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Average-Cost Markov Decision Processes with Weakly Cootirs
Transition Probabilities

Eugene A. Feinberﬂ, Pavlo O. Kasyan(ﬁ( and Nina V. Zadoianch@

Abstract

This paper presents sufficient conditions for the existafictationary optimal policies for average-
cost Markov Decision Processes with Borel state and acétmand with weakly continuous transition
probabilities. The one-step cost functions may be unbodjated action sets may be noncompact. The
main contributions of this paper are: (i) general sufficieanditions for the existence of stationary
discount-optimal and average-cost optimal policies arsttidjgtions of properties of value functions and
sets of optimal actions, (ii) a sufficient condition for theeeage-cost optimality of a stationary policy in
the form of optimality inequalities, and (iii) approximaitis of average-cost optimal actions by discount-
optimal actions.

1 Introduction

This paper provides sufficient conditions for the existentestationary optimal policies for
average-cost Markov Decision Processes (MDPs) with Beagg sind action sets and with weakly
continuous transition probabilities. The cost functionaynibe unbounded and action sets may
be noncompact. The main contributions of this paper aregdijeral sufficient conditions for
the existence of stationary discount-optimal and average-optimal policies and descriptions of
properties of value functions and sets of optimal actiortsee@rem$ 311, 512, aind 5.6), (ii) a new
sufficient condition of average-cost optimality based otiroglity inequalities (Theorem 4.1), and
(iii) approximations of average-cost optimal actions bgcdiunt-optimal actions (TheordmB.1).
For infinite-horizon MDPs there are two major criteria: ags costs per unit time and expected
total discounted costs. The former is typically more difica analyze. The so-called vanishing
discount factor approach is often used to approximate geetasts per unit time by normalized
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expected total discounted costs. The literature on averageMDPs is vast. Most of the earlier
results are surveyed in Arapostathis etlal. [1]. Here we mmenast a few references.

For finite state and action sets, Dermanl [10] proved the exxist of stationary average-cost
optimal policies. This result follows from Blackwelll[6] drit also was independently proved by
Viskov and Shiryaevi [29]. When either the state set or thadet is infinite, ever-optimal
policies may not exist for some> 0; Ross [23], Dynkin and Yushkevich [11, Chapter 7], Fein-
berg [12, Section 5]. For a finite state set and compact astts) optimal policies may not exist;
Bather [2], Chitashvili[[9], Dynkin and Yushkevich[11, Qftar 7].

For MDP with finite state and action sets, there exist statipipolicies satisfying optimality
equations (see Dynkin and Yushkevichl[11, Chapter 7], whHegee equations are called canoni-
cal), and, furthermore, any stationary policy satisfyipgimality equations is optimal. The latter
is also true for MDPs with Borel state and an action sets gMdlue and weight (also called bias)
functions are bounded; Dynkin and Yushkevich [11, ChapteWhen the optimal value of average
costs per unit time does not depend on the initial state (ptienal value function is constant), the
pair of optimality equations becomes a single equation.béanded one-step costs, Taylor[[28],
Ross[[21] for a countable state space and Ross [22], Gubernk8tatland[[15] for a Borel state
space provided sufficient conditions for the validity of ioplity equations with a bounded bias
function; see also Dynkin and Yushkevi¢h [11, Chapter 7]dé&mall known sufficient conditions
for the existence of average-cost optimal policies for itéistate MDPs, the value function is
constant.

In many applications of infinite-state MDPs, one-step castsunbounded from above. For
example, holding costs may be unbounded in queueing andtmyesystems. Sennoft [25,126]
(and references therein) developed a theory for countthte- problems with unbounded one-
step costs. For unbounded costs, optimality inequalitiesiaed instead of optimality equations
to construct a stationary average-cost optimal policy. a2Zas-Cadena [7] provided an example,
when optimality inequalities hold while optimality equats do not.

Schal [24] developed a theory for Borel state spaces angaonaction sets. Two types of
continuity assumptions for transition probabilities aomsidered in Schal [24]: the setwise and
weak continuity. For a countable state space these assumptbincide; see Chen and Fein-
berg [8, Appendix]. Setwise convergence of probability sugas is stronger than weak conver-
gence; Hernandez-Lerma and Lasserre [17, p. 186]. Formap#aking, the setwise continuity
assumption for MDPs is not stronger than the weak contiraggumption, since the former claims
that the transition probabilities are continuous in actiamhile they are jointly continuous in states
and actions in the latter. However, the joint continuity r@inisition probabilities in states and ac-
tions often holds in applications. For example, for inveptocontrol problems with uncountable
state spaces, setwise continuity of transition probaslitakes place if demand is a continuous
random variable, while weak continuity holds for arbithadistributed demand; see Feinberg and
Lewis [14, Section 4]. The importance of weak convergenceffactical applications is mentioned
in Hernandez-Lerma and Lasselre![18, p. 141].
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In many applications action sets are not compact. Herriahdema [16] extended Schalls [24]
results under the setwise continuity assumptions to plyssdmcompact action sets. Schal’s[24]
assumptions on compactness of action sets and lower seniingidy of cost functions in the
action argument are replaced in Hernandez-Leima [16] byoeergeneral assumption, namely,
that the cost functions are inf-compact in the action argumEor weakly continuous transition
probabilities and possibly noncompact action sets, Fegdned Lewis[[14] proved the existence of
stationary optimal policies for MDPs with cost functionsrgeinf-compact in both state and action
arguments when, in addition to Schal's[24] boundnessmaption on the relative discounted value
at each state, the so-called local boundness condition sgasreed.

The original goal of this study was to show that the resutisfiFeinberg and Lewis [14] hold
without local boundness condition. However, the resultshaf paper are more general. This
paper provides a weaker boundness condition on the reldite®unted value (AssumptiodB}
in Sectior b) than Assumptiom( introduced in Schal [24]. It also provides a more genenal a
natural assumption (Assumptio®*) in Section[B) than inf-compactness of the one-step cost
function in both arguments. The main result of this papegorani5.R, establishes the validity of
optimality inequalities and the existence of stationartiropl policies under Assumption3X(*)
and B).

While inf-compactness of the cost function in the actionapagter is a natural assumption,
inf-compactness in the state argument is a more restrictimdition. For example, when the state
space is unbounded (e.g., the set of nonnegative numbekagtion sets are compact, the assump-
tion, that the cost function is inf-compact in both argunsedibes not cover the case of bounded
costs functions studied by Ross[22], Gubenko and Shtafl&jdand Dynkin and Yushkevich[11,
Chapter 7]. AssumptionW*) covers this case as well as unbounded costs and noncongpiact a
sets.

As follows from the example presented in Luque-Vasquez Hedchandez-Lerma (1995),
MDPs with lower-semicontinuous cost functions may pospesisological properties, even if the
one-step cost function is inf-compact in the action vagabAssumption W*)(ii) removes this
difficulty. As stated in Lemmfa_3|.2, this assumption is wedkan Schal’s[[24] compactness and
continuity assumptions for weakly continuous transitioolabilities and than inf-compactness of
one-step cost functions in both arguments (state and aessumed in Feinberg and Lewis [14].

2 Model Description

For a metric spac#, let B(S) be a Borelo-field on S, that is, thes-field generated by all open
sets of metric spac®. For a setE C S, we denote by3(FE) the o-field whose elements are
intersections oF with elements o3(.S). Observe thak' is a metric space with the same metric as
on S, andB(E) is its Borelo-field. For a metric spacg, we denote by?(.S) the set of probability
measures oS, B(5)). A sequence of probability measurgs, } from P(S) converges weakly to



w € P(S) if for any bounded continuous functighon S

[ foin = [ st asn— e

Consider a discrete-time MDP withstate spaceéX, anaction space\, one-step costs, and
transition pobabilitieg. Assume thaX and A are Borel subset®f Polish (complete separable
metric) spaces with the corresponding metpcand~. For allz € X a nonempty Borel subset
A(x) of A represents theet of actionsvailable at:. Define the graph ofl by

Gr(A) ={(z,a) : x € X a € A(x)}.

