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Abstract

In the context of sparse recovery, it is known that most of existing regularizers such as ℓ1 suffer from

some bias incurred by some leading entries (in magnitude) of the associated vector. To neutralize this bias,

we propose a class of models with partial regularizers for recovering a sparse solution of a linear system.

We show that every local minimizer of these models is sufficiently sparse or the magnitude of all its nonzero

entries is above a uniform constant depending only on the data of the linear system. Moreover, for a class

of partial regularizers, any global minimizer of these models is a sparsest solution to the linear system. We

also establish some sufficient conditions for local or global recovery of the sparsest solution to the linear

system, among which one of the conditions is weaker than the best known restricted isometry property

(RIP) condition for sparse recovery by ℓ1. In addition, a first-order feasible augmented Lagrangian (FAL)

method is proposed for solving these models, in which each subproblem is solved by a nonmonotone proximal

gradient (NPG) method. Despite the complication of the partial regularizers, we show that each proximal

subproblem in NPG can be solved as a certain number of one-dimensional optimization problems, which

usually have a closed-form solution. We also show that any accumulation point of the sequence generated

by FAL is a first-order stationary point of the models. Numerical results on compressed sensing and sparse

logistic regression demonstrate that the proposed models substantially outperform the widely used ones in

the literature in terms of solution quality.

Keywords: sparse recovery, partial regularization, null space property, restricted isometry property, proxi-

mal gradient method, augmented Lagrangian method, compressed sensing, sparse logistic regression
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1 Introduction

Over the last decade, seeking a sparse solution to a linear system has attracted a great deal of attention in science

and engineering (e.g., see [33, 1, 34, 26, 38, 16]). It has found numerous applications in imaging processing,

signal processing and statistics. Mathematically, it can be formulated as the ℓ0 minimization problem

min
x∈ℜn

{‖x‖0 : ‖Ax− b‖ ≤ σ}, (1)

∗This work was supported in part by NSERC Discovery Grant.
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where A ∈ ℜm×n is a data matrix, b ∈ ℜm is an observation vector, σ ≥ 0 is the noisy level (i.e., σ = 0 for

noiseless data and observation and σ > 0 for noisy data and/or observation), and ‖x‖0 denotes the cardinality

of the vector x.

Given that ‖ · ‖0 is an integer-valued, discontinuous and nonconvex function, it is generally hard to solve

(1). One common approach in the literature (e.g., see [37, 12, 8]) is to solve the following ℓ1 relaxation problem

min
x∈ℜn

{‖x‖1 : ‖Ax− b‖ ≤ σ}. (2)

Under some condition on A such as restricted isometry property (RIP) and null space property (NSP), it has

been shown in the literature that the solution of (1) can be stably recovered by that of (2) (e.g., see [8, 17, 18, 6, 7]

and the references therein). It is well-known that ‖·‖1 is generally a biased approximation to ‖·‖0. To neutralize

the bias in ‖x‖1 incurred by some leading entries (in magnitude) of x, one can replace ‖x‖1 by
∑n
i=r+1 |x|[i] in

(2) and obtain a less biased relaxation for (1):

min
x∈ℜn

{
n∑

i=r+1

|x|[i] : ‖Ax− b‖ ≤ σ
}
, (3)

where r ∈ {0, 1, . . . , n− 1} and |x|[i] is the ith largest element in {|x1|, |x2|, . . . , |xn|}. We now provide a simple

example to illustrate this.

Example 1.1 The general solution to Ax = b is x = (t, t, 1− t, 2− t, 3− t)T for all t ∈ ℜ, where

A =




1 −1 0 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 0 1


 , b =




0

1

2

3


 .

Thus xs = (0, 0, 1, 2, 3) is the sparsest solution to Ax = b. One can verify that xf = (1, 1, 0, 1, 2)T is the unique

solution of (2) with σ = 0, while xp = (0, 0, 1, 2, 3)T is the unique solution of (3) with σ = 0 and r = 2 or 3.

Clearly, the partial ℓ1 model (3) recovers successfully the sparest solution but the full ℓ1 model (2) fails.

A more general relaxation of (1) considered in the literature is in the form of

min
x∈ℜn

{
n∑

i=1

φ(|xi|) : ‖Ax− b‖ ≤ σ
}
, (4)

where φ is some regularizer (e.g., see [21, 24, 19, 39, 10, 9, 11, 42, 41]). Some popular φ’s are listed as follows.

(i) (ℓ1 [37, 12, 8]): φ(t) = t ∀t ≥ 0;

(ii) (ℓq [21, 24]): φ(t) = tq ∀t ≥ 0;

(iii) (Log [39, 9]): φ(t) = log(t+ ε)− log(ε) ∀t ≥ 0;

(iv) (Capped-ℓ1 [42]): φ(t) =

{
t if 0 ≤ t < ν,

ν if t ≥ ν;

(v) (MCP [41]): φ(t) =

{
λt− t2

2α if 0 ≤ t < λα,

λ2α
2 if t ≥ λα;
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(vi) (SCAD [19]): φ(t) =





λt if 0 ≤ t ≤ λ,
−t2+2βλt−λ2

2(β−1) if λ < t < λβ,

(β+1)λ2

2 if t ≥ λβ,

where 0 < q < 1, ε > 0, ν > 0, λ > 0, α > 1 and β > 1 are some parameters. One can observe that problem

(2) is a special case of (4) with φ(t) = t for t ≥ 0. Analogous to ‖ · ‖1,
∑n

i=1 φ(|xi|) is generally also a biased

approximation to ‖ · ‖0 in some extent. Similar as above, one can neutralize the bias in
∑n

i=1 φ(|xi|) incurred

by some leading entries (in magnitude) of x to obtain a less biased relaxation for (1):

min
x∈ℜn

{
n∑

i=r+1

φ(|x|[i]) : ‖Ax− b‖ ≤ σ
}

(5)

for some r ∈ {0, 1, . . . , n− 1}. In this paper we are interested in problem (5) for which φ satisfies the following

assumption.

Assumption 1 φ is lower semi-continuous and increasing in [0,∞). Moreover, φ(0) = 0.

Under Assumption 1, we study some theoretical properties of problem (5) and also develop an efficient

algorithm for solving it. In particular, we show that problem (5) has at least an optimal solution. We also

establish some sparsity inducing properties of (5) with σ = 0. It is shown that any local minimizer of (5) has

at most r nonzero entries or the magnitude of all its nonzero entries is not too small, which is indeed above a

uniform constant depending only on A and b. Moreover, we prove that for a class of φ, any global minimizer

of (5) is a sparsest solution to Ax = b. In addition, we study some sufficient conditions for local or global

recovery of a sparest solution x∗ of Ax = b by model (5). It is shown that if a local null space property holds

at x∗ for A and φ, x∗ is a strictly local minimizer of (5) with σ = 0. Specifically, for φ(t) = |t|q with q ∈ (0, 1],

we develop some weaker RIP conditions for local recovery than the well-known optimal ones for (2). It is also

shown that if a global null space property holds at x∗ for A and φ, x∗ is a unique global minimizer of (5) with

σ = 0. Some RIP conditions are particularly derived for global recovery by (5) with σ = 0 and φ(t) = |t|q
with q ∈ (0, 1]. Furthermore, we study stable recoverability of (5) with φ(t) = |t| and σ ≥ 0 under some RIP

conditions. Additionally, we develop a first-order feasible augmented Lagrangian (FAL) method for solving

problem (5) in which each subproblem is solved by a nonmonotone proximal gradient (NPG) method. Though

the subproblems of NPG appear to be sophisticated due to
∑n

i=r+1 φ(|x|[i]), we are fortunate to show that they

can be solved as n − r number of one-dimensional optimization problems that have a closed-form solution for

the widely used φ. We also show that any accumulation point of the sequence generated by FAL is a first-order

stationary point of problem (5). Finally we conduct some numerical experiments to compare the performance of

(5) with (4). Numerical results demonstrate that (5) substantially outperforms (4) in terms of solution quality.

The rest of this paper is organized as follows. In Section 2 we establish the existence of optimal solutions

for problem (5). Some sparsity inducing properties for (5) are studied in Section 3. We establish some sufficient

conditions for local or global recovery of a sparse solution by problem (5) and study its stable recoverability for

in Section 4. We propose an efficient algorithm for solving (5) in Section 5. Numerical results are presented in

Section 6. Finally we make some concluding remarks in Section 7.

1.1 Notation and terminology

In this paper the set of all nonnegative real numbers is denoted by ℜ+. For a real number t, let t+ = max{0, t}.
Let ℜn+ denote the nonnegative orthant of ℜn. For any x, y ∈ ℜn, x ≥ y means x − y ∈ ℜn+. {0, 1}n denotes

the set of all n-dimensional vectors with binary entries. For any x ∈ ℜn, ‖x‖0 and ‖x‖ denote the cardinality

3



(i.e., the number of nonzero entries) and the Euclidean norm of x, respectively, and ‖x‖q = q

√
n∑
i=1

|xi|q for any

q ∈ (0, 1]. In addition, x[i] denotes the ith largest entry of x for i = 1, . . . , n and |x| stands for the n-dimensional

vector whose ith entry is |xi|. Given an integer 1 ≤ k ≤ n, we denote by x−max(k) the vector resulted from x by

replacing the entries of x with k largest absolute value by zero, and set xmax(k) = x − x−max(k). A vector x is

said to be k-sparse if ‖x‖0 ≤ k. Given any A ∈ ℜm×n, rank(A) stands for the rank of A, and the null space and

range space of A are denoted by N (A) and R(A), respectively. Given an index set J ⊆ {1, . . . , n}, |J | and Jc

denote the size of J and the complement of J in {1, . . . , n}, respectively. For any x ∈ ℜn and M ∈ ℜm×n, xJ
denotes the subvector formed by the entries of x indexed by J , and MJ denotes the submatrix formed by the

columns of M indexed by J . For any closed set S, let dist(x, S) denote the distance from x to S, and conv(S)

denote the convex hull of S.

We recall from [36, Definition 8.3] that for a proper lower semi-continuous function ϑ (not necessarily locally

Lipschitz), the limiting and horizon subdifferentials are defined respectively as

∂ϑ(x) :=

{
v

∣∣∣∣ ∃xk
ϑ→ x, vk → v with lim inf

z→xk

ϑ(z)− ϑ(xk)− 〈vk, z − xk〉
‖z − xk‖ ≥ 0 ∀k

}
,

∂
∞

ϑ(x) :=

{
v

∣∣∣∣ ∃xk
ϑ→ x, λkv

k → v, λk ↓ 0 with lim inf
z→xk

ϑ(z)− ϑ(xk)− 〈vk, z − xk〉
‖z − xk‖ ≥ 0 ∀k

}
,

where λk ↓ 0 means λk > 0 and λk → 0, and xk
ϑ→ x means both xk → x and ϑ(xk) → ϑ(x). The following

concept was introduced in [8] by Candès and Tao.

Definition 1 (restricted isometry constant) Given A ∈ ℜm×n and an integer 1 ≤ k ≤ n, the restricted

isometry constant (RIC) of order k, denoted by δAk , is the smallest number δ such that for all k-sparse vectors

x ∈ ℜn,
(1 − δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2.

We define δAk as δA⌈k⌉ when k > 0 is not an integer.

2 Existence of optimal solutions

In this section we establish the existence of optimal solutions of problem (5). To this end, we first consider a

more general class of problems in the form of

F ∗ = inf
x∈ℜn

{F (x) := g(Ax− b) + Ψ(x)} , (6)

where A ∈ ℜm×n, b ∈ ℜm, and F ∗, g and Ψ satisfy the following assumption.

Assumption 2 (a) g : ℜm → ℜ ∪ {∞} is lower semi-continuous in ℜn and any level set of g is bounded.

(b) Ψ : ℜn → ℜ is bounded below, lower semi-continuous, and moreover,

Ψ(y) ≥ Ψ(z) if |y| ≥ |z|.

(c) F ∗ is finite.

We next show that under Assumption 2, the infimum of problem (6) is attainable at some point.

Theorem 2.1 Under Assumption 2, the infimum F ∗ of problem (6) is achievable at some point, that is, (6)

has at least an optimal solution.
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Proof. By the definition of F ∗, there exists a sequence {xk} such that

lim
k→∞

F (xk) = lim
k→∞

g(Axk − b) + Ψ(xk) = F ∗. (7)

By Assumption 2(b) and 2(c), we know that {Ψ(xk)} is bounded below and F ∗ is finite. These together with

(7) imply that {g(Axk − b)} is bounded above. Using this and Assumption 2(a), we conclude that {Axk − b}
is bounded and so is {Axk}. Let J = {j : {xkj } is bounded}. It then follows that {AJxkJ} is bounded. This

together with the boundedness of {Axk} implies that {AJcxkJc} is bounded. Consider the linear system

AJcz = AJcxkJc .

