and let M(σ) be the subset of all resources for which there exists a profitable (one-step)
addition by any of the players. First, we show that (15) holds for all j ∈ N with |σj | > 1 such that
σj ∩ M(σ) 6= ∅. That is, (15) is true for all those players with one of their resources being desired by
another player.

Let a ∈ M(σ), and let σ′ be the strategy profile that is obtained from σ by the (one-step) addition of
a by player i. Assume on the contrary that there is a player j with a ∈ σj , |σj | > 1, who would like to
remove a from the set of resources he uses. This implies that

t >

Hσ∑
q=1

(
Hσ − q + 1

Hσ

)|σj |−1

· q − 1
Hσ + 1

. (16)

Let σ′′ = (σ′−j , σ
′
j − a). Below we demonstrate that σ′′ is a D-stable strategy profile and, since σ′′ and

σ correspond to the same congestion vector, we conclude that σ′′ lies in Σ2. In addition, we show that
CN (σ′′) < CN (σ), contradicting the fact that σ ∈ Σ3.

To show that σ′′ ∈ Σ0 we note that since Hσ′′ = Hσ and σ ∈ Σ0, there are no profitable D-moves for any
player k 6= i, j. It remains to show that there are no profitable D-moves for players i and j as well. Since
Ci(σ′) < Ci(σ), ha(σ′′) < ha(σ′) and he(σ′′) = he(σ′) for all e ∈ M − a then Ci(σ′′) ≤ Ci(σ′) < Ci(σ).
Now, since he(σ′′) = he(σ) for all e ∈ M and σ′′ is even, we get Ci(σ′′) < Ci(σ) = Ci(σ′′−i, σ

′′
i − a) =

Ci(σ′′−i, σ
′′
i − e) for all e ∈ σ′′i , implying that no profitable D-move is available to player i. By the

D-stability of σ, for player j and for all e ∈ σj , Cj(σ) ≤ Cj(σ−j , σj − e). Hence, by Observation 4.1,

t ≤
Hσ∑
q=1

(
Hσ − q + 1

Hσ

)|σj |−1

· q − 1
Hσ

≤
Hσ′′∑
q=1

(
Hσ′′ − q + 1

Hσ′′

)|σ′′j |−1

· q − 1
Hσ′′

,

implying Cj(σ′′) < Cj(σ′′−j , σ
′′
j − e), for all e ∈ σ′′j . Therefore, σ′′ is D-stable and lies in Σ2.

To show that CN (σ′′), the group cost of σ′′, satisfies CN (σ′′) < CN (σ), we note that Hσ′′ = Hσ,
and thus Ck(σ′′) = Ck(σ), for all k ∈ N r {i, j}. Therefore, we have to show that Ci(σ′′) + Cj(σ′′) <
Ci(σ) + Cj(σ), or Ci(σ′′)− Ci(σ) < Cj(σ)− Cj(σ′′). By Observation 4.1,

Ci(σ′) < Ci(σ) ⇒ t <
Hσ∑
q=1

(
Hσ − q + 1

Hσ

)|σi|

· q − 1
Hσ + 1

,

that, coupled with (16), implies that |σj | − 1 > |σi|. Then,

Ci(σ′′)− Ci(σ) = t−
Hσ∑
q=1

(
Hσ − q + 1

Hσ

)|σi|

· q − 1
Hσ

<
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t−
Hσ∑
q=1

(
Hσ − q + 1

Hσ

)|σj |−1

· q − 1
Hσ

= Cj(σ)− Cj(σ′′),

as required. Therefore, σ′′ lies in Σ2 and satisfies CN (σ′′) < CN (σ), in contradiction to σ ∈ Σ3.

Hence, if σ ∈ Σ3 then (15) holds for all j ∈ N with |σj | > 1 such that σj ∩ M(σ) 6= ∅. Now
let us see that there exists σ ∈ Σ3 such that (15) holds for all the players. For that, choose a player
i ∈ arg maxj∈N |σj |. If there exists a ∈ σi ∩M(σ) then i satisfies (15), implying by the choice of player
i, that the above obviously yields the correctness of (15) for any player k ∈ N . Otherwise, if no resource
in σi lies in M(σ), then let a ∈ σi and a′ ∈ M(σ). Since a ∈ σi, a′ /∈ σi, and ha(σ) = ha′(σ), then
there exists player j such that a′ ∈ σj and a /∈ σj . One can easily check that the strategy profile
σ′ =

