
ar
X

iv
:1

20
2.

41
22

v1
  [

m
at

h.
O

C
]  

19
 F

eb
 2

01
2

Average-Cost Markov Decision Processes with Weakly Continuous

Transition Probabilities

Eugene A. Feinberg1, Pavlo O. Kasyanov2, and Nina V. Zadoianchuk3

Abstract

This paper presents sufficient conditions for the existenceof stationary optimal policies for average-

cost Markov Decision Processes with Borel state and action sets and with weakly continuous transition

probabilities. The one-step cost functions may be unbounded, and action sets may be noncompact. The

main contributions of this paper are: (i) general sufficientconditions for the existence of stationary

discount-optimal and average-cost optimal policies and descriptions of properties of value functions and

sets of optimal actions, (ii) a sufficient condition for the average-cost optimality of a stationary policy in

the form of optimality inequalities, and (iii) approximations of average-cost optimal actions by discount-

optimal actions.

1 Introduction

This paper provides sufficient conditions for the existenceof stationary optimal policies for

average-cost Markov Decision Processes (MDPs) with Borel state and action sets and with weakly

continuous transition probabilities. The cost functions may be unbounded and action sets may

be noncompact. The main contributions of this paper are: (i)general sufficient conditions for

the existence of stationary discount-optimal and average-cost optimal policies and descriptions of

properties of value functions and sets of optimal actions (Theorems 3.1, 5.2, and 5.6), (ii) a new

sufficient condition of average-cost optimality based on optimality inequalities (Theorem 4.1), and

(iii) approximations of average-cost optimal actions by discount-optimal actions (Theorem 6.1).

For infinite-horizon MDPs there are two major criteria: average costs per unit time and expected

total discounted costs. The former is typically more difficult to analyze. The so-called vanishing

discount factor approach is often used to approximate average costs per unit time by normalized
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expected total discounted costs. The literature on average-cost MDPs is vast. Most of the earlier

results are surveyed in Arapostathis et al. [1]. Here we mention just a few references.

For finite state and action sets, Derman [10] proved the existence of stationary average-cost

optimal policies. This result follows from Blackwell [6] and it also was independently proved by

Viskov and Shiryaev [29]. When either the state set or the action set is infinite, evenǫ-optimal

policies may not exist for someǫ > 0; Ross [23], Dynkin and Yushkevich [11, Chapter 7], Fein-

berg [12, Section 5]. For a finite state set and compact actionsets, optimal policies may not exist;

Bather [2], Chitashvili [9], Dynkin and Yushkevich [11, Chapter 7].

For MDP with finite state and action sets, there exist stationary policies satisfying optimality

equations (see Dynkin and Yushkevich [11, Chapter 7], wherethese equations are called canoni-

cal), and, furthermore, any stationary policy satisfying optimality equations is optimal. The latter

is also true for MDPs with Borel state and an action sets, if the value and weight (also called bias)

functions are bounded; Dynkin and Yushkevich [11, Chapter 7]. When the optimal value of average

costs per unit time does not depend on the initial state (the optimal value function is constant), the

pair of optimality equations becomes a single equation. Forbounded one-step costs, Taylor [28],

Ross [21] for a countable state space and Ross [22], Gubenko and Statland [15] for a Borel state

space provided sufficient conditions for the validity of optimality equations with a bounded bias

function; see also Dynkin and Yushkevich [11, Chapter 7]. Under all known sufficient conditions

for the existence of average-cost optimal policies for infinite-state MDPs, the value function is

constant.

In many applications of infinite-state MDPs, one-step costsare unbounded from above. For

example, holding costs may be unbounded in queueing and inventory systems. Sennott [25, 26]

(and references therein) developed a theory for countable-state problems with unbounded one-

step costs. For unbounded costs, optimality inequalities are used instead of optimality equations

to construct a stationary average-cost optimal policy. Cavazos-Cadena [7] provided an example,

when optimality inequalities hold while optimality equations do not.

Schäl [24] developed a theory for Borel state spaces and compact action sets. Two types of

continuity assumptions for transition probabilities are considered in Schäl [24]: the setwise and

weak continuity. For a countable state space these assumptions coincide; see Chen and Fein-

berg [8, Appendix]. Setwise convergence of probability measures is stronger than weak conver-

gence; Hernández-Lerma and Lasserre [17, p. 186]. Formally speaking, the setwise continuity

assumption for MDPs is not stronger than the weak continuityassumption, since the former claims

that the transition probabilities are continuous in actions, while they are jointly continuous in states

and actions in the latter. However, the joint continuity of transition probabilities in states and ac-

tions often holds in applications. For example, for inventory control problems with uncountable

state spaces, setwise continuity of transition probabilities takes place if demand is a continuous

random variable, while weak continuity holds for arbitrarily distributed demand; see Feinberg and

Lewis [14, Section 4]. The importance of weak convergence for practical applications is mentioned

in Hernández-Lerma and Lasserre [18, p. 141].
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In many applications action sets are not compact. Hernández-Lerma [16] extended Schäl’s [24]

results under the setwise continuity assumptions to possibly noncompact action sets. Schäl’s [24]

assumptions on compactness of action sets and lower semi-continuity of cost functions in the

action argument are replaced in Hernández-Lerma [16] by a more general assumption, namely,

that the cost functions are inf-compact in the action argument. For weakly continuous transition

probabilities and possibly noncompact action sets, Feinberg and Lewis [14] proved the existence of

stationary optimal policies for MDPs with cost functions being inf-compact in both state and action

arguments when, in addition to Schäl’s [24] boundness assumption on the relative discounted value

at each state, the so-called local boundness condition was assumed.

The original goal of this study was to show that the results from Feinberg and Lewis [14] hold

without local boundness condition. However, the results ofthis paper are more general. This

paper provides a weaker boundness condition on the relativediscounted value (Assumption (B)

in Section 5) than Assumption (B) introduced in Schäl [24]. It also provides a more general and

natural assumption (Assumption (W
∗) in Section 3) than inf-compactness of the one-step cost

function in both arguments. The main result of this paper, Theorem 5.2, establishes the validity of

optimality inequalities and the existence of stationary optimal policies under Assumptions (W
∗)

and (B).

While inf-compactness of the cost function in the action parameter is a natural assumption,

inf-compactness in the state argument is a more restrictivecondition. For example, when the state

space is unbounded (e.g., the set of nonnegative numbers) and action sets are compact, the assump-

tion, that the cost function is inf-compact in both arguments, does not cover the case of bounded

costs functions studied by Ross [22], Gubenko and Shtatland[15], and Dynkin and Yushkevich [11,

Chapter 7]. Assumption (W∗) covers this case as well as unbounded costs and noncompact action

sets.

As follows from the example presented in Luque-Vásquez andHernández-Lerma (1995),

MDPs with lower-semicontinuous cost functions may possesspathological properties, even if the

one-step cost function is inf-compact in the action variable. Assumption (W∗)(ii) removes this

difficulty. As stated in Lemma 3.2, this assumption is weakerthan Schäl’s [24] compactness and

continuity assumptions for weakly continuous transition probabilities and than inf-compactness of

one-step cost functions in both arguments (state and action) assumed in Feinberg and Lewis [14].

2 Model Description

For a metric spaceS, let B(S) be a Borelσ-field onS, that is, theσ-field generated by all open

sets of metric spaceS. For a setE ⊂ S, we denote byB(E) the σ-field whose elements are

intersections ofE with elements ofB(S). Observe thatE is a metric space with the same metric as

onS, andB(E) is its Borelσ-field. For a metric spaceS, we denote byP(S) the set of probability

measures on(S,B(S)). A sequence of probability measures{µn} from P(S) converges weakly to
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µ ∈ P(S) if for any bounded continuous functionf onS
∫

S

f(s)µn(ds) →

∫

S

f(s)µ(ds) as n → ∞.

Consider a discrete-time MDP with astate spaceX, anaction spaceA, one-step costsc, and

transition pobabilitiesq. Assume thatX andA areBorel subsetsof Polish (complete separable

metric) spaces with the corresponding metricsρ andγ. For all x ∈ X a nonempty Borel subset

A(x) of A represents theset of actionsavailable atx. Define the graph ofA by

Gr(A) = {(x, a) : x ∈ X, a ∈ A(x)}.

Assume also that

(i) Gr(A) is a measurable subset ofX × A, that is,Gr(A) ∈ B(Gr(A)), whereB(Gr(A)) =

B(X)⊗ B(A);

(ii) there exists a measurable mappingφ : X → A such thatφ(x) ∈ A(x) for all x ∈ X;

The one step cost, c(x, a) ≤ +∞, for choosing an actiona ∈ A(x) in a statex ∈ X, is a

bounded below measurablefunction onGr(A). Let q(B|x, a) be thetransition kernelrepresenting

the probability that the next state is inB ∈ B(X), given that the actiona is chosen in the statex.