Clearly it has at least a solution z = xkJc . By Hoffman Lemma [27], there exist zk and some constant ζ > 0

depending only on AJc such that

AJczk = AJcxkJc , ‖zk‖ ≤ ζ‖AJcxkJc‖. (8)

Let x̃k = (xkJ , z
k). Using (8), the boundedness of {AJcxkJc}, and the definitions of J and x̃k, one can observe that

Ax̃k = Axk and {x̃k} is bounded. Considering a convergent subsequence if necessary, assume for convenience

that x̃k → x∗ for some x∗. By the definition of F and the lower semi-continuity of g and Ψ, we can see that F

is lower semi-continuous and hence

lim inf
k→∞

F (x̃k) ≥ F (x∗). (9)

In addition, by the definition of J , we know that {xkJc} is unbounded. This along with the boundedness of {x̃kJc}
implies |xkJc | ≥ |x̃kJc | for sufficiently large k. It follows from this and x̃kJ = xkJ that |xk| ≥ |x̃k| for sufficiently large

k. This and Assumption 2(b) implies that Ψ(xk) ≥ Ψ(x̃k) for sufficiently large k. By this relation, Ax̃k = Axk

and (6), we have that for sufficiently large k,

F (xk) = g(Axk − b) + Ψ(xk) ≥ g(Ax̃k − b) + Ψ(x̃k) = F (x̃k).

In view of this, (7) and (9), one has

F ∗ = lim
k→∞

F (xk) ≥ lim inf
k→∞

F (x̃k) ≥ F (x∗).

This along with the definition of F ∗ implies F (x∗) = F ∗ and hence x∗ is an optimal solution of problem (6).

As a consequence of the above theorem, we next establish the existence of optimal solutions of problem (5).

Theorem 2.2 Suppose that Assumption 1 holds for φ and the feasible region of (5) is nonempty. Then problem

(5) has at least an optimal solution.

Proof. Let Ω = {w ∈ ℜm : ‖w‖ ≤ σ} and ιΩ be the indicator function of Ω, that is, ιΩ(w) = 0 if w ∈ Ω and

∞ otherwise. One can observe that (5) is a special case of (6) with g = ιΩ and Ψ(·) = ∑n
i=r+1 φ(| · |[i]). Since φ

satisfies Assumption 1, it is not hard to verify that Assumption 2 holds for such g and Ψ. The conclusion then

follows from Theorem 2.1.

The following model has been widely used in the literature for sparse recovery:

min
x∈ℜn

λ‖Ax− b‖2 +Ψ(x), (10)

where λ > 0 and Ψ is a sparsity-inducing regularizer such as ℓ0 [4, 5, 32, 30], ℓ1 [37, 12, 8]), ℓq [21, 24], Capped-ℓ1
[42], Log [39, 9], MCP [41] and SCAD [19] that are presented in Section 1. It is not hard to observe that (10)

is a special case of (6) with g(·) = λ‖ · ‖22 for (10). The following result thus immediately follows from Theorem

2.1.
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Corollary 2.3 Problem (10) has at least an optimal solution if Ψ is one of the regularizers ℓ0, ℓ1, ℓq, Capped-ℓ1,

Log, MCP and SCAD.

3 Sparsity inducing property

In this section we study some sparsity inducing properties of model (5) with σ = 0, that is,

min
x∈ℜn

{
n∑

i=r+1

φ(|x|[i]) : Ax− b = 0

}
. (11)

In particular, we show that any local minimizer of (11) is r-sparse or the magnitude of all its nonzero entries

cannot be too small, which is indeed above a uniform constant depending only on A and b. We also show that

under some assumption on φ, any global minimizer of (11) is a sparsest solution to the linear system Ax = b.

Before proceeding, we introduce some notations that will be used subsequently. Given any x ∈ ℜn and

j ∈ {1, . . . , n}, we define

I0(x) = {i : xi = 0}, Ic0(x) = {i : xi 6= 0},
I=j (x) = {i : |xi| = |x|[j]}, I>j (x) = {i : |xi| > |x|[j]},
I<j (x) = {i : |xi| < |x|[j]}, I<+

j (x) = {i : 0 < |xi| < |x|[j]},
I≤j (x) = {i : |xi| ≤ |x|[j]}, I≤+

j (x) = {i : 0 < |xi| ≤ |x|[j]}.

(12)

It is not hard to observe that

I>j (x) ∪ I=j (x) ∪ I<j (x) = {1, . . . , n}, Ic0(x) = I≤+
j (x) ∪ I>j (x),

I≤j (x) = I=j (x) ∪ I<j (x), I≤j (x) = I0(x) ∪ I≤+
j (x).

The following lemma characterizes some nonzero components of a local minimizer of problem (11).

Lemma 3.1 Assume φ′′(t) < 0 for all t > 0. Suppose x∗ is a local minimizer of problem (11). Let I>r+1 =

I>r+1(x
∗), I≤+

r+1 = I≤+
r+1(x

∗), J a subset of I>r+1 such that rank(AJ ) = rank(AI>
r+1

) and AJ has full column rank,

and B = [A
I

≤+

r+1

AJ ], where I>r+1(x
∗) and I≤+

r+1(x
∗) are defined in (12). Then x∗ is r-sparse or the following

statements hold:

(i) B has full column rank;

(ii) x∗
I

≤+

r+1

= [e1 · · · el]T (BTB)−1BT b, where l = |I≤+
r+1| and ei is the ith coordinate vector for all i.

Proof. If x∗ is a r-sparse solution to Ax = b, the conclusion clearly holds. We now suppose that x∗ is not

a r-sparse solution to Ax = b. It implies that I≤+
r+1 6= ∅ and |x∗i | > 0 for all i ∈ I=r+1(x

∗). We next show that

statements (i) and (ii) hold.

(i) One can observe from (12) that when x is sufficiently close to x∗,

I<r+1(x
∗) ⊆ I<r+1(x), I>r+1(x

∗) ⊆ I>r+1(x). (13)

Let t1 = |I=r+1(x
∗)|, t2 = n− r − |I<r+1(x

∗)| and

S =
{
K : K ⊆ I=r+1(x

∗), |K| = t2
}
.
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Observe that t1, t2 > 0 and S 6= ∅. Using (13) and the definitions of t1, t2 and S, we can observe that when x

is sufficiently close to x∗,

n∑

i=r+1

φ(|x|[i]) =
∑

i∈I<
r+1

(x∗)

φ(|xi|) + min
K∈S

∑

i∈K

φ(|xi|) ≤
∑

i∈I<
r+1

(x∗)

φ(|xi|) +
t2
t1

∑

i∈I=
r+1

(x∗)

φ(|xi|). (14)

Notice that
n∑

i=r+1

φ(|x∗|[i]) =
∑

i∈I<
r+1

(x∗)

φ(|x∗i |) +
t2
t1

∑

i∈I=
r+1

(x∗)

φ(|x∗i |). (15)

Since x∗ is a local minimizer of problem (11), we have
n∑

i=r+1

φ(|x|[i]) ≥
n∑

i=r+1

φ(|x∗|[i]) when x is sufficiently close

to x∗. By this relation, (14) and (15), one can see that when x is sufficiently close to x∗,

∑

i∈I<
r+1

(x∗)

φ(|xi|) +
t2
t1

∑

i∈I=
r+1

(x∗)

φ(|xi|) ≥
∑

i∈I<
r+1

(x∗)

φ(|x∗i |) +
t2
t1

∑

i∈I=
r+1

(x∗)

φ(|x∗i |).

Hence, x∗ is a local minimizer of the problem

min
x





∑

i∈I<
r+1

(x∗)

φ(|xi|) +
t2
t1

∑

i∈I=
r+1

(x∗)

φ(|xi|) : Ax = b



 .

It then follows that (x∗
I<+

r+1

, x∗I=
r+1

, x∗
I>
r+1

) is a local minimizer of the problem

min
∑

i∈I<+

r+1

φ(|xi|) + t2
t1

∑
i∈I=

r+1

φ(|xi|)

AI<+

r+1

xI<+

r+1

+AI=
r+1
xI=

r+1
+AI>

r+1
xI>

r+1
= b,

(16)

where I<+
r+1 = I<r+1(x

∗), I=r+1 = I=r+1(x
∗) and I>r+1 = I>r+1(x

∗). By the second-order necessary optimality

condition of (16), one has ∑

i∈I<+

r+1

φ′′(|x∗i |)h2i +
t2
t1

∑

i∈I=
r+1

φ′′(|x∗i |)h2i ≥ 0 (17)

for all h = (hI<+

r+1

, hI=
r+1
, hI>

r+1
) satisfying

AI<+

r+1

hI<+

r+1

+AI=
r+1

hI=
r+1

+AI>
r+1
hI>

r+1
= 0. (18)

Recall that |x∗i | > 0 for all i ∈ I=r+1. Hence, I≤+
r+1 = I<+

r+1 ∪ I=r+1. This together with the assumption φ′′(t) < 0

for all t > 0 implies that φ′′(|x∗i |) < 0 for all i ∈ I≤+
r+1. Using this relation, t1, t2 > 0, I≤+

r+1 = I<+
r+1 ∪ I=r+1, (17)

and (18), we have

A
I≤+

r+1

h
I≤+

r+1

+AI>
r+1

hI>
r+1

= 0 =⇒ h
I≤+

r+1

= 0. (19)

Recall that J ⊆ I>r+1 is such that rank(AJ ) = rank(AI>
r+1

) and AJ has full column rank. This along with (19)

yields

A
I≤+

r+1

h
I≤+

r+1

+AJ hJ = 0 =⇒ h
J∪I≤+

r+1

= 0.

It implies that B = [A
I≤+

r+1

AJ ] has full column rank.

(ii) Notice that Ax∗ = b. It then follows that

A
I≤+

r+1

x∗
I≤+

r+1

+AI>
r+1
x∗I>

r+1

= b. (20)

7



Since J ⊆ I>r+1 and rank(AJ ) = rank(AI>
r+1

), there exists some x̃∗ℜ|J| such that AJ x̃
∗ = AI>

r+1
x∗
I>
r+1

. This

together with (20) yields

A
I≤+

r+1

x∗
I

≤+

r+1

+AJ x̃
∗ = b.

In view of this and the fact that B = [A
I≤+

r+1

AJ ] has full column rank, one has




x∗
I≤+

r+1

x̃∗


 = (BTB)−1BT b,

which immediately implies that statement (ii) holds.

As a consequence of the above lemma, we next show that any local minimizer of (11) is r-sparse or the

magnitude of all its nonzero entries cannot be too small, which is indeed above a uniform constant depending

only on A and b.

Theorem 3.2 Assume φ′′(t) < 0 for all t > 0. Let

B :=
{
I ⊆ {1, . . . , n} : AI has full column rank and (AI)

T b 6= 0
}
,

δI := min

{∣∣∣[(AI)
TAI ]

−1(AI)
T b

∣∣∣
i
:

∣∣[(AI)
TAI ]

−1(AI)
T b

∣∣
i
> 0,

1 ≤ i ≤ |I|

}
∀I ∈ B,

δ := min{δI : I ∈ B}. (21)

Let x∗ be an arbitrary local minimizer of problem (11) and

K = min {‖x‖0 : Ax = b} . (22)

There hold:

(i) If 0 ≤ r < K, |x∗i | ≥ δ for all i ∈ Ic0(x∗);

(i) If K ≤ r ≤ n− 1, x∗ is r-sparse or |x∗i | ≥ δ for all i ∈ Ic0(x∗).

Proof. Notice Ic0(x∗) = I≤+
r+1(x

∗) ∪ I>r+1(x
∗). In view of this, Lemma 3.1 and the definition of δ, one can

observe that if x∗ is non-r-sparse, then I≤+
r+1(x

∗) 6= ∅ and

|x∗i | ≥ min{|x∗j | : j ∈ I≤+
r+1(x

∗)} ≥ δ ∀i ∈ Ic0(x∗).

In addition, by the definition of K, one can see that if 0 ≤ r < K, x∗ must be non-r-sparse. The conclusion of

this theorem then immediately follows from these observations and Lemma 3.1.

Remark: The quantity δ given in (21) is independent to r, but only depends on A and b. In addition, the

above theorem implies that the components of a non-r-sparse local minimizer of (11) with magnitude below δ

must be zero. Therefore, any local minimizer of (11) is either r-sparse or the magnitude of its nonzero entries

is above δ.

In the context of sparse recovery, the regularizers often associate with some parameter that controls the

proximity to the ℓ0 regularizer. For example, the well-known ℓq regularizer is one of them. We next consider a
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special class of model (11) with φ(·) = ψ(·, q) for some parameter q, namely,

min
x∈ℜn

n∑

i=r+1

ψ(|x|[i], q)

s.t. Ax = b,

(23)

where ψ : ℜ+ × (0, α)→ ℜ+ for some α ∈ (0,∞] satisfies the following assumption.

Assumption 3 (a) ψ(·, q) is lower semi-continuous and increasing in ℜ+ for any q ∈ (0, α);

(b) ∂2ψ
∂t2 (t, q) < 0 for all t > 0 and q ∈ (0, α);

(c) ψ(0, q) = 0 and lim
q→0+

ψ(t, q) = 1 for all t > 0.