(
σ−{i,j}, σi − a + a′, σj − a′ + a

)
lies in Σ3. Thus, σ′ satisfies (15) for player i, and therefore, for

any player k ∈ N . �

Proof of Lemma 4.5. Using (1) with respect to σ, for any player k with σ′k = σk and for any
σ′-light resource a ∈ σ′k, we get

t ≤
mine∈σk−a he(σ)∑

q=1

( ∏
e∈σk−a

he(σ)− q + 1
he(σ)

)
q − 1

ha(σ) + 1

≤
mine∈σ′

k
−a he(σ′)∑

q=1

 ∏
e∈σ′k−a

he(σ′)− q + 1
he(σ′)

 q − 1
ha(σ′) + 1

,

as required. Now let us consider the rest of the players. Assume σ′ is obtained by the one-step addition
of a∗ by player i. In this case, i is the only player with σ′i 6= σi. The required property for player i follows
directly from Ci(σ′) < Ci(σ):

mine∈σ′
i

he(σ′)∑
q=1

∏
e∈σ′i

he(σ′)− q + 1
he(σ′)

+ |σ′i|t <

mine∈σi
he(σ)∑

q=1

∏
e∈σi

he(σ)− q + 1
he(σ)

+ |σi|t .

Since ha∗(σ′) = ha∗(σ)+1 ≥ he(σ) = he(σ′) for all e ∈ M−a∗ then mine∈σ′i
he(σ′) = mine∈σi+a∗ he(σ′) =

mine∈σi
he(σ), and by Observation 4.1 the above yields

t <

mine∈σi
he(σ)∑

q=1

∏
e∈σi

(
he(σ)− q + 1

he(σ)

)
q − 1

ha∗(σ) + 1

=

mine∈σ′
i
−a∗ he(σ′)∑

q=1

 ∏
e∈σ′i−a∗

he(σ′)− q + 1
he(σ′)

 q − 1
ha∗(σ) + 1

,

implying

t <

mine∈σ′
i
−a he(σ′)∑

q=1

 ∏
e∈σ′i−a

he(σ′)− q + 1
he(σ′)

 q − 1
ha(σ′) + 1

for any σ′-light resource a (recall that mine∈M he(σ′) = mine∈M he(σ)).

In the case of a two-step addition, let σ′ =
(
σ−{i,j}, σi + b∗, σj − b∗ + a∗

)
, where b∗ is a σ-heavy

resource and a∗ is σ-light. For player i, Ci(σ−i, σi + b∗) < Ci(σ) coupled with hb∗(σ) + 1 > he(σ) and
he(σ′) ≥ he(σ) for all e ∈ M − b∗, yields

t <

mine∈σi
he(σ)∑

q=1

∏
e∈σi

(
he(σ)− q + 1

he(σ)

)
q − 1

hb∗(σ) + 1

≤
mine∈σ′

i
−b∗ he(σ′)∑

q=1

∏
e∈σ′i−b∗

(
he(σ′)− q + 1

he(σ′)

)
q − 1

hb∗(σ) + 1
. (17)
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Since b∗ is σ-heavy then hb∗(σ) ≥ he(σ′) for all e ∈ M and, in particular, for all σ′-light resources. Then,
(17) implies

t <

mine∈σ′
i
−a he(σ′)∑

q=1

∏
e∈σ′i−a

(
he(σ′)− q + 1

he(σ′)

)
q − 1

ha(σ′) + 1

for any σ′-light resource a, as required.

For player j, the required follows directly from the D-stability of σ, coupled with hb∗(σ) = ha∗(σ′) =
ha(σ′) + 1 for any σ′-light resource a (the latter is true since mine∈M he(σ′) = mine∈M he(σ) and b∗ is
σ-heavy):

t ≤
mine∈σi−b∗ he(σ)∑

q=1

∏
e∈σi−b∗

(
he(σ)− q + 1

he(σ)

)
q − 1
hb∗(σ)

≤
mine∈σ′

i
−a he(σ′)∑

q=1

∏
e∈σ′i−a

(
he(σ′)− q + 1

he(σ′)

)
q − 1

ha(σ′) + 1
,

as required. �

Proof of Theorem 5.1. First we prove that the RONE-algorithm finds a pure-strategy Nash
equilibrium in a given ROCG, and then proceed to the proof of its complexity.