This means that:

• q(·|x, a) is a probability measure on(X,B(X)) for all (x, a) ∈ X× A;

• q(B|·, ·) is a Borel function on(Gr(A),B(Gr(A))) for all B ∈ B(X).

The decision process proceeds as follows:

• at each time epochn = 0, 1, ... the current statex ∈ X is observed;

• a decision-maker chooses an actiona ∈ A(x);

• the costc(x, a) is incurred;

• the system moves to the next state according to the probability law q(·|x, a).

As explained in the text following the proof of Lemma 3.3, if for eachx ∈ X there existsa ∈ A(x)

with c(x, a) < ∞, the measurability ofGr(A) and inf-compactness of the cost functionc in the

action variablea assumed later imply that assumption (ii) holds.

Let Hn = (X × A)n × X be theset of historiesby timen = 0, 1, ... andB(Hn) = (B(X) ⊗

B(A))n⊗B(X). A randomized decision ruleat epochn = 0, 1, ... is a regular transition probability

πn : Hn → A concentrated onA(ξn), that is, (i)πn(· | hn) is a probability on(A,B(A)), given the

history hn = (ξ0, u0, ξ1, u1, ..., un−1, ξn) ∈ Hn, satisfyingπn(A(ξn)|hn) = 1, and (ii) for all

B ∈ B(A), the functionπn(B|·) is Borel on(Hn,B(Hn)). A policy is a sequenceπ = {πn}n=0,1,...

of decision rules. Moreover,π is callednonrandomized, if each probability measureπn(·|hn) is

concentrated at one point. A nonrandomized policy is calledMarkov, if all of the decisions depend

on the current state and time only. A Markov policy is calledstationary, if all the decisions depend

on the current state only. Thus, a Markov policyφ is defined by a sequenceφ0, φ1, . . . of Borel

mappingsφn : X → A such thatφn(x) ∈ A(x) for all x ∈ X. A stationary policyφ is defined by a

Borel mappingφ : X → A such thatφ(x) ∈ A(x) for all x ∈ X. Let

F = {φ : X → A : φ is Borel andφ(x) ∈ A(x) for all x ∈ X}
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be theset of stationary policies.

The Ionescu Tulcea theorem (Bertsekas and Shreve [4, pp. 140-141] or Hernández-Lerma and

Lassere [17, p.178]) implies that an initial statex and a policyπ define a unique probabilityP π
x on

the set of all trajectoriesH∞ = (X × A)∞ endowed with the product ofσ-field defined by Borel

σ-field ofX andA. LetEπ
x be an expectation with respect toP π

x .

For a finite horizonN = 0, 1, ..., let us define theexpected total discounted costs

vπN,α := E
π
x

N−1
∑

n=0

αnc(ξn, un), x ∈ X, (2.1)

whereα ≥ 0 is the discount factor andvπ0,α(x) = 0. Whenα = 1, we shall writevπN(x) instead of

vπN,1(x). WhenN = ∞ andα ∈ [0, 1), (2.1) defines aninfinite horizon expected total discounted

costdenoted byvπα(x).

Theaverage cost per unit timeis defined as

wπ(x) := lim sup
N→+∞

1

N
vπN(x), x ∈ X. (2.2)

For any functiongπ(x), includinggπ(x) = vπN,α(x), g
π(x) = vπα(x), andgπ(x) = wπ(x), define

theoptimal cost

g(x) := inf
π∈Π

gπ(x), x ∈ X,

whereΠ is the set of all policies.

A policy π is calledoptimal for the respective criterion, ifgπ(x) = g(x) for all x ∈ X. For

gπ = vπn,α, the optimal policy is calledn-horizon discount-optimal; for gπ = vπα, it is called

discount-optimal; for gπ = wπ, it is calledaverage-cost optimal.

It is well known (see, e.g., Bertsekas and Shreve [4, Proposition 8.2]) that the functionsvn,α(x)

recursively satisfy the followingoptimality equationswith v0,α(x) = 0 for all x ∈ X,

vn+1,α(x) = inf
a∈A(x)

{

c(x, a) + α

∫

X

vn,α(y)q(dy|x, a)

}

, x ∈ X, n = 0, 1, ... . (2.3)

In addition, a Markov policyφ, defined at the firstN steps by the mappingsφ0, ...φN−1, that satisfy

for all n = 1, ..., N the equations

vn,α(x) = c(x, φN−n(x)) + α

∫

X

vn−1,α(y)q(dy|x, φN−n(x)), x ∈ X, (2.4)

is optimal for the horizonN ; see e.g. Bertsekas and Shreve [4, Lemma 8.7].

It is also well known (Bertsekas and Shreve [4, Propositions9.8 and 9.12]) thatvα, where

α ∈ (0, 1], satisfies the following discounted cost optimality equation (DCOE):

vα(x) = inf
a∈A(x)

{

c(x, a) + α

∫

X

vα(y)q(dy|x, a)

}

, x ∈ X, (2.5)

and a stationary policyφα is discount-optimal if and only if

vα(x) = c(x, φα(x)) + α

∫

X

vα(y)q(dy|x, φα(x)), x ∈ X. (2.6)
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3 General Assumptions and Auxiliary Results

Following Schäl [24], consider the following assumption.

Assumption (G). w∗ := inf
x∈X

w(x) < +∞.

This assumption is equivalent to the existence ofx ∈ X andπ ∈ Π with wπ(x) < ∞. If

Assumption (G) does not hold then the problem is trivial, becausew(x) = ∞ for all x ∈ X and

any policyπ is average-cost optimal. Define the following quantities for α ∈ [0, 1):

mα = inf
x∈X

vα(x), uα(x) = vα(x)−mα,

w = lim inf
α↑1

(1− α)mα, w = lim sup
α↑1

(1− α)mα.

Observe thatuα(x) ≥ 0 for all x ∈ X. According to Schäl [24, Lemma 1.2], Assumption (G)

implies

0 ≤ w ≤ w ≤ w∗ < +∞. (3.1)

According to Schäl [24, Proposition 1.3], under Assumption (G), if there exists a measurable

functionu : X → [0,+∞) and a stationary policyφ such that

w + u(x) ≥ c(x, φ(x)) +

∫

X

u(y)q(dy|x, φ(x)), x ∈ X, (3.2)

thenφ is average-cost optimalandw(x) = w∗ = w = w for all x ∈ X. Here need a different form

of such a statement.

Theorem 3.1. Let Assumption (G) hold. If there exists a measurable functionu : X → [0,+∞)

and a stationary policyφ such that

w + u(x) ≥ c(x, φ(x)) +

∫

X

u(y)q(dy|x, φ(x)), x ∈ X, (3.3)

thenφ is average-cost optimal and

w(x) = wφ(x) = lim sup
α↑1

(1− α)vα(x) = w = w∗, x ∈ X. (3.4)

Proof. Similarly to Hernández-Lerma [16, p. 239] or Schäl [24, Proposition 1.3], sinceu is non-

negative, by iterating (3.3) we obtain

nw + u(x) ≥ vφn(x), n ≥ 1, x ∈ X.

Therefore, after dividing the last inequality byn and settingn → ∞, we have

w ≥ wφ(x) ≥ w(x) ≥ w∗, x ∈ X, (3.5)

where the second and the third inequalities follow from the definitions ofw andw∗ respectively.

Sincew ≥ w∗, inequalities (3.1) imply that for allπ ∈ Π

w∗ = w ≤ lim sup
α↑1

(1− α)vα(x) ≤ lim sup
α↑1

(1− α)vπα(x) ≤ wπ(x), π ∈ Π, x ∈ X.

6



Finally, we obtain that

w∗ = w ≤ lim sup
α↑1

(1− α)vα(x) ≤ inf
π∈Π

wπ(x) = w(x) ≤ wφ(x) ≤ w, x ∈ X, (3.6)

where the last inequality follows from (3.5). Thus all the inequalities in (3.6) are equalities.

Let us setR = [−∞,+∞), R+ = [0,∞), andR = R ∪ {+∞}. For anR-valued functionf ,

defined on a Borel subsetU of a Polish spaceY, consider the level sets

Df(λ) = {y ∈ U : f(y) ≤ λ}, (3.7)

−∞ < λ < +∞. We recall that the functionf is lower semi-continuous onU if all the level sets

Df(λ) are closed and the function isinf-compact onU if all these sets are compact. The level sets

Df(λ) satisfy the following properties that are used in this paper:

(a) if λ1 > λ thenDf(λ) ⊆ Df(λ1);

(b) if g, f are functions onU satisfyingg(y) ≥ f(y) for all y ∈ U thenDg(λ) ⊆ Df(λ).