Assume also that

(i) Gr(A) is a measurable subset¥fx A, that is,Gr(A) € B(Gr(A)), whereB(Gr(A)) =
B(X) @ B(A);

(i) there exists a measurable mappingX — A such that(z) € A(x) forall x € X

The one step coste(x,a) < +oo, for choosing an actiom € A(z) in a stater € X, is a
bounded below measuralfienction onGr(A). Let g(B|z, a) be thetransition kernekepresenting
the probability that the next state is B € B(X), given that the action is chosen in the state
This means that:

e ¢(-|x,a) is a probability measure oiX, B(X)) for all (z,a) € X x A;

e ¢(B|-,-) is a Borel function or{Gr(A), B(Gr(A))) for all B € B(X).

The decision process proceeds as follows

e at each time epoch = 0, 1, ... the current state € X is observed;

e a decision-maker chooses an actioa A(z);

e the coste(z, a) is incurred;

e the system moves to the next state according to the protydBilv ¢(-|x, a).

As explained in the text following the proof of Leminal3.3,af achr € X there exista € A(x)
with ¢(x,a) < oo, the measurability ofsr(A) and inf-compactness of the cost functiom the
action variable: assumed later imply that assumption (ii) holds.

Let H,, = (X x A)" x X be theset of historiedy timen = 0,1, ... andB(H,,) = (B(X) ®
B(A))*®B(X). Arandomized decision rulat epochm = 0, 1, ... is a regular transition probability
7. : H, — A concentrated ol (¢, ), that is, (i), (- | h,) is a probability on(A, B(A)), given the
history h, = (&, uo, &1, Uy, ...y un_1, &) € H,, satisfyingm, (A(&,)|h,) = 1, and (ii) for all
B € B(A), the functionr,,(B|-) is Borel on(H,,, B(H,,)). A policyis a sequence = {m, }n—01...
of decision rules. Moreover; is callednonrandomizedif each probability measure, (-|%,) is
concentrated at one point. A nonrandomized policy is caladkoy, if all of the decisions depend
on the current state and time only. A Markov policy is cali¢ationary if all the decisions depend
on the current state only. Thus, a Markov polieys defined by a sequeneg, ¢, ... of Borel
mappingsy,, : X — A such that,,(z) € A(x) for all x € X. A stationary policy is defined by a
Borel mappingp : X — A such thai(z) € A(z) for all x € X. Let

F={¢:X— A : ¢isBorelandy(z) € A(z) for all z € X}
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be theset of stationary policies

The lonescu Tulcea theorem (Bertsekas and Shréve [4, ppl440r Hernandez-Lerma and
Lassere[[17, p.178]) implies that an initial statand a policyr define a unique probabiliti’” on
the set of all trajectoriefl,, = (X x A)> endowed with the product ef-field defined by Borel
o-field of X andA. Let E7 be an expectation with respect&j.

For a finite horizonV = 0, 1, ..., let us define thexpected total discounted costs

N-—1
Vo =B a"c(&n up), v €X, (2.1)
n=0

wherea > 0 is the discount factor andfj ,(z) = 0. Whena = 1, we shall writevy; () instead of
vy (x). WhenN = oo anda € [0, 1), (2.1) defines ainfinite horizon expected total discounted
costdenoted by? ().
Theaverage cost per unit timie defined as
1
w™(z) = limsup —vjx(x), r e X (2.2)
N—+o0 N
For any functiong™(z), includingg™(r) = v% ,(7), g"(z) = vi(z), andg™(z) = w™(z), define
theoptimal cost
g(x) := inf ¢" (), z € X,

wherell is the set of all policies

A policy 7 is calledoptimalfor the respective criterion, §™(z) = g(z) for all x € X. For
g" = vy ., the optimal policy is calleci-horizon discount-optimalfor g™ = v7, it is called
discount-optimalfor g™ = w™, itis calledaverage-cost optimal.

It is well known (see, e.g., Bertsekas and Shréve [4, Prtipas3.2]) that the functions,, ., (x)
recursively satisfy the followingptimality equationsvith v, ,(z) = 0 for all z € X,

Upt1,a(x) = izl(f : {c(x,a) + a/ vn,a(y)q(dy|x,a)} , xeX, n=0,1,... (2.3)
acA(x X

In addition, a Markov policy), defined at the firslv steps by the mappings, ...¢y_1, that satisfy
foralln =1, ..., N the equations

Un,a(x) = C(l’, ¢N—n(x)) + a/xvn—l,a(y)Q(dmxa ¢N—n(x))7 YIS X> (24)

is optimal for the horizonV; see e.g. Bertsekas and Shreve [4, Lemma 8.7].
It is also well known (Bertsekas and ShreVé [4, Proposit@@sand 9.12]) that,,, where
a € (0, 1], satisfies the following discounted cost optimality equa(DCOE):

Vo(z) = inf {c(:c,a) + a/ va(y)q(dy\x,a)}, z € X, (2.5)
acA(x) X
and a stationary policy,, is discount-optimal if and only if
(o) = cla, dula)) + @ [ val)aldyle, a(w). @€ X (26
X



3 General Assumptionsand Auxiliary Results

Following Schall[24], consider the following assumption.

Assumption (G). w* := ;reljggw(x) < +o00.

This assumption is equivalent to the existencerof X and7 € II with w™(z) < oo. If
Assumption () does not hold then the problem is trivial, becauge) = oo for all € X and
any policyr is average-cost optimal. Define the following quantitiesdas [0, 1):

Me = ;reljggva(x), Ue(T) = Vo () — My,

w = limTilnf(l —a)my, w = limsup(l — a)m,.
@ atl

Observe that,,(z) > 0 for all x € X. According to Schal([24, Lemma 1.2], Assumptid@)
implies
0<w<w<w <+oc0. (3.1)
According to Schall[24, Proposition 1.3], under Assumpfi@), if there exists a measurable
functionu : X — [0, +00) and a stationary policy such that

w+u(z) > ez, 0(x) + | wy)gldyle, o(z)), =X, (3.2)

T

theng is average-cost optimandw(z) = w* = w = w for all z € X. Here need a different form
of such a statement.

Theorem 3.1. Let Assumption@) hold. If there exists a measurable function X — [0, +00)
and a stationary policy such that

@+ u(e) 2 ofe.o(0)) + [ ulp)atdyle.ofa)). @ €% (3:3)
theng is average-cost optimal and
w(z) = w?(z) = limsup(l — a)v,(z) =@ = w*, z€X (3.4)
atl

Proof. Similarly to Hernandez-Lerma[16, p. 239] or ScHall[24osition 1.3], since: is non-
negative, by iteratind (3.3) we obtain

nw +u(r) > vl(z), n>1, reX
Therefore, after dividing the last inequality byand setting» — oo, we have
w > w(z) > wr) >w, zeX, (3.5)

where the second and the third inequalities follow from te&rdtions ofw andw* respectively.
Sincew > w*, inequalities[(3.11) imply that for alt € TI

w* =w < limsup(l — a)v,(x) < limsup(l — a)vy(z) < w™(x), rell, xeX
atl all



Finally, we obtain that

w* =w < limsup(l — a)v,(x) < ingI w™(z) = w(zr) < w(r) <, r eX, (3.6)
atl s

where the last inequality follows frorh (3.5). Thus all thegualities in[(3.6) are equalities. [

Let us sefR = [—o0o0, +00), Ry = [0,), andR = R U {+cc}. For anR-valued functionf,
defined on a Borel subsétof a Polish spac®, consider the level sets

Di(N) ={y €U : f(y) <A}, (3.7)

—00 < A < 4o00. We recall that the functiorf is lower semi-continuous ol if all the level sets
Dy(A) are closed and the functioniisf-compact o/ if all these sets are compact. The level sets
D¢()) satisfy the following properties that are used in this paper

(@) if Ay > AthenDs(\) C Ds(\y);

(b) if g, f are functions or/ satisfyingg(y) > f(y) for ally € U thenD,(\) C Ds(A).

A set is calleds-compact if it is a union of a countable number of compact. sBenote by
K (A) the family of all nonempty compact subsetsA and by K, (A) family of all -compact
subset®f A; K(A) C K,(A). Also denote byS(A) the set of nonempty subsetsiof

A set-valued mapping’ : X — S(A) is upper semi-continuouat x € X if, for any neigh-
borhoodG of the setF'(z), there is a neighborhood af sayU(z), such thatt'(y) C G for all
y € U(x) (see e.g., Bergé |3, p. 109] or Zgurovsky et al.|1[30, Chaptgy. 7']). A set-valued
mapping is calledipper semi-continuoy# it is upper semi-continuous at atl € X.