One can observe from Theorem 2.1 that under Assumption 3(a), problem (23) has at least an optimal

solution. In addition, under Assumption 3(b), Theorem 3.2 also holds for problem(23). We next show that

when q is sufficiently small, any global minimizer of (23) is a sparsest solution to the system Ax = b. This

indicates that problem (23) is capable of inducing a sparse solution.

Theorem 3.3 Suppose that Assumption 3 holds for ψ. Let K be defined in (22). Then for any 0 ≤ r ≤
min{K,n − 1} and sufficiently small q > 0, any global minimizer x∗ of problem (23) is also that of problem

(22), that is, x∗ is a sparsest solution to the system Ax = b.

Proof. Let r ∈ [0,min{K,n − 1}] be arbitrarily chosen, x̃∗ and x∗ a global minimizer of (22) and (23),

respectively, and let δ be given in (21). In view of Assumption 3(c), ‖x̃∗‖0 = K and r ≤ K, one can observe

that

lim
q→0+

n∑
i=r+1

ψ(|x̃∗|[i], q)

ψ(δ, q)
= K − r.

Hence, there exists some 0 < ǫ < α such that ψ(δ, q) > 0 and

n∑
i=r+1

ψ(|x̃∗|[i], q)

ψ(δ, q)
≤ K − r + 1

2
∀q ∈ (0, ǫ). (24)

By Theorem 3.2, we know that x∗ is a r-sparse solution to Ax = b or |x∗i | ≥ δ for all i ∈ Ic0(x∗). We next show

that x∗ is an optimal solution of (22) if q ∈ (0, ǫ) by considering two cases.

Case 1): x∗ is a r-sparse solution to Ax = b. This together with the assumption r ≤ K implies that x∗ is a

K-sparse solution to Ax = b. It then follows from (22) that the conclusion holds.

Case 2): |x∗i | ≥ δ for all i ∈ Ic0(x∗). This together with the monotonicity of ψ(·, q) implies that ψ(|x∗i |, q) ≥
ψ(δ, q). Since Ax̃∗ = b and x∗ is a global minimizer of problem (23), one has

n∑

i=r+1

ψ(|x∗|[i], q) ≤
n∑

i=r+1

ψ(|x̃∗|[i], q).

Using these two relations and ψ(0, q) = 0, we obtain that

(n− r − |I0(x∗)|)ψ(δ, q) ≤
n∑

i=r+1

ψ(|x∗|[i], q) ≤
n∑

i=r+1

ψ(|x̃∗|[i], q) ∀q ∈ (0, ǫ),

which together with (24) and ψ(δ, q) > 0 implies n−r−|I0(x∗)| ≤ K−r+1/2 and hence |I0(x∗)| ≥ n−K−1/2.

Since |I0(x∗)| is integer, it then follows that |I0(x∗)| ≥ n −K and hence |Ic0(x∗)| ≤ K. This along with (22)

implies that x∗ is an optimal solution of (22) if q ∈ (0, ǫ).
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4 Sparse recovery

In this section we first establish some sufficient conditions for local or global recovery of a sparsest solution to

Ax = b by model (5) with σ = 0, namely, (11). Then we study the stable recoverability of model (5) with

φ(·) = | · |.

4.1 Local sparse recovery by model (11)

In this subsection we study some sufficient conditions for local recovery of a sparsest solution x∗ to the system

Ax = b by model (11). In particular, we show that if a local null space property holds, x∗ is a strictly

local minimizer of (11). We also establish a local recovery result for (11) under some RIP conditions and the

assumption φ(·) = | · |q for q ∈ (0, 1]. To this end, we first introduce the definition of local null space property.

Definition 2 (local null space property) The local null space property LNSP(r,φ) holds for the system

Ax = b at a solution x∗ with ‖x∗‖0 ≥ r if there exists some ǫ > 0 such that

∑

i∈I0(x∗)

φ(|hi|)−max
J∈J

∑

i∈J∪I<+

r+1
(x∗)

φ(|hi|) > 0 (25)

for all h ∈ N (A) with 0 < ‖h‖ < ǫ, where

J =
{
J ⊆ I=r+1(x

∗) : |J | = ‖x∗‖0 − r − |I<+
r+1(x

∗)|
}
. (26)

We next show that for a class of φ, a solution x∗ of Ax = b is a strictly local minimizer of (11) if the local

null space property holds at x∗.

Theorem 4.1 Suppose that Assumption 1 holds for φ and additionally

φ(s) ≥ φ(t) − φ(|s− t|) ∀s, t ≥ 0. (27)

Let x∗ ∈ ℜn be such that Ax∗ = b. Assume that LNSP(r,φ) holds at x∗ for some 0 ≤ r ≤ ‖x∗‖0. Then x∗ is a

strictly local minimizer of problem (11) with such φ and r.

Proof. One can observe that I<r+1(x
∗) ⊆ I<r+1(x

∗ + h) and I>r+1(x
∗) ⊆ I>r+1(x

∗ + h) for sufficiently small h.

Hence, for every sufficiently small h, there exists some J ⊆ I=r+1(x
∗) (dependent on h) with |J | = ‖x∗‖0 − r −

|I<+
r+1(x

∗)| such that

n∑

i=r+1

φ(|x∗ + h|[i]) =
∑

i∈J∪I<+

r+1
(x∗)

φ(|x∗i + hi|) +
∑

i∈I0(x∗)

φ(|hi|). (28)

By |x∗i + hi| ≥
∣∣|x∗i | − |hi|

∣∣, the monotonicity of φ and (27), one has

φ(|x∗i + hi|) ≥ φ
(∣∣|x∗i | − |hi|

∣∣) ≥ φ(|x∗i |)− φ(|hi|) ∀i. (29)

Using this relation and (28), we obtain that

n∑

i=r+1

φ(|x∗ + h|[i]) ≥
∑

i∈J∪I<+

r+1
(x∗)

φ(|x∗i |)−
∑

i∈J∪I<+

r+1
(x∗)

φ(|hi|) +
∑

i∈I0(x∗)

φ(|hi|). (30)
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Since φ(0) = 0, one has φ(x∗i ) = 0 for all i ∈ I0(x∗). By this and the definition of J , we have

∑

i∈J∪I<+

r+1
(x∗)

φ(|x∗i |) =
∑

i∈J∪I<+

r+1
(x∗)

φ(|x∗i |) +
∑

i∈I0(x∗)

φ(|x∗i |) =
n∑

i=r+1

φ(|x∗|[i]).

This relation and (30) yield

n∑

i=r+1

φ(|x∗ + h|[i]) ≥
n∑

i=r+1

φ(|x∗|[i])−
∑

i∈J∪I<+

r+1
(x∗)

φ(|hi|) +
∑

i∈I0(x∗)

φ(|hi|).

By this and (25), we see that for all sufficiently small h ∈ N (A)\{0}, there holds

n∑

i=r+1

φ(|x∗ + h|[i]) >
n∑

i=r+1

φ(|x∗|[i]).

Hence, x∗ is a strictly local minimizer of problem (11).

Remark: It is not hard to see that φ(t) = |t|q for some q ∈ (0, 1] satisfies the assumption stated in Theorem

4.1.

As an immediate consequence, we obtain that under some suitable assumption, a sparsest solution x∗ to

the system Ax = b is a strictly local minimizer of (11). One implication of this result is that an optimization

method applied to (11) likely converges to x∗ if its initial point is near x∗.

Corollary 4.2 (local sparse recovery) Suppose that Assumption 1 and (27) hold for φ, and x∗ is a sparsest

solution to the system Ax = b. Assume that the local null space property LNSP(r,φ) holds at x∗ for some

0 ≤ r ≤ K, where K is defined in (22). Then x∗ is a strictly local minimizer of problem (11) with such φ and

r.

The above local sparse recovery is established based on the local null space property LNSP(r,φ). We next

show that the local sparse recovery holds under some RIP conditions when φ(t) = |t|q for some q ∈ (0, 1]. Before

proceeding, we state two useful lemma as follows. The proof of the first lemma is similar to that of [6, Theorem

3.1]. The second lemma can be proven similarly as [7, Theorem 1] and [35, Theorems 1 and 2]. Due to the

paper length limitation, we omit the proof of them.

Lemma 4.3 Let k ∈ {1, 2, . . . , n− 1} and q ∈ (0, 1] be given. Suppose δAk < 1/3. Then there holds

‖h−max(k)‖qq > ‖hmax(k)‖qq ∀h ∈ N (A)\{0}.

Lemma 4.4 Let k ∈ {1, 2, . . . , n − 1} and q ∈ (0, 1] be given. Suppose δAγk <
1√

(γ−1)1−2/q+1
for some γ > 1.

Then there holds

‖h−max(k)‖qq > ‖hmax(k)‖qq ∀h ∈ N (A)\{0}.

We are now ready to establish a local sparse recovery result for (11) with φ(t) = |t|q for q ∈ (0, 1] under

some suitable RIP conditions.

Theorem 4.5 Le q ∈ (0, 1] be given and K be defined in (22). Assume that δAK−⌊r/2⌋ <
1
3 or δAγ(K−⌊r/2⌋) <

1√
(γ−1)1−2/q+1

for some γ > 1. Suppose that x∗ is a sparsest solution to the system Ax = b. Then x∗ is a

strictly local minimizer of problem (11) with 0 ≤ r ≤ K and φ(t) = |t|q.
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Proof. Since δAK−⌊r/2⌋ < 1/3 or δAγ(K−⌊r/2⌋) <
1√

(γ−1)1−2/q+1
for some γ > 1, it follows from Lemmas 4.3

and 4.4 with k = K − ⌊r/2⌋ that

‖h−max(K−⌊r/2⌋)‖qq > ‖hmax(K−⌊r/2⌋)‖qq ∀h ∈ N (A)\{0}. (31)

In addition, we observe that

∥∥h−max(K−⌊r/2⌋)

∥∥q
q

= ‖h−max(K)‖qq +
K∑

i=K−⌊r/2⌋+1

|h|q[i],

∥∥hmax(K−⌊r/2⌋)

∥∥q
q

= ‖hmax(K−r)‖qq +
K−⌊r/2⌋∑
i=K−r+1

|h|q[i].

By these relations, (31) and the fact
K−⌊r/2⌋∑
i=K−r+1

|h|q[i] ≥
K∑

i=K−⌊r/2⌋+1

|h|q[i], we have that for all h ∈ N (A)\{0},

‖h−max(K)‖qq − ‖hmax(K−r)‖qq = ‖h−max(K−⌊r/2⌋)‖qq − ‖hmax(K−⌊r/2⌋)‖qq

+

K−⌊r/2⌋∑

i=K−r+1

|h|q[i] −
K∑

i=K−⌊r/2⌋+1

|h|q[i] > 0. (32)

Let J be defined in (26). Then for any J ∈ J , one has J ⊆ I=r+1(x
∗) and |J | = ‖x∗‖0 − r − |I<+

r+1(x
∗)|. Using

these and ‖x∗‖0 = K, we obtain that for all h ∈ ℜn,
∑

i∈J∪I<+

r+1
(x∗)

|hi|q ≤ ‖hmax(‖x∗‖0−r)‖qq = ‖hmax(K−r)‖qq,

∑

i∈I0(x∗)

|hi|q ≥ ‖h−max(‖x∗‖0)‖qq = ‖h−max(K)‖qq.

It then follows from these inequalities and (32) that for all h ∈ N (A)\{0},
∑

i∈I0(x∗)

|hi|q −max
J∈J

∑

i∈J∪I<+

r+1
(x∗)

|hi|q ≥ ‖h−max(K)‖qq − ‖hmax(K−r)‖qq > 0.

This implies that LNSP(r,φ) holds at x∗ for φ(t) = |t|q. In addition, it is not hard to observe that such φ

satisfies the assumptions stated in Theorem 4.1. The conclusion of this theorem then follows from Corollary

4.2.

Remark: Cai and Zhang [6, 7] recently established sparse recovery by model (11) with r = 0 and φ(·) = | · |
under the condition δAk < 1/3 or δAγk <

1√
(γ−1)−1+1

. In addition, Song and Xia [35] established sparse recovery

by model (11) with r = 0 and φ(·) = | · |q for q ∈ (0, 1] under the condition δAγk <
1√

(γ−1)1−2/q+1
for some

γ > 1. As seen from Theorem 4.5, our RIC bounds for local sparse recovery are weaker than their bounds when

0 < r ≤ K. Clearly, there exist some problems satisfying our RIP bounds but violating their bounds.

4.2 Global sparse recovery by (11)

In this subsection we study some sufficient conditions for global recovery of a sparsest solution x∗ to the system

Ax = b by model (11). In particular, we show that if a global null space property holds, x∗ is a global minimizer

of (11). We also establish a global recovery result for (11) under some RIP conditions and the assumption

φ(·) = | · |q for q ∈ (0, 1]. To proceed, we first introduce the definition of global null space property.

