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We consider a single stock-point for a repairable item facing Markov modulated Poisson demand. Repair of failed parts may
be expedited at an additional cost to receive a shorter lead time. Demand that cannot be filled immediately is backordered
and penalized. The manager decides on the number of spare repairables to purchase and on the expediting policy. We
characterize the optimal expediting policy using a Markov decision process formulation and provide closed-form necessary
and sufficient conditions that determine whether the optimal policy is a type of threshold policy or a no-expediting policy.
We derive further asymptotic results as demand fluctuates arbitrarily slowly. In this regime, the cost of this system can be
written as a weighted average of costs for systems facing Poisson demand. These asymptotics are leveraged to show that
approximating Markov modulated Poisson demand by stationary Poisson demand can lead to arbitrarily poor results. We
propose two heuristics based on our analytical results, and numerical tests show good performance with average optimality
gaps of 0.11% and 0.33% respectively. Naive heuristics that ignore demand fluctuations have average optimality gaps
of more than 11%. This shows that there is great value in leveraging knowledge about demand fluctuations in making
repairable expediting and stocking decisions.
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1. Introduction
Both service and manufacturing industries depend on the
availability of expensive equipment to deliver their prod-
ucts. Examples of such equipment include aircraft, rolling
stock and manufacturing equipment. When this equipment
is not working, the primary processes of their owners come
to an immediate stop. To reduce the downtime of equip-
ment, companies stock critical components such that the
equipment can be returned to an operational state quickly
by replacing a defective component with a ready-for-use
component. Many components represent a significant finan-
cial investment and so they are repaired rather than dis-
carded after a defect occurs. Consider for example, jet
engines, bogies, or lens units for wafer steppers; these are
components of aircraft, rolling stock, and integrated cir-
cuit manufacturing equipment, respectively, and their prices
range from several hundreds of thousands up to millions
of dollars. The best time for companies to buy these com-
ponents is early in the lifecycle of the original equipment,
because, at this time, it is possible to negotiate reasonable

prices. In the literature, this is often referred to as the initial
spare parts supply problem and it occurs in many differ-
ent environments (e.g., Rustenburg et al. 2001, Pérès and
Grenouilleau 2002). Also note that since such components
are repairable, there is no natural inventory depletion that
can reduce stock levels in case a company buys too many
components. Later in the life cycle of a technical system,
components often have to be custom made and prices are
very steep, if the component can be purchased at all. An
aggravating factor is that demand intensity for these com-
ponents typically fluctuates over time, reflecting the fluctu-
ating need for maintenance over time. Companies anticipate
these demand fluctuations by leveraging the possibility of
expediting the repair of defective components, rather than
buying new components. Expediting a repair comes at a
price, either because an external repair shop charges more
for expedited repairs or because an internal repair shop
can only handle a limited amount of expedited repairs. In
the latter case, the cost of expediting can be thought of
as a Lagrange multiplier that enforces a constraint on the
number of expedited repairs that can be requested per time
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unit. Our model can then serve as a building block for a
multi-item model with constraints on service and expedit-
ing frequencies.

Companies that operate in the environment described
above face two major decisions related to their inventory
control, one at the tactical level, and another at the opera-
tional level: (1) How many repairable spare parts should the
firm buy? (tactical) (2) When should the firm request that
the repair of a part be expedited? (operational). We refer to
the first decision as the dimensioning decision and to the
second as the expediting decision. The S spare repairables
that are purchased early in the life cycle of a technical
system are also called the turn-around stock. After this
(initial) tactical decision, there is an operational recurring
decision to either expedite or not expedite the repair of a
spare part each time a demand/failure occurs. The latter
decision should take demand fluctuations as well as current
inventory levels into account. The model in this paper is
intended to aid both the dimensioning and the expediting
decision. For the dimensioning decision, it is important to
consider the fact that expediting will occur later.

We study the decision problem described above via a
stochastic inventory model. In this model, a defective item
is replaced with a ready-for-use item and sent to a repair
shop immediately after the defect occurs. At this point
in time, the inventory manager is faced with the decision
to either expedite or not expedite the repair of the part.
Expediting a repair is more costly but has a shorter lead
time. This expediting decision is informed by knowledge
about the fluctuation of demand, which is modeled by a
Markov modulated Poisson process. This demand model
is quite rich in modeling fluctuations such as those that
occur because of economic conditions, seasons of a year
and the degradation of a fleet of equipment (Song and
Zipkin 1993). It has also been observed empirically that
this demand model fits well to practice since demand for
repairable spare parts behaves as a nonstationary Poisson
process that moves slowly relative to the replenishment lead
time (Slay and Sherbrooke 1988).

We assume that inventory is replenished by an 4S−11S5-
policy, meaning that each defective item is sent immediately
to the repair shop. This replenishment policy is often used
in practice and it is optimal when there are no economies of
scale in replenishment. We model the expedited lead time
as being deterministic and the regular lead time as being
the sum of the expedited lead time and several exponential
phases, the passing of which is monitored. This lead time
model is a convenient device to investigate the value of
tracking order progress information and the effect of dif-
ferent lead time distributions. (Gaukler et al. 2008, use a
very similar model of order progress information.) Many
lead time distributions can be modeled quite closely by
this device. In practice, one often observes lead times that
are close to deterministic and this device can approximate
that arbitrarily closely by letting the number of exponential
phases approach infinity.

The main contributions of this paper are the following:
Firstly, we characterize the optimal repair expediting policy
for the infinite horizon average and discounted cost crite-
ria by formulating the problem as a Markov decision pro-
cess (MDP). We find that the optimal policy may take two
forms. The first form is simply to never expedite repair. The
second form is a state dependent threshold policy, where
the threshold depends on both the state of the Markov
chain that modulates demand intensity, and the pipeline of
repair orders. We also provide monotonicity results for the
threshold as a function of the pipeline of repair orders.
We give closed-form conditions that determine which of
the two forms is optimal. In analyzing the optimal pol-
icy, we confirm a conjecture of Song and Zipkin (2009)
that the expediting policy they propose is optimal for some
special cases.

Secondly, we show that the joint problem of determin-
ing the turn-around stock and the expediting policy is not
convex, but the cost function is submodular with respect to
the turn-around stock and the expediting thresholds.

Thirdly, we show that when demand fluctuates arbitrarily
slowly, the cost of any policy can be written as a weighted
average of the cost for systems facing stationary Pois-
son demand. We employ this result to show that ignoring
demand fluctuations by assuming stationary demand can
lead to arbitrarily bad performance.

Finally, we propose two heuristics based on our ana-
lytical results for optimal policies in general and optimal
policies for slowly fluctuating demand in particular. Numer-
ical work shows that these policies perform very close to
optimal and that naive heuristics that ignore demand fluc-
tuations perform poorly.

This paper is organized as follows. In Section 2, we
review relevant literature and position our contribution
with respect to existing results. The model is described in
Section 3. We study optimal expediting policies, optimal
dimensioning and asymptotic result for slowly fluctuating
environments in Sections 4–6, respectively. In Section 7,
we propose heuristics based on our analytical results and
test them numerically. Concluding remarks are provided in
Section 8.

2. Literature Review
Our model is situated at the intersection of two streams of
literature. The first one deals with sizing the turn-around
stock of repairable item inventories and the second one
with expediting, or inventory models with two (or more)
supply modes.

An important characteristic of repairable item invento-
ries is that inventory is replenished by repairing defec-
tive items. Repairable item inventory systems thus form
a closed loop system that implicitly dictates the use of a
base-stock policy. Often, the number of supported assets is
large and the demand process is assumed to be independent
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of the number of outstanding orders. We make the same
assumption which is in line with most of the repairable item
inventory literature that was started with the metric model
introduced by Sherbrooke (1968). Most of the important
results in this stream of literature have been consolidated
in the books by Sherbrooke (2004) and Muckstadt (2005),
and the survey by Basten and Van Houtum (2014). This
paper adds to the literature on repairable item inventories
by studying what happens when it is possible to expe-
dite the repair of a defective part, and in particular if this
flexibility can be used to respond to a fluctuating demand
environment. In doing this, we relax the commonly held
assumption that demand is a stationary Poisson process.
Our assumption of a Markov modulated Poisson process is
more in line with empirical findings (Slay and Sherbrooke
1988). Verrijdt et al. (1998) already studied simple heuris-
tics for the case that demand is a stationary Poisson pro-
cess and emergency and regular repair lead times are both
exponentially distributed. We relax the assumptions that the
demand process is stationary and consider a more general
lead time structure. Furthermore, we study optimal solu-
tions as well as new heuristics informed by the structure
of the optimal solution. We also remark that expediting a
repair is not the same as shipping a ready-for-use part from
a different stocking location which is commonly known
as an emergency shipment (e.g., Alfredsson and Verrijdt
1999).