For weakly continuous transition probabilities, the fallog basic assumptions were consid-
ered in Schal[24].

Assumption (W).

(i) cis lower semi-continuous and bounded belowCariA);

(i) A(x) € K(A) forxz € XandA : X — K(A) is upper semi-continuous;

(iii) the transition probability;(-|z, a) is weakly continuous itiz, a) € Gr(A).

Weak continuityf ¢ in (z, a) means that

/Xf(z)q(dz|xk,ak) — /Xf(z)q(dz|x,a), k=1,2,...,

for any sequencé(zy, ax), k > 0} converging to(z, a), where(zy, ax), (z,a) € Gr(A), and for
any bounded continuous functigh: X — R. We notice that there is an additional assumption in
Schal [24], namely, thaX is a locally compact space with countable base. Howevelkss
from this paper, the assumption is not necessary here assvllFeinberg and Lewis [14], since
there exists at least one stationary policy. We also rentaak the assumptions irWW) were
presented in a different order here than in Schal [24], &adl it is assumed in Schal [24] that

is nonnegative. Since for discounted and average costiarttee cost function can be shifted by



adding any constant, the boundness and nonnegativitgref equivalent assumptions. We consider
Assumption Wu) from Feinberg and Lewis [14] without assuming tBais locally compact.

Assumption (Wu).

(i) cis inf-compact orGr(A);

(i) Assumption W)(iii) holds.

Assumption (W*).

(i) Assumption W)(i) holds;

(ii) if a sequencex,, },—1 2. with values inX converges and its limit belongs taX then any
sequencea, },—12,. With a, € A(z,), n = 1,2,..., satisfying the condition that the sequence
{c(zn, an) }n=12... is bounded above, has a limit point A(x);

(iif) Assumption (W)(iii) holds.

Lemma 3.2. The following statements hold:
(i) Assumption W) implies AssumptionW*);
(i) Assumption Wu) implies AssumptionW*).

Proof. (i) Let z, — = asn — oo, wherex € X andz, € X, n = 1,... . We show that
under AssumptionW)(ii) any sequencga, },—12,.. With a, € A(z,) has a limit pointa <
A(z). Indeed, sincé&C := (U,>1{z,}) U {z} is a compact set and set-valued mappihg X —
K(A) is upper semi-continuous, then Bergé [3, Theorem 3 on p. iiflies that the image
A(K) is also compact. Asa,},.>1 C A(K) then the sequendg, },>1 has a limit pointa € A.
Consider a sequenog, — oo such thata,, — a. Since A(z) € K(A) for all z € X, the
upper-semicontinuous set-valued mappihis closed and, sincd is closedu € A(z); Berge [3,
Theorems 5 and 6 on pp. 111, 112].

(ii) Since c is inf-compact, it is lower-semicontinuous and boundedWwelWe just need to
show that AssumptionW*)(ii) holds. Let us consider,, — x asn — +oo anda, € A(zx,),

n=1,,2,...,suchthat,, > € X and for some\ < oo the inequalityc(x,,, a,,) < A holds for all
n =1,2,... . Then, by inf-compactness ofon Gr(A), the level seD.(\) is compact. Thus the
sequence€z,, a, },>1 has a limit point(z,a) € D.(\) C Gr(A). Since(z,a) € Gr(A), we have
a € Ax). O

For anya > 0 and lower semi-continuous nonnegative functionX — R, we consider an
operationn?,

ne(z,a) = c(z,a) + a/u(y)q(dy|x,a), (z,a) € Gr(A). (3.8)

X

Let L(X) be the class of all lower semi-continuous and bounded belmetionsy : X — R
with dom ¢ := {z € X : ¢(z) < +o0} # (). Observe thay® = n!,,.

Lemma 3.3. For anyx € X the following statements hold:
(a) under AssumptioWV*(ii), the functionc(z, -) is inf-compact o (z);



compact on4(z).

Proof. (a) For an arbitrary\ € R and fixedr € X, consider the seD., . (\) = {a € A(x) :
c(x,a) < A}. AssumptionW*(ii) means, that this set is compact. Thus, (i) is proved.

(b) Fix z € X again. Since: € L(X) andq is weakly continuous i, the second summand in
(3.8) is a lower semi-continuous function diiz:) (Hernhdez-Lerma and Lasserre|[17, p. 185]) and
it is bounded below by the same constant.a&ccording to statement (i};(z, -) is inf-compact on
A(z). The sum of an inf-compact function and a bounded below I®&eri-continuous function
is an inf-continuous function. O

A measurable mapping : X — A, such thaty(z) € A(x) for all € X, is called a selector
(or a measurable selector). In our case, selectors andateciges are the same objects. Since
we identify a stationary policy with a decision rule, setestand stationary policies are the same
objects. The existence of selector for the mappinig the necessary and sufficient condition for
the existence of a policy. Lét C X x A andprojy F = {z € X : (z,a) € E forsome a € E}
be a projection o on X. A Borel mapf : projx £ — A is called a Borel uniformization aof,
if (z, f(z)) € Eforallz € projx E. LetE, = {a : (z,a) € E} beacutoft atz € X.

Arsenin-Kunugui Theorem (Kechris [19, p. 297])If £ is a Borel subset oK x A and E, €
K, (A) for all x € X then there exists a Borel uniformization®fandprojy E is a Borel set.

We remark that it is assumed in Kechfis|[19, p. 297]) tkas$ a standard Borel space (that is,
isomorphic to a Borel subset of a Polish space) And a Polish space. Hei andA are Borel
subsets of Polish spaces. These two formulations are aflyieguivalent.

We recall thatGr(A) is assumed to be Borel ant{z) # 0, x € X. With E = Gr(A), Arsenin-
Kunugui Theorem implies the existence of a stationary galitder the assumptiof(z) € K(A),

x € X. Thus, Assumption\) implies the existence of a policy for the MDP.

Let Assumption W*) hold. SetF(z) = {a € A(x) : c¢(x,a) < oo}, x € X. In view
of Lemma3.B,F(z) = Uneqi2,.1De(z,y(n) € K,(A). In addition,Gr(F) = {(z,a) € Gr(A) :
c(xz,a) < oo} is a Borel subset oX x A. Thus, if the functior: takes only finite values, a stationary
policy exists in view of Arsenin-Kunugui Theorem.

Of course, if it is possible that(x,a) = oo, a uniformization may not exist. For example,
this takes place whet(x, a) = oo for all (z,a) € Gr(A) andGr(A) does not have a measurable
selector. However(x,a) = oo means from a modeling prospective that this state-actian pa
should be excluded, because selecting = leads to the worst possible result. If there are state-
action pairs(z, a) with ¢(z,a) = oo andGr(A) does not have a uniformization, the MDP can be
transformed into an MDP modeling the same problem and witbreempty set of policies. Let
us exclude the situation whetz,a) = oo for all (z,a) € Gr(A), because it is trivial: all the
actions are bad. Defin& = projy Gr(F) andY = X\ X. Under Assumption\V*), Arsenin-
Kunigui Theorem implies thaX' is Borel and there exist a Borel mappifigrom X to A such that



f(z) € F(z)forallz € X. If Y = 0 (that is, there exists an actiane A(z) with ¢(z,a) < oo
for eachr € X) then¢ = f is a stationary policy.

Let us consider the situation whén # (). In such an MDP, as soon as the state i§"inthe
losses are infinite and there is no reason to model the praftesshis. Let us transform the model
by choosing anyt* € Y and anya* € A and setting the new state $&t = X U {z*}, keeping
the original action sef, setting new action setd*(x) = F(z) for x € X andA*(z*) = {a*},
defining the new cost function

. {c(x,a), ifreYandae F(z),
c(x,a) =

00, if r =2*and a = a*.
and considering new transition probabilities definedidfar X* anda € A*(x) by

q(B|z,a), if BC X, BeB(X), and = € X,
¢ (Blr,a) = { q(Y|r,a), if B={z*}, andz € X,
1, if B={z*}and z = 2*.
The new MDP is nontrivial in the sense that the set of poligasot empty. Finding an optimal
policy for this MDP is equivalent to finding a policy for theiginal MDP until its first exit time

from X, and in both cases the process incurs infinite losses, #veleX. So, the original and the
new MDP model are the same problem.