A set is calledσ-compact if it is a union of a countable number of compact sets. Denote by

K(A) the family of all nonempty compact subsetsof A and byKσ(A) family of all σ-compact

subsetsof A; K(A) ⊂ Kσ(A). Also denote byS(A) the set of nonempty subsets ofA.

A set-valued mappingF : X → S(A) is upper semi-continuousat x ∈ X if, for any neigh-

borhoodG of the setF (x), there is a neighborhood ofx, sayU(x), such thatF (y) ⊆ G for all

y ∈ U(x) (see e.g., Berge [3, p. 109] or Zgurovsky et al. [30, Chapter 1, p. 7]). A set-valued

mapping is calledupper semi-continuous, if it is upper semi-continuous at allx ∈ X.

For weakly continuous transition probabilities, the following basic assumptions were consid-

ered in Schäl [24].

Assumption (W).
(i) c is lower semi-continuous and bounded below onGr(A);

(ii) A(x) ∈ K(A) for x ∈ X andA : X → K(A) is upper semi-continuous;

(iii) the transition probabilityq(·|x, a) is weakly continuous in(x, a) ∈ Gr(A).

Weak continuityof q in (x, a) means that
∫

X

f(z)q(dz|xk, ak) →

∫

X

f(z)q(dz|x, a), k = 1, 2, . . . ,

for any sequence{(xk, ak), k ≥ 0} converging to(x, a), where(xk, ak), (x, a) ∈ Gr(A), and for

any bounded continuous functionf : X → R. We notice that there is an additional assumption in

Schäl [24], namely, thatX is a locally compact space with countable base. However, as follows

from this paper, the assumption is not necessary here as wellas in Feinberg and Lewis [14], since

there exists at least one stationary policy. We also remark that the assumptions in (W) were

presented in a different order here than in Schäl [24], and that it is assumed in Schäl [24] thatc

is nonnegative. Since for discounted and average cost criteria the cost function can be shifted by
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adding any constant, the boundness and nonnegativity ofc are equivalent assumptions. We consider

Assumption (Wu) from Feinberg and Lewis [14] without assuming thatX is locally compact.

Assumption (Wu).
(i) c is inf-compact onGr(A);

(ii) Assumption (W)(iii) holds.

Assumption (W∗).
(i) Assumption (W)(i) holds;

(ii) if a sequence{xn}n=1,2,... with values inX converges and its limitx belongs toX then any

sequence{an}n=1,2,... with an ∈ A(xn), n = 1, 2, . . . , satisfying the condition that the sequence

{c(xn, an)}n=1,2,... is bounded above, has a limit pointa ∈ A(x);

(iii) Assumption (W)(iii) holds.

Lemma 3.2. The following statements hold:

(i) Assumption (W) implies Assumption (W∗);

(ii) Assumption (Wu) implies Assumption (W∗).

Proof. (i) Let xn → x asn → ∞, wherex ∈ X and xn ∈ X, n = 1, . . . . We show that

under Assumption (W)(ii) any sequence{an}n=1,2,... with an ∈ A(xn) has a limit pointa ∈

A(x). Indeed, sinceK := (∪n≥1{xn}) ∪ {x} is a compact set and set-valued mappingA : X →

K(A) is upper semi-continuous, then Berge [3, Theorem 3 on p. 110]implies that the image

A(K) is also compact. As{an}n≥1 ⊂ A(K) then the sequence{an}n≥1 has a limit pointa ∈ A.

Consider a sequencenk → ∞ such thatank
→ a. SinceA(z) ∈ K(A) for all z ∈ X, the

upper-semicontinuous set-valued mappingA is closed and, sinceA is closed,a ∈ A(x); Berge [3,

Theorems 5 and 6 on pp. 111, 112].

(ii) Since c is inf-compact, it is lower-semicontinuous and bounded below. We just need to

show that Assumption (W∗)(ii) holds. Let us considerxn → x asn → +∞ andan ∈ A(xn),

n = 1, , 2, . . . , such thatxn, x ∈ X and for someλ < ∞ the inequalityc(xn, an) ≤ λ holds for all

n = 1, 2, . . . . Then, by inf-compactness ofc onGr(A), the level setDc(λ) is compact. Thus the

sequence{xn, an}n≥1 has a limit point(x, a) ∈ Dc(λ) ⊆ Gr(A). Since(x, a) ∈ Gr(A), we have

a ∈ A(x).

For anyα ≥ 0 and lower semi-continuous nonnegative functionu : X → R, we consider an

operationηαu ,

ηαu (x, a) = c(x, a) + α

∫

X

u(y)q(dy|x, a), (x, a) ∈ Gr(A). (3.8)

Let L(X) be the class of all lower semi-continuous and bounded below functionsϕ : X → R

with domϕ := {x ∈ X : ϕ(x) < +∞} 6= ∅. Observe thatηαu = η1αu.

Lemma 3.3. For anyx ∈ X the following statements hold:

(a) under AssumptionW∗(ii), the functionc(x, ·) is inf-compact onA(x);

8



(b) under AssumptionsW∗(ii,iii), for any u ∈ L(X) andα ≥ 0, the functionηαu (x, ·) is inf-

compact onA(x).

Proof. (a) For an arbitraryλ ∈ R and fixedx ∈ X, consider the setDc(x,·)(λ) = {a ∈ A(x) :

c(x, a) ≤ λ}. AssumptionW∗(ii) means, that this set is compact. Thus, (i) is proved.

(b) Fix x ∈ X again. Sinceu ∈ L(X) andq is weakly continuous ina, the second summand in

(3.8) is a lower semi-continuous function onA(x) (Hernńdez-Lerma and Lasserre [17, p. 185]) and

it is bounded below by the same constant asu. According to statement (i),c(x, ·) is inf-compact on

A(x). The sum of an inf-compact function and a bounded below lowersemi-continuous function

is an inf-continuous function.

A measurable mappingφ : X → A, such thatφ(x) ∈ A(x) for all x ∈ X, is called a selector

(or a measurable selector). In our case, selectors and decision rules are the same objects. Since

we identify a stationary policy with a decision rule, selectors and stationary policies are the same

objects. The existence of selector for the mappingA is the necessary and sufficient condition for

the existence of a policy. LetE ⊆ X× A andproj
X
E = {x ∈ X : (x, a) ∈ E for some a ∈ E}

be a projection ofE onX. A Borel mapf : projX E → A is called a Borel uniformization ofE,

if (x, f(x)) ∈ E for all x ∈ proj
X
E. LetEx = {a : (x, a) ∈ E} be a cut ofE atx ∈ X.

Arsenin-Kunugui Theorem (Kechris [19, p. 297]) If E is a Borel subset ofX × A andEx ∈

Kσ(A) for all x ∈ X then there exists a Borel uniformization ofE andproj
X
E is a Borel set.

We remark that it is assumed in Kechris [19, p. 297]) thatX is a standard Borel space (that is,

isomorphic to a Borel subset of a Polish space) andA is a Polish space. HereX andA are Borel

subsets of Polish spaces. These two formulations are obviously equivalent.

We recall thatGr(A) is assumed to be Borel andA(x) 6= ∅, x ∈ X. With E = Gr(A), Arsenin-

Kunugui Theorem implies the existence of a stationary policy under the assumptionA(x) ∈ K(A),

x ∈ X. Thus, Assumption (W) implies the existence of a policy for the MDP.

Let Assumption (W∗) hold. SetF (x) = {a ∈ A(x) : c(x, a) < ∞}, x ∈ X. In view

of Lemma 3.3,F (x) = ∪n∈{1,2,...}Dc(x,·)(n) ∈ Kσ(A). In addition,Gr(F ) = {(x, a) ∈ Gr(A) :

c(x, a) < ∞} is a Borel subset ofX×A. Thus, if the functionc takes only finite values, a stationary

policy exists in view of Arsenin-Kunugui Theorem.

Of course, if it is possible thatc(x, a) = ∞, a uniformization may not exist. For example,

this takes place whenc(x, a) = ∞ for all (x, a) ∈ Gr(A) andGr(A) does not have a measurable

selector. Howeverc(x, a) = ∞ means from a modeling prospective that this state-action pair

should be excluded, because selectinga in x leads to the worst possible result. If there are state-

action pairs(x, a) with c(x, a) = ∞ andGr(A) does not have a uniformization, the MDP can be

transformed into an MDP modeling the same problem and with a nonempty set of policies. Let

us exclude the situation whenc(x, a) = ∞ for all (x, a) ∈ Gr(A), because it is trivial: all the

actions are bad. DefineX = proj
X
Gr(F ) andY = X \ X. Under Assumption (W∗), Arsenin-

Kunigui Theorem implies thatX is Borel and there exist a Borel mappingf fromX toA such that
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f(x) ∈ F (x) for all x ∈ X. If Y = ∅ (that is, there exists an actiona ∈ A(x) with c(x, a) < ∞

for eachx ∈ X) thenφ = f is a stationary policy.