Inventory models with multiple supply modes have been
reviewed by Minner (2003). Here we review the important
and more recent results. Most authors consider a periodic
review setting where the regular and expedited lead time
differ by a single period and find that a base-stock pol-
icy is optimal for both the regular and expedited supply
modes (e.g., Fukuda 1964). When the lead time of the reg-
ular and expedited supply modes differ by more than a
single period, optimal policies do not exhibit simple struc-
ture and depend on the entire vector of outstanding orders
(e.g., Whittmore and Saunders 1977, Feng et al. 2006).
As a result, recent research considers heuristic policies for
the control of dual supply systems, the most notable of
these being the dual-index policy and variations thereof
(Veeraraghavan and Scheller-Wolf 2008, Sheopuri et al.
2010, Arts et al. 2011). Under the dual-index policy, a regu-
lar and emergency inventory position are tracked separately,
and both are kept at or above their respective order-up-
to levels.

As opposed to the above mentioned papers, Moinzadeh
and Schmidt (1991) consider a system running in continu-
ous time facing Poisson demand with deterministic emer-
gency and regular replenishment lead times. They show
how to evaluate a given dual-index policy, although the
name was not coined at the time, and the structure was
not recognized as such. Song and Zipkin (2009) reinter-
pret the model of Moinzadeh and Schmidt (1991) reveal-
ing the simple structure of the policy and equivalence to a
special type of queueing network that has a product form

solution. Verrijdt et al. (1998) consider a similar system
in the context of repairable items. In their model, the reg-
ular and expedited supply/repair modes have independent
exponentially distributed lead times. They consider a dif-
ferent policy where repair is expedited when the inventory
on-hand drops below a certain critical level.

While two different heuristic expediting policies have
been suggested in the literature, one by Moinzadeh and
Schmidt (1991) and Song and Zipkin (2009), and the other
by Verrijdt et al. (1998), the optimal expediting policy has
not yet been investigated. Song and Zipkin (2009) conjec-
ture that their policy is optimal in some special cases. In
this paper, we analyze the optimal repair expediting pol-
icy in the case of deterministic expedited repair lead times
and stochastic regular repair lead times. As it turns out,
the form suggested by Moinzadeh and Schmidt (1991) and
Song and Zipkin (2009) is optimal in the special case that
the regular repair lead time has a shifted exponential dis-
tribution and demand is a Poisson process. We note that
Song and Zipkin (2009) also consider Markov modulated
Poisson demand, but they focus on the performance evalua-
tion of a stationary heuristic expediting policy, whereas we
study optimal expediting policies that are not stationary.

3. Model Formulation
Our model supports two decisions that are on different time
scales: (i) How to dimension the turn-around stock S and
(ii) what expediting policy to follow. For the analysis, we
use a nested procedure that determines the optimal expe-
diting policy for a given turn-around stock (in Section 4),
and uses this to determine the optimal turn-around stock
(in Section 5). Below we give an integrated description of
the model. In Section 3.1, we discuss the main assumptions
and their justifications.

We consider a repairable item stock-point operated in
continuous time with an infinite planning horizon 601�5.
The stock-point faces Markov modulated Poisson demand,
i.e., demand is a Poisson process whose intensity varies
with the state of an exogenous Markov process Y 4t5. The
Markov process Y 4t5 is irreducible and has a finite state
space ä = 811 0 0 0 1 �ä�9 with generator matrix Q whose ele-
ments we denote by qij and for convenience qi = −qii.
When Y 4t5 = y, the intensity of Poisson demand is given
by �y ¾ 0; Ë = 4�11 0 0 0 1 ��ä�5; �y > 0 for at least one
y ∈ä. We denote demand in the time interval 4t11 t27 given
Y 4t15 = y as D

y
t11 t2

. We assume that Y 4t5 can be observed
by the decision maker and so it provides a form of aggre-
gated advance demand information.

The size of the turn-around stock of the repairable,
S ∈�0, is determined at time t = 0 and cannot be adapted
afterward. (We relax this assumption in Section 5.1.) We
assume that defective parts are sent to the repair shop imme-
diately, i.e., we use an 4S − 11 S5 replenishment policy.

There exists a regular and an expedited repair option. The
expedited repair lead time, le, is deterministic. The expedited

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
1.

15
5.

21
5.

70
] 

on
 0

1 
Ju

ne
 2

01
6,

 a
t 1

1:
43

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Arts, Basten, and Van Houtum: Repairable Stocking and Expediting in a Fluctuating Demand Environment
4 Operations Research, Articles in Advance, pp. 1–17, © 2016 INFORMS

Figure 1. Repairable item inventory system with the
possibility to expedite repair.

Repair shop

Expedite?

YesNo

Lr le

�Y(t)

… . .

Exp(�1) Exp(�m)Exp(�2)

repair lead time can represent the minimal possible repair
lead time or a lead time agreed upon with an external com-
pany that provides emergency repair service. We also refer
to using the expedited repair mode as expediting a repair.

The regular repair lead time consists of the emergency
repair lead time le, and a random component of length Lr ,
with mean Ɛ�Lr � < �. We shall also refer to Lr as the
additional regular repair lead time. We assume that this
additional time is distributed as the sum of m exponential
phases, with mean 1/�i for the ith exponential phase. The
inventory manager can observe the pipeline of outstanding
orders and thus knows how many phases each part in the
pipeline has completed. In particular, the inventory manager
knows when the last phase (m) is completed and the remain-
ing lead time of a regular order is le. A graphical represen-
tation of the system under study is given in Figure 1. Each
failed part either enters regular or expedited repair when it
is sent to the repair shop (and cannot change after that).

Turn-around stock holding (and depreciation) costs are
incurred with a constant rate h> 0 for all repairable spare
parts, regardless of where they are in the supply chain.
Repair expediting costs per item are ce � 0, i.e., ce rep-
resents the (expected) cost difference between using the
regular and emergency repair modes. A penalty cost rate
p > 0 per item short per time unit for the repairable item
inventory is also charged (backordering).

We let Xi�t
 denote the number of items in regular repair
at time t that are in the ith phase of their additional repair
lead time (i= 1� � � � �m), and let X�t
= �X1�t
� � � � �Xm�t

.
The following observation shows that X�t
 and Y �t
 contain
all the information needed to make expediting decisions. Let
cp�x� y
 denote the expected penalty cost rate at time t +

le conditional on
∑m

i=1 Xi�t
 = X�t
eT = x and Y �t
= y;
cp� �0 × � → � (�0 = � ∪ �0� and e = �1� � � � �1
). To
find cp�x� y
, note that S − X�t
eT = S − x represents the
net inventory at time t plus any parts that will arrive at the
stock-point before time t+ le. Thus the expected number of

backorders at time t+ le given X�t
eT = x and Y �t
= y is
Ɛ��DY�t


t� t+le
− �S − X�t
eT

+ �X�t
eT = x�Y �t
 = y�. From

this it is easily verified that

cp�x� y


= pƐ
[

�D
Y�t

t� t+le

− �S−X�t
eT

+ �X�t
eT
= x�Y �t
= y

]

= p
�
∑

k=S−x

�k− �S− x

��Dy
t� t+le

= k�� (1)

When convenient, we use the notation cp�x� y �S
 to explic-
itly show the dependence on S. To use (1), one must be able
to evaluate ��Dy

t� t+le
= k�. This can be done numerically

by inverting the generating function of ��Dy
t� t+le

= k �Y �t+
le
= y′� which is given in the form of a matrix exponen-
tial (e.g., Fischer and Meier-Hellstern 1992) and then un-
conditioning on the event Y �t+le
= y′. We relegate further
details of this to Section EC.1 (available as supplemen-
tal material at http://dx.doi.org/10.1287/opre.2016.1498).
Next, we note that whenever an item fails at time t, and
its repair is not expedited, X1�t
 increases by one. Thus,
X�t
 and Y �t
 contain all information needed to do cost
accounting, and, in particular, to make optimal expediting
decisions.