Lemma 3.4. If Assumption W*) holds andu € L(X), then the function

u(x) = aeiixl(fr) [c(z,a) + /Xu(y)q(dym,a)}, x € X, (3.9)
belongs tal(X), and there existg € F such that
w(o) = (o f@) + [ ualdyle ), weX (3.10)
X

Moreover, infimum in(319) can be replaced by minimum, andhtrempty sets

A, (z) = {a € Az) : u*(z) = clz,a) +/

waldlea b, sex @D
X
satisfy the following properties:

(a) the graphGr(A,) = {(z,a) : v € X,a € A,(x)} is a Borel subset ak x A;

(b) if u*(z) = 400, thenA,(z) = A(z), and, ifu*(z) < 400, thenA,(z) is compact.

Proof. Under Assumption W*), for any lower semi-continuous aX, bounded below function
u: X — Randa € (0,1], the functionys,  is inf-compact onA(z), = € X. This follows from
Lemma3.B. Thus, infimum i (3.9) can be replaced by minimuch4f(z) is nonempty for any
r e X,

10



Now we show that.* is lower semi-continuous oX. Let us fix an arbitrary: € X and any
sequence,, — r asn — +oo. We need to prove the inequality

u*(z) < limJirnf u* (). (3.12)
If liminfu*(z,) = +oo, then [3.IR) obviously holds. Thus we consider the case,nwhe

n—-+00

lim inf u*(z,,) < +o0. There exists a subsequenee,, }+>1 C {z,},>1 such that

n—-+400

. . * . . *
Mol o) = i v ).

Setting\ = klim u*(z,, ) + 1, we get the inequality*(x,,, ) < Aforall £ > K, whereK is some
—+00

natural number. Since the functigf is inf-compact orGr(4), equation[(319) can be rewritten as

w*(x) := min nl(z,a), v € X.
acA(x)

Thus, for anyk > K there existsy, € A(z,, ) such that*(x,, ) = nl(z,,, a). Therefore,
(Tny, ar) < np(@n, an) <A, k> K.

In view of Assumption W*)(ii), there exists a convergent subsequefige, },,.>1 of the sequence
{ag}x>1 such that,, — a € A(z) asm — +oo. Due to lower semi-continuity of! on Gr(A),

R T Y BERT 1 1
it (o) = i ) =l (o) = B ) 2 0 0) 2 (2)

Inequality [3.12) holds. Thus,* is lower semi-continuous oX.

Now we consider the nonempty sets(x), z € X, defined in[(3.I11). The graptir(A.) is a
Borel subset oK x A, becauséir(A,) = {(z,a) : u*(z) = nl(z,a)}, and the functiong. and
u* are lower semi-continuous dhr(A) andX respectively, and therefore they are Borel.

We remark that, it.* = +oo, thenA,(z) = A(z). If u*(z) < oo, then Lemm&3I3 implies that
the setd, (z) is compact. Indeed, fix any € X; := {z € X : u*(z) < oo} and set\ = u*(z).
Then the se#d,(z) = {a € A(x) : ni(x,a) < A} = Dy, ()) is compact, becausg,(z, -) is
inf-compact onA(x).

Let us prove the existence gf € T satisfying [3.ID). Since the function* is lower-
semicontinuous, it is Borel and the sets, := {z € X : u*(z) = +oo} andX; are Borel.
Therefore, the graph of the mappig — A, is the Borel setGr(A,) \ (X, x A). Since the
nonempty setsl, (z) are compact for alt € Xy, the Arsenin-Kunugui Theorem implies the exis-
tence of a Borel selectqf : X; — A such thatf,(z) € A.(z) for all z € X. Consider any Borel
mappingf, from X to A satisfyingf,(z) € A(x) for all z € X and set

fl(llf), ifx e Xf,

flo) = fa(z), ifzeX.

Thenf e Fandf(z) € A.(z) forall z € X. O

11



The following Lemma 35 is formulated in Schal[24, Lemma&(R)] without proof. Reference
Serfozo[[27] mentioned in Schal [24, Lemma 2.3(ii)] contaielevant facts, but it does not contain
this statement. Therefore we provide the proof. Recallfitvah metric space, the family of all
probability measures ofb, 5(.5)) is denoted byP(S).

Lemma 3.5. Let S be an arbitrary metric spaced,u, },,~>1 C P(S) converges weakly to € P(.S),
and{h,},>1 be a sequence of measurable nonnegdiwalued functions oi¥. Then

/Sﬁ(s)u(ds) < 1iminf/shn(s)un(ds),

n—-+4o00

whereh(s) = liminf h,(s'),s € S.

n—+o00, s’ —s

Proof. See AppendiA. O

We remark that liminf h,(s") is the least upper bound of the set of ake R such that there

n——+oo, s’ —s

existN = 1,2,...and a neighborhool (s) of s such that\ < inf{h,(s') : n > N,s" € U(s)}.

4 Expected Total Discounted Costs

In this section, we establish under Assumpti®¥i*) the standard properties of discounted MDPs:
the existence of stationary optimal policies, descriptidrthe sets of stationary optimal policy,
and convergence of value iterations. Theokerh 4.1 strengtheinberg and Lewis 14, Proposition
3.1], where these facts are proved under AssumpWin). In terms of applications to inventory
and queuing control, AssumptioW*) does not require that holding costs increase to infinity as
the inventory level (or workload, or the number of customergueue) increases to infinity.

Theorem 4.1. Let Assumption\W*) hold. Then
(i) the functions),, », n = 1,2, ..., andv, are lower semi-continuous af, andv,, »(z) T v, ()
asn — +oo forall x € X;

(ii)

Upt1,a(x) = min) {c(x, a) + a/ Uno(y)q(dy|z, a)} ., veX, n=0,1,.., (4.1)
X

acA(x

wherev, ,(z) = 0 for all x € X, and the nonempty set§, ,(z) = {a € A(z) : Vpi1a(z) =
ny, (z,a)}, z € X, n = 0,1,..., satisfy the following properties: (a) the graghr(A, ) =
{(x, a): x€X,ae A, (z)},n=0,1,..., isaBorel subset a x A, and (b) ifv, 1 o(2) = 400,
thenA,, ,(z) = A(z) and, ifv,41 () < 400, thenA,, ,(z) is compact;

(iii) forany N = 1,2, ..., there exists a Markov optima&/-horizon policy(¢y, . .., ¢x_1) and
if, for an N-horizon Markov policy(¢y, . . ., ¢n—1) the inclusionsiy_1_,(z) € Aqn(z), z € X,
n=20,..., N — 1, hold then this policy iSV-horizon optimal,

12



(iv) fora € [0,1)

acA(x)

vo(z) = min {c(x,a)Jroz /X Ua(y)q(dy\x,a)}, reX, (4.2)

and the nonempty setk,(r) == {a € A(x) : vo(v) = 07 (v,a)}, v € X, satisfy the following
properties: (a) the grapltsr(A,) = {(z,a) : © € X,a € A,(x)} is a Borel subset aX x A, and
(b) if vy (z) = +00, thenA, (z) = A(x) and, ifv, (x) < +o0, thenA, (x) is compact.

(v) for an infinite-horizon there exists a stationary disatoptimal policys,,, and a stationary
policy is optimal if and only it (z) € A,(z) forall z € X.

(vi) (Feinberg and Lewis [14, Proposition 3.1(iv)fxder AssumptiorWu), the functions,, ,,,
n=1,2,...,andv, are inf-compact orX.

Proof. (i)—(v). First, we prove these statements for a nonnegaiat functionc. In this case,
Una(x) >0,n=0,1,...,andv,(z) > 0 forall z € X.