12



Definition 3 (global null space property) The global null space property GNSP(r,φ) holds for the system

Ax = b at a solution x∗ with ‖x∗‖0 ≥ r if
∑

i∈J0

φ(|hi|)−
∑

i∈J1

φ(|hi|) > 0 ∀h ∈ N (A)\{0} (33)

holds for every (J0, J1) ∈ J̃ , where

J̃ = {(J0, J1) : J0 ⊆ I0(x∗), J1 ⊆ Ic0(x∗), |J0|+ |J1| = n− r} . (34)

We next show that for a class of φ, a solution x∗ of Ax = b is a unique global minimizer of (11) if the global

null space property holds at x∗.

Theorem 4.6 Suppose that Assumption 1 and (27) hold for φ. Let x∗ ∈ ℜn be such that Ax∗ = b. Assume

that GNSP(r,φ) holds at x∗ for some 0 ≤ r ≤ ‖x∗‖0. Then x∗ is a unique global minimizer of problem (11)

with such φ and r.

Proof. One can observe that for every h ∈ ℜn, there exist some J0 ⊆ I0(x∗) and J1 ⊆ Ic0(x∗) (dependent on
h) with |J0|+ |J1| = n− r such that

n∑

i=r+1

φ(|x∗ + h|[i]) =
∑

i∈J1

φ(|x∗i + hi|) +
∑

i∈J0

φ(|hi|).

We also notice that (29) holds here due to (27) and the monotonicity of φ. It then follows from the above

equality and (29) that

n∑

i=r+1

φ(|x∗ + h|[i]) ≥
∑

i∈J1

φ(|x∗i |)−
∑

i∈J1

φ(|hi|) +
∑

i∈J0

φ(|h|i). (35)

Observe that φ(|x∗|[i]) = 0 for all i > ‖x∗‖0 due to φ(0) = 0. Since J0 ⊆ I0(x∗), one has |J0| ≤ n − ‖x∗‖0,
which together with |J0|+ |J1| = n− r implies |J1| ≥ ‖x∗‖0 − r. Using this, J1 ⊆ Ic0(x∗) and φ(|x∗|[i]) = 0 for

all i > ‖x∗‖0, one can observe that

∑

i∈J1

φ(|x∗i |) ≥
‖x∗‖0∑

i=r+1

φ(|x∗|[i]) =
n∑

i=r+1

φ(|x∗|[i]). (36)

In addition, we see that (J0, J1) ∈ J̃ , where J̃ is given in (34). It thus follows from the global null space

property that (33) holds for the above (J0, J1). In view of (33), (35) and (36), we obtain that

n∑

i=r+1

φ(|x∗ + h|[i]) >
n∑

i=r+1

φ(|x∗|[i]) ∀h ∈ N (A)\{0},

and hence x∗ is a unique global minimizer of problem (11).

As an immediate consequence, we obtain that under some suitable assumption, a sparsest solution x∗ to the

system Ax = b is a unique global minimizer of (11).

Corollary 4.7 (global sparse recovery) Suppose that Assumption 1 and (27) hold for φ, and x∗ is a sparsest

solution to the system Ax = b. Assume that the global null space property GNSP(r,φ) holds at x∗ for some

0 ≤ r ≤ K, where K is defined in (22). Then x∗ is a unique global minimizer of problem (11) with such φ and

r.
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The above global sparse recovery is established based on the global null space property GNSP(r,φ). We next

show that the global sparse recovery holds under some RIP conditions when φ(t) = |t|q for some q ∈ (0, 1].

Theorem 4.8 Le q ∈ (0, 1] be given and K be defined in (22). Assume that δAK+⌊r/2⌋ < 1/3 or δAγ(K+⌊r/2⌋) <
1√

(γ−1)1−2/q+1
for some γ > 1. Suppose that x∗ is a sparsest solution to the system Ax = b. Then x∗ is a

unique global minimizer of problem (11) with 0 ≤ r ≤ K and φ(t) = |t|q.

Proof. Since δAK+⌊r/2⌋ < 1/3 or δAγ(K+⌊r/2⌋) <
1√

(γ−1)1−2/q+1
for some γ > 1, it follows from Lemmas 4.3 and

4.4 with k = K + ⌊r/2⌋ that

‖h−max(K+⌊r/2⌋)‖qq > ‖hmax(K+⌊r/2⌋)‖qq ∀h ∈ N (A)\{0}. (37)

Observe that

‖h−max(K+⌈r/2⌉)‖qq = ‖h−max(K+r)‖qq +
K+r∑

i=K+⌈r/2⌉+1

|h|q[i],

‖hmax(K+⌈r/2⌉)‖qq = ‖hmax(K)‖qq +
K+⌈r/2⌉∑

i=K+1

|h|q[i].

Using these relations, (37) and the fact
K+⌈r/2⌉∑
i=K+1

|h|q[i] ≥
K+r∑

i=K+⌈r/2⌉+1

|h|q[i], we see that for all h ∈ N (A)\{0},

‖h−max(K+r)‖qq − ‖hmax(K)‖qq = ‖h−max(K+⌈r/2⌉)‖qq − ‖hmax(K+⌈r/2⌉)‖qq

+

K+⌈r/2⌉∑

i=K+1

|h|q[i] −
K+r∑

i=K+⌈r/2⌉+1

|h|q[i] > 0. (38)

Let J̃ be defined in (34). For any (J0, J1) ∈ J̃ , one has J0 ⊆ I0(x∗) and J1 ⊆ Ic0(x∗) with |J0|+ |J1| = n− r.
Since J1 ⊆ Ic0(x∗), one has |J1| ≤ ‖x∗‖0, which together with |J0|+ |J1| = n − r implies |J0| ≥ n− ‖x∗‖0 − r.
Using these and ‖x∗‖0 = K, we obtain that for all h ∈ ℜn,

∑

i∈J0

|hi|q ≥ ‖h−max(‖x∗‖0+r)‖qq = ‖h−max(K+r)‖qq,
∑

i∈J1

|hi|q ≤ ‖hmax(‖x∗‖0)‖qq = ‖hmax(K)‖qq.

It then follows from these relations and (38) that for all h ∈ N (A)\{0} and (J0, J1) ∈ J̃ ,
∑

i∈J0

|hi|q −
∑

i∈J1

|hi|q ≥ ‖h−max(K+r)‖qq − ‖hmax(K)‖qq > 0.

This implies that GNSP(r,φ) holds at x∗ for φ(t) = |t|q. In addition, such φ satisfies the assumptions stated in

Theorem 4.6. The conclusion of this theorem then follows from Corollary 4.7.

4.3 Stable recovery by (5)

In this subsection we study the stable recoverability of model (5) for a sparsest solution x̃∗ to the noisy system

Ax = b + ξ with ‖ξ‖ ≤ σ. In particular, we derive an error bound between x̃∗ and a global minimizer of (5)

with φ(·) = | · |. To proceed, we establish a technical lemma as follows.
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Lemma 4.9 Suppose that Assumption 1 and (27) hold for φ. Assume that x∗ is an optimal solution of (5).

Let x ∈ ℜn be a feasible solution of problem (5) and h = x− x∗. Then there holds:

n∑

i=k+⌈r/2⌉+1

φ(|h|[i]) ≤
k+⌈r/2⌉∑

i=1

φ(|h|[i]) + 2

n∑

i=k+1

φ(|x|[i]) (39)

for all k ≥ 1, r ≥ 0 and k + r ≤ n− 1.

Proof. Since x and x∗ are a feasible solution and an optimal solution of (5), respectively, one has

n∑

i=r+1

φ(|x|[i]) ≥
n∑

i=r+1

φ(|x∗|[i]). (40)

Let J be the set of indices corresponding to the k largest entries of |x|. Clearly |J | = k. By the definitions of J

and h, one can see that

n∑

i=r+1

φ(|x∗|[i]) =
n∑

i=r+1

φ(|x− h|[i]) =
∑

i∈J1

φ(|xi − hi|) +
∑

i∈J2

φ(|xi − hi|), (41)

for some J1 ⊆ J , J2 ⊆ Jc with |J1|+ |J2| = n− r. Due to (27), φ(0) = 0 and the monotonicity of φ, one has

φ(|xi − hi|) ≥ φ
(∣∣|xi| − |hi|

∣∣) ≥ max {φ(|xi|)− φ(|hi|), φ(|hi|)− φ(|xi|)} ∀i.

Using this and (41), we have

n∑

i=r+1

φ(|x∗|[i]) ≥
∑

i∈J1

φ(|xi|)−
∑

i∈J1

φ(|hi|) +
∑

i∈J2

φ(|hi|)−
∑

i∈J2

φ(|xi|)

=
∑

i∈J1∪J2

φ(|xi|) +
∑

i∈J2

φ(|hi|)−
∑

i∈J1

φ(|hi|)− 2
∑

i∈J2

φ(|xi|). (42)

Since J1 ⊆ J , |J1|+ |J2| = n− r and |J | = k, one has |J1| ≤ k and |J2| ≥ n − k − r. These together with the

monotonicity of φ imply that

∑

i∈J1

φ(|hi|) ≤
k∑

i=1

φ(|h|[i]),
∑

i∈J2

φ(|hi|) ≥
n∑

i=k+r+1

φ(|h|[i]). (43)

In addition, by |J1|+ |J2| = n− r, J2 ⊆ Jc, the definition of J , and the monotonicity of φ, one has

∑

i∈J1∪J2

φ(|xi|) ≥
n∑

i=r+1

φ(|x|[i]),
∑

i∈J2

φ(|xi|) ≤
∑

i∈Jc

φ(|xi|) =
n∑

i=k+1

φ(|x|[i]).

These relations, (42) and (43) yield

n∑

i=r+1

φ(|x∗|[i]) ≥
n∑

i=r+1

φ(|x|[i]) +
n∑

i=k+r+1

φ(|h|[i])−
k∑

i=1

φ(|h|[i])− 2
n∑

i=k+1

φ(|x|[i]),

which together with (40) implies

n∑

i=k+r+1

φ(|h|[i]) ≤
k∑

i=1

φ(|h|[i]) + 2

n∑

i=k+1

φ(|x|[i]).
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Using this relation and the fact
k+r∑

i=k+⌈r/2⌉+1

φ(|h|[i]) ≤
k+⌈r/2⌉∑
i=k+1

φ(|h|[i]), we obtain that

n∑

i=k+⌈r/2⌉+1

φ(|h|[i])−
k+⌈r/2⌉∑

i=1

φ(|h|[i])

=

n∑

i=k+r+1

φ(|h|[i]) +
k+r∑

i=k+⌈r/2⌉+1

φ(|h|[i])−
k∑

i=1

φ(|h|[i])−
k+⌈r/2⌉∑

i=k+1

φ(|h|[i])

≤
n∑

i=k+r+1

φ(|h|[i])−
k∑

i=1

φ(|h|[i]) ≤ 2
n∑

i=k+1

φ(|x|[i]).

This implies that (39) holds as desired.

We are now ready to establish error bounds on the sparse recovery by (5) with φ(·) = | · | under some

RIP conditions. It shall be mentioned that these results can be generalized to the case where φ(t) = |t|q with

q ∈ (0, 1) by using (39) and the similar techniques used in the proof of [6, Theorem 3.3] and [35, Theorem 2].

Theorem 4.10 Let k ≥ 2 and r ≥ 0 be given such that k + r ≤ n− 1. Suppose that x∗ is an optimal solution

of problem (5) with such r, φ(t) = |t| and some σ ≥ 0, and x̃∗ ∈ ℜn satisfies ‖Ax̃∗ − b‖ ≤ σ. The following

statements hold:

(i) If δ = δAk+⌈r/2⌉ <
1
3 , then

‖x̃∗ − x∗‖ ≤ 2
√
2(1 + δ)σ

1− 3δ
+

2
√
2(2δ +

√
(1 − 3δ)δ)

1− 3δ

‖x̃∗−max(k)‖1√
k + ⌈r/2⌉

;

(ii) If δ = δAγ(k+⌈r/2⌉) <
√
(γ − 1)/γ for some γ > 1, then

‖x̃∗ − x∗‖ ≤ 2
√
2(1 + δ)σ

1−
√
γ/(γ − 1)δ

+



√
2δ +

√
γ(
√
(γ − 1)/γ − δ)δ

γ(
√
(γ − 1)/γ − δ)

+ 1


 2‖x̃∗−max(k)‖1√

k + ⌈r/2⌉
.

Proof. Let h = x̃∗ − x∗. In view of (39) with φ(t) = |t| and x = x̃∗, we obtain that

‖h−max(k+⌈r/2⌉)‖1 ≤ ‖hmax(k+⌈r/2⌉)‖1 + 2‖x̃∗−max(k)‖1.

The conclusion of this theorem then follows from this relation and [6, Theorem 3.3] and [7, Theorem 2.1].

Remark: If x̃∗ is a k-sparse vector satisfying ‖Ax∗ − b‖ ≤ σ, the second term in the above error bounds

vanishes due to x̃∗−max(k) = 0.