Let us consider the situation whenY 6= ∅. In such an MDP, as soon as the state is inY , the

losses are infinite and there is no reason to model the processafter this. Let us transform the model

by choosing anyx∗ ∈ Y and anya∗ ∈ A and setting the new state setX
∗ = X ∪ {x∗}, keeping

the original action setA, setting new action setsA∗(x) = F (x) for x ∈ X andA∗(x∗) = {a∗},

defining the new cost function

c∗(x, a) =







c(x, a), if x ∈ Y and a ∈ F (x),

∞, if x = x∗ and a = a∗.

and considering new transition probabilities defined forx ∈ X∗ anda ∈ A∗(x) by

q∗(B|x, a) =















q(B|x, a), if B ⊆ X, B ∈ B(X), and x ∈ X,

q(Y |x, a), if B = {x∗}, and x ∈ X,

1, if B = {x∗} and x = x∗.

The new MDP is nontrivial in the sense that the set of policiesis not empty. Finding an optimal

policy for this MDP is equivalent to finding a policy for the original MDP until its first exit time

fromX, and in both cases the process incurs infinite losses, if it leavesX. So, the original and the

new MDP model are the same problem.

Lemma 3.4. If Assumption (W∗) holds andu ∈ L(X), then the function

u∗(x) := inf
a∈A(x)

[

c(x, a) +

∫

X

u(y)q(dy|x, a)
]

, x ∈ X, (3.9)

belongs toL(X), and there existsf ∈ F such that

u∗(x) = c(x, f(x)) +

∫

X

u(y)q(dy|x, f(x)), x ∈ X. (3.10)

Moreover, infimum in (3.9) can be replaced by minimum, and thenonempty sets

A∗(x) =

{

a ∈ A(x) : u∗(x) = c(x, a) +

∫

X

u(y)q(dy|x, a)

}

, x ∈ X, (3.11)

satisfy the following properties:

(a) the graphGr(A∗) = {(x, a) : x ∈ X, a ∈ A∗(x)} is a Borel subset ofX× A;

(b) if u∗(x) = +∞, thenA∗(x) = A(x), and, ifu∗(x) < +∞, thenA∗(x) is compact.

Proof. Under Assumption (W∗), for any lower semi-continuous onX, bounded below function

u : X → R andα ∈ (0, 1], the functionηαu(x,·) is inf-compact onA(x), x ∈ X. This follows from

Lemma 3.3. Thus, infimum in (3.9) can be replaced by minimum and A∗(x) is nonempty for any

x ∈ X.
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Now we show thatu∗ is lower semi-continuous onX. Let us fix an arbitraryx ∈ X and any

sequencexn → x asn → +∞. We need to prove the inequality

u∗(x) ≤ lim inf
n→+∞

u∗(xn). (3.12)

If lim inf
n→+∞

u∗(xn) = +∞, then (3.12) obviously holds. Thus we consider the case, when

lim inf
n→+∞

u∗(xn) < +∞. There exists a subsequence{xnk
}k≥1 ⊆ {xn}n≥1 such that

lim inf
n→+∞

u∗(xn) = lim
k→+∞

u∗(xnk
).

Settingλ = lim
k→+∞

u∗(xnk
)+1, we get the inequalityu∗(xnk

) ≤ λ for all k ≥ K, whereK is some

natural number. Since the functionη1u is inf-compact onGr(A), equation (3.9) can be rewritten as

u∗(x) := min
a∈A(x)

η1u(x, a), x ∈ X.

Thus, for anyk ≥ K there existsak ∈ A(xnk
) such thatu∗(xnk

) = η1u(xnk
, ak). Therefore,

c(xnk
, ak) ≤ η1u(xnk

, ak) ≤ λ, k ≥ K.

In view of Assumption (W∗)(ii), there exists a convergent subsequence{akm}m≥1 of the sequence

{ak}k≥1 such thatakm → a ∈ A(x) asm → +∞. Due to lower semi-continuity ofη1u onGr(A),

lim inf
n→+∞

u∗(xn) = lim
k→+∞

u∗(xnk
) = lim

m→+∞
u∗(xnkm

) = lim
m→+∞

η1u(xnkm
, akm) ≥ η1u(x, a) ≥ u∗(x).

Inequality (3.12) holds. Thus,u∗ is lower semi-continuous onX.

Now we consider the nonempty setsA∗(x), x ∈ X, defined in (3.11). The graphGr(A∗) is a

Borel subset ofX × A, becauseGr(A∗) = {(x, a) : u∗(x) = η1u(x, a)}, and the functionsη1u and

u∗ are lower semi-continuous onGr(A) andX respectively, and therefore they are Borel.

We remark that, ifu∗ = +∞, thenA∗(x) = A(x). If u∗(x) < ∞, then Lemma 3.3 implies that

the setA∗(x) is compact. Indeed, fix anyx ∈ Xf := {x ∈ X : u∗(x) < ∞} and setλ = u∗(x).

Then the setA∗(x) = {a ∈ A(x) : η1u(x, a) ≤ λ} = Dη1u(x,·)(λ) is compact, becauseη1u(x, ·) is

inf-compact onA(x).

Let us prove the existence off ∈ F satisfying (3.10). Since the functionu∗ is lower-

semicontinuous, it is Borel and the setsX∞ := {x ∈ X : u∗(x) = +∞} andXf are Borel.

Therefore, the graph of the mappingXf → A∗ is the Borel setGr(A∗) \ (X∞ × A). Since the

nonempty setsA∗(x) are compact for allx ∈ Xf , the Arsenin-Kunugui Theorem implies the exis-

tence of a Borel selectorf1 : Xf → A such thatf1(x) ∈ A∗(x) for all x ∈ X. Consider any Borel

mappingf2 from X to A satisfyingf2(x) ∈ A(x) for all x ∈ X and set

f(x) =







f1(x), if x ∈ Xf ,

f2(x), if x ∈ X∞.

Thenf ∈ F andf(x) ∈ A∗(x) for all x ∈ X.
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The following Lemma 3.5 is formulated in Schäl [24, Lemma 2.3(ii)] without proof. Reference

Serfozo [27] mentioned in Schäl [24, Lemma 2.3(ii)] contains relevant facts, but it does not contain

this statement. Therefore we provide the proof. Recall thatfor a metric spaceS, the family of all

probability measures on(S,B(S)) is denoted byP(S).

Lemma 3.5. LetS be an arbitrary metric space,{µn}n≥1 ⊂ P(S) converges weakly toµ ∈ P(S),

and{hn}n≥1 be a sequence of measurable nonnegativeR-valued functions onS. Then
∫

S

h(s)µ(ds) ≤ lim inf
n→+∞

∫

S

hn(s)µn(ds),

whereh(s) = lim inf
n→+∞, s′→s

hn(s
′), s ∈ S.

Proof. See AppendixA.

We remark that lim inf
n→+∞, s′→s

hn(s
′) is the least upper bound of the set of allλ ∈ R such that there

existN = 1, 2, . . . and a neighborhoodU(s) of s such thatλ ≤ inf{hn(s
′) : n ≥ N, s′ ∈ U(s)}.

4 Expected Total Discounted Costs

In this section, we establish under Assumption (W
∗) the standard properties of discounted MDPs:

the existence of stationary optimal policies, descriptionof the sets of stationary optimal policy,

and convergence of value iterations. Theorem 4.1 strengthens Feinberg and Lewis [14, Proposition

3.1], where these facts are proved under Assumption (Wu). In terms of applications to inventory

and queuing control, Assumption (W
∗) does not require that holding costs increase to infinity as

the inventory level (or workload, or the number of customersin queue) increases to infinity.