We are interested in minimizing the long run average
cost rate C�S
 = hS + g∗�S
 where g∗�S
 is the average
expediting and penalty cost rate induced by an expediting
policy that is optimal under turn-around stock level S:

g∗�S
 = inf
�∈�

limsup
T→�

1
T
Ɛ�

[

∫ T

0
cp�X�t
e

T�Y �t
�S


+�Y�t
ce1
��X�t
�Y �t

dt

]

� (2)

Here � is the set of all Markovian policies for our system,
1��x� y
 indicates whether policy � expedites demands in
state �x� y
, and Ɛ� is the conditional expectation given
policy �. Our decisions are (i) the turn-around stock, S,
and (ii) a repair expediting policy � ∈�. (As an extension,
we shall also consider minimizing total discounted costs
for the expediting policy in Section 4.4, and the case where
the holding costs for an item depend on its position in the
pipeline in Section 4.5.)

3.1. Main Assumptions and Justifications

Some assumptions in our model require either a practical or
analytical justification. Here we list the main assumptions
and their justifications.
• The turn-around stock S is fixed: Although the turn-

around stock may be increased by buying additional com-
ponents, it never decreases since parts are repairable.
Therefore, there is a fixed turn-around stock after a deci-
sion has been made to buy no more components. This sit-
uation usually occurs early in the life cycle of a technical
system. We model this by assuming that all components
are purchased at time t = 0. In some industries, it is not
unusual that parts are not available from the original equip-
ment manufacturer anymore a few years after the purchase
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of equipment. For example, this is the case for NedTrain,
the company that motivated this study. NedTrain is a Dutch
company that maintains rolling stock for the Dutch rail-
ways. This assumption may be relaxed under the infinite
horizon discounted cost criterion; see Section 5.1.

• We consider an infinite planning horizon. The lifetime
of repairables considered in the model is as long as the life
cycle of the assets they support, which is typically several
decades. This is long compared to other time characteris-
tics in the problem such as lead times which are typically
measured in weeks, and justifies using an infinite horizon
model. Results for the finite horizon are also included in
Theorem 1.

• Demand is a Markov modulated Poisson process: In
spare parts literature, the Poisson demand model is per-
haps the most common (e.g., Sherbrooke 2004, Muckstadt
2005). For relatively short periods of time, this demand
model is often sufficiently accurate, and Markov modulated
Poisson demand can handle Poisson demand as a special
case. For longer periods of time, the demand intensity for
repairables may be affected by things such as weather con-
ditions (increased wear) and periodic inspections. Slay and
Sherbrooke (1988) observe that demand for aircraft compo-
nents behaves as a Poisson process for which the rate varies
slowly over time. There are many reasons for this behavior
such as weather, asset loading, and the fact that many capi-
tal assets undergo one or more major revisions during their
lifetime. Demand for repairables peaks during these revi-
sion periods, as inspections reveal latent failures. Often, the
exact timing of revision periods is uncertain when the asset
is acquired. The Markov modulated Poisson process offers
the flexibility to model these and many other demand sce-
narios while retaining tractability. It can also approximate
a nonstationary Poisson process whose intensity over time
is known using techniques as summarized in Artalejo et al.
(2010). This model also enables us to asses the value of
demand fluctuation information.

• The additional regular repair lead time, Lr , is a sum of
exponential phases, and phase completions can be observed:
Many inventory planners and IT systems work with deter-
ministic planned lead times. To model all lead times in our
model as deterministic is not only intractable computation-
ally but also prohibits gaining structural results. The reason
for this is that the state space becomes infinite dimensional:
For each possible outstanding order (which can be infinitely
many) we need to keep track of the remaining lead time.
A pragmatic approach when the real Lr is (close to) deter-
ministic is to set m large and interpret each stage as a deter-
ministic time bucket. If the true distribution has m < �

phases, then the true state X4t5 at time t cannot be inferred
with certainty only from past order release times, but cer-
tain states are more likely than others.

We think of the m exponential phases of Lr primarily
as a device to model order progress information, similar to
Gaukler et al. (2008). The value of order progress informa-
tion can be assessed using this model as will be shown in

Section 7.4. Each time a phase passes, the remaining lead
time of an item decreases so that inventory managers have
an idea of the remaining lead time of outstanding orders.
This model also allows for fitting lead times on the first
two moments as long as c2

Lr
= Var6Lr 7/Ɛ

26Lr 7¶ 1 (Aldous
and Shepp 1987) and can approximate deterministic lead
time and perfect pipeline information as m→ �. Thus, this
model allows us to gain insight on the added value of track-
ing repairable order progress carefully. In Section EC.3, we
test our model via simulation for robustness against different
lead time distribution assumptions and find that it is nearly
insensitive.

• There is a penalty cost per backorder per time unit.
Each backorder leads to the downtime of a technical
system. Therefore, p may be interpreted as the cost of
downtime per system and unit of time. If there is a require-
ment on the availability of the technical system, p can
also be interpreted as a Lagrange multiplier enforcing this
constraint.

4. Optimal Expediting Policies
In this section, we consider the problem of finding optimal
repair expediting policies for fixed S, and call this prob-
lem -4S5. (In Section 5, we consider the joint problem of
sizing the turn-around stock and expediting policy.) Since
the holding costs depend linearly on S only, we need not
consider holding cost in finding an optimal expediting pol-
icy for a fixed S.

We make several steps in our analysis. First in Sec-
tion 4.1, we give closed-form conditions under which the
state space can be truncated to yield a finite state space for
the purpose of finding average optimal policies. This is not
only technically convenient, but also necessary to ensure
that the transition rates of the resulting MDP are bounded
so that the Bellman equations can be used to analyze the
structure of the optimal policy. We also show that when
these conditions do not hold, the policy that never expedites
repair is optimal. After that in Section 4.2, we formulate
a finite horizon finite state space Markov decision process.
The average optimal expediting policy is characterized in
Section 4.3 and the infinite horizon discounted version in
Section 4.4. A generalization of the holding cost structure
is considered in Section 4.5.

4.1. State Space Truncation

Let ã denote the difference operator with respect to the
first argument of a function, i.e., ãcp4x1 y5= cp4x+11 y5−
cp4x1 y5. The following lemma establishes some useful
properties of cp4x1 y5. The proof of Lemma 1, in Sec-
tion EC.2.1, is similar to the proof of these same properties
for the cost function of a news-vendor problem.

Lemma 1. cp4x1 y5 has the following properties:
(i) cp4x+ 11 y5¾ cp4x1 y5 for all x ∈�0 and y ∈ä, i.e.,

cp4x1 y5 is nondecreasing in x.
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(ii) ãcp4x+ 11 y5¾ãcp4x1 y5 for all x ∈�0 and y ∈ä,
i.e., cp4x1 y5 is convex in x.

(iii) ãcp4x1 y5¶ p for all x and y ∈ä and ãcp4x1 y5=

p for all x¾ S and y ∈ä.
(iv) ãcp4x1y �S5¾ãcp4x1y �S+15 for all x∈�0, y∈ä

and S∈�0, i.e., cp4x1y �S5 is submodular with respect to x
and S.

Proposition 1 below allows us to truncate the relevant
state space if ce <pƐ6Lr 7, and fully characterizes an opti-
mal expediting policy if ce ¾ pƐ6Lr 7. It can be understood
intuitively by making the following observation: Whenever
a repair is expedited, this may avert a backorder at most
for the additional regular repair lead time Lr . Thus, when
the cost of expediting a repair is more than or equal to the
expected backorder cost over the additional regular repair
lead time, expediting is never beneficial (in expectation).
Conversely, if expediting is cheaper than the cost of a back-
order over the expected additional regular lead time, then
expediting is beneficial in expectation if the number of parts
already in repair that will not arrive within the expedited
lead time is sufficiently large.

Proposition 1. For the infinite horizon, average cost cri-
terion, the following statements hold

(i) If ce > pƐ6Lr 7, then the policy to never expedite is
the only optimal policy.

(ii) If ce = pƐ6Lr 7, then the policy to never expedite is
an optimal policy.

(iii) If ce <pƐ6Lr 7, then there is an M ∈� such that any
optimal policy will expedite repair whenever X4t5eT ¾M .