Validity: In the simplest case where

t ≤
n∑

q=1

(
n− q + 1

n

)m−1
q − 1

n
, (18)

the RONE-algorithm terminates after Step [0] with the outcome σ = (M, . . . , M) which is A- and S-stable.
By Observation 4.1, (18) implies the D-stability of σ. Hence, by Lemma 4.1, σ is a Nash equilibrium.
Otherwise, if (18) does not hold, the algorithm proceeds to Step [1].

Consider first the case in which t >
∑k

q=1

(
k−q+1

k

)d km
n e−1

q−1
k for all b n

mc < k ≤ n − 1. In this case,
the RONE-algorithm terminates after Step [2] with the output σ = (ei mod m)i∈N . Below we show that
the above strategy profile is a Nash equilibrium. By Lemma 4.1, it suffices to prove the A-, D- and
S-stability of σ. Since |σi| = 1 for all i ∈ N then no D-moves from σ are available. In addition, since σ
is nearly-even, by Lemma 4.2, it is S-stable as well. It remains to prove the A-stability of σ. That is, for
any player i ∈ N and resource e /∈ σi we have to show that Ci(σ) ≤ Ci(σ−i, σi +e). Since σ is nearly-even
then hei mod m

(σ) ≤ he(σ) + 1 for all e ∈ M . Hence, by Observation 4.1, we need to show that

t ≥
hei mod m

(σ)∑
q=1

hei mod m
(σ)− q + 1

hei mod m
(σ)

· q − 1
he(σ) + 1

. (19)

In σ, every resource has a congestion of b n
mc or d n

me, and every player uses precisely one resource.
Therefore, to prove (19), it suffices to show that

t ≥
d n

m e∑
q=1

d n
me − q + 1
d n

me
· q − 1
b n

mc+ 1
. (20)

By the algorithm, t >
∑k

q=1

(
k−q+1

k

)d km
n e−1

q−1
k for any b n

mc < k ≤ n and, in particular, for k = b n
mc+1.

That is,

t >

b n
m c+1∑
q=1

(b n
mc − q + 2
b n

mc+ 1

)&
(b n

m
c+1)m

n

’
−1

q − 1
b n

mc+ 1
. (21)

Thus, (20) follows from (21) by applying b n
mc+ 1 ≥ d n

me and
⌈

(b n
m c+1)m

n

⌉
− 1 ≤ 1.
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In the complement case, the RONE-algorithm picks b n
mc < k∗ ≤ n− 1 satisfying

t ≤
k∗∑

q=1

(
k∗ − q + 1

k∗

)d k∗m
n e−1

q − 1
k∗

(22)

and t >

p∑
q=1

(
p− q + 1

p

)d pm
n e−1

q − 1
p

(23)

for any k∗ < p ≤ n. At Step [3], the algorithm constructs a k∗-even strategy profile σ, in which
n∗ = n

(
bk∗m

n c+ 1
)
−k∗m players use bk∗m

n c resources and n−n∗ = k∗m−nbk∗m
n c players use bk∗m

n c+1
resources. That is, σ is the most fair strategy profile among the set of k∗-even profiles (notice that the
value of n∗ is determined by the equation n∗

⌊
k∗m

n

⌋
+ (n− n∗)

(⌊
k∗m

n

⌋
+ 1
)

= k∗m). σ is even and
therefore is S-stable, by Lemma 4.2. Below we prove the D-stability of σ. We notice that if n divides
k∗m then n∗ = n and bk∗m

n c = dk∗m
n e. Otherwise, n∗ < n and bk∗m

n c+ 1 = dk∗m
n e. By Observation 4.1,

(22) is essentially equivalent to the inequality Ci(σ) ≤ Ci(σ−i, σi − e) for any i ∈ N with |σi| = dk∗m
n e

and e ∈ σi. In addition, since b n
mc ≤ d n

me, from (22) we get t ≤
∑k∗

q=1

(
k∗−q+1

k∗

)b k∗m
n c−1

q−1
k∗ which yields

Ci(σ) ≤ Ci(σ−i, σi − e) for any i ∈ N with |σi| = bk∗m
n c and e ∈ σi. Therefore, the strategy profile σ is

D-stable. Using similar arguments as before, one can see that if

t ≥
k∗∑

q=1

(
k∗ − q + 1

k∗

)b k∗m
n c

q − 1
k∗ + 1

(24)

holds then, by Observation 4.1 (since all the resources are evenly congested), σ is A-stable. Now, if
(24) holds then the algorithm terminates after Step [4] with the outcome σ which is a Nash equilibrium
strategy profile, as follows from Lemma 4.1. Otherwise, if (24) does not hold, then the algorithm proceeds
to Step [5]. In this case we show that σ is post-addition D-stable and therefore can be turned into an
equilibrium by applying on it sequentially at most m−1 one-/two-step addition operations (see Corollary
4.3).