Theorem 4.1. Let Assumption (W∗) hold. Then

(i) the functionsvn,α, n = 1, 2, . . ., andvα are lower semi-continuous onX, andvn,α(x) ↑ vα(x)

asn → +∞ for all x ∈ X;

(ii)

vn+1,α(x) = min
a∈A(x)

{

c(x, a) + α

∫

X

vn,α(y)q(dy|x, a)

}

, x ∈ X, n = 0, 1, ..., (4.1)

wherev0,α(x) = 0 for all x ∈ X, and the nonempty setsAn,α(x) := {a ∈ A(x) : vn+1,α(x) =

ηαvn,α
(x, a)}, x ∈ X, n = 0, 1, . . . , satisfy the following properties: (a) the graphGr(An,α) =

{(x, a) : x ∈ X, a ∈ Aα(x)}, n = 0, 1, . . . , is a Borel subset ofX×A, and (b) ifvn+1,α(x) = +∞,

thenAn,α(x) = A(x) and, ifvn+1,α(x) < +∞, thenAn,α(x) is compact;

(iii) for any N = 1, 2, . . ., there exists a Markov optimalN-horizon policy(φ0, . . . , φN−1) and

if, for an N-horizon Markov policy(φ0, . . . , φN−1) the inclusionsφN−1−n(x) ∈ Aα,n(x), x ∈ X,

n = 0, . . . , N − 1, hold then this policy isN-horizon optimal;
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(iv) for α ∈ [0, 1)

vα(x) = min
a∈A(x)

{

c(x, a) + α

∫

X

vα(y)q(dy|x, a)

}

, x ∈ X, (4.2)

and the nonempty setsAα(x) := {a ∈ A(x) : vα(x) = ηαvα(x, a)}, x ∈ X, satisfy the following

properties: (a) the graphGr(Aα) = {(x, a) : x ∈ X, a ∈ Aα(x)} is a Borel subset ofX× A, and

(b) if vα(x) = +∞, thenAα(x) = A(x) and, ifvα(x) < +∞, thenAα(x) is compact.

(v) for an infinite-horizon there exists a stationary discount-optimal policyφα, and a stationary

policy is optimal if and only ifφα(x) ∈ Aα(x) for all x ∈ X.

(vi) (Feinberg and Lewis [14, Proposition 3.1(iv)])under Assumption (Wu), the functionsvn,α,

n = 1, 2, . . ., andvα are inf-compact onX.

Proof. (i)–(v). First, we prove these statements for a nonnegativecost functionc. In this case,

vn,α(x) ≥ 0, n = 0, 1, . . . , andvα(x) ≥ 0 for all x ∈ X.

By (2.3) and Lemma 3.4,v1,α ∈ L(X), sincev0,α = 0 ∈ L(X). By the same arguments, if

vn,α ∈ L(X) thenvn+1,α ∈ L(X). Thusvn,α ∈ L(X) for all n = 0, 1, . . . . By Lemma 3.3,

for any n = 1, 2, . . ., x ∈ X, andλ ∈ R, the setDηαvn,α
(x,·)(λ) is a compact subset ofA. By

Bertsekas and Shreve [4, Proposition 9.17],vn,α ↑ vα asn → +∞. Since the limit of a monotone

increasing sequence of lower semi-continuous functions isagain a lower semi-continuous function,

vα ∈ L(X). Lemma 3.4, applied to equations (2.3) and (2.5), implies statements (ii) and (iv)

respectively. Statement (iii) follows from (2.4) and statement (v) follows from (2.6).

Now let c(x, a) ≥ K for all (x, a) ∈ Gr(A) and for someK > −∞. ForK ≥ 0, statements

(i)–(v) are proved. ForK < 0, consider the value functions̃c = c−K ≥ 0. If the cost functionc

substituted with̃c, we substitute the notationv with ṽ. Thenvπn,α = ṽπn,α + 1−αn

1−α
K, n = 0, 1, . . . ,

for all policiesπ. Thus,vn,α = ṽn,α +
1−αn

1−α
K, n = 0, 1, . . . , andvα = ṽα +

K
1−α

. Since statements

(i)–(v) hold for the shifted costs̃c and the value functions̃vn,α andṽα, they also hold for the initial

cost functionc and the value functionsvn,α andvα.

We remark that the conclusions of Theorem 4.1 and its proof remain correct whenα = 1 and

the functionc is nonnegative.

5 Average Costs Per Unit Time

In this section we show that Assumption (W
∗) and boudness assumption Assumption (B) on

the functionuα, which is weaker boundness Assumption (B) introduced by Schäl [24], lead to

the validity of stationary average-cost optimal inequalities and the existence of stationary policies.

Stronger results hold under Assumption (B).

Assumption (B). (i) Assumption (G) holds, and (ii)lim inf
α↑1

uα(x) < ∞ for all x ∈ X.
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Assumption (B)(ii) is weaker than the assumptionsupα∈[0,1) uα(x) < ∞ for all x ∈ X con-

sidered in Schäl [24]. This assumption and Assumption (G) were combined in Feinberg and

Lewis [14] into the following assumption.

Assumption (B). (i) Assumption (G) holds, and (ii)supα∈[0,1) uα(x) < ∞ for all x ∈ X.

It seems natural to consider the assumptionlim sup
α↑1

uα(x) < ∞ for all x ∈ X, which is stronger

than Assumption (B)(ii) and weaker than Assumption (B)(ii). However, as the following lemma

shows, under Assumption (G) this assumption is equivalent to Assumption (B)(ii).

Lemma 5.1. Let the cost functionc be bounded below and Assumption (G) hold. Then for each

x ∈ X the following two inequalities are equivalent:

(i) supα∈[0,1) uα(x) < ∞,

(ii) lim sup
α↑1

uα(x) < ∞.

Proof. Obviously, (i)→(ii). Let us prove (ii)→(i). Let (ii) hold. Assume that (i) does not hold.

Sincesupα∈[0,1) uα(x) = max{supα∈[0,α∗) uα(x), supα∈[α∗,1) uα(x)} for anyα∗ ∈ [0, 1), there ex-

istsα∗ ∈ [0, 1) such thatsupα∈[0,α∗) uα(x) = ∞.

Since the functionuα remains unchanged, if a finite constant is added to the cost function c,

we assume without loss of generality thatc(x, a) ≥ 0 for all (x, a) ∈ Gr(A). Sincec ≥ 0, the

functionsvα(x) andmα are nonnegative nondecreasing functions inα ∈ [0, 1). Sincevα(x) =

uα(x) + mα ≥ uα(x), we havesupα∈[0,α∗) vα(x) = ∞ and thereforevα(x) = ∞ for all α ∈

[α∗, 1), because of the monotonicity ofvα in α. Thus, lim sup
α↑1

(1 − α)vα(x) = ∞. However,

lim sup
α↑1

(1−α)vα(x) = lim sup
α↑1

(1−α)(uα(x)+mα) ≤ lim sup
α↑1

(1−α)uα(x)+w < ∞, where the

last inequality follows from (ii) and (3.1). The obtained contradiction completes the proof.

Until the end of this section we assume that Assumption (B) holds. Let us set

u(x) := lim inf
α↑1, y→x

uα(y), x ∈ X, (5.1)

where lim inf
α↑1, y→x

uα(y) is the least upper bound of the set of allλ ∈ R+ such that there existβ ∈ [0, 1)

and a neighborhoodU(x) of x such thatλ ≤ inf{uα(y) : α ∈ [β, 1), y ∈ U(x) ∩ X}.

Also define the following nonnegative functions onX:

Uβ(x) = inf
α∈[β,1)

uα(x), uβ(x) = lim inf
y→x

Uβ(y), β ∈ [0, 1), x ∈ X. (5.2)

Observe that all the three defined functions take finite values atx ∈ X. Indeed,

uβ(x) ≤ Uβ(x) ≤ sup
β∈[0,1)

inf
α∈[β,1)

uα(x) = lim inf
α↑1

uα(x) < ∞, β ∈ [0, 1), x ∈ X, (5.3)
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where the first two inequalities follow from the definitions of uβ andUβ respectively, and the last

inequality follows from Assumption (B). Forx ∈ X

u(x) = sup
β∈[0,1), R>0

[

inf
α∈[β,1), y∈BR(x)

uα(y)

]

= sup
β∈[0,1)

sup
R>0

inf
y∈BR(x)

inf
α∈[β,1)

uα(y)

= sup
β∈[0,1)

sup
R>0

inf
y∈BR(x)

Uβ(y) = sup
β∈[0,1)

lim inf
y→x

Uβ(y) = sup
β∈[0,1)

uβ(x) < ∞,
(5.4)

whereBR(x) = {y ∈ X : ρ(y, x) < R}, the first equality is (5.1), the second equality follows

from the properties of infinums, the third and the fifth equalities follow from (5.2), the fourth

equality follows from the definition oflim sup, and the inequality follows from (5.3). In view of

(5.2), the functionsUβ(x) anduβ(x) are nondecreasing inβ. Therefore, in view of (5.4),

u(x) = lim
β↑1

uβ(x), x ∈ X. (5.5)

We also set foru from (5.5)

A∗(x) :=

{

a ∈ A(x) : w + u(x) ≥ c(x, a) +

∫

X

u(y)q(dy|x, a)

}

, x ∈ X, (5.6)

and letA∗(x), x ∈ X, be the sets defined in (3.11) for this functionu; A∗(x) ⊆ A∗(x).