Proof. Let ei ∈ �m be the unit vector in direction i. For
parts (i) and (ii), the proof is based on showing that any
policy that expedites in some state when ce ¾ pƐ6Lr 7 can
be improved by a policy that is identical except that it does
not expedite in that state. Let � denote an arbitrary policy
that expedites for some state 4x1 y5. Suppose now that at
time t′, the process is in state 4x1 y5 and a demand occurs.
Let 4X4t51 Y 4t55 denote the process under policy � at any
time t. Next we construct a coupled process, 4X′4t51 Y 4t55,
that is identical to 4X4t51 Y 4t55 except that the failed part
arriving at time t′ is not expedited. Let X̃4t5 denote the
evolution through the pipeline of the part arriving at time t′

if it enter regular repair, i.e., X̃4t5 = ei if the part sent to
regular repair at time t′ has completed its first i− 1 phases
of the additional regular repair lead time at time t, and
X̃4t5 = 0 if the part has completed its additional regular
repair lead time.

With this notation, we can write X′4t5 = X4t5 + X̃4t5.
Now let Tr = inf8t − t′ � X̃4t5 = 01 t ¾ t′9 and note that
Tr

d
= Lr , where d

= denotes equality in distribution. By
construction, any cost difference between the processes
4X′4t51 Y 4t55 and 4X4t51 Y 4t55 must occur in the interval
6t′1 t′ + Tr5, because these processes are identical outside
that interval. In 6t′1 t′ + Tr5, X4t5 incurs exactly ce more
emergency repair costs because of the part expedited at

time t′, and X′4t5 incurs more penalty costs because X′eT =

X4t5eT +1 for t ∈ 6t′1 t′ +Tr5. The expected cost difference
between the processes 4X4t51 Y 4t55 and 4X′4t51 Y 4t55 thus
satisfies

ce − ƐTr

{

Ɛ4X4t51Y 4t55

[

∫ t′+Tr

t=t′
ãcp4X4t5e

T1 Y 4t55dt

∣

∣

∣

∣

Tr

]}

¾ ce − ƐTr
6pTr 7= ce −pƐ6Lr 7¾ 01

where the first inequality holds by Lemma 1(iii). Notice
that the latter inequality is strict when ce > pƐ6Lr 7. This
proves parts (i) and (ii).

Now for part (iii), we use the same coupling construc-
tion. The proof and intuition for part (iii) coincide nicely
(although the proof has many technical details): As XeT

grows, the probability that expediting a repair avoids a
backorder for Lr time units approaches unity. Therefore,
the number of outstanding orders can be so large that the
expected cost of expediting will almost surely be smaller
than the expected additional backordering costs incurred by
failing to expedite the repair of a part.

Let �= 4pƐ6Lr 7− ce5/3 > 0. We denote the probability
density function of Lr as fLr

and fix �<� to verify

∫ �

t=�
tfLr

4tr5dt ¶ �/p0 (3)

Such an � exists because tfLr
4t5 > 0 for t ∈ 401�5 so that

∫ �

t=�
tfLr

4t5dt is strictly decreasing in � and furthermore
lim�→�

∫ �

t=�
tfLr

4t5dt = 0. Let E� denote an exponential
random variable with mean �−1. We fix an integer M ′

to verify

�8E�m
<�9M

′

Ɛ6Lr 7¶ �0 (4)

Such an M ′ ∈� exists because �<� and so �8E�m
<�9<1.

Now we consider an arbitrary policy � that does not
expedite when xeT ¾ S + M ′ = M for some 4x1 y5 ∈ S.
Consider an arbitrary moment in time, t′, when a failed
part arrives to the system and

∑m
i=1 Xi4t

′5 ¾ S + M ′ = M

and policy � stipulates that the part should not be expe-
dited. Denote this process X�4t5. We let X̃4t5 denote the
evolution of the part sent to regular repair at time t′ by
policy �, so X̃4t5 = ei if the part sent to repair at time t′

has completed its first i−1 phases of the additional regular
repair, and X̃4t5= 0 if the part has completed its additional
regular repair lead time. Next, we consider an alternate pro-
cess which is identical to X�4t5 except that it does expedite
the unit arriving at t′. We denote this process Xe4t5, and
formally define it as Xe4t5 = X�4t5 − X̃4t5. We let Tr =

inf8t − t′ � X̃4t5= 01 t ¾ t′9 and note that Tr
d
= Lr .

Analogous to the proof of parts (i) and (ii), X�4t5eT =

Xe4t5eT + 1 for t ∈ 6t′1 t′ + Tr5, and X�4t5 = Xe4t5 for t ¾
t′ + Tr . Also both processes make exactly the same expe-
diting decisions for all t > t′. Thus any cost differences
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between Xe4t5 and X�4t5 occur in the time interval
6t′1 t′ + Tr5. Denote the expectation of this cost differ-
ence æ. Then we have

æ = ce−ƐTr

{

Ɛ4Xe4t51Y 4t55

[

∫ t′+Tr

t=t′
ãcp4X

e4t5eT1Y 4t55dt

∣

∣

∣

∣

Tr

]}

= ce−
∫ �

tr=0
Ɛ4Xe4t51Y 4t55

[

∫ t′+Tr

t=t′
ãcp4X

e4t5eT1Y 4t55dt

∣

∣

∣

∣

Tr = tr

]

·fLr 4tr5dtr

= ce−
∫ �

tr=0
Ɛ4Xe4t51Y 4t55

[

∫ t′+Tr

t=t′
ãcp4X

e4t5eT1Y 4t55dt

∣

∣

∣

∣

Tr = tr 1

Xe4t5eT ¾S for all t∈4t′1t′ +Tr5

]

·�
{

Xe4t5eT¾S for all t∈4t′1t′ +tr5
}

fLr 4tr5dtr

−

∫ �

tr=0
Ɛ4Xe4t51Y 4t55

[

∫ t′+Tr

t=t′
ãcp4X

e4t5eT1Y 4t55dt

∣

∣

∣

∣

Tr = tr 1

Xe4t5eT<S for some t∈4t′1t′ +Tr5

]

·�
{

Xe4t5e
T <S for some t∈4t′1t′ +tr5

}

fLr 4tr5dtr

¶ ce−
∫ �

tr=0
Ɛ4Xe4t51Y 4t55

[

∫ t′+Tr

t=t′
ãcp4X

e4t5eT1Y 4t55dt

∣

∣

∣

∣

Tr = tr 1

Xe4t5eT ¾S for all t∈4t′1t′ +Tr5

]

·�
{

Xe4t5eT¾S for all t∈4t′1t′ +tr5
}

fLr 4tr5dtr

= ce −

∫ �

tr=0
ptrfLr 4tr5

·�
{

Xe4t5eT ¾ S for all t ∈ 4t′1 t′ + tr5
}

dtr (5)

The third equality is obtained by conditioning on whether
or not Xe4t5eT stays above S on the interval 6t′1 t′ + Tr5.
The first inequality follows from dropping the last term and
the last equality follows from part (iii) of Lemma 1.

Next we observe that �8Xe4t5eT¾S for all t∈4t′1t′ +tr59
is bounded below by the probability that fewer than M ′

parts already in additional regular repair at time t′, finish
additional regular repair before t′ + tr . Since the remain-
ing time in regular repair for any of these parts is at least
an E�m

random variable (by the lack of memory property),
we conclude that

�
{

Xe4t5eT ¾ S for all t ∈ 4t′1 t′ + tr5
}

¾ 1 −�8E�m
< tr9

M ′

0 (6)

Now continuing from (5) and using (6) we obtain

æ ¶ ce −

∫ �

tr=0
ptrfLr

4tr5
(

1 −�8E�m
< tr9

M ′)

dtr

= ce −pƐ6Lr 7+
∫ �

tr=0
ptrfLr

4tr5�8E�m
< tr9

M ′

dtr

= ce −pƐ6Lr 7+
∫ �

tr=0
ptrfLr

4tr5�8E�m
< tr9

M ′

dtr

+

∫ �

tr=�
ptrfLr

4tr5�8E�m
< tr9

M ′

dtr

¶ ce −pƐ6Lr 7+�8E�m
<�9M

′
∫ �

tr=0
ptrfLr

4tr5dtr

+

∫ �

tr=�
ptrfLr

4tr5dtr (7)

¶ ce −pƐ6Lr 7+�8E�m
<�9M

′

Ɛ6Lr 7

+

∫ �

tr=�
ptrfLr

4tr5dtr

¶ −3�+ �+ �= −�< 00 (8)

Inequality (7) follows because �8E�m
< tr9 is increasing

in tr and the final inequalities follow from the choice of �,
� and M ′. Since æ< 0, we conclude that the expected cost
of process X�4t5 is greater than the cost of Xe4t5. Thus,
we have shown that any policy that does not expedite when
X4t5eT ¾M and ce < pƐ6Lr 7 can be strictly improved by
expediting whenever X4t5eT ¾M . That is, if ce < pƐ6Lr 7,
then there is a M ∈� such that whenever X4t5eT ¾M it is
optimal to expedite. �

Proposition 1 characterizes the optimal policy when ce ¾
pƐ6Lr 7. Note however that part (iii) of Proposition 1 does
not characterize the optimal policy when ce < pƐ6Lr 7. It
only allows us to restrict the state space of 4X4t51 Y 4t55 to
the finite set S = 84x1 y5 ∈ �m

0 × ä �xeT ¶ M9 for some
M ∈� as constructed in the proof of Proposition 1. Propo-
sition 1 thus enables us to study the optimal policy when
ce < pƐ6Lr 7 within a Markov decision process framework
because transition rates are bounded after truncation of the
state-space.