Steps [5] – [9] describe the procedure of a one-/two-step addition operation. Since (24) does not hold
then

t <
k∗∑

q=1

(
k∗ − q + 1

k∗

)b k∗m
n c

q − 1
k∗ + 1

≤
k∗∑

q=1

(
k∗ − q + 1

k∗

)b k∗m
n c−1

q − 1
k∗ + 1

,

implies that σ is post-addition D-stable (see Definition 4.4). The algorithm halts at Step [6] if and only if
the current strategy profile is A-stable. Otherwise, after Step [9] it results with a post-addition D-stable
profile and proceeds to Step [5], and so on. Assume that the algorithm did not terminate after m − 1
iterations of [5] – [9]. Then, at the m-th iteration, the algorithm produces an even strategy profile σ with
a common congestion of k∗ +1. Therefore, there exists a player, say i, with |σi| ≥ d (k∗+1)m

n e. By Lemma
4.5, σ is D-stable. Then,

t ≤
k∗+1∑
q=1

(
k∗ − q + 2

k∗ + 1

)|σi|−1
q − 1
k∗ + 1

≤
k∗+1∑
q=1

(
k∗ − q + 2

k∗ + 1

)d (k∗+1)m
n e−1

q − 1
k∗ + 1

,

in contradiction to (23). Therefore, Steps of [5] – [9] can be repeated at most m− 1 times. Since the last
iteration of [5] – [9] starts with a D-stable and, moreover, post-addition D-stable strategy profile, then
the outcome of the algorithm is D-stable. The S-stability follows directly from Lemma 4.2 and a nearly
even congestion of the resulting profile at each iteration.
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The above implies that the RONE-algorithm finds a pure strategy Nash equilibrium in a given ROCG
with m < n.

Complexity: Step [0] takes O(1) operations and is repeated only once. Step [1] takes O(1) operations
and can be repeated at most n times. Steps [2], [3] and [4] takes O(n), O(nm) and O(1) operations,
respectively, and can be repeated at most once each. Steps [5] – [9] take O(nm) operations – O(nm) at
Step [5], O(n) at Step [6], O(m) at Step [7] and O(n + m) at each of the Steps [8] and [9] – and can be
repeated at most m times. Therefore, the complexity of the RONE-algorithm is O(nm2). �

7. Summary and Future Work. In this paper, we introduced and investigated the class of random
order congestion games – ROCGs – which extends the models of congestion games to allow for a random
ordering of task execution. In an ROCG, each player aims to minimize his own cost which is determined
by the sum of two terms: the execution cost of his task which is assumed to be proportional to its
completion time, and the sum of the fixed costs over the resources he uses. The completion time of the
player’s task is determined by the minimum among its completion times by all of his chosen resources.

We studied the existence of a pure strategy Nash equilibrium and a potential function in ROCGs. We
showed that only ROCGs with 2 players and 2 resources are potential games, and any other ROCG is not
a potential game. Nevertheless, we proved that any ROCG possesses a pure strategy Nash equilibrium.
We presented a polynomial time algorithm for constructing a pure strategy Nash equilibrium in a given
ROCG.

As indicated above, we proved the nonexistence of potential function for ROCGs. However, this does
not preclude the existence of ordinal potential function, that if exists, insures that sequences of myopic
moves by single players lead to equilibrium. We leave this interesting difficult issue for future work.

The model of ROCGs can be extended in various ways. One can consider other probability distributions
over the set of permutations (orders) of the tasks assigned to a particular resource. In addition, it will
be a challenge to consider different processing times rather than these of single units, different subsets
of resources available to each of the players, players with multiple tasks etc. We believe such extensions
will be significantly more difficult to analyze. It is also of interest to study the stability under deviations
of coalitions and the social (in)efficiency of equilibria in ROCGs.

The method for computing a pure strategy Nash equilibrium proposed in this paper for ROCGs,
uses the stability under single moves we presented in our previous paper on Congestion Games with
Load-Dependent Failures [14]. In future research we plan to consider more general settings with selfish
players and shared resources, aiming at finding a characterization of classes of games for which the above
technique is valid.
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