5 Numerical algorithms

In this section we study numerical algorithms for solving models (5) and (11). In particular, we propose a

feasible augmented Lagrangian (FAL) method for solving them, which solves a sequence of partially regularized

unconstrained optimization problems in the form of

min
x∈ℜn

{
F (x) := f(x) + λ

n∑

i=r+1

φ(|x|[i])
}
. (44)
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5.1 Partially regularized unconstrained optimization

In this subsection we propose a nonmonotone proximal gradient (NPG) method for solving problem (44), which

arises as a subproblem in our subsequent FAL method, and establish its convergence. We also show that its

associated proximal subproblems generally can be solved efficiently. Before proceeding, we make the following

assumption on problem (44) throughout this subsection.

Assumption 4 (i) f is continuously differentiable in U(x0; ∆) for some x0 ∈ ℜn and ∆ > 0, and moreover,

there exists some Lf > 0 such that

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ U(x0; ∆),

where

U(x0,∆) :=
{
x : ‖x− z‖ ≤ ∆ for some z ∈ S(x0)

}
,

S(x0) :=
{
x ∈ ℜn : F (x) ≤ F (x0)

}
.

(ii) F is bounded below and uniformly continuous in S(x0).

(iii) The quantities A and B defined below are finite:

A := sup
x∈S(x0)

‖∇f(x)‖, B := sup
x∈S(x0)

n∑

i=r+1

φ(|x|[i]).

Following a general framework proposed by Wright et al. [40], we now present an NPG method for (44) as

follows. The detailed explanation of this method can be found in [40].

Algorithm 1: A nonmonotone proximal gradient (NPG) method for (44)

Choose 0 < Lmin < Lmax, τ > 1, c > 0 and integer N ≥ 0 arbitrarily. Set k = 0.

1) Choose L0
k ∈ [Lmin, Lmax] arbitrarily. Set Lk = L0

k.

1a) Solve the proximal subproblem

xk+1 ∈ Argmin
x∈ℜn

{
f(xk) +∇f(xk)T (x− xk) + Lk

2
‖x− xk‖2 + λ

n∑

i=r+1

φ(|x|[i])
}
. (45)

1b) If

F (xk+1) ≤ max
[k−N ]+≤i≤k

F (xi)− c

2
‖xk+1 − xk‖22 (46)

is satisfied, then go to Step 2).

1c) Set Lk ← τLk and go to (1a).

2) Set L̄k = Lk, k ← k + 1 and go to Step 1).

end

Remark:
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(i) When N = 0, {F (xk)} is decreasing. Otherwise, this sequence may increase at some iterations. Thus the

above method is generally a nonmonotone method when N > 0.

(ii) A practical choice of L0
k is by the following formula proposed by Barzilai and Borwein [2] (see also [3]):

L0
k = max

{
Lmin,min

{
Lmax,

〈sk, yk〉
‖sk‖2

}}
, (47)

where sk = xk − xk−1, yk = ∇f(xk)−∇f(xk−1).

(iii) The main computational burden of Algorithm 1 lies in solving the proximal subproblem (45). As shown

at the end of this subsection, (45) can be solved as n− r number of one-dimensional problems in the form

of

ν(t) = min
u∈ℜ

{
1

2
(u − t)2 + φ(|u|)

}
(48)

for some t ∈ ℜ. Clearly the latter problem can be efficiently solved for some commonly used φ such as ℓ0,

ℓ1, ℓq, Capped-ℓ1, Log, MCP and SCAD.

The following theorem states the number of inner iterations is uniformly bounded at each outer iteration of

Algorithm 1 and thus this algorithm is well defined. Its proof follows from that of [13, Proposition A.1] with

C = sup
x∈S(x0)

n∑
i=r+1

φ(|x|[i]) ≥ 0.

Theorem 5.1 Let {xk} and L̄k be generated in Algorithm 1, and let

L̄ := max{Lmax, τL, τ(Lf + c)}, L :=
2(A∆+B)

∆2
,

where A, B, Lf and ∆ are given in Assumption 4. Under Assumption 4, the following statements hold:

(i) For each k ≥ 0, the inner termination criterion (46) is satisfied after at most

⌊
log L̄− logLmin

log γ
+ 1

⌋

inner iterations;

(ii) F (xk) ≤ F (x0) and L̄k ≤ L̄ for all k ≥ 0.

Before studying the global convergence of the NPG method for solving problem (44), we introduce two

definitions as follows, which can be found in [36]. In addition, for convenience of presentation, let Φ(x) :=∑n
i=r+1 φ(|x|[i]).

Definition 4 (first-order stationary point) x∗ ∈ ℜn is a first-order stationary point of (44) if

0 ∈ ∇f(x∗) + λ ∂Φ(x∗).

Definition 5 (first-order ǫ-stationary point) Given any ǫ ≥ 0, x∗ ∈ ℜn is a first-order ǫ-stationary point

of (44) if

dist(0,∇f(x∗) + λ ∂Φ(x∗)) ≤ ǫ.

We are now ready to establish the global convergence of the NPG method. In particular, we show that any

accumulation point of {xk} is a first-order stationary point of problem (44).
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Theorem 5.2 Let the sequence {xk} be generated by Algorithm 1. There holds:

(i) ‖xk+1 − xk‖ → 0 as k →∞;

(ii) Any accumulation point of {xk} is a first-order stationary point of (44);

(iii) For any ǫ > 0, xk is a first-order ǫ-stationary point of problem (44) when k is sufficiently large.

Proof. (i) The proof of statement (i) is similar to that of [40, Lemma 4].

(ii) It follows from Theorem 5.1 that {L̄k} is bounded. By the first-order optimality condition of (45), we

have

0 ∈ ∇f(xk) + L̄k(x
k+1 − xk) + λ ∂Φ(xk+1), (49)

where Φ(x) =
∑n

i=r+1 φ(|x|[i]). Let x∗ be an accumulation point of {xk}. Then there exists a subsequence K
such that {xk}K → x∗, which together with ‖xk+1 − xk‖ → 0 implies that {xk+1}K → x∗. Using this, the

boundedness of {L̄k}, the continuity of ∇f and the outer semi-continuity of ∂Φ(·), and taking limits on both

sides of (49) as k ∈ K →∞, we obtain

0 ∈ ∇f(x∗) + λ ∂Φ(x∗).

Hence, x∗ is a first-order stationary point of (44).

(iii) It follows from (49) with k replaced by k − 1 that

∇f(xk)−∇f(xk−1) + L̄k−1(x
k−1 − xk) ∈ ∇f(xk) + λ ∂Φ(xk),

which yields

dist(0,∇f(xk) + λ ∂Φ(xk)) ≤ ‖∇f(xk−1)−∇f(xk) + L̄k(x
k − xk−1)‖. (50)

In addition, one can observe from Theorem 5.1 that {xk} ⊆ S(x0) = {x : F (x) ≤ F (x0)}. By Assumption 4,

we know that ∇f is uniformly continuous in S(x0). It follows from these and Theorem 5.2 (i) that

‖∇f(xk−1)−∇f(xk) + L̄k(x
k − xk−1)‖ ≤ ǫ (51)

holds when k is sufficiently large. By (50) and (51), we see that for sufficiently large k, there holds

dist(0,∇f(xk) + λ ∂Φ(xk)) ≤ ǫ, (52)

and hence xk is a first-order ǫ-stationary point of problem (44).

Remark: Recall that Φ(x) =
∑n

i=r+1 φ(|x|[i]). Due to the complication of this function, it is generally hard

to evaluate ∂Φ and hence verify (52) directly. Nevertheless, one can see from the above proof that (51) implies

(52). Therefore, (51) can be used as a verifiable termination criterion for Algorithm 1 to generate a first-order

ǫ-stationary point of (44).

In the remainder of this subsection, we discuss how to efficiently solve the proximal subproblem (45) of

Algorithm 1. In particular, we show that (45) can be solved as n − r number of one-dimensional problems in

the form of (48). To proceed, we first study some properties of the function ν(t) that is defined in (48). The

following lemma shows that ν is locally Lipschitz everywhere, and it also characterizes the Clarke subdifferential

of ν.

Lemma 5.3 Let ν be defined in (48). Suppose that φ satisfies Assumption 1. Then the following properties

hold:

(i) ν is well-defined in ℜ;
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(ii) ν is locally Lipschitz in ℜ;

(iii) ∂cν(t) = conv({t− u : u ∈M(t)}), where ∂cν(t) denotes the Clarke subdifferential of ν at t, andM(t) is

the set of the optimal solutions of (48) at t, that is,

M(t) =

{
u ∈ ℜ :

1

2
(u− t)2 + φ(|u|) = ν(t)

}
. (53)

Proof. (i) The well-definedness of ν follows from Theorem 2.1.

(ii) Let t1 < t2 be arbitrarily chosen. For any t ∈ [t1, t2] and u
∗ ∈ M(t), it follows from (48) and φ(0) = 0

that
1

2
(u∗ − t)2 + φ(|u∗|) = ν(t) ≤ 1

2
(0− t)2 + φ(0) =

1

2
t2,

with together with φ(|u∗|) ≥ 0 implies |u∗ − t| ≤ |t|. By this and t ∈ [t1, t2], one has

− 2max{|t1|, |t2|} ≤ t− |t| ≤ u∗ ≤ t+ |t| ≤ 2max{|t1|, |t2|}. (54)

Hence, we obtain that for any t ∈ [t1, t2],

|u∗| ≤ 2max{|t1|, |t2|} ∀u∗ ∈M(t). (55)

For any t̃1, t̃2 ∈ [t1, t2], let u
∗
1 ∈ M(t̃1) and u

∗
2 ∈ M(t̃2). In view of (48) and (55), we can see that

ν(t̃1) ≤
1

2
(u∗2 − t̃1)2 + φ(|u∗2|) =

1

2
(u∗2 − t̃2)2 + φ(|ũ∗2|) + (t̃2 − t̃1)

(
u∗2 −

t̃1 + t̃2
2

)

≤ ν(t̃2) + |t̃1 − t̃2|
(
|u∗2|+

1

2
|t̃1|+

1

2
|t̃2|

)
≤ ν(t̃2) + 3max{|t1|, |t2|}|t̃1 − t̃2|.

Analogously, one can show that

ν(t̃2) ≤ ν(t̃1) + 3max{|t1|, |t2|}|t̃1 − t̃2|.

It then follows that

|ν(t̃1)− ν(t̃2)| ≤ 3max{|t1|, |t2|}|t̃1 − t̃2| ∀t̃1, t̃2 ∈ [t1, t2],

and hence statement (ii) holds.

(iii) Since ν is locally Lipschitz everywhere, it is differentiable almost everywhere, and moreover, ∂cν(t) =

conv(S(t)) for all t ∈ ℜ, where

S(t) = {ξ : ∃tk → t such that ν′(tk)→ ξ} ∀t ∈ ℜ,

and ν′(tk) denotes the standard derivative of ν at tk.

Given any t ∈ ℜ, u∗ ∈M(t) and h ∈ ℜ, we have

(t− u∗)h = lim
δ↓0

1

δ

[
1

2
‖t+ δh− u∗‖2 − 1

2
‖t− u∗‖2

]

= lim
δ↓0

1

δ

[(
1

2
‖t+ δh− u∗‖2 + φ(|u∗|)

)
−
(
1

2
‖t− u∗‖2 + φ(|u∗|)

)]

≥ lim inf
δ↓0

ν(t+ δh)− ν(t)
δ

,
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where the last inequality follows from u∗ ∈ M(t) and the definition of ν. Using this inequality and [14, Corollary

1.10], we obtain that t − u∗ ∈ ∂cν(t). Due to the arbitrarity of u∗ ∈ M(t) and the convexity of ∂cν(t), one

further has

conv({t− u : u ∈ M(t)}) ⊆ ∂cν(t). (56)

It remains to show ∂cν(t) ⊆ conv({t − u : u ∈ M(t)}). Indeed, let ξ ∈ S(t) be arbitrarily chosen. Then

there exists some sequence {tk} such that tk → t and ν′(tk)→ ξ. Choose uk ∈M(tk) arbitrarily and let t, t̄ be

such that {tk} ⊆ [t, t̄]. From (54), we know that |uk| ≤ 2max{|t|, |t̄|} and hence {uk} is bounded. Considering a

convergent subsequence if necessary, assume without loss of generality that uk → u∗ for some u∗ ∈ ℜ. It follows
from uk ∈M(tk) and the definition ofM(·) that

1

2
(u− tk)2 + φ(|u|) ≥ 1

2
(uk − tk)2 + φ(|uk|) ∀u ∈ ℜ.

Taking lim inf on both sides of this relation as k →∞ and using the lower semi-continuity of φ, we have

1

2
(u− t)2 + φ(|u|) ≥ lim inf

k→∞

(
1

2
(uk − tk)2 + φ(|uk|)

)
≥ 1

2
(u∗ − t)2 + φ(|u∗|) ∀u ∈ ℜ.

This yields u∗ ∈ M(t). In addition, since ν is differentiable at tk, one has ∂cν(tk) = {ν′(tk)}, which together

with uk ∈ M(tk) and (56) implies ν′(tk) = tk − uk for all k. In view of this, tk → t, uk → u∗ and ν′(tk) → ξ,

one has

ξ = lim
k→∞

ν′(tk) = lim
k→∞

(tk − uk) = t− u∗.