Theorem 5.2. Suppose Assumptions (W
∗) and (B) hold. There exist a stationary policyφ satis-

fying (3.3) withu defined in (5.1). Thus, equalities (3.4) hold for this policyφ. Furthermore, the

following statements hold:

(a) the functionu : X → R+, defined in (5.1), is lower semi-continuous;

(b) the nonempty setsA∗(x), x ∈ X, satisfy the following properties:

(b1) the graphGr(A∗) = {(x, a) : x ∈ X, a ∈ A∗(x)} is a Borel subset ofX× A;

(b2) for eachx ∈ X the setA∗(x) is compact;

(c) a stationary policyφ is optimal for average costs and satisfies (3.3) withu defined in (5.1), if

φ(x) ∈ A∗(x) for all x ∈ X;

(d) there exists a stationary policyφ with φ(x) ∈ A∗(x) ⊆ A∗(x) for all x ∈ X;

(e) if, in addition, Assumption (Wu) holds, then the functionu, defined in (5.1), is inf-compact.

Before the proof of Theorem 5.2, we establish some auxiliaryfacts.

Lemma 5.3. Under Assumption (B), the functionsu, uα : X → R+, α ∈ [0, 1), are lower semi-

continuous onX. If additionally Assumption (W∗) holds, the functionsuα : X → R+, α ∈ [0, 1),

are lower semi-continuous onX. Under Assumptions (Wu) and (B), the functionsu, uα, uα : X →

R+, α ∈ [0, 1), are inf-compact onX.
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Proof. Sinceuα(x) ≥ 0, α ∈ [0, 1) andx ∈ X, the functionsuα, α ∈ [0, 1), are lower semi-

continuous; Feinberg and Lewis [14, Lemma 3.1]. Since supremum over any set of lower semi-

continuous functions is a lower semi-continuous function,the functionu is lower semi-continuous.

According to (3.1),w := lim sup
α↑1

(1−α)mα = inf
α∈(0,1)

sup
α∈[α,1)

(1−α)mα < ∞. Thus, there exists

α0 ∈ [0, 1) such that

λ′ := sup
α∈[α0,1)

(1− α)mα < ∞. (5.7)

Let us assume that the functionc is bounded below. As explained in the proof of Lemma 5.1,

without loss of generality we can assume thatc ≥ 0. Thenmα is a nonnegative, nondecreasing

function. Thus,(1− α)mα ≤ (1− α)mα0
≤ λ′/(1− α0), α ∈ [0, α0), and (5.7) implies that

λ∗ = sup
α∈[0,1)

(1− α)mα < ∞. (5.8)

According to Theorem 4.1(i, iv,v), under Assumption (W
∗), the functionuα(x) = vα(x)−mα

is lower semi-continuous, and a stationary policyφα is α-discount optimal if and only if for all

x ∈ X

vα(x) = min
a∈A(x)

{

c(x, a) + α

∫

X

vα(y)q(dy|x, a)

}

= c(x, φα(x)) + α

∫

X

vα(y)q(dy|x, φα(x)).

(5.9)

The first equality in (5.9) is equivalent to

(1− α)mα + uα(x) = min
a∈A(x)

[

c(x, a) + α

∫

X

uα(y)q(dy|x, a)

]

, x ∈ X. (5.10)

Let Assumption (Wu) hold. The functionuα(x) = vα(x) − mα is inf-compact by Theo-

rem 4.1(vi). Consider an arbitraryλ ∈ R+. Sinceu(x) ≥ uα1
(x) ≥ uα2

(x), x ∈ X, for all

α1, α2 ∈ [0, 1), α1 ≥ α2, thenDu(λ) ⊆ Duα
(λ) ⊆ Du

0
(λ), α ∈ [0, 1). Since the functionsu and

uα are lower semi-continuous, the setsDu(λ) andDuα
(λ) are closed,α ∈ [0, 1). Therefore, if the

setDu
0
(λ) is compact then those sets are also compact and the functionsu anduα, α ∈ [0, 1), are

inf-compact.

Observe that (5.8) and (5.10) imply thatuα(x) ≥ v1(x) − λ∗, x ∈ X, for all α ∈ [0, 1). This

impliesU0(x) ≥ v1(x)− λ∗, x ∈ X. Sinceu0 is the largest lower-semicontinuous function that is

less than or equal toU0 at allx ∈ X, we haveu0(x) ≥ v1(x)− λ∗, x ∈ X. Since the functionu0 is

lower semi-continuous, the setDu
0
(λ) is closed. In addition,Du

0
(λ) ⊆ Dv1(λ+λ∗), where the set

Dv1(λ + λ∗) is compact. Thus, the setDu
0
(λ) is compact, and the functionsu anduα, α ∈ [0, 1),

are inf-compact.

Corollary 5.4. Under Assumption (B), for every sequenceαn ↑ 1 as n → +∞ and for every

x ∈ X,

u(x) = lim inf
n→+∞, y→x

uαn
(y).
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Proof. Let αn ↑ 1 asn → +∞, andx ∈ X. Similar to (5.4)

lim inf
n→+∞, y→x

uαn
(y) = sup

n=1,2,...
sup
R>0

inf
y∈BR(x)

inf
m≥n

uαm
(y) = sup

n=1,2,...
sup
R>0

inf
y∈BR(x)

uαn
(y)

= sup
n=1,2...

lim inf
y→x

uαn
(y) = lim

n→∞
uαn

(x) = u(x),

where the second equality holds because the functionuα(y) is nondecreasing inα, the fourth

equality holds because it is lower semi-continuous, and thelast equality follows from (5.5).

Lemma 5.5. Under Assumptions (W∗) and (B), the following inequalities hold

w + u(x) ≥ min
a∈A(x)

[

c(x, a) +

∫

X

u(y)q(dy|x, a)

]

, x ∈ X. (5.11)

Proof. Let us fix an arbitraryε∗ > 0. Sincew = lim sup
α↑1

(1 − α)mα, there existsα0 ∈ [0, 1) such

that

w + ε∗ > (1− α)mα, α ∈ [α0, 1). (5.12)

Our next goal is to prove the inequality

w + ε∗ + u(x) ≥ min
a∈A(x)

[

c(x, a) + α

∫

X

uα(y)q(dy|x, a)

]

, x ∈ X, α ∈ [α0, 1). (5.13)

Indeed, by (5.10) and (5.12) for everyα, β ∈ [α0, 1), such thatα ≤ β, and for everyx ∈ X

w + ε∗ + uβ(x) > (1− β)mβ + uβ(x) = min
a∈A(x)

[

c(x, a) + β

∫

X

uβ(y)q(dy|x, a)

]

≥

≥ min
a∈A(x)

[

c(x, a) + α

∫

X

Uα(y)q(dy|x, a)

]

.

As right-hand side does not depend onβ ∈ [α, 1), we have for allx ∈ X and for allα ∈ [α0, 1)

w + ε∗ + Uα(x) = inf
β∈[α,1)

[w + ε∗ + uβ(x)] ≥ min
a∈A(x)

[

c(x, a) + α

∫

X

Uα(y)q(dy|x, a)

]

≥

≥ min
a∈A(x)

[

c(x, a) + α

∫

X

uα(y)q(dy|x, a)

]

= min
a∈A(x)

ηαuα
(x, a).

By Lemma 3.4, the functionx → min
a∈A(x)

ηαuα
(x, a) is lower semi-continuous onX. Thus,

lim inf
y→x

min
a∈A(y)

ηαuα
(y, a) ≥ min

a∈A(x)
ηαuα

(x, a), x ∈ X, α ∈ [0, 1).

and, as, by definition (5.2),uα(x) = lim inf
y→x

Uα(y), we finally obtain

w + ε∗ + uα(x) ≥ min
a∈A(x)

ηαuα
(x, a), x ∈ X, α ∈ [α0, 1). (5.14)
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As, by (5.2),u(x) = sup
α∈[α0,1)

uα(x) for all x ∈ X, (5.14) yields (5.13).

To complete the proof of the lemma, we fix an arbitraryx ∈ X. By Lemma 3.4, for any

α ∈ [0, 1) there existsaα ∈ A(x) such that min
a∈A(x)

ηαuα
(x, a) = ηαuα

(x, aα). Sinceuα ≥ 0, for

α ∈ [α0, 1) the inequality (5.13) can be continued as

w + ε∗ + u(x) ≥ ηαuα
(x, aα) ≥ c(x, aα). (5.15)

Thus, for allα ∈ [α0, 1)

aα ∈ Dηαuα
(x,·)(w + ε∗ + u(x)) ⊆ Dc(x,·)(w + ε∗ + u(x)) ⊆ A(x).