4.2. MDP Formulation with Bounded
Transition Rates

In this section, we consider the model -4S5 with ce <
pƐ6Lr 7, and state space S = 84x1 y5 ∈ �m

0 ×ä �xeT ¶M9,
where M is chosen, as outlined in the proof of Proposition 1,
such that it is optimal to expedite whenever XeT ¾M . With
a slight abuse of notation, we term the problem of finding
an optimal policy for this model as -4S1M5. In this finite
state space, transition rates are bounded and so we can apply
the technique of uniformization to transform the problem of
finding an optimal expediting policy to discrete time.

In each state 4x1 y5, we take a decision as to whether we
expedite the repair of a part if the next event happens to be
the arrival of a defective part. We let 1 denote the decision
to expedite if a part arrives and let 0 be the decision to
not expedite if a part arrives. Thus the action space in state
4x1 y5 is A4x1 y5= 80119 when xeT <M and A4x1 y5= 819
otherwise. Observe that if we take a decision 1 in some
state of the system, this does not necessarily imply we will
expedite some part, because the next event in the systems
may not be the arrival of a defective part.

As uniform transition rate for this MDP, we choose å=

�max +M
∑m

i=1 �i + qmax with �max = maxy∈ä �y and qmax =

maxy∈ä qy . Let p44x′1 y′5 � 4x1 y51 a5 denote the transition
probability from state 4x1 y5 ∈ S to 4x′1 y′5 ∈ S under
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action a ∈ A4x1 y5. Without loss of generality, we rescale
time such that å= 1. Then we have

p44x′1 y′5 � 4x1 y51 a5

=























































































�y1 if x′ = x+ e1, y′ = y, a= 0;

xm�m1 if x′ = x− em, y′ = y, a ∈ 80119;

xi�i1 if x′ = x− ei + ei+1, y′ = y,
a ∈ 80119, i = 11 0 0 0 1m− 1;

qy1 y′ 1 if x′ = x, y′ 6= y, a ∈ 80119;
m
∑

i=1

4M − xi5�i + qmax − qy +�max −�y1

if 4x′1 y′5= 4x1 y5, a= 03
m
∑

i=1

4M − xi5�i + qmax − qy +�max1

if 4x′1 y′5= 4x1 y5 and a= 1;

01 otherwise,

(9)

where ei is the ith unit vector in dimension m. Regard-
less of the decision taken, between transitions, an expected
penalty cost of cp4xe

T1 y5 is incurred. Additionally, a cost
of ce is incurred if an arriving defective part is expedited.

Now let Vn4x1 y5 denote the optimal total cost function
when in state 4x1 y5 and having n transitions to go and
define V04x1 y5 ≡ 0. The finite horizon dynamic program-
ming recursion (Bellman equation) is given by

Vn+14x1y5

=cp4xe
T1y5+�y18xeT<M9min8ce+Vn4x1y51Vn4x+e11y59

+�y18xeT=M94ce+Vn4x1y55+
m−1
∑

i=1

xi�iVn4x−ei+ei+11y5

+xm�mVn4x−em1y5+
m
∑

i=1

4M−xi5�iVn4x1y5

+
∑

y′∈ä\8y9

qyy′Vn4x1y
′5

+4qmax −qy+�max −�y5Vn4x1y51 (10)

where 18 · 9 is the indicator function.

Remark 1. Note that the smallest possible uniformization
constant is given by å′ = �max + M�max + qmax, where
�max = maxi∈8110001m9�i. We use a formulation based on
this smaller constant in our numerical work (Section 7.4),
because it leads to quicker convergence of value iteration
algorithms (e.g., Kulkarni 1999). Here we work with the
formulation based on å so that we can reuse some results
in the literature to prove structural properties of optimal
policies. ♦

To analyze the value function Vn4x1 y5 in Section 4.3,
we employ the event based dynamic programming approach
introduced by Koole (1998, 2006). To this end, let V
denote the set of all functions v2 S→� and let f 1 f11 0 0 0 1

fm+2 ∈V. We define the following operators �cost, �AC4i5,
�TD4i5, �D4i5, �env2 V→V, �unif2 V

m+2 →V.

�costf 4x1y5=cp4xe
T1y5+f 4x1y5 (11)

�AC4i5f 4x1y5=18xeT<M9min8ce+f 4x1y51f 4x+ei1y59

+18xeT=M94ce+f 4x1y55 (12)

�TD4i5f 4x1y5=
xi
M

f 4x−ei+ei+11y5+
M−xi
M

f 4x1y5 (13)

�D4i5f 4x1y5=
xi
M

f 4x−ei1y5+
M−xi
M

f 4x1y5 (14)

�envf 4x1y5=
∑

y∈ä\8y9

qyy′f 4x1y′5

+4qmax −qy+�max −�y5f 4x1y5 (15)

�unif4f110001fm+254x1y5

=�yf14x1y5+
m
∑

i=1

M�ifi+14x1y5+fm+24x1y50 (16)

These operators are variations to operators defined by Koole
(1998, 2004, 2006) and are originally intended to model var-
ious common queueing mechanisms such as arrival control
(�AC4i5), transfer departures from multiserver tandem queues
(�TD4i5), and departures from multiserver queues (�D4i5),
while the operators �cost, �env, and �unif are mainly conve-
nient for bookkeeping. The Bellman recursion for our MDP,
(10), can now be written succinctly as

Vn+14x1 y5 = �cost�unif

[

�AC415Vn4x1 y51�TD415Vn4x1 y51 0 0 0 1

�TD4m−15Vn4x1 y51�D4m5Vn4x1 y51

�envVn4x1 y5
]

0 (17)

This formulation of the MDP recursion is convenient
because the propagation of value function properties over
n can be analyzed through the propagation properties of
operators, for which results are available in the literature.

We remark that the operators used to rewrite the MDP
recursion reveal that the MDP we are dealing with is equiv-
alent to an admission control problem for a tandem line of
ample exponential server queues. A similar equivalence is
exploited by Song and Zipkin (2009) in finding effective
means to evaluate heuristic policies.

4.3. Average Optimal Expediting Policies

To characterize average optimal policies, we study proper-
ties of the value function and how these properties propagate
through recursion (17). We define the first order difference
operator with respect to xi, ãi, as ãif 4x1 y5= f 4x+ ei1 y5−
f 4x1 y5. We distinguish the following subsets of V:

I4i5= 8f ∈V � f 4x1 y5¶ f 4x+ ei1 y59 (18)

C4i5= 8f ∈V �ãif 4x1 y5¶ãif 4x+ ei1 y59 (19)
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�� =
{

f ∈� � f �x+ ei+1� y
� f �x+ ei� y
�

i= 1� � � � �m− 1
}

(20)

���i� j
=
{

f ∈� ��if �x� y
��if �x+ ej � y

}

� (21)

In (18)–(21), it is understood that the inequalities that char-
acterize each set must hold when the arguments on both
sides of the inequality exist in � . The sets ��i
 and ��i

contain nondecreasing and convex function with respect
to xi respectively. The set �� contains upstream increasing
functions as introduced in Koole (2004) and renamed in
Koole (2006). The set ���i� j
 consists of functions with
a specific supermodularity property. Finally, define � as

� =

( m
⋂

i=1

��i


)

∩��1
∩�� ∩

( m
⋂

j=2

���1� j

)

� (22)

Lemma 2. The following statements hold
(i) The function cp�xe

T� y
 ∈� is a member of � .
(ii) If f ∈� then �costf �x�y
, �AC�1
f �x�y
, �D�m
f �x�y
,

�envf �x�y
∈� and �TD�i
f �x�y
∈� for i=1�����m−1.
(iii) If fj ∈ � for j = 1� � � � �m + 2, then

�unif�f1� � � � � fm+2
 · �x� y
 ∈� .