It follows from this, u∗ ∈M(t) and the arbitrarity of ξ ∈ S(t) that S(t) ⊆ {t−u : u ∈M(t)}, which along with

the fact ∂cν(t) = conv(S(t)) implies that ∂cν(t) ⊆ conv({t− u : u ∈ M(t)}). The conclusion of statement (iii)

immediately follows from this relation and (56).

We next show that ν is increasing with respect to |t|.

Lemma 5.4 Let ν be defined in (48). Suppose that φ satisfies Assumption 1. Then ν(t1) ≥ ν(t2) for any t1,

t2 such that |t1| ≥ |t2|.

Proof. Observe that ν(−t) = ν(t) for all t ∈ ℜ. To prove this lemma, it thus suffices to show that ν(t) is

increasing on [0,∞). We first claim thatM(t) ⊆ (−∞, t] for all t ≥ 0, whereM(t) is defined in (53). Suppose

for contradiction that there exists some t ≥ 0 and u∗ ∈ M(t) such that u∗ > t. Let u = (u∗ + t)/2. Clearly

0 ≤ t < u < u∗. By this and the monotonicity of φ on [0,∞), on can see that

1

2
(u− t)2 + φ(|u|) < 1

2
(u∗ − t)2 + φ(|u∗|),

which contradicts u∗ ∈ M(t). Hence,M(t) ⊆ (−∞, t] for all t ≥ 0. This together with Lemma 5.3 (iii) implies

that ∂cν(t) ∈ [0,∞) for all t ≥ 0. Further, by the mean value theorem [15, Theorem 2.3.7], one has

ν(t1)− ν(t2) ∈ ∂cν(t̃)(t1 − t2) ∀t1, t2 ≥ 0,

where t̃ is some point between t1 and t2. Hence, ν(t) is increasing in [0,∞) and the conclusion of this lemma

holds.

We are now ready to discuss how to solve efficiently the subproblem (45) of Algorithm 1. Clearly, (45) is

equivalent to

min
x∈ℜn

{
1

2

∥∥∥∥x−
(
xk − 1

Lk
▽f(xk)

)∥∥∥∥
2

2

+
λ

Lk

n∑

i=r+1

φ(|x|[i])
}
,
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which is a special case of a more general problem

min
x∈ℜn

{
1

2
‖x− a‖22 + λ̃

n∑

i=r+1

φ(|x|[i])
}
, (57)

for some a ∈ ℜn and λ̃ > 0. In what follows, we show that problem (57) can be solved as n − r number of

one-dimensional problems in the form of (48).

Theorem 5.5 Suppose that φ satisfies Assumption 1. Let I∗ be the index set corresponding to the n−r smallest

entries of |a| and x∗ ∈ ℜn be defined as follows:

x∗i ∈





Argmin
u∈ℜ

{
1
2 (u− ai)2 + λ̃φ(|u|)

}
if i ∈ I∗,

{ai} otherwise
i = 1, . . . , n.

Then x∗ is an optimal solution of problem (57).

Proof. Let ν be defined in (48). In view of the monotonicity of φ and the definition of ν, one can observe

that

min
x∈ℜn

1

2
‖x− a‖2 + λ̃

n∑

i=r+1

φ(|x|[i]) = min
x∈ℜn





min
s∈{0,1}n

‖s‖0=n−r

1

2
‖x− a‖2 + λ̃

n∑

i=1

siφ(|xi|)





= min
s∈{0,1}n

‖s‖0=n−r

{
min
x∈ℜn

1

2
‖x− a‖2 + λ̃

n∑

i=1

siφ(|xi|)
}

= min
I⊆{1,...,n}
|I|=n−r

∑

i∈I

ν(ai) =
∑

i∈I∗

ν(ai),

where the last equality follows from Lemma 5.4 and the definition of I∗. In addition, by the definition of x∗,

one can verify that

1

2
‖x∗ − a‖2 + λ̃

n∑

i=r+1

φ(|x∗|[i]) =
∑

i∈I∗

ν(ai),

and hence the conclusion holds.

5.2 Sparse recovery for a noiseless linear system

In this subsection we propose a feasible augmented Lagrangian (FAL) method for solving the partially regularized

sparse recovery model for a noiseless linear system, namely, problem (11). For convenience of presentation, let

Φ(x) :=
∑n
i=r+1 φ(|x|[i]) throughout this subsection.

For any given ̺ > 0 and µ ∈ ℜm, the augmented Lagrangian (AL) function for problem (11) is defined as

L(x;µ, ̺) := w(x;µ, ̺) + Φ(x), (58)

where

w(x;µ, ̺) := µT (Ax − b) + ̺

2
‖Ax− b‖2. (59)

Similar to the classical AL method, our FAL method solves a sequence of AL subproblems in the form of

min
x
L(x;µ, ̺) (60)

while updating the Lagrangian multiplier µ and the penalty parameter ̺. It is easy to observe that problem

(60) is a special case of (44) and satisfies Assumption 4. Therefore, it can be suitably solved by Algorithm 1.

22



It is well known that the classical AL method may converge to an infeasible point. To remedy this pathological

behavior, we adopt the same strategies proposed by Lu and Zhang [31] so that the values of the AL function

along the solution sequence generated by the FAL method are bounded from above, and the magnitude of

penalty parameters outgrows that of Lagrangian multipliers.

Throughout this section, let xfeas be an arbitrary feasible point of problem (11). We are now ready to present

the FAL method for solving (11).

Algorithm 2: A feasible augmented Lagrangian method for (11)

Choose µ0 ∈ ℜm, x0 ∈ ℜn, ̺0 > 0, γ ∈ (1,∞), θ > 0, η ∈ (0, 1), a decreasing positive sequence {ǫk} with

lim
k→∞

ǫk = 0, and a constant Υ ≥ max{Φ(xfeas),L(x0, µ0, ̺0)}. Set k = 0.

1) Apply Algorithm 1 to find an approximate stationary point xk+1 for problem (60) with µ = µk and ̺ = ̺k
such that

dist(0,∇w(xk+1;µk, ̺k) + ∂Φ(xk+1)) ≤ ǫk, L(xk+1, µk, ̺k) ≤ Υ. (61)

2) Set µk+1 = µk + ̺k(Ax
k+1 − b).

3) If ‖Axk+1 − b‖ ≤ η‖Axk − b‖, then set ̺k+1 = ̺k. Otherwise, set

̺k+1 = max{γ̺k, ‖µk+1‖1+θ}.

4) Set k← k + 1 and go to Step 1).

end

We now discuss how to find by Algorithm 1 an approximate stationary point xk+1 of problem (60) with

µ = µk and ̺ = ̺k such that (61) holds . Given k ≥ 0, let xkinit denote the initial point of Algorithm 1 when

applied to solve problem (60) with µ = µk and ̺ = ̺k, which is specified as follows:

xkinit =

{
xfeas if L(xk, µk, ̺k) > Υ,

xk otherwise,

where xk is the approximate stationary point of problem (60) with µ = µk−1 and ̺ = ̺k−1 obtained at the

(k − 1)th outer iteration of Algorithm 2. Notice that Axfeas = b. It follows from (58) and the definition of Υ

that

L(xfeas;µk, ̺k) = Φ(xfeas) ≤ Υ.

This inequality and the above choice of xkinit imply L(xkinit, µk, ̺k) ≤ Υ. In addition, by Theorem 5.1, we know

that all subsequent objective values of Algorithm 1 are bounded above the initial objective value. It follows

that

L(xk+1;µk, ̺k) ≤ L(xkinit, µk, ̺k) ≤ Υ,

and hence the second relation of (61) is satisfied at xk+1. Finally, as seen from Theorem 5.2 (iii), Algorithm 1

is capable of finding an approximate solution xk+1 satisfying the first relation of (61).

We next establish a global convergence result for the above FAL method.

Theorem 5.6 Let {xk} be the sequence generated by Algorithm 2. Suppose that x∗ is an accumulation point of

{xk}. Then the following statements hold:

(i) x∗ is a feasible point of problem (11);
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(ii) Suppose additionally that ∂∞Φ(x∗) ∩ R(AT ) = {0}. Then x∗ is a first-order stationary point of problem

(11), that is, Ax∗ = b and 0 ∈ ATµ∗ + ∂Φ(x∗) for some µ∗ ∈ ℜm.

Proof. Suppose that x∗ is an accumulation point of {xk}. Considering a convergent subsequence if necessary,

assume without loss of generality that xk → x∗ as k →∞.

(i) We show that x∗ is a feasible point of problem (11), that is, Ax∗ = b, by considering two separate cases

as follows.

Case (a): {̺k} is bounded. This together with Step 3) of Algorithm 2 implies that ‖Axk+1−b‖ ≤ η‖Axk−b‖
holds for all sufficiently large k. It then follows from this and xk → x∗ that Ax∗ = b.

Case (b): {̺k} is unbounded. Considering a subsequence if necessary, assume for convenience that {̺k}
strictly increases and ̺k → ∞ as k → ∞. This along with Step 3) of Algorithm 2 implies that ̺k+1 =

max{γ̺k, ‖µk+1‖1+θ} holds for all k. It then follows from this and ρk →∞ that

0 ≤ ̺−1
k ‖µk‖ ≤ ̺

−θ/(1+θ)
k → 0. (62)

In view of (58) and the second relation in (61), one has

(µk)T (Axk+1 − b) + ̺k
2
‖Axk+1 − b‖2 +Φ(xk+1) ≤ Υ.

It then follows that

‖Axk+1 − b‖2 ≤ 2̺−1
k

(
Υ− Φ(xk+1)

)
+ 2̺−1

k ‖µk‖‖Axk+1 − b‖.
Taking limits on both sides of this relation as k → ∞, and using (62), xk → x∗, ̺k → ∞ and the lower

boundedness of Φ, we obtain Ax∗ = b again.

(ii) We show that x∗ is a first-order stationary point of problem (11). It follows from (59), the first relation

in (61) and Step 2) of Algorithm 2 that there exist some ξk ∈ ℜn and vk ∈ ∂Φ(xk+1) such that ‖ξk‖ ≤ ǫk and

ξk = ATµk+1 + vk. (63)

Since ‖ξk‖ ≤ ǫk and ǫk → 0, we have ‖ξk‖ → 0. Claim that {vk} is bounded. Suppose for contradiction

that {vk} is unbounded. Considering a subsequence if necessary, assume for convenience that ‖vk‖ → ∞ and

vk/‖vk‖ → v for some v ∈ ℜn. Clearly v 6= 0. By xk → x∗, vk ∈ ∂Φ(xk+1), ‖vk‖ → ∞ and vk/‖vk‖ → v,

one can see that v ∈ ∂∞Φ(x∗). Dividing both sides of (63) by ‖vk‖ and taking limits as k → ∞, we obtain

0 6= v ∈ ∂∞Φ(x∗)∩R(AT ), which contradicts the assumption ∂∞Φ(x∗)∩R(AT ) = {0}. Thus {vk} is bounded.
Since (63) is a linear system with respect to µk+1, it follows from Hoffman lemma [27] that there exist µ̄k+1 ∈ ℜm
and a constant θ > 0 (independent of k) such that

AT µ̄k+1 = ξk − vk, ‖µ̄k+1‖ ≤ θ‖ξk − vk‖. (64)

Using the second relation of (64) and the boundedness of {vk} and {ξk}, one can see that {µ̄k+1} is bounded.
Considering a subsequence if necessary, assume for convenience that µ̄k+1 → µ∗ and vk → v∗ for some µ∗ ∈ ℜm
and v∗ ∈ ℜn. By xk → x∗, vk ∈ ∂Φ(xk+1) and the outer semi-continuity of ∂Φ, one has v∗ ∈ ∂Φ(x∗). Using

ξk → 0, µ̄k+1 → µ∗, vk → v∗ ∈ ∂Φ(x∗) and taking limits on both sides of the first relation of (64) as k → ∞,

we obtain 0 ∈ ATµ∗ + ∂Φ(x∗). This along with Ax∗ = b implies that x∗ is a first-order stationary point of (11).

5.3 Sparse recovery for a noisy linear system

In this subsection we propose a FAL method for solving the partially regularized sparse recovery model for

a noisy linear system, namely, problem (5). For convenience of presentation, let Φ(x) :=
∑n

i=r+1 φ(|x|[i])
throughout this subsection.
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For any given ̺ > 0 and µ ≥ 0, the AL function for problem (5) is defined as

L̃(x;µ, ̺) := w̃(x;µ, ̺) + Φ(x), (65)

where

w̃(x;µ, ̺) :=
1

2̺

(
[µ+ ̺(‖Ax− b‖2 − σ2)]2+ − µ2

)
. (66)

Similar to the classical AL method, our FAL method solves a sequence of AL subproblems in the form of

min
x
L̃(x;µ, ̺). (67)

By a similar argument as in [13], one can verify that for any given µ ≥ 0 and ρ ≥ 0, problem (67) is a special

case of (44) and satisfies Assumption 4. Therefore, the NPG method presented in Algorithm 1 can be suitably

applied to solve (67).