By (2.3) and Lemm& 34y, , € L(X), sincevy, = 0 € L(X). By the same arguments, if
Uno € L(X) thenv,,,, € L(X). Thusv,, € L(X) foralln = 0,1,... . By Lemmal3.3,
foranyn = 1,2,..., 2z € X, andX € R, the setD,. (., () is a compact subset df. By
Bertsekas and Shrevé [4, Proposition 9.17], 1 v, asn — +o00. Since the limit of a monotone
increasing sequence of lower semi-continuous functioagasn a lower semi-continuous function,
ve € L(X). Lemmal3.4, applied to equatiorls (2.3) ahd](2.5), impliegestants (ii) and (iv)
respectively. Statement (iii) follows frorh (2.4) and staent (v) follows from [2.6).

Now letc(z,a) > K for all (z,a) € Gr(A) and for somek’ > —oo. For K > 0, statements
(i)—(v) are proved. FokK < 0, consider the value functioris= ¢ — K > 0. If the cost function
substituted with, we substitute the notatianwith o. Thenv? , = o7, + =2 K, n = 0,1,...,

11—«
for all policiesr. Thus,v, o = Ona + =K, n=0,1,...,andv, = 0, + 1~ Since statements
(i)—(v) hold for the shifted costdand the value functions, , andv,, they also hold for the initial
cost functiorc and the value functions, , anduv,,. O

We remark that the conclusions of Theorem 4.1 and its pranfie correct whemr = 1 and
the functionc is nonnegative.

5 Average Costs Per Unit Time

In this section we show that AssumptioW(*) and boudness assumption AssumptiB) ¢n
the functionu,,, which is weaker boundness Assumptid®) (introduced by Schal [24], lead to
the validity of stationary average-cost optimal inequeditand the existence of stationary policies.
Stronger results hold under Assumptids)(

Assumption (B). (i) Assumption () holds, and (ii)lirBTilnf uo(x) < oo forallz € X.
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Assumption B)(ii) is weaker than the assumptienp,,¢(, 1) ua(7) < oo for all x € X con-
sidered in Schal [24]. This assumption and Assumpti@Gn) (ere combined in Feinberg and
Lewis [14] into the following assumption.

Assumption (B). (i) Assumption () holds, and (ii}up,¢y 1) ua(z) < oo for all z € X.

It seems natural to consider the assumpliornsup u,(z) < oo for all z € X, which is stronger

1

than AssumptionI8)(ii) and weaker than Assumptiom{(ii). However, as the following lemma
shows, under Assumptiolx) this assumption is equivalent to Assumptid)(ii).

Lemma 5.1. Let the cost functioa be bounded below and Assumptidr)(hold. Then for each
x € X the following two inequalities are equivalent:
(1) supaepo,1) ta(r) < o0,

(i) lim sup u, () < oo.
all

Proof. Obviously, (i}—(ii). Let us prove (ii}>(i). Let (ii) hold. Assume that (i) does not hold.
Sincesup,e(,1) Ua(r) = Max{sSup,e(g o) Ua(T), SUPaefa+ 1) Ua(2) } fOr anya” € [0,1), there ex-
istsa* € [0,1) such thakup,,(g o) ta(r) = 00.

Since the function:, remains unchanged, if a finite constant is added to the caostifn c,
we assume without loss of generality théi,a) > 0 for all (z,a) € Gr(A). Sincec > 0, the
functionsv, (z) andm, are nonnegative nondecreasing functionsvire [0, 1). Sincev,(z) =
Uo(T) + Mo > ua(z), We havesup,eg o) va(r) = oo and therefores,(z) = oo for all a €
[a*, 1), because of the monotonicity ef, in «. Thus,limsup(1 — a)v,(z) = oco. However,

all
limsup(l — a)v,(z) = limsup(1 — a)(uq(x) +my) < limsup(l — a)u.(x) +w < oo, where the
afl all afl

last inequality follows from (ii) and_(3]11). The obtainedntadiction completes the proof. [

Until the end of this section we assume that Assumpt®nHolds. Let us set

w(z) ;= liminf u,(y), =z €X, (5.1)

all, y—x
wherelim inf u,(y) is the least upper bound of the set ofak: R . such that there exist € [0, 1)

afl, y—x

and a neighborhoot (z) of = such that\ < inf{u,(y): a € [8,1),y € U(x) N X}.
Also define the following nonnegative functions Bn

Us(x) = inf wuq(w), wg(x) = liminf Us(y), pelo,1), zeX (5.2)

aglB,1) y—

Observe that all the three defined functions take finite wlie € X. Indeed,

ug(x) < Ug(x) < sup  inf uq(r) = liminfu,(z) < oo, B€[0,1), v €X, (5.3)
Belo,1) a€[B,1) afl
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where the first two inequalities follow from the definitionfs:g, andU; respectively, and the last
inequality follows from AssumptionB). Forz € X

w(z) = su inf Ug, = sup su inf inf wu,
(z) BE[O,I)PR>O a€[B,1), yeBr(x) (v) Be[olj) R>13 yeBa(z) aclB1) (¥) 5.0

= sup sup inf Ug(y)= sup liminf Us(y) = sup ug(z) < oo,
B€[0,1) R>0 YE€Br(7) Bel0,1) YT Bel0,1)

whereBr(z) = {y € X : p(y,z) < R}, the first equality is[(5]1), the second equality follows
from the properties of infinums, the third and the fifth ectigdi follow from (5.2), the fourth
equality follows from the definition ofim sup, and the inequality follows froni(35.3). In view of
(5.2), the functiond/s(x) andu,(x) are nondecreasing if. Therefore, in view ofi(514),

u(z) = lﬁi%lgﬁ(x), r e X (5.5)

We also set for: from (5.5)

A*(x) = {a € Az) : w+u(z) > c(z,a) + /Xu(y)q(dyp:,a)} , v eX, (5.6)

and letA, (x), z € X, be the sets defined in_(3]11) for this functianA. (z) C A*(x).

Theorem 5.2. Suppose Assumption®V(*) and (B) hold. There exist a stationary poligysatis-
fying (3.3) withu defined in[(5.11). Thus, equalitids (8.4) hold for this policyrurthermore, the
following statements hold:

(a) the functionu : X — R, defined in[(5.1), is lower semi-continuous;

(b) the nonempty setd*(x), = € X, satisfy the following properties:
(b1) the graphGr(A*) = {(x,a) : x € X,a € A*(x)} is a Borel subset ak x A;
(bs) for eachz € X the setd*(x) is compact;

(c) a stationary policyy is optimal for average costs and satisfies|3.3) wittiefined in[(G11), if
o(z) € A*(z) forall z € X

(d) there exists a stationary polieywith ¢(x) € A.(xz) C A*(z) for all z € X;
(e) if, in addition, AssumptionWu) holds, then the function, defined in[(5.1), is inf-compact.

Before the proof of Theorem 5.2, we establish some auxifects.

Lemma 5.3. Under AssumptionB), the functions:, v, : X — R, a € [0, 1), are lower semi-
continuous orX. If additionally AssumptionW*) holds, the functions,, : X — R, o € [0, 1),
are lower semi-continuous af. Under Assumptiond¥u) and B), the functions, u,, u,, : X —
R,, «a €0, 1), are inf-compact oiX.
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Proof. Sinceu,(z) > 0, « € [0,1) andz € X, the functionsy,, a € [0,1), are lower semi-
continuous; Feinberg and Lewis |14, Lemma 3.1]. Since supre over any set of lower semi-
continuous functions is a lower semi-continuous functtbe,functionu is lower semi-continuous.

According to[3.1) := lim sup(1 —a)m, = ir&)fl) sup (1—a)m, < co. Thus, there exists
atl age(V, a€la,l)

ap € [0,1) such that
Ni= sup (1—a)m, < oo. (5.7)

a€lap,1)
Let us assume that the functiens bounded below. As explained in the proof of Lenima 5.1,
without loss of generality we can assume that 0. Thenm,, iS a nonnegative, nondecreasing
function. Thus{1 — a)m, < (1 — a)my, < N /(1 — ap), @ € [0, ap), and [5.Y) implies that

A= sup (1 —a)m, < co. (5.8)
a€l0,1)

According to Theorern 411(i, iv,v), under Assumptidiv(), the functionu,(z) = v, (z) — mq
is lower semi-continuous, and a stationary poligyis a-discount optimal if and only if for all
reX

wnle) = min {et0)+a [ vaatarie.o) f = o0 + o [ val)atdsle.oue)

acA(z
(5.9)
The first equality in[(5.9) is equivalent to
(1 —a)mgy + un(z) = rri‘i(n) [c(x, a) + a/ ua(y)q(dy|z, a)} , reX (5.10)
ac T X

Let Assumption Wu) hold. The functionu,(z) = v,(z) — m, is inf-compact by Theo-
rem[4.1(vi). Consider an arbitraty ¢ R, . Sinceu(z) > u, () > u,,(z), v € X, for all
ay,an € [0,1), a1 > g, thenD,(A) € D, (A) € Dy, (M), a € [0,1). Since the functions and
u,, are lower semi-continuous, the sé&g(\) andD,_(A) are closedq € [0, 1). Therefore, if the
setD,, (\) is compact then those sets are also compact and the funatiamdy,,, o < [0, 1), are
inf-compact.