The proof of this lemma is in Section EC.2.2. The
properties of functions in � that are shown to propagate
through operators (11)–(16) in Lemma 2, imply structure
on the optimal policy. To state the next lemma, we intro-
duce some notation. Let x�−1
 denote the vector x with its
first component set to 0, i.e., x�−1
 = �0� x2� � � � � xm
. The
next theorem characterizes the optimal policy for a finite

Figure 2. Part (a) shows the state dependent threshold for n= 593 in the case where Lr has an Erlang(2) distribution
(m= 2). Part (b) shows the state dependent thresholds for n= 1513 when Lr is Erlang(3) distributed (m= 3).
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Notes. Both cases are based on the problem instance with ��� = 1, �1 = 1, Ɛ�Lr �= 4, le = 2, ce = 8, p= 10, and S = 8. In both cases, n coincides with
the iteration in which average optimal policies are found within some precision.

planning horizon problem. (The proof of this Theorem is
in Section EC.2.3.)

Theorem 1. For a finite planning horizon with n decision
epochs to go, if Vn−1 ∈� , then, at transition epoch n, there
are state dependent thresholds Tn�x

�−1
� y
 such that it is
optimal to expedite the repair of an arriving part at tran-
sition epoch n if and only if X1�tn
� Tn�X

�−1
�tn
� Y �tn

,
where tn is the time corresponding to transition epoch n.
Furthermore, the thresholds Tn�x

�−1
� y
 satisfy the fol-
lowing monotonicity property: �iTn�x

�−1
� y
 � 0, for i =
2� � � � �m.

An alternative interpretation of Theorem 1 is that the
optimal policy at transition epoch n (under the stated con-
dition) is a switching curve between expediting and not
expediting repairs. This switching curve is decreasing in xi
for i = 2� � � � �m. Figure 2 illustrates two such switching
curves. In part (a) of the figure, for a given x2, it is opti-
mal to expedite repair if x1 is on or above the shown line.
In part (b) of the figure, for given �x2� x3
 it is optimal to
expedite repair if x1 is on or above the shown surface.

The policy described in Theorem 1 can also be reinter-
preted as a state dependent expedite-up-to policy. To see
this, define IPe�t
 = S − X�t
eT, and note that this can
be interpreted as the expedited inventory position: on-hand
inventory minus backorders plus outstanding orders arriv-
ing within the expedited lead time le. The optimal pol-
icy is now to expedite parts to retain IPe�tn
 at or above
the level S − Tn�X

�−1
�tn
� Y �tn

. Thus the resulting pol-
icy is a state dependent version of the dual-index policy
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(Veeraraghavan and Scheller-Wolf 2008, Arts et al. 2011,
consider state independent dual-index policies), where reg-
ular and emergency inventory positions are both kept at or
above their order-up-to levels. Note however, that the reg-
ular order-up-to level was assumed to be S from the start
as we are dealing with a closed loop system. Without this
fixed base-stock level, a state dependent dual-index replen-
ishment policy need not be optimal.

The main result of this section is that average optimal
policies also have the structure described in Theorem 1 for
the finite horizon problem. The proof of this result is in
Section EC.2.4.

Theorem 2. Consider the model -4S5. If ce ¾ pƐ6Lr 7,
then it is average optimal to never expedite repair. If ce <
pƐ6Lr 7, then there are state dependent threshold levels
T 4x4−151 y5 ∈�0 such that it is average optimal to expedite
the repair of an arriving defective part at time t if and only
if X14t5 ¾ T 4X4−154t51 Y 4t55. Furthermore these threshold
levels T 4x4−151 y5 satisfy the property in Lemma 1, i.e.,
ãiT 4x

4−151 y5¶ 0 for i = 21 0 0 0 1m.

Theorem 2 also answers a question and conjecture posed
by Song and Zipkin (2009, p. 371): “Are there any sys-
tems for which some policy of the form above is in fact
optimal?” The policy Song and Zipkin (2009) propose is
exactly the policy described in Theorem 2 for the special
case that m= 1. For m¾ 2 one obtains a generalized form
of this policy.

4.4. Infinite Horizon Discounted Optimal
Expediting Policies

The same policy structure results hold for the case where
we are interested in the infinite horizon discounted cost
criterion. In this case we wish to solve

inf
�∈ç

Ɛ�
4x1 y5

[

∫ �

0
e−�t4cp4Xe

T1 Y 4t55

+�Y 4t5ce1
�4X4t51 Y 4t555dt

]

1

where �> 0 is the discount rate and Ɛ�
4x1 y5 is the conditional

expectation given control policy � and initial state 4x1 y5.
Proposition 1 continues to hold with pƐ6Lr 7 replaced by
the expected discounted penalty costs over an interval of
length Lr :

ƐLr

[

∫ Lr

0
pe−�t dt

]

=
p

�
−

p

�
Ɛ6e−�Lr 7=

p

�

(

1−

m
∏

i=1

�i

�i+�

)

0

The last equality holds by observing that Ɛ6e−�Lr 7 is the
Laplace-Stieltjes transform of a sum of exponential random
variables. The MDP recursion can be written in exactly
the same manner as before except that �cost, needs to be
changed to ��

cost2V→V with

��
costf 4x1 y5=

cp4xe
T1 y5

å+�
+

å

å+�
f 4x1 y50

It is readily verified that ��
cost propagates the same prop-

erties as �cost, that is, if f ∈ F then also ��
costf 4x1 y5 ∈ F.

With this change, it is easy to verify that Theorem 2 still
holds, again with pƐ6Lr 7 changed to p/�−4p/�5Ɛ6e−�Lr 7.
Therefore we omit the proof of the following theorem.

Theorem 3. Consider the infinite horizon discounted cost
criterion for model-4S5with discount rate�. If ce ¾ p/�−

4p/�5Ɛ6e−�Lr 7 = p/� − 4p/�5
∏m

i=14�i/4�i +�55, then it
is �-discounted optimal to never expedite repair. If ce <
p/� − 4p/�5Ɛ6e−�Lr 7 = p/� − 4p/�5

∏m
i=14�i/4�i +�55,

then there are state dependent threshold levels T 4x4−151 y5
∈ �0 such that it is �-discounted optimal to expedite repair
at time t if and only if X14t5 ¾ T 4X4−154t51 Y 4t55. Further-
more these threshold levels T 4x4−151 y5 satisfy the property in
Lemma 1, i.e., ãiT 4x

4−151 y5¶ 0 for i = 21 0 0 0 1m.

4.5. Stage Dependent Holding Costs

The holding cost rate for a part is assumed to be h regard-
less of the position of that part in the repair pipeline. In
many settings, value is added to items as they progress
through the repair system. We will model this by consid-
ering an alternate system that is identical to the original
system in all respects except that holding cost is charged
as follows: Parts in stage i of the additional regular repair
time incur holding cost at a rate ĥi (ĥi ¶ ĥi+1). Parts in
the pipeline following additional regular repair incur hold-
ing cost at rate ĥe, and parts on-hand incur holding cost
at rate ĥOH. Let us further denote the penalty cost rate
by p̂ and expediting cost by ĉe for the alternate system.
Finally let Ĉ�4S5 denote the average cost rate of this sys-
tem under expediting policy � and turn-around stock S,
including holding cost rate. The average cost rate for our
original system (also including holding cost rate) are then
denoted by C�4S5. Our model can be used to optimize
Ĉ�4S5 because it is related to C�4S5 by the following trans-
formation (proof is in Section EC.2.5):

Proposition 2. If the cost parameters of the original sys-
tem are given by

h= ĥOH1 ce = ĉe +

m
∑

i=1

ĥOH − ĥi

�i

1 and p = p̂+ ĥOH1

then

Ĉ�4S5=C�4S5− 4ĥOH − ĥe5�̄le − �̄
m
∑

i=1

ĥOH − ĥi

�i

1

where �̄ = limt→�

∑

y∈ä �4Y 4t5 = y5�y is the average de-
mand rate.

5. Optimal Turn-Around Stock Levels
In this section, we focus on the joint optimization of the
turn-around stock S and the expediting policy. We start with
the average cost criterion and address the infinite horizon
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discounted cost criterion with multiple purchasing opportu-
nities in Section 5.1.