For a similar reason as mentioned in Subsection 5.2, we adopt the same strategies proposed in [31] so that

the feasibility of any accumulation point of the solution sequence generated by our method is guaranteed.

Throughout this section, let xfeas be an arbitrary feasible point of problem (5). We are now ready to present

the FAL method for solving (5).

Algorithm 3: A feasible augmented Lagrangian method for (5)

Choose µ0 ≥ 0, x0 ∈ ℜn, ̺0 > 0, γ ∈ (1,∞), θ > 0, η ∈ (0, 1), a decreasing positive sequence {ǫk} with

lim
k→∞

ǫk = 0, and a constant Υ ≥ max{Φ(xfeas), L̃(x0, µ0, ̺0)}. Set k = 0.

1) Apply Algorithm 1 to find an approximate stationary point xk+1 for problem (67) with µ = µk and ̺ = ̺k
such that

dist(0,∇w̃(xk+1;µk, ̺k) + ∂Φ(xk+1)) ≤ ǫk, L̃(xk+1, µk, ̺k) ≤ Υ. (68)

2) Set µk+1 = [µk + ̺k(‖Axk+1 − b‖2 − σ2)]+.

3) If [‖Axk+1 − b‖ − σ]+ ≤ η[‖Axk − b‖ − σ]+, then set ̺k+1 = ̺k. Otherwise, set

̺k+1 = max{γ̺k, µ1+θ
k+1}.

4) Set k← k + 1 and go to Step 1).

end

By a similar argument as in Subsection 5.2, one can observe that xk+1 satisfying (68) can be found by

Algorithm 1. We next establish a global convergence result for the above FAL method.

Theorem 5.7 Let {xk} be a sequence generated by Algorithm 3. Suppose that x∗ is an accumulation point of

{xk}. Then the following statements hold:

(i) x∗ is a feasible point of problem (5);

(ii) Suppose additionally that ∂∞Φ(x∗) ∩ C = {0} and AT (Ax∗ − b) 6= 0 if ‖Ax∗ − b‖ = σ, where

C := {tAT (b −Ax∗) : t ≥ 0}.

Then x∗ is a first-order stationary point of problem (5), that is, there exists µ∗ ≥ 0 such that

0 ∈ 2µ∗AT (Ax∗ − b) + ∂Φ(x∗),

‖Ax∗ − b‖ ≤ σ, µ∗(‖Ax∗ − b‖ − σ) = 0.
(69)
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Proof. Suppose that x∗ is an accumulation point of {xk}. Considering a convergent subsequence if necessary,

assume for convenience that xk → x∗ as k →∞.

(i) We show that x∗ is a feasible point of problem (11), that is, ‖Ax∗ − b‖ ≤ σ, by considering two separate

cases as follows.

Case (a): {̺k} is bounded. This together with Step 3) of Algorithm 3 implies that

[‖Axk+1 − b‖ − σ]+ ≤ η[‖Axk − b‖ − σ]+

holds for all sufficiently large k. It then follows from this and xk → x∗ that [‖Ax∗ − b‖ − σ]+ = 0 and hence

‖Ax∗ − b‖ ≤ σ.
Case (b): {̺k} is unbounded. Considering a subsequence if necessary, assume for convenience that {̺k}

strictly increases and ̺k → ∞ as k → ∞. This along with Step 3) of Algorithm 2 implies that ̺k+1 =

max{γ̺k, ‖µk+1‖1+θ} holds for all k. It then follows from this and ρk →∞ that

0 ≤ ̺−1
k µk ≤ ̺−θ/(1+θ)k → 0. (70)

In view of (65) and the second relation in (68), one has

1

2̺k

([
µk + ̺k

(
‖Axk+1 − b‖2 − σ2

)]2
+
− µ2

k

)
+Φ(xk+1) ≤ Υ.

It follows that (
̺−1
k µk + ‖Axk+1 − b‖2 − σ2

)2
+
≤ 2̺−1

k [Υ− Φ(xk+1)] + ̺−2
k µ2

k.

Taking limits on both sides of this relation as k → ∞, and using (70), xk → x∗, ̺k → ∞ and the lower

boundedness of Φ, we obtain (‖Ax∗ − b‖2 − σ2)+ = 0, which clearly yields ‖Ax∗ − b‖ ≤ σ.
(ii) We show that x∗ is a first-order stationary point of problem (5). It follows from (66), the first relation

in (68) and Step 2) of Algorithm 3 that there exist some ξk ∈ ℜn and vk ∈ ∂Φ(xk+1) such that ‖ξk‖ ≤ ǫk and

ξk = 2µk+1A
T (Axk+1 − b) + vk. (71)

since ‖ξk‖ ≤ ǫk and ǫk → 0, we have ‖ξk‖ → 0. We next consider two separate cases to complete the rest of the

proof.

Case (a): ‖Ax∗ − b‖ < σ. This together with xk → x∗ implies that ‖Axk − b‖ ≤ σ̂ for some σ̂ < σ and all

sufficiently large k. It then follows from this, (70) and Step 2) of Algorithm 3 that for all sufficiently large k,

µk+1 = [µk + ̺k(‖Axk+1 − b‖2 − σ2)]+ = ̺k[̺
−1
k µk + ‖Axk+1 − b‖2 − σ2]+ = 0.

This together with (71) and ξk → 0 implies vk → 0. It follows from this, vk ∈ ∂Φ(xk+1), xk → x∗ and the

semi-continuity of ∂Φ that 0 ∈ ∂Φ(x∗). Hence, (69) holds with µ∗ = 0.

Case (b): ‖Ax∗ − b‖ = σ. By this and the assumption, we know AT (Ax∗ − b) 6= 0. Claim that {µk+1}
is bounded. Suppose for contradiction that {µk+1} is unbounded. Assume without loss of generality that

µk+1 →∞. Recall that xk → x∗ and ξk → 0. Dividing both sides of (71) by µk+1 and taking limits as k →∞,

we obtain

lim
k→∞

vk/µk+1 = −2AT (Ax∗ − b).

This together with vk ∈ ∂Φ(xk), xk → x∗ and µk+1 → ∞ implies −2AT (Ax∗ − b) ∈ Φ∞(x∗) and hence

−2AT (Ax∗ − b) ∈ Φ∞(x∗) ∩ C, which contradicts the assumption Φ∞(x∗) ∩ C = {0} due to AT (Ax∗ − b) 6= 0.

Therefore, {µk+1} is bounded. This together with (71) and the boundedness of {xk} and {ξk} implies that {vk} is
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bounded. Considering a convergent subsequence if necessary, assume for convenience that (µk+1, v
k)→ (µ∗, v∗).

Using this, xk → x∗, ξk → 0, and taking limits on both sides of (71) as k →∞, we obtain that

2µ∗AT (Ax∗ − b) + v∗ = 0.

Notice v∗ ∈ ∂Φ(x∗). Hence, the first relation of (69) holds with such µ∗. In addition, the other two relations of

(69) hold due to the assumption ‖Ax∗ − b‖ = σ. This completes the proof.

6 Numerical results

In this section we conduct numerical experiments to test the performance of the partially regularized models

studied in this paper. Due to the paper length limitation, we only present the computational results for the

partial ℓ1 regularized model, that is, φ(·) = | · |. We also compare the performance of this model with some

existing models. The codes for them are written in Matlab. All computations are performed by Matlab R2015b

running on a Dell desktop with a 3.40-GHz Intel Core i7-3770 processor and 16 GB of RAM.

6.1 Sparse logistic regression

Sparse logistic regression has numerous applications in machine learning, computer vision, data mining, bioin-

formatics and signal processing (e.g., see [28, 32]). Given m samples {a1, . . . , am} with n features, and m binary

outcomes b1, . . . , bm, the goal of sparse logistic regression is to seek a sparse vector to minimize the average

logistic loss function that is defined as

lavg(w) :=
1

m

m∑

i=1

log(1 + exp(−biwT ai)) w ∈ ℜn.

This problem can be formulated as

min
w
{lavg(w) : ‖w‖0 ≤ r}, (72)

where r ∈ [1, n] is some integer for controlling the sparsity of the solution. Given that problem (72) is generally

hard to solve, one popular approach for finding an approximate solution of (72) is by solving the full ℓ1 regularized

problem:

min
w
lavg(w) + λ

n∑

i=1

|w|i (73)

for some λ > 0 (e.g., see [28]). Since the full ℓ1 regularization is typically biased, we are interested in finding an

approximate solution of (72) by solving the partial ℓ1 regularized model:

min
w
lavg(w) + λ̂

n∑

i=r+1

|w|[i] (74)

for some λ̂ > 0. Our aim below is to compare the performance of models (73) and (74). In particular, we

solve them with suitable λ and λ̂ to find a solution with the same cardinality and then compare their respective

average logistic loss.

We apply Algorithm 1 (the NPG method) presented in Subsection 5.1 to solve problems (73) and (74). In

our implementation of Algorithm 1, we set Lmin = 10−8, Lmax = 108, τ = 2, c = 10−4 and N = 5. In addition,

we choose the initial point to be zero and set L0
k according to (47). We use (51) as the termination criterion for

Algorithm 1 and set the associated accuracy parameter ǫ to be 10−5.
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In the first experiment, we compare the solution quality of models (73) and (74) on the random data of six

different sizes. For each size, we generate 10 instances in which the samples {a1, . . . , am} and their outcomes

b1, . . . , bm are generated in the same manner as described in [28]. In detail, for each instance we choose an

equal number of positive and negative samples, that is, m+ = m− = m/2, where m+ (resp., m−) is the number

of samples with outcome 1 (resp., −1). The features of positive (resp., negative) samples are independent and

identically distributed, drawn from a normal distribution N(µ, 1), where µ is in turn drawn from a uniform

distribution on [0, 1] (resp., [−1, 0]). For each instance, we first apply Algorithm 1 to solve (73) with four

different values of λ, which are 0.5λmax, 0.25λmax, 0.1λmax and 0.01λmax, where λmax = ‖∑m
i=1 bia

i‖∞/(2m).

It is not hard to verify that w = 0 is an optimal solution of (73) for all λ ≥ λmax and thus λmax is the upper

bound on the useful range of λ. For each λ, let K be the cardinality of the approximate solution of (73) found by

Algorithm 1. Then we apply Algorithm 1 to solve (74) respectively with r = ⌈0.1K⌉, ⌈0.2K⌉, . . . , ⌈0.9K⌉, K
and some λ̂ (depending on r) so that the resulting approximate solution has cardinality no greater than K. The

average lavg over 10 instances of each size for different λ and r is presented in Figure 1. The result of model

(73) corresponds to the part of this figure with r = 0. We can observe that model (74) with the aforementioned

positive r substantially outperforms model (73) in terms of the solution quality since it generally achieves lower

average logistic loss while the sparsity of their solutions is similar. In addition, the average logistic loss of for

model (74) becomes smaller as r gets closer to K, which indicates more alleviation on the bias of the solution.

In the second experiment, we compare the solution quality of models (73) and (74) on three small- or

medium-sized benchmark data sets which are from the UCI machine learning bench market repository [29] and

other sources [25]. The first data set is the colon tumor gene expression data [25] with more features than

samples; the second one is the ionosphere data [29] with fewer features than samples; and the third one is the

musk data [29] where we take as many samples as features. We discard the samples with missing data, and

standardize each data set so that the sample mean is zero and the sample variance is one. We repeat the above

experiment for these data sets and present the computational results in Figure 2. One can see that the solution

of model (74) achieves lower average logistic loss than that of model (73) while they have same cardinality. In

addition, the average logistic loss of model (74) decreases as r increases.

6.2 Sparse recovery for a linear system

In this subsection we consider finding a sparse solution to a linear system, which can be formulated as

min
x

{
‖x‖0 : ‖Ax− b‖2 ≤ σ2

}
, (75)

where A ∈ ℜm×n, b ∈ ℜn and σ ≥ 0 is the noise level (that is, σ = 0 for the noiseless case and σ > 0 for

the noisy case). Given that problem (75) is typically hard to solve, one common approach in the literature for

finding an approximate solution of (75) is by solving the model:

min
x

{
n∑

i=1

φ(|x|i) : ‖Ax− b‖2 ≤ σ2

}
(76)

for some regularizer φ : ℜ+ → ℜ+. Our aim below is to compare the performance of model (76) with the partial

ℓ1 regularized model

min
x

{
n∑

i=r+1

|x|[i] : ‖Ax− b‖2 ≤ σ2

}
(77)

for some integer r > 0. In our comparison, the particular φ for (76) is chosen to be the regularizers ℓ1, ℓq, Log,

Capped-ℓ1, MCP and SCAD, which are presented in Section 1. The associated parameters for them are chosen

as q = 0.5, ε = 10−3, ν = 10−2, λ = 1, α = 2.7 and β = 3.7 that are commonly used in the literature.
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Figure 1: Computational results on six random problems
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Figure 2: Computational results on three real data sets

We apply FAL methods (Algorithms 2 and 3) proposed in Subsections 5.2 and 5.3 to solve both (76) and (77)

with σ = 0 and σ > 0, respectively. We now address the initialization and termination criterion for Algorithms

2 and 3. In particular, we set xfeas = A\b, x0 = 0, µ0 = 0, µ0 = 0, ρ0 = 1, γ = 5, η = 0.25, θ = 10−2, ǫ0 = 1

and ǫk = max{0.1ǫk−1, 10
−5} for k ≥ 1. In addition, we choose the termination criterion ‖Axk − b‖∞ ≤ 10−5

and ǫk ≤ 10−4 for Algorithm 2, and [‖Axk − b‖∞−σ]+ ≤ 10−5 and ǫk ≤ 10−4 for Algorithm 3. The augmented

Lagrangian subproblems arising in FAL are solved by Algorithm 1, whose parameter setting and termination

criterion are the same as those specified in Subsection 6.1.