By Lemma 3.3, the setDc(x,·)(w + ε∗ + u(x)) is compact. Thus, for every sequenceβn ↑ 1 of

numbers from[α0, 1) there is a subsequence{αn}n≥1 such that the sequence{aαn
}n≥1 converges

anda∗ := limn→∞ aαn
∈ A(x).

Consider a sequenceαn ↑ 1 such thataαn
→ a∗ for somea∗ ∈ A(x). Due to Lemmas 3.5 and

Corollary 5.4,

lim inf
n→+∞

αn

∫

X

uαn
(y)q(dy|x, an) ≥

∫

X

u(y)q(dy|x, a∗). (5.16)

Since the functionc is lower semi-continuous, (5.15) and (5.16) imply

w + ε∗ + u(x) ≥ lim sup
n→∞

ηαn

uαn
(x, aαn

) ≥ c(x, a∗) +

∫

X

u(y)q(dy|x, a∗) ≥ min
a∈A(x)

η1u(x, a).

Sincew + ε∗ + u(x) ≥ mina∈A(x) η
1
u(x, a) for anyε∗ > 0, this is also true whenε∗ = 0.

Proof of Theorem 5.2.Lemma 5.3 contains statements (a) and (e). SinceGr(A∗) = {(x, a) ∈

Gr(A) : g(x, a) ≥ 0}, whereg(x, a) = w+u(x)−c(x, a)−
∫

X
u(y)q(dy|x, a) is a Borel function,

the setGr(A∗) is Borel. The setsA∗(x), x ∈ X, are compact in view of Lemma 3.3(b). Thus,

the statement (b) is proved. The Arsenin-Kunugui theorem implies the existence of a stationary

policy φ such thatφ(x) ∈ A∗(x) for all x ∈ X. Statement (e) follows from Lemma 3.4 and the

Arsenin-Kunugui theorem. The rest follows from Theorem 3.1.

Theorem 5.6. Suppose Assumptions (W
∗) and (B) hold. Then all the conclusions of Theorem 5.2

hold and, in addition, for a stationary policyφ satisfying (3.3) withu defined in (5.1),

wφ(x) = w = lim
α↑1

(1− α)vα(x) = lim
N→∞

1

N
vφN (x), x ∈ X. (5.17)

Proof. Consider a sequence{α(n)}n≥1 such thatα(n) ↑ 1 asn → +∞, and

lim
n→+∞

(1− α(n))mα(n) = w.

Define the following nonnegative functions onX:

Ũn(x) = inf
m≥n

uα(m)(x), ũn(x) = lim inf
y→x

Ũn(y), n ≥ 1, x ∈ X,
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and

ũ(x) = sup
n≥1

ũn(x), x ∈ X. (5.18)

Observe that

ũn(x) ≤ Ũn(x) ≤ lim sup
m→+∞

uα(m)(x) < ∞, x ∈ X, n = 1, 2, . . . , (5.19)

where the first two inequalities follow from the definitions of ũn and Ũn respectively, and the

last inequality follows from Assumption (B). As follows from (5.18) and (5.19),̃u(x) ≤

lim supm→+∞ uα(m)(x) < +∞. According to Feinberg and Lewis [14, Lemma 3.1], the func-

tions ũn, n ≥ 1, are lower semi-continuous onX. Therefore, their supremum̃u is also lower

semi-continuous. In addition,

ũ(x) = sup
n≥1

sup
R>0

inf
y∈BR(x)

inf
m≥n

uαm
(y) = lim inf

n→+∞, y→x
uα(n)(y), x ∈ X,

where the first equality follows from the definitions ofŨn, ũn, and ũ, and the second equality is

the definition of thelim inf. SinceŨn(x) ↑, we havẽun(x) ↑ ũ(x) asn → ∞ for all x ∈ X.

We show next that for eachx ∈ X

w + ũ(x) ≥ inf
a∈A(x)

[

c(x, a) +

∫

X

ũ(y)q(dy|x, a)

]

. (5.20)

Indeed let us fix anyε∗ > 0. By the definition ofw, there exists a subsequence{α(nk)}k≥1 ⊆

{α(n)}n≥1 such that fork = 1, 2, . . .

w + ε∗ ≥ (1− α(nk))mα(nk).

Let x ∈ X be an arbitrary state. By Theorem 4.1 for eachk ≥ 1 there existsank
∈ Aα(nk)(x) such

that

(1− α(nk))mα(nk) + uα(nk)(x) = c(x, ank
) + α(nk)

∫

X

uα(nk)(y)q(dy|x, ank
).

Thus, similarly to the proof of Lemma 5.5, we get (5.20).

From Lemma 3.4 and the Arsenin-Kunugui theorem there existsa stationary policỹφ ∈ F such

that for anyx ∈ X

w + ũ(x) ≥ c(x, φ̃(x)) +

∫

X

ũ(y)q(dy|x, φ̃(x)). (5.21)

Thus, by Scḧal [24, Proposition 1.3] described in (3.2), for allx ∈ X

w = w = w(x) = wφ̃(x) = lim
α↑1

(1− α)vα(x) = w∗. (5.22)

Let us choose any stationary policyφ such that inequalities (3.2) and (3.3) hold with the func-

tion u defined in (5.1). Sincew = w, according to Theorem 5.2, such a stationary policy exists.

Theorem 3.1 implies that the stationary policyφ satisfies (3.4), and Schäl [24, Proposition 1.3] (see

(3.2)) implies that (5.22) holds with̃φ = φ.
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In addition, (5.22) withφ̃ = φ implies that for allx ∈ X

wφ(x) = lim
α↑1

(1− α)mα = lim
α↑1

(1− α)(vα(x)− uα(x)) = lim
α↑1

(1− α)vα(x),

where the last equality follows from Assumption (B). Thus, for allx ∈ X

wφ(x) = lim sup
n→∞

1

n
vφn(x) ≥ lim sup

α↑1
(1− α)vφα(x) ≥ lim inf

α↑1
(1− α)vφα(x)

≥ lim
α↑1

(1− α)vα(x) = wφ(x),

where the first inequality follows from the Tauberian theorem (see Sennott [25, Section A.4] or

[26, Proposition 5.7]), and the last inequality follows from vφα(x) ≥ vα(x) and the existence of

the limit. So, we have, the existence oflim
α↑1

(1 − α)vφα(x). Thus, the Karamata Tauberian theorem

(Sennott [25, Section A.4] or [26, Proposition 5.7]) implieswφ(x) = limn→∞
1
n
vφn(x).

Corollary 5.7. Under Assumptions (W∗) and (B), the conclusions of Theorems 5.2 and 5.6 remain

correct, if the functionu is substituted with the functioñu defined in (5.18).

Proof. As shown in the proof of Theorem 5.6, there exists a stationary policy φ̃ satisfying (5.21).

The functionũ is nonnegative, lower semi-continuous, and takes finite values. Thus, both [24,

Proposition 1.3] (see (3.2)) and Theorem 3.1 can be applied to this function. The proof of

statements (a)–(d) of Theorem 5.2 uses just these properties of u. Statement (e) follows from

Lemma 5.3, whose proof remains unchanged ifu is replaced with̃u.

6 Approximation of Average Cost Optimal Strategies by α-discount Opti-

mal Strategies

For a family of sets{Gr(Aα)}α∈(0,1), x ∈ X, considered in Theorem 4.1, we pay our attention to

its upper topological limit

Lim
α↑1

Gr(Aα) =

{

(x, a) ∈ X× A :
∃αn ↑ 1, n → +∞, ∃(xn, an) ∈ Gr(Aαn

), n ≥ 1,

such that(x, a) = lim
n→+∞

(xn, an)

}

,

defined, for example, in Zgurovsky et al. [30, Chapter 1, p. 3]. Let us set

Aapp(x) :=

{

a ∈ A∗(x) : (x, a) ∈ Lim
α↑1

Gr(Aα)

}

, x ∈ X.

Theorem 6.1. Under Assumptions (W∗) and (B), the graphGr(Aapp) is a Borel subset ofGr(A∗),

and for eachx ∈ X the setAapp(x) is nonempty and compact. Furthermore, there exists a station-

ary policyφapp such thatφapp(x) ∈ Aapp(x) for all x ∈ X, and any such policy is average-cost

optimal.
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Proof. Let us fix an arbitraryx ∈ X. From (5.1) (the definition ofu), there exists{yn, αn}n≥1 ⊆

X× (0, 1) such thatyn → x, αn ↑ 1, uαn
(yn) → u(x), n → +∞.