Observe thaf (5]18) and(5]10) imply that(z) > vi(x) — \*, = € X, for all « € [0,1). This
impliesUy(z) > vi(z) — A", = € X. Sincey,, is the largest lower-semicontinuous function that is
less than or equal tb; at allz € X, we havey,(z) > v, (x) — \*, z € X. Since the functiony, is
lower semi-continuous, the sBY, ()) is closed. In additiorp,, (\) € D,, (A + A*), where the set
D,, (A + A*) is compact. Thus, the s&, (A) is compact, and the functionsandu,,, o € [0, 1),
are inf-compact. O

Corollary 5.4. Under AssumptionR), for every sequence, T 1 asn — +oo and for every
r e X,
u(z) = liminf wu, (y).

Lo
n——+oo, y—x "
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Proof. Leta,, T 1 asn — +oo, andz € X. Similar to (5.4)

liminf w, = sup sup inf inf u, = sup sup inf wu,
n—too, y—a ) n:lg,... R>% YEBR(x) m=>n " ) n= 15 R>p0 YEBR(x) 0)

= sup. liminfw, (y) = lim u, ()= u(x),
n=1,2.. Yy—x n—oo

where the second equality holds because the funetjdp) is nondecreasing i, the fourth
equality holds because it is lower semi-continuous, andasteequality follows from[(5]5). O

Lemma5.5. Under AssumptionsW*) and (B), the following inequalities hold

W+ u(x) > Hjlg(n) [c(x,a) + / u(y)q(dy|x,a)} ; reX. (5.11)
acA(x X
Proof. Let us fix an arbitrary* > 0. Sincew = limsup(1 — «)m,, there existsy, € [0, 1) such
afl
that

WHe* > (1 —a)mg, a € [ag, 1). (5.12)

Our next goal is to prove the inequality
W+ e +u(zr) > Irllqi(n) [c(z, a) + a/ga(y)q(dyu, a)] : reX, a€lapl). (5.13)

acA(x X

Indeed, by[(5.10) and(5.1L2) for evety 5 € [ag, 1), such thaty < 3, and for every: € X

W+ e +ug(z) > (1 — p)mg +ug(z) = rerzm [ c(z,a +6/u5 q(dy|z, a)} >

> min {c(a:, a) + a/ Ua(y)q(dy|x, a)] )
acA(x) X
As right-hand side does not depend®® [«, 1), we have for all: € X and for alla € [ayg, 1)

W+e" +Uy(x)= inf [0+ e" +ug(x)] > min [c(m, a) + a/ Ua(y)q(dy|zx, a)} >
Be[o,1) acA(x) X

> i [ele.a) + o [ watasie.o)| = min o (0,0,

acAx a€A(x)

By Lemmd 3.4, the functiom — min 7% (z,a) is lower semi-continuous oK. Thus,

acA(x) —©«
li f ) > . " s %) € Xa € 07 1).
im in ag}gl)nu (y,a) Join My, (7,0) x a€l0,1)

and, as, by definitio (5.2}, (z) = lim inf U,(y), we finally obtain
Y—T

W+ e" +u,(x) > Iri‘i?)nfj (x,a), r € X a€agl). (5.14)
acA(x) —¢
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As, by (5.2),u(xr) = sup u,(z)forallz € X, (5.12) yields[(5.13).

a€lap,1)
To complete the proof of the lemma, we fix an arbitrarye X. By Lemmal3.%4, for any

a € [0,1) there existsi, € A(x) such that HE(H)US (x,a) = n® (z,a,). Sinceu, > 0, for
ae xT — —Q

a € |ag, 1) the inequality[(5.113) can be continued as
W+ e+ u(x) >, (T,00) > c(T,a0). (5.15)
Thus, for alla € [ap, 1)
Ao € Dyg (2,) (W + "+ u(x)) C Do, ) (W + " + u(x)) € A(z).

By Lemma[3.8, the seﬁ)c(x,.)(w + ¢* + u(zx)) is compact. Thus, for every sequenget 1 of
numbers fromay, 1) there is a subsequen¢e,, },,~1 such that the sequen{e,,, },,~1 converges
anda, := lim,, ., a,, € A(x).

Consider a sequeneg, 1 1 such thau,, — a. for somea, € A(z). Due to Lemmat3]5 and

Corollary(5.4,
liminfan/yan(y)q(dmw,an) 2/u(y)q(dy|x,a*). (5.16)
X

n—-4o0o X

Since the functiomr is lower semi-continuoud, (5.115) and (5.16) imply

W+ e +u(r) > limsupn,” (7, dq,) > c(, a.) +/u( Ja(dy|z,a.) = mm n,(x, a).

n— 00 X €A(w)

Sincew + ¢* + u(x) > minge a(,) . (, a) for anye* > 0, this is also true whea* = 0. O

Proof of Theorerh 5l2Lemmal5.8 contains statemen&3 and (e) SinceGr(A*) = {(z,a) €
Gr(A) : g(z,a) > 0}, whereg(z, a) = W+u(x) —c(x, a) — [; u(y)q(dy|z, a) is a Borel function,
the setGr(A*) is Borel. The setsi*(z), z € X, are compact in view of Lemmnia_3.3(b). Thus,
the statementh) is proved. The Arsenin-Kunugui theorem implies the exiseeof a stationary
policy ¢ such thaty(z) € A*(x) for all z € X. Statementé) follows from Lemmd_3.4 and the
Arsenin-Kunugui theorem. The rest follows from Theoiffeni 3.1 O

Theorem 5.6. Suppose Assumption®(*) and B) hold. Then all the conclusions of Theorem 5.2
hold and, in addition, for a stationary policy satisfying[(3.B) with: defined in[(5.11),

w?(z) = w = lim(1 — a)vg(z) = lim %U%(SL’) r e X (5.17)

all N—o0

Proof. Consider a sequendex(n) },>; such thatv(n) 1+ 1 asn — +o0, and

nl_lgloo(l — a(n))mam) = w.

Define the following nonnegative functions &

Up(z) = 1nf Ug(my (), Ty (x) = liminf U, (y), n>1, z€X,

m>n y—x
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and

(x) =supa,(z), v €X. (5.18)
n>1
Observe that
i, (x) < U,(x) < limsup Uam) () <00, z€X, n=12..., (5.19)
m—+00

where the first two inequalities follow from the definitions @, and U,, respectively, and the
last inequality follows from AssumptionB). As follows from [5.18) and[(519)u(z) <
lim sup,,_, o Ua(m)(z) < 4o00. According to Feinberg and Lewis [14, Lemma 3.1], the func-
tionsu,, n > 1, are lower semi-continuous aX. Therefore, their supremum is also lower
semi-continuous. In addition,

u(x) = sup su inf  inf wu, = liminf wuem(y), z€X,

(z) nZII) R>p0 YEBR(z) m>n ) n—+00,y— ()

where the first equality follows from the definitions ©f,, @,,, and, and the second equality is

the definition of theim inf. Sincel, () 1, we havei, () 1 @(z) asn — oo for all z € X.
We show next that for eache X

IS

bile)> int [c(x,a)—l— /X a<y>q(dy|m,a>]. (5.20)

a€A(z

Indeed let us fix ang* > 0. By the definition ofw, there exists a subsequenge(ny)}i>1 C
{a(n)}n>1 such thatforc = 1,2,. ..

w+ " > (1 = a(ng)Mag,)-

Letz € X be an arbitrary state. By Theoréml4.1 for e&ch 1 there existsi,, € Aq,)(z) such
that