Unfortunately, g∗�S
 is not convex in S so that optimiza-
tion of C�S
 is hard and requires enumeration. The example
in Figure 3 shows that C�S
 need not even be uni-modal.
In Section 7.4, we present numerical work for instances
as they are typically encountered in practice. For all these
instances, g∗�S
 is convex and C�S
 is uni-modal. In fact,
a cursory look at Figure 3(a) does not immediately reveal
that C�S
 is not convex. This is typical for all counterex-
amples that we have found.

The optimal turn-around stock, S∗, can be found by enu-
meration and the next proposition gives a property that can
be used to terminate an enumerative search (the proof can
be found in EC.2.6).

Proposition 3. If C�S
� h for some S ∈�0, then S∗ � S.

It is also assuring to note that Vn�x� y �S
 is submodu-
lar with respect to x1 and S so that the need for expedit-
ing decreases as the turn-around stock increases. In case
��� = 1 and m = 1, this fact can be used to efficiently
jointly optimize the turn around stock S and the expedit-
ing policy which is characterized by a single scalar thresh-
old; see Song and Zipkin (2009). The following proposition
makes this formal. Its proof is in Section EC.2.7.

Proposition 4. Let TS�x
�−1
� y
 denote the expediting

threshold that is average optimal under a turn-around stock
level of S at �x� y
 ∈� . Then TS�x

�−1
� y
� TS+1�x
�−1
� y


for all �x� y
 ∈� and S ∈�0, that is, when the turn-around
stock increases, the need for expediting decreases.

Figure 3. The cost-rate C�S
 for the problem instance with Poisson demand with rate �= 3�43, le = 8, m= 1, Ɛ�Lr �=
15, p= 37�2 and ce = 116.
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Notes. Although the fact that C�S
 is not unimodal is not immediately apparent from sub-figure (a), it is apparent from sub-figure (b). Any small deviation
of any of the problem parameters will make C�S
 convex.

5.1. Multiple Purchasing Opportunities

So far, we have considered only a single purchasing oppor-
tunity at the beginning of the horizon. Under the infi-
nite horizon �-discounted setting, this assumption can be
relaxed to allow for multiple purchasing opportunities. In
this section, we show how to do this for the setting with
two purchasing opportunities; see Figure 4. The second
purchasing opportunity is N decision epochs after the ini-
tial purchasing opportunity. (Since the length of a decision
epoch can be tuned by the uniformization constant, N can
be chosen so that the second purchasing opportunity is arbi-
trarily close to a specific time.) We let h1 denote the (dis-
counted) price of a component purchased initially, and we
let h2 denote the discounted price of purchasing a com-
ponent at the second purchasing opportunity. We initially
purchase S1 and at the second purchasing opportunity, we
increase the turn-around stock to S2 � S1. The total dis-
counted cost of purchasing components is then given by
h1S1 +h2�S2 − S1
.

The optimal expected discounted cost associated with
backlogging and expediting can now be computed as fol-
lows. The discounted cost incurred from the second pur-
chasing opportunity until the end of the infinite horizon can
be computed as explained in Section 4.4. Let us denote
the resulting value function by V �

�
�·� · �S2
. Next we use

this value function as the terminal reward function to com-
pute the value functions with n decision epochs to go; 0 <
n�N . Let us denote the expected discounted cost from
the initial purchasing opportunity by V

�
N �x� y �S1� S2
. Now

for a specific initial condition, the total expected discounted
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Figure 4. Situation with two purchasing opportunities.

Initial
purchasing
opportunity

Decision epochs to go untill second (final) purchasing opportunity

Second (final)
purchasing
opportunity

0N

V∞(.,. | S2) = V0(.,. | S1,S2)VN(x,y | S1,S2)

Infinite horizon

� � �

costs are given by C��S1� S2
 = h1S1 + h2�S2 − S1
 +

V
�
N �x� y �S1� S2
. Optimization of a single turn-around stock

purchasing opportunity is already difficult, so the opti-
mization of C��S1� S2
 will have to rely on enumeration.
This idea can easily be extended to multiple purchasing
opportunities.

6. Slowly Fluctuating Environments
Slay and Sherbrooke (1988) provide empirical evidence
that demand for repairable parts is approximately a Poisson
process for short periods of time, but that the demand inten-
sity fluctuates slowly over time. In this section, we study
the behavior of optimal expediting policies when demand
fluctuations are slow. To this end, we will define a system
denoted MMP��) for each scalar � > 0. Relative to our
original model, the environment process Y �t
 is replaced in
MMP��) with the scaled process Y ��t
. Note that if Y �t

has generator Q, then Y ��t
 has generator �Q. Note fur-
ther that the scalar � scales the speed at which the envi-
ronment fluctuates relative to the rest of the model: When
0 < � < 1 the environment fluctuates slower than nomi-
nally. The average cost rate for MMP��) under policy �
is denoted by g�MMP��
, the optimal policy by �∗

MMP��
, and

g∗MMP��
 = g
�∗

MMP��


MMP��
. We also introduce the system P(y) for
y ∈�, which is the original system except that demand is
a stationary Poisson process with rate �y . As before, we
let g�P�y
 denote the average cost rate of P(y) under policy �,
�∗

P�y
 the optimal policy, and g∗P�y
 = g
�∗

P�y


P�y
 . Other than this,
we use the same notation for all the parameters of models
MMP��) and P(y). Furthermore we let �min = miny∈� �y ,
ymin = arg miny∈� �y , ymax = arg maxy∈� �y , ��Y = y
 =

limt→� ��Y �t
 = y
, and �̄ =
∑

y∈� ��Y = y
�y . Note
that �̄ is independent of � because Y ��t
 has the same
stationary distribution for any finite � > 0. One valid inter-
pretation of a Markov modulated Poisson process is that
there is a Poisson process for each y ∈ � and we only
count an arrival of process y ∈ � at time t if Y �t
 = y.
Under this interpretation, we let Py

t1� t2
denote the number of

events generated by the Poisson process corresponding to
state y ∈� in the time interval �t1� t2�, regardless of Y �t
.

We will show in this section that when demand fluctuates
arbitrarily slowly (i.e., as � ↓ 0), the cost of any policy �

for MMP��) converges to a weighted sum of costs for sys-
tems P(y) under the same policy for each y ∈�. We start
our analysis with the following lemma whose proof is in
Section EC.2.8.

Lemma 3. Within model MMP��), for any � > 0, cp�x� y

can be bounded as

Ɛ��P y
t� t+le

− �S− x

+�− �1− e−qyle� 
K1

�
cp�x� y


p
� Ɛ��P y

t� t+le
− �S− x

+�+ �1− e−qyle� 
K2

with K1 and K2 nonnegative constants given by

K1=max
x�M

(

Ɛ��P y
t� t+le

−�S−x

+�−Ɛ��P ymin
t� t+le

−�S−x

+�
)

K2=max
x�M

(

Ɛ��P ymax
t� t+le

−�S−x

+�−Ɛ��P y
t� t+le

−�S−x

+�
)

�

Observe that pƐ��P y
t� t+le

− �S − x

+� is the value of
cp�x� y
 for system P(y). Lemma 3 thus bounds cp�x� y

with respect to the value of cp�x� y
 in a pure Poisson
demand system.

In preparation for the main results of this section, we
will now give an alternative description of system MMP��)
under a given expediting policy � in terms of a collection
of renewal reward processes. To this end let us introduce
the set � x��

rec of all states for X�t
 that are recurrent under
policy �. Observe that this set is unique, because MMP��)
is unichain, as established in the proof of Theorem 2, and
independent of Y ��t
, because if state �x� y
 is recurrent,
then so is �x� y′
 for any y� y′ ∈�. We construct a renewal
reward process for each state �x� y
 ∈� x��

rec ×� as follows:
A renewal occurs for state �x� y
 when the state changes
to �x� y
 because of a change in the modulating chain of
demand Y ��t
. We divide the length of a renewal cycle in
two parts. The first part, denoted U�x� y
, is the time until
Y ��t
 changes state for the first time (after the renewal
point). Note that U�x� y
 is exponentially distributed with
mean �qy�


−1. The second part is denoted W�x� y
 and con-
sists of the time from the first state change in Y ��t
 until
�x� y
 is entered again because of a change in Y ��t
 (the
next renewal point). Observe that W�x� y
 has a phase type
distribution with finite mean.
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The expected reward R4x1 y5 associated with a renewal are
the expected expediting and penalty costs incurred during
the first part, U 4x1 y5:

R4x1 y5
= Ɛ�

4x1 y5

[

∫ �

t=0
e−qy�t4cp4X4t5e

T1 y5

+ce�y1
�4X4t51 y55dt

]

0 (23)

Note that R4x1 y5 can also be interpreted as the total dis-
counted cost for a system facing Poisson demand at rate
�y with discount rate qy� , and a penalty cost rate function
that still assumes the original demand from the MMP4�)
system. A crucial observation is that we now have

g�MMP4�5 =
∑

y∈ä

∑

x∈Sx1�
rec

R4x1 y5

Ɛ6U 4x1 y57+ Ɛ6W 4x1 y57
1 (24)

by the renewal reward theorem (e.g., Ross 1996, Theo-
rem 3.6.1). With these preliminaries, we will state and
prove the main results of this section.