We next conduct numerical experiments to compare the performance of models (76) and (77) for the afore-

mentioned φ. In the first experiment, we compare them on some noiseless random data that is generated in the

same manner as described in [20]. We set m = 128 and n = 512. For each K ∈ {1, 2, . . . , 64}, we first randomly

generate 100 pairs of K-sparse vector x∗ ∈ ℜn and m× n data matrix A. In particular, we randomly choose K

numbers from {1, 2, . . . , 512} as the support for x∗ and then generate the nonzero entries of x∗ and matrix A

according to the standard Gaussian distribution. Finally we orthonormalize the rows of A and set b = Ax∗. We

apply Algorithm 2 to solve models (76) and (77) with r = ⌈0.1K⌉, ⌈0.2K⌉, . . . , ⌈0.9K⌉, K, σ = 0 and the afore-

mentioned φ. It was observed in our experiment that all models can exactly recover x∗ for K ∈ {1, 2, . . . , 19}.
Therefore, we will not report the results for these K. To evaluate the solution quality for the rest of K, we

adopt a criterion as described in [9]. We say that a sparse vector x is successfully recovered by an estimate x̂ if

‖x− x̂‖ < 10−3. The computational results for the instances generated above are plotted in Figure 3. In detail,

the average frequency of success over all instances for model (77) with r = ⌈0.1K⌉, ⌈0.2K⌉, . . . , ⌈0.9K⌉, K
against K ∈ {20, 21, . . . , 64} is presented in the first subfigure. The average frequency of success of model

(77) with r = K and model (76) with the aforementioned φ against K ∈ {20, 21, . . . , 64} is plotted in the

second subfigure, where the partial ℓ1 represents model (77) with r = K and the others represent model (76)

with various φ, respectively. Analogously, the accumulated CPU time over all instances for each model against
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Figure 3: Computational results on random noiseless data

K ∈ {20, 21, . . . , 64} is displayed in the last subfigure. One can observe from the first subfigure that for each

K, the average frequency of success of model (77) becomes higher as r increases. In addition, from the last two

subfigures, we can see that for each K ∈ {20, 21, . . . , 64}, model (77) with r = K generally has higher average

frequency of success than and comparable average CPU time to model (76) with various φ.

In the second experiment, we compare the performance of models (76) and (77) with the aforementioned φ

on some noisy random data. For each K ∈ {1, 2, . . . , 64}, we generate 100 pairs of K-sparse vector x∗ ∈ ℜn and

m×n data matrix A in the same manner as above. For each pair of x∗ and A, we set b = Ax∗ + ξ and σ = ‖ξ‖,
where ξ is drawn from a normal distribution with mean 0 and variance 10−4. For each such instance, we apply

Algorithm 3 to solve the models (76) and (77) and compute their corresponding relative error according to

rel err = ‖x̂− x‖/‖x‖, which evaluates how well a sparse vector x is recovered by an estimate x̂ as described in

[9]. The computational results of this experiment are presented in Figure 4. We plot the average relative error
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Figure 4: Computational results on random noisy data

over all instances for model (77) with r = ⌈0.1K⌉, ⌈0.2K⌉, . . . , ⌈0.9K⌉, K againstK in the first subfigure. The

average relative error of model (77) with r = K and (76) with the aforementioned φ against K is displayed in

the second subfigure, where the partial ℓ1 represents model (77) with r = K and the others represent model (76)

with various φ, respectively. Similarly, the accumulated CPU time over all instances for each model against K

is presented in the last subfigure. One can see from the first subfigure that for each K, the average relative error

of model (77) becomes lower as r increases. From the second subfigure, we can observe that when 0 < K < 38,

the average relative error of model (77) with r = K is comparable to that of model (76) with φ chosen as ℓq,

Log, and Capped-ℓ1, while it is lower than the one with φ chosen as ℓ1, SCAD and MCP. Nevertheless, when

38 ≤ K ≤ 64, model (77) with r = K has lower average relative error than the other models. In addition, as

seen from the last subfigure, model (77) with r = K generally has comparable average CPU time to model (76)

with various φ.
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7 Concluding remarks

In this paper we proposed a class of models with partial regularization for recovering a sparse solution of a linear

system. We studied some theoretical properties for these models including sparsity inducing, local or global

recovery and also stable recovery. We also developed an efficient first-order feasible augmented Lagrangian

method for solving them whose subproblems are solved by a nonmonotone proximal gradient method. The

global convergence of these methods were also established. Numerical results on compressed sensing and sparse

logistic regression demonstrate that our proposed models substantially outperform the widely used ones in the

literature in terms of solution quality.

It shall be mentioned that the partially regularized model has recently been proposed in [22, 23] for finding

a low-rank matrix lying in a certain convex subset of positive semidefinite cone. In particular, the function∑n
i=r+1 λi(X) was used as a partial regularizer there, where 0 < r < n and λi(X) is the ith largest eigenvalue

of an n × n positive semidefinite matrix X . Clearly, this regularizer can be generalized to a class of partial

regularizers in the form of
∑l

i=r+1 φ(σi(X)), where σi(X) is the ith largest singular value of a m × n matrix

X , l = min{m,n} and φ satisfies Assumption 1. Most results of this paper can be generalized to the following

model for finding a low-rank matrix:

min
X∈ℜm×n

{
l∑

i=r+1

φ(σi(X)) : ‖A(X)− b‖ ≤ σ
}
,

where A : ℜm×n → ℜp is a linear operator, b ∈ ℜp and σ ≥ 0. This is beyond this paper and left as a future

research.

References

[1] R. Baraniuk and P. Steeghs. Compressive radar imaging. 2007 IEEE Radar Conference, 128–133, 2007.

[2] J. Barzilai and J. Borwein. Two-point step size gradient methods. IMA J. Numer. Anal., 8(1):141–148,

1988.

[3] E. G. Birgin, J. M. Martinez and J. A. Raydan. Nonmonotone spectral projected gradient methods on

convex sets. SIAM J. Optimiz., 10(4):1196–1211, 2000.

[4] T. Blumensath and M. E. Davies. Iterative thresholding for sparse approximations. J. FOURIER Anal.

Appl., 14(5):629–654, 2008.

[5] T. Blumensath and M. E. Davies. Iterative hard thresholding for compressed sensing. Appl. Comput.

Harmon. Anal., 27(3):265–274, 2009.

[6] T. T. Cai and A. Zhang. Sharp RIP bound for sparse signal and low-rank matrix recovery. Appl. Comput.

Harmon. Anal., 35(1):74–93, 2013.

[7] T. T. Cai and A. Zhang. Sparse representation of a polytope and recovery of sparse signals and low-rank

matrices. IEEE T. Inform. Theory, 60(1):122–132, 2014.

[8] E. J. Candès and T. Tao. Decoding by linear programming. IEEE T. Inform. Theory, 51(12):4203–4215,

2005.

[9] E. J. Candès, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted ℓ1 minimization. J.

FOURIER Anal. Appl., 14(5):877–905, 2008.

33



[10] R. Chartrand. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Proc. Let.,

14(10):707–710, 2007.

[11] R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressive sensing. Inverse

Probl., 24:1–14, 2008.

[12] S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput.,

20(1):33–61, 1998.

[13] X. Chen, Z. Lu, and T. K. Pong. Penalty methods for constrained non-Lipschitz optimization. Preprint,

arXiv:1409.2558, 2015.

[14] F. H. Clarke. Generalized gradients and applications. Trans. Amer. Math. Soc., 205:247–262, 1975.

[15] F. H. Clarke. Optimization and Nonsmooth Analysis. John Wiley & Sons Inc., New York, 1983.

[16] M. A. Davenport, J. N. Laska, J. R. Treichler, and R. G. Baraniuk. The pros and cons of compressive

sensing for wideband wignal acquisition: noise folding versus dynamic range. IEEE T. Signal Proces.,

60(9):4628–4642, 2012.

[17] D. L. Donoho. Compressed sensing. IEEE T. Inform. Theory, 52(4):1289–1306, 2006.

[18] D. L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcomplete representations in

the presence of noise. IEEE T. Inform. Theory, 52(1):6–18, 2006.

[19] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer.

Statist. Assoc., 96(456):1348–1360, 2001.

[20] S. Foucart and M. Lai. Sparsest solutions of underdetermined linear systems via ℓq-minimization for

0 < q ≤ 1. Appl. Comput. Harmon. Anal., 26(3):395–407, 2009.

[21] I. Frank and J. Friedman. A statistical view of some chemometrics regression tools (with discussion).

Technometrics, 35(2):109–148, 1993.

[22] Y. Gao. Structured low rank matrix optimization problems: a penalized approach. PhD Thesis, Department

of Mathematics, National University of Singapore, 2010.

[23] Y. Gao and D. Sun. A majorized penalty approach for calibrating rank constrained correlation matrix

problems. Technical report, Department of Mathematics, National University of Singapore, 2010.

[24] W. J. Fu. Penalized regression: the bridge versus the lasso. J. Comput. Graph. Statist., 7(3):397–416, 1998.

[25] G. Golub and C. Van Loan. Matrix Computations, volume 13 of Studies in Applied Mathematics. John

Hopkins University Press, third edition, 1996.

[26] M. Herman and T. Strohmer. High-resolution radar via compressed sensing. IEEE T. Signal Proces.,

57(6):2275–2284, 2009.

[27] A. J. Hoffman. Nonlinear analysis, differential equations and control. J. Res. Nat. Bur. Stand., 49(4):263–

265, 1952.

[28] K. Koh, S. J. Kim, and S. Boyd. An interior-point method for large-scale l1-regularized logistic regression.

J. Mach. Learn. Res., 8:1519–1555, 2007.

34

http://arxiv.org/abs/1409.2558


[29] M. Lichman. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml, 2013.

[30] Z. Lu. Iterative hard thresholding methods for ℓ0 regularized convex cone programming. Math. Program.,

147(1-2): 125–154, 2014.

[31] Z. Lu and Y. Zhang. An augmented Lagrangian approach for sparse principal component analysis. Math.

Program., 135(1-2):149–193, 2012.

[32] Z. Lu and Y. Zhang. Sparse approximation via penalty decomposition methods. SIAM J. Optimiz.,

23(4):2448–2478, 2013.

[33] M. Lustig, D. L. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed sensing for rapid

MR imaging. Magn. Reson. Med., 58(6):1182–1195, 2008.

[34] M. Lustig, D. L. Donoho, J. M. Santos and J. M. Pauly. Compressed sensing MRI. IEEE Signal Process.

Mag., 25(2):72–82, 2008.

[35] C. Song and S. Xia. Sparse signal recovery by ℓq minimization under restricted isometry property. IEEE

Signal Proc. Let., 21(9):1154–1158, 2014.

[36] R. T. Rockafellar and R.J.-B. Wets. Variational Analysis. Springer, 1998.

[37] R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58(1):267–288,

1996.

[38] J. A. Tropp, J. N. Laska, M. F. Duarte, J. K. Romberg and R. G. Baraniuk. Beyond nyquist: efficient

sampling of sparse bandlimited signals. IEEE T. Inform. Theory, 56(1):520–544, 2010.

[39] J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping. The use of zero-norm with linear models and kernel

methods. J. Mach. Learn. Res., 3:1439–1461, 2003.

[40] S. J. Wright, R. D. Nowak and M. Figueiredo. Sparse reconstruction by separable approximation. IEEE

T. Signal Proces., 57(7):2479–2493, 2009.

[41] C. H. Zhang. Nearly unbiased variable selection under minimax concave penalty. Ann. Statist., 38(2):894–

942, 2010.

[42] T. Zhang. Analysis of multi-stage convex relaxation for sparse regularization. J. Mach. Learn. Res.,

11:1081–1107, 2010.

35

http://archive.ics.uci.edu/ml

	1 Introduction
	1.1 Notation and terminology

	2 Existence of optimal solutions
	3 Sparsity inducing property
	4 Sparse recovery
	4.1 Local sparse recovery by model (11)
	4.2 Global sparse recovery by (11)
	4.3 Stable recovery by (5)

	5 Numerical algorithms
	5.1 Partially regularized unconstrained optimization
	5.2 Sparse recovery for a noiseless linear system
	5.3 Sparse recovery for a noisy linear system

	6 Numerical results
	6.1 Sparse logistic regression
	6.2 Sparse recovery for a linear system

	7 Concluding remarks