(1 - a(nk))ma("k) + ug(nk)(x> = C(JJ, ank) + a<nk) /Xua(nk)(y>Q<dy|mv ank)'

Thus, similarly to the proof of Lemnia5.5, we gei(3.20).
From Lemmd&3J4 and the Arsenin-Kunugui theorem there eaistationary policy) € F such
that for anyz € X

wle) 2 ea o) + [ aw)aldyle, o)) (5.21)
Thus, by Schl [24, Proposition 1.3] described in (3.2), for alle X
w=w=uw(r)= w‘z’(x) = l;gl(l — Q)vg(z) = w*. (5.22)

Let us choose any stationary poligysuch that inequalitie$ (3.2) arld (8.3) hold with the func-
tion v defined in[(5.11). Sinc@ = w, according to Theoremn 8.2, such a stationary policy exists.
Theoreni 311 implies that the stationary policgatisfies[(3J4), and Schal [24, Proposition 1.3] (see

(B2)) implies that[{5.22) holds with = ¢.
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In addition, [5.2R) with) = ¢ implies that for all: € X

w?(w) = lim(1 = a)mq = lim(1 - ) (vae) — ua(e)) = lim(1 - a)ua @),

where the last equality follows from Assumptidd); Thus, for allz € X

1
w?(z) = limsup —v?(x) > limsup(1 — a)v?(x) > liminf(1 — a)v?(x)

«

n—oo TN atl afl
> lim(1 — a)va(z) = w?(2),
atl

where the first inequality follows from the Tauberian theorgsee Sennoti [25, Section A.4] or
[26, Proposition 5.7]), and the last inequality followsrfra?(z) > v,(x) and the existence of
the limit. So, we have, the existencelﬁTff(l — a)v®(z). Thus, the Karamata Tauberian theorem

(Sennott[[25, Section A.4] of [26, Proposition 5.7]) implie?(z) = lim,,_,« 02(x). O

Corollary 5.7. Under Assumptiond¥*) and (B), the conclusions of Theorems]5.2 5.6 remain
correct, if the function: is substituted with the functiandefined in[(5.18).

Proof. As shown in the proof of Theorem 5.6, there exists a statiopalicy ¢ satisfying [5.211).
The functionz is nonnegative, lower semi-continuous, and takes finiteegal Thus, both [24,
Proposition 1.3] (sed_(3.2)) and Theorém] 3.1 can be apptethis function. The proof of
statements (a)—(d) of Theordm 5.2 uses just these propeftie. Statement (e) follows from
Lemmd5.B, whose proof remains unchangedig replaced with. O

6 Approximation of Average Cost Optimal Strategies by a-discount Opti-
mal Strategies

For a family of set§Gr(A,)}ac0,1), € X, considered in Theorem 4.1, we pay our attention to
its upper topological limit

- da, 11, n — +oo, Ixp, a,) € Gr(A,,), n > 1,
LlTrln Gr(Ay) =1 (z,0) e X x A ,

such thatz, a) = nl_lgloo(xn, a)
defined, for example, in Zgurovsky et al. [30, Chapter 1, pL8} us set
AP (1) = {a € A*(x) : (z,a) € @GI(AQ)} : reX

Theorem 6.1. Under Assumptiondy *) and B), the graphGr(A®?) is a Borel subset afr(A*),
and for eachr € X the setA®?(x) is nonempty and compact. Furthermore, there exists a statio
ary policy ¢®? such thatp®?(z) € A*P(x) for all x € X, and any such policy is average-cost
optimal.
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Proof. Let us fix an arbitraryr € X. From [5.1) (the definition of), there exist{y,,, @, }n>1 C
X x (0,1) such thaty,, — =, a, T 1, ug, (yn) — u(x), n — +oo.

Let us choose an arbitraey > 0 andb,, € A,, (y,), n > 1. Sincew = limsup(1 — a)m,,
all

there existsV > 1 such that(z) + 5 > u,, (y,) andw + 5 > (1 — a,,)m,, foralln > N.
By definition of the setsl,(-), for eachn > N

(1 — an)ma, + ta, (Yn) = c(Yn, bn) + an/ Ua, (Y)q(dY|Yn, bn) = Mo (Yns bn).-
X

Thus, for alln > N

w et +u(@) > gl (Yn, bn) Z 070 (Yn0n) = 057 (Yns bn) = c(Yn, bn).

Therefore, because of AssumptioW()(ii), the sequencdb, },~; has a subsequengé,, };>1
such thab,, — a, ask — +oo, for somea € A(z). Thus,(z,a) € @Gr(ﬁla).

Let us prove thatz,a) € Gr(A*). Indeed, asankgank(-) T u(-), & — +oo, then due to
Lemmd3.5 and Corollafy 5.4,

lim inf a,, / Uy, (2)a(dylyn,, bn,) > / u(z)q(dy|z, a).
X X

k——+o00

Thus, by Lemma 34w + ¢* + u(x) > nl(x,a), and this is true for any* > 0. This implies
w + u(z) > nl(z,a). This inequality means thdtr,a) € Gr(A*) and A?(z) # (), since
(x,a) € %Gr(Aa). The setA“P(x) is compact because of the closurenesia'—lgﬁ Gr(A,)
(see Zgurovsky et all [30, Chapter 1, p. 3]) and Thedrerh kh.2{lne second statement of the
theorem follows from the Arsenin-Kunugui theorem. O

Corollary 6.2. Under AssumptionsW*) and [B), for any stationary average-cost optimal policy
¢P, such thatp??(x) € AP(z) for all x € X, for everyz € X there existw,(z) 1 1 and
yn(x) = x @asn — 4oo such thatu, (z) € Ay, @) (Yn(x)), n > 1, and¢™P(x) = lim,,—, ;o an ().

Proof. Following Theoreni 6l1, consider a stationary average-gpsinal policy ¢“*? such that
oP(x) € AP(x) for all x € X. Furthermore, sincel®?(z) C A*(z) for all x € X, any
such a policy is optimal. Let us fix an arbitrarye X. By definition of A*??(x), we have that
(x, 9P (x)) € %Gr(/la). Then, there existv,(z) T 1, n — +oo, and (y,(x), a,(z)) €

Gr(A,, ), n > 1, such thatz, ¢*(z)) = lirf (Yn(2), an(x)), i.€. 0P (x) = lirf a,(x), where
n—-+o00 n—-+00
an(x) € An,@)(Yn(2)), n > 1, a(x) T 1 andy,(z) — x asn — +oo. O

We remark that, if we replace i (5.6) the functiomvith @ defined in[(5.1B), Theorem 6.1 and
Corollary[6.2 remain correct.
Let us set
Xy ={xeX tv4(x) =ma}, a€]0,1).
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Under Assumptions@), m, < oo. If Assumptions G) and (Wu) hold then Theoreri 4.1 im-
plies thatX, is a compact set for each € [0, 1). This fact is useful to establish the validity of
Assumptions G); see Feinberg and Lewis [14, Lemma 5.1] and referencesither

Theorem 6.3. Let Assumptiong§) and (Wu) hold. Then there exists a compact &2t X such
that X, C K for eacha € [0, 1).

Proof. From Assumption@) and Theoreri 411 we have that for eack [0, 1)
0# Xy ={reX : uy(xr) =0} =D, (0) C Dy, (0) C Dy (0) C Dy, (0).

In virtue of Lemmd5.B, we have that, : X — [0, +0c0) is inf-compact function ofX. Setting
K = D,,(0), we obtain the statement of the theorem. O

7 Illustrative Example
The following example is from Hernandez-Lermal[16]. Let
Tn+41 :vxn+5an+§nv n:O,l,...,

and
c(z,a) = qz* + ra?,

where (a)g andr are positive constants,and are two constants satisfyings > 0, and (b),,
are independent and identically distributed (iid) randa@ariables with zero mean, finite variance,
and continuous density.