Let us choose an arbitraryε∗ > 0 andbn ∈ Aαn
(yn), n ≥ 1. Sincew = lim sup

α↑1
(1 − α)mα,

there existsN ≥ 1 such thatu(x) + ε∗

2
≥ uαn

(yn) andw + ε∗

2
≥ (1− αn)mαn

for all n ≥ N.

By definition of the setsAα(·), for eachn ≥ N

(1− αn)mαn
+ uαn

(yn) = c(yn, bn) + αn

∫

X

uαn
(y)q(dy|yn, bn) = ηαn

uαn
(yn, bn).

Thus, for alln ≥ N

w + ε∗ + u(x) > ηαn

uαn
(yn, bn) ≥ ηαn

Uαn
(yn, bn) ≥ ηαn

uαn
(yn, bn) ≥ c(yn, bn).

Therefore, because of Assumption (W
∗)(ii), the sequence{bn}n≥1 has a subsequence{bnk

}k≥1

such thatbnk
→ a, ask → +∞, for somea ∈ A(x). Thus,(x, a) ∈ Lim

α↑1
Gr(Aα).

Let us prove that(x, a) ∈ Gr(A∗). Indeed, asαnk
uαnk

(·) ↑ u(·), k → +∞, then due to

Lemma 3.5 and Corollary 5.4,

lim inf
k→+∞

αnk

∫

X

uαnk
(x)q(dy|ynk

, bnk
) ≥

∫

X

u(x)q(dy|x, a).

Thus, by Lemma 3.4,w + ε∗ + u(x) ≥ η1u(x, a), and this is true for anyε∗ > 0. This implies

w + u(x) ≥ η1u(x, a). This inequality means that(x, a) ∈ Gr(A∗) and Aapp(x) 6= ∅, since

(x, a) ∈ Lim
α↑1

Gr(Aα). The setAapp(x) is compact because of the closureness ofLim
α↑1

Gr(Aα)

(see Zgurovsky et al. [30, Chapter 1, p. 3]) and Theorem 5.2(b). The second statement of the

theorem follows from the Arsenin-Kunugui theorem.

Corollary 6.2. Under Assumptions (W∗) and (B), for any stationary average-cost optimal policy

φapp, such thatφapp(x) ∈ Aapp(x) for all x ∈ X, for everyx ∈ X there existαn(x) ↑ 1 and

yn(x) → x asn → +∞ such thatan(x) ∈ Aαn(x)(yn(x)), n ≥ 1, andφapp(x) = limn→+∞ an(x).

Proof. Following Theorem 6.1, consider a stationary average-costoptimal policyφapp such that

φapp(x) ∈ Aapp(x) for all x ∈ X. Furthermore, sinceAapp(x) ⊆ A∗(x) for all x ∈ X, any

such a policy is optimal. Let us fix an arbitraryx ∈ X. By definition ofAapp(x), we have that

(x, φapp(x)) ∈ Lim
α↑1

Gr(Aα). Then, there existαn(x) ↑ 1, n → +∞, and (yn(x), an(x)) ∈

Gr(Aαn
), n ≥ 1, such that(x, φapp(x)) = lim

n→+∞
(yn(x), an(x)), i.e.φapp(x) = lim

n→+∞
an(x), where

an(x) ∈ Aαn(x)(yn(x)), n ≥ 1, αn(x) ↑ 1 andyn(x) → x asn → +∞.

We remark that, if we replace in (5.6) the functionu with ũ defined in (5.18), Theorem 6.1 and

Corollary 6.2 remain correct.

Let us set

Xα := {x ∈ X : vα(x) = mα}, α ∈ [0, 1).
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Under Assumptions (G), mα < ∞. If Assumptions (G) and (Wu) hold then Theorem 4.1 im-

plies thatXα is a compact set for eachα ∈ [0, 1). This fact is useful to establish the validity of

Assumptions (G); see Feinberg and Lewis [14, Lemma 5.1] and references therein.

Theorem 6.3. Let Assumptions (G) and (Wu) hold. Then there exists a compact setK ⊆ X such

thatXα ⊆ K for eachα ∈ [0, 1).

Proof. From Assumption (G) and Theorem 4.1 we have that for eachα ∈ [0, 1)

∅ 6= Xα = {x ∈ X : uα(x) = 0} = Duα
(0) ⊆ DUα

(0) ⊆ Duα
(0) ⊆ Du

0
(0).

In virtue of Lemma 5.3, we have thatu0 : X → [0,+∞) is inf-compact function onX. Setting

K = Du
0
(0), we obtain the statement of the theorem.

7 Illustrative Example

The following example is from Hernández-Lerma [16]. Let

xn+1 = γxn + βan + ξn, n = 0, 1, ...,

and

c(x, a) = qx2 + ra2,

where (a)q andr are positive constants,γ andβ are two constants satisfyingγβ > 0, and (b)ξn
are independent and identically distributed (iid) random variables with zero mean, finite variance,

and continuous density.

This problem is solved in Hernández-Lerma [16], where a stationary average-cost optimal pol-

icy is computed. This problem corresponds to an MDP withX = A = R and with setwise

continuous transition probabilities. However, ifξn do not have a density, the transition probability

may not be setwise continuous, but they are weakly continuous; see Feinberg and Lewis [13, p.

48] for detail. If ξn are arbitrary iid random variables with zero mean and finite variance, this

problem satisfies Assumption (Wu) and, similarly to the case when there are densities, it satisfies

Assumption (B). Thus, Theorem 5.6 can be applied. The optimal policy provided in Hernández-

Lerma [16] is also optimal whenξn may not have a density.

A Proof of Lemma 3.5

Proof. First, we prove the lemma for uniformly bounded above functionshn. Lethn(s) ≤ K < ∞

for all n = 1, 2, ... and alls ∈ S. Forn = 1, 2, . . . ands ∈ S, define

Hn(s) = inf
m≥n

hm(s) and hn(s) = lim inf
s′→s

Hn(s
′).
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The functionshn : S → [0,+∞), n = 1, 2, . . . , are lower semi-continuous; see, for example,

Feinberg and Lewis [14, Lemma 3.1]). In addition, fors ∈ S

hn(s) ↓ h(s) as n → ∞. (A.1)

Weak convergence of{µn}n≥1 to µ is equivalent to

lim inf
n→+∞

µn(A) ≥ µ(A) for all A ∈ O, (A.2)

whereO is the family of all open subsets of the spaceS; Billingsley [5, Theorem 2.1].

Fix an arbitraryt > 0. By (A.1), if h(s) > t thenhn(s) > t, n = 1, 2, . . . , and

{s ∈ S : h(s) > t} =
⋃

n≥1

Sn, (A.3)

where

Sn = {s ∈ S : hn(s) > t}, n = 1, 2, . . . ,

are open sets, since the functionshn : S → R+ are lower semi-continuous. In addition,

Sn ⊆ Sn+1, n = 1, 2, . . . . (A.4)

Thus,

µ({s ∈ S : h(s) > t}) = lim
n→+∞

µ(Sn) ≤ lim
n→+∞

lim inf
m→+∞

µm(Sn)

≤ lim sup
n→+∞

lim inf
m→+∞

µm(Sm) = lim inf
n→+∞

µn(Sn) = lim inf
n→+∞

µn({s ∈ S : hn(s) > t}),

where the first equality follows from (A.4) and (A.3), the first inequality follows from to (A.2), and

the second inequality follows from (A.4).

Thus Serfozo [27, Lemma 2.1] yields
∫

S

h(s)µ(ds) ≤ lim inf
n→+∞

∫

S

hn(s)µn(ds) ≤ lim inf
n→+∞

∫

S

hn(s)µn(ds),

where the second inequality is fulfilled due to

hn(s) ≤ Hn(s) ≤ hn(s), s ∈ S, n = 1, 2, . . . .

Case 2. Consider a sequence{hn}n≥1 of measurable nonnegativeR-valued functions onS.

Forλ > 0 sethλ
n(s) := min{hn(s), λ}, s ∈ S, n = 1, 2, . . . . Since the functionshλ

n are uniformly

bounded above,
∫

S

hλ(s)µ(ds) ≤ lim inf
n→+∞

∫

S

hλ
n(s)µn(ds) ≤ lim inf

n→+∞

∫

S

hn(s)µn(ds),

wherehλ(s) = lim inf
n→+∞, s′→s

hλ
n(s

′), λ > 0, s ∈ S.

23



Then, using Fatou’s lemma,
∫

S

h(s)µ(ds) ≤ lim inf
λ→+∞

∫

S

hλ(s)µ(ds).
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