This problem is solved in Hernandez-Lermal[16], where fagtary average-cost optimal pol-
icy is computed. This problem corresponds to an MDP with= A = R and with setwise
continuous transition probabilities. Howeveréifdo not have a density, the transition probability
may not be setwise continuous, but they are weakly contisiusee Feinberg and Lewis |13, p.
48] for detail. If &, are arbitrary iid random variables with zero mean and finggance, this
problem satisfies AssumptioW\(u) and, similarly to the case when there are densities, wisedi
Assumption B). Thus, Theorern 516 can be applied. The optimal policy miediin Hernandez-
Lerma [16] is also optimal whef}, may not have a density.

A Proof of Lemmal3.5

Proof. First, we prove the lemma for uniformly bounded above funtdh,,. Leth,(s) < K < oo
foralln =1,2,...andalls € S. Forn =1,2,...ands € S, define

H,(s) = inf h,,(s) and h,(s)=liminf H,(s").

m>n s'—s
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The functionsh,, : S — [0,+00), n = 1,2,..., are lower semi-continuous; see, for example,
Feinberg and Lewis [14, Lemma 3.1]). In addition, foe S

h,(s) ] h(s) as n — oo. (A.1)

Weak convergence dfu, },>1 to v is equivalent to

liminf p,,(A) > pu(A) forall A e O, (A.2)

n—-4o0o

where(Q is the family of all open subsets of the spateBillingsley [5, Theorem 2.1].
Fix an arbitraryt > 0. By (AJ), if (s) > t thenh,,(s) > t,n=1,2,...,and

{s€S:n(s)>ty=|]Sn, (A.3)
n>1
where
Sp,={s€S :h,(s)>t}), n=1,2,...,

are open sets, since the functigns: S — R are lower semi-continuous. In addition,
Sy € Spat, n=12,.... (A.4)

Thus,

w{se€ S : h(s)>t}) = lim wu(S,) < lim liminf pu,,(S,)

n——+o0o n——+00 Mm—-+00

< limsup liminf p,,(S,,) = liminf pn(Sn) = liminf wn({s €S : h,(s) >t}),

n—+oo M—+00

where the first equality follows froni (Al.4) anld (A.3), the finsequality follows from to[(A.P), and
the second inequality follows frorh (A.4).
Thus Serfozol[27, Lemma 2.1] yields

/S h(s)u(ds) < liminf /S b, () (ds) < lim in /S o (5) 10 (d5),

n——+o0o n——+o0o

where the second inequality is fulfilled due to
h,(s) < H,(s) < hy(s), seS n=12....

Case 2. Consider a sequendé,, },~1 of measurable nonnegati®valued functions orf.
For A > 0 seth)(s) := min{h,(s),\},s € S,n =1,2,.... Since the functiong} are uniformly
bounded above,

/S M (s)p(ds) < lim inf /S P (8)jin(ds) < lim inf /S B (8) i (ds),

n——+00 n—-+00

whereh’(s) = liminf h)(s'), A > 0,5 € S.

n—+4o00, s’ —s
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Then, using Fatou’s lemma,

/S hs)u(ds) < lim inf / 1 (s)p(ds).

A——+00

0

Acknowledgements. Research of the first author was partially supported by N8RtgEMMI-
0900206. The authors thank Professor M.Z. Zgurovsky faiaiting their research cooperation.

References

[1] Arapostathis, A., V. S. Borkar, E. Fernandez-Gauchéravi. K. Ghosh and S. |. Marcus.
1993. Discrete time controlled Markov processes with aye@st criterion: a survegIAM
J. Control Optim.31(2) 282—344.

[2] Bather, J. 1973. Optimal decision procedures for finiterkbv chains. Part I: Example&dyv.
in Appl. Probab. $2) 328-339.

[3] Berge, E. 1963Topological Spacedacmillan, New York.

[4] Bertsekas, D. P., S. E. Shreve. 19%ochastic Optimal Control: The Discrete-Time Case.
Athena Scientific, Belmont, MA.

[5] Billingsley, P. 1968 Convergence of Probability Measurel®nh Wiley, New York.
[6] Blackwell, D. 1962. Discrete dynamic programmign. Math. Statist33(2) 719-726.

[7] Cavazos-Cadena, R. 1991. A counterexample on the ofityreguation in Markov decision
chains with the average cost criteri@ystems & Control Letfl6(5) 387-392.

[8] Chen, R. C., E. A. Feinberg. 2010. Compactness of theesphnon-randomized policies in
countable-state sequential decision proceddash. Methods Oper. Reg1(2) 307-323.

[9] Chitashvili, R. Y. 1975. A controlled finite Markov chaimith an arbitrary set of decisions.
Theor. Probability Appl20(4) 839-847.

[10] Derman, C. 1962. On sequential decisions and Markoinshlanagement Sc9(1) 16—24.

[11] Dynkin, E. B., A. A. Yushkevich. 197%ontrolled Markov ProcesseSpringer-Verlag, New
York.

[12] Feinberg, E. A. 1980. Ar-optimal control of a finite Markov chaiff.heor. Probability Appl.
25(1) 70-81.

24



[13] Feinberg, E. A., M. E. Lewis. 2004. Optimality of founreshold policies in inventory systems
with customer returns and borrowing/storage optiétiebab. Engrg. Inform. Scil9(1) 45—
71.

[14] Feinberg, E. A., M. E. Lewis. 2007. Optimality inequgds for average cost Markov decision
processes and the stochastic cash balance problath. Oper. Res32(4) 769—-783.

[15] Gubenko, L. G., E. S. Shtatland 1975. On controlledcmite-time Markov decision pro-
cessesTheory Probab. Math. Statist.47—-61.

[16] Hernandez-Lerma, O. 1991. Averege optimality in dym@aprogramming on Borel spaces -
Unbounded costs and contro®ystems & Control Letil7(3) 237-242.

[17] Hernandez-Lerma, O., J. B. Lassere. 1998crete-Time Markov Control Processes: Basic
Optimality Criteria Springer, New York.

[18] Hernandez-Lerma, O., J. B. Lassere. 2000. Fatou’'snarand Lebesgue’s convergence the-
orem for measured. Appl. Math. Stoch. Anal3(2) 137-146.

[19] Kechris, A.S. 1995Classical Descriptive Set Theoi§pringer-Verlag, New York.

[20] Luque-Vasquez, F., O. Hernandez-Lerma. 1995. A tenexample on the semicontinuity of
minima.Proc. Amer. Math. Sod.23(10) 3175-3176.

[21] Ross, S. M. 1968. non-discounted denumerable Markodiecision modelAnn. Math.
Statist.39(2) 412—-424.

[22] Ross, S. M. 1968a. Arbitrary state Markovian decisioocessesAnn. Math. Statist39(6)
2118-2122.

[23] Ross, S. M. 1971. On the nonexistence-optimal randomized stationary policies in average
cost Markov decision modeléinn. Math. Statis#42(5) 1767-1768.

[24] Schal, M. 1993. Average optimality in dynamic programg with general state spaddath.
Oper. Res18(1) 163-172.

[25] Sennott, L. I. 1999Stochastic Dynamic Programming and the Control of Queu8ystems
John Wiley and Sons, New York.

[26] Sennott, L. I. 2002. Average reward optimization thefar denumerable state spaces. E. A.
Feinberg, A. Shwartz, edslandbook of Markov Decision Processes. Methods and Applica
tions.Kluwer, Boston, 153-172.

[27] Serfozo, R. 1982. Convergence of Lebesgue integrals warying measureslhe Indian
Journal of Statistics (Series A)4 380—402.

25



[28] Taylor, 1lI, H. M.. 1965. Markovian sequential replawent processe®Ann. Math. Statist.
36(6) 1677-1694.

[29] Viskov, O. V., A. N. Shiryaev. 1964. On controls whicldtece to optimal stationary regimes,
Trudy Mat. Inst. Steklow1 3545 (in Russion; English translation: Report Number FTD-H
67-69, National Technical Information Service, U.S. Déypent of Commerce).

[30] Zgurovsky, M. Z., V. S. Mel'nik, P. O. Kasyanov. 201Bvolution Inclusions and Variation
Inequalities for Earth Data Processing$pringer, Berlin.

26



	1 Introduction
	2 Model Description
	3 General Assumptions and Auxiliary Results
	4 Expected Total Discounted Costs
	5 Average Costs Per Unit Time
	6 Approximation of Average Cost Optimal Strategies by -discount Optimal Strategies
	7 Illustrative Example
	A Proof of Lemma ??