Theorem 4. In system MMP4�5, for any policy �,

g�MMP4�5 →
∑

y∈ä

�4Y = y5g�P4y51 as � ↓ 01

where policy � for system MMP4�5 is mapped to policy �
for system P4y5 by making decisions for state 4x1 y5 in
MMP4�5 coincide with those for state x in system P(y).

Proof. Rewriting (24) we have

g�MMP4�5 =
∑

y∈ä

∑

x∈Sx1�
rec

Ɛ6U 4x1 y57

Ɛ6U 4x1 y57+ Ɛ6W 4x1 y57
︸ ︷︷ ︸

term 1

·
R4x1 y5

Ɛ6U 4x1 y57
︸ ︷︷ ︸

term 2

0 (25)

We will proceed to analyze terms 1 and 2 above as � ↓ 0.
Since the occupancy distribution coincides with the limit-
ing distribution for a Markov chain (e.g., Kulkarni 1999,
Theorem 6.9) we have for term 1 that

∑

x∈Sx1�
rec

Ɛ6U 4x1 y57

Ɛ6U 4x1 y57+ Ɛ6W 4x1 y57
=�4Y = y5 (26)

for any � > 0 and in particular as � ↓ 0.
Now consider term 2 from (25). Using Lemma 3 we have

R4x1 y5

Ɛ6U 4x1 y57

¶ qy� Ɛ
�
4x1 y5

[

∫ �

0
e−qy�t4pƐ64P y

t1 t+le
− 4S −X4t5eT55+7

+p41 − e−qy le�5K2 + ce�y1
�4X4t51 y55dt

]

= qy� Ɛ
�
4x1 y5

[

∫ �

0
e−qy�t

(

pƐ64P y
t1 t+le

− 4S −X4t5eT55+7

+ ce�y1
�4X4t51 y5

)

dt

]

+ qy�
∫ �

0
e−qy�tp41 − e−qy le�5K2 dt

= qy� Ɛ
�
4x1 y5

[

∫ �

0
e−qy�t

(

pƐ64P y
t1 t+le

− 4S −X4t5eT55+7

+ ce�y1
�4X4t51 y5

)

dt

]

+p41 − e−qy le�5K20 (27)

In the same manner, one may find the following lower
bound for term 2:

R4x1y5

Ɛ6U 4x1y57

¾qy�Ɛ
�
4x1y5

[

∫ �

0
e−qy�t

(

pƐ64P y
t1 t+le

−4S−X4t5eT55+7

+ce�y1
�4X4t51y5

)

dt

]

−p41−e−qy le�5K10 (28)

Now we have

lim
�↓0

R4x1y5

Ɛ6U 4x1y57

= lim
�↓0

qy� Ɛ
�
4x1y5

[

∫ �

0
e−qy�t

(

pƐ64P y
t1 t+le

−4S−X4t5eT55+7

+ce�y1
�4X4t51y5

)

dt

]

=g�P4y5 (29)

for every 4x1 y5 ∈ S. The first equality follows from (27),
(28), and the squeeze theorem, the second from Puterman
(1994, Corollary 8.2.5). Combining (29), (26), (25), and the
fact that ä and Sx1�

rec have finite cardinality completes the
proof. �

This result is important: Slow demand fluctuations can
be accounted for by considering a time averaged sum of
stationary problems. Also note that the proof of this result
does not use anything specific about our model other than
the finite state and action space established by Proposition 1
and the bound on the penalty cost function in Lemma 3.
Therefore, this result also holds for other finite state MDPs
subject to MMP input and cost functions that either do not
depend on the dynamics of Y 4�t5 or for which the cost
functions satisfy a condition similar to that in Lemma 3.
The main result of this section is a direct consequence of
Theorem 4 and its proof. The proof is straightforward and
therefore omitted.

Theorem 5. The cost of an optimal policy

g∗

MMP4�5 →
∑

y∈ä

�4Y = y5g∗

P4y51 as � ↓ 00

Furthermore, let �∗
P be the policy for the MMP4�) sys-

tem that takes the same decision in 4x1 y5 as an optimal
policy for system P(y) in state x. Then lim�↓0 g

�∗
P

MMP4�5 =

lim�↓0 g
∗

MMP4�5.

Theorem 5 implies that �∗
P is a near optimal heuristic

expediting policy for sytems where maxy∈ä qy � Ɛ6Lr 7
−1.
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6.1. Value of Anticipating Demand Fluctuations

We will now use Theorems 4 and 5 to show that approxi-
mating demand by a Poisson process when it is in fact an
Markov modulated Poisson process can lead to arbitrarily
bad results. To do this we introduce system BE(�1p1�) (BE
stands for bad example) that is parameterized as follows:

h=11 ce =01 Q=�

(

−1 1
1 −1

)

1 Ë=

(

0
2�

)

0 (30)

Note that the optimal expediting policy for system
BE(�1p1�) is to always expedite because ce = 0. (There-
fore we can (and will) leave Lr unspecified.) We let
g∗

BE4�1p1�5 denote the optimal cost rate associated with back-
logging and expediting for system BE4�1p1�5. Let P4p1�5
denote a system that is identical to E4�1p1�1S5 except that
demand is a stationary Poisson process with mean �. (Note
that the mean demand rate in system BE(�1p1�) is also �.)
We let gP

BE4�1p1�5 denote the backlogging and expediting cost
rate of system BE(�1p1�5 under a policy that is optimal for
system P(p1�); that is under the policy that approximates
the MMP demand process by a Poisson process with the
same mean. Finally let CBE4�1p1�54S5 be the total cost asso-
ciated with system BE(�1p1�), i.e., CBE4�1p1�54S5 = hS +

g∗

BE4�1p1�5. Similarly let CP
BE4�1p1�54S5 be the total cost asso-

ciated by applying the expediting policy that is optimal for
a system with stationary Poisson demand at rate � to sys-
tem BE(�1p1�), i.e., CP

BE4�1p1�54S5= hS + gP
BE4�1p1�5.

Proposition 5. Approximating a Markov modulated Pois-
son demand process by a Poisson demand process with the
same mean can lead to arbitrarily bad performance. In
particular,

lim
p→�

lim
�→�

lim
�↓0

infS∈�0
CP

BE4�1p1�54S5

infS∈�0
CBE4�1p1�54S5

= �0

7. Heuristics
In the previous sections, we have analyzed exact and asymp-
totic solutions to our problem. However, finding the opti-
mal solution involves repeatedly solving a MDP that suffers
from the curse of dimensionality. Furthermore, the optimal
expediting policy is rather intricate, depending on the entire
vector of repair jobs that will not arrive within the expedited
lead time. In this section, we describe several heuristics for
our model that involve a heuristic expediting policy that is
much easier to interpret and that does not impose the same
computational burden. We call this expediting heuristic the
world driven threshold (WDT) heuristic for reasons that will
become clear later. We discuss this heuristic expediting pol-
icy in Section 7.1 and the special case of stationary Poisson
demand models in Section 7.2. Section 7.3 presents several
heuristics for the joint optimization of expediting policy and

turn-around stock. These heuristics use the heuristic WDT
expediting policy.

7.1. World Driven Threshold Policies

Computing the state dependent optimal threshold lev-
els quickly becomes computationally prohibitive as m
increases. A plausible heuristic policy is to aggregate all
orders in X4t5 and to put a threshold expediting level,
T 4y5, on their sum, X4t5eT. This threshold will then only
depend on Y 4t5 and so, borrowing the terminology of
Zipkin (2000), we call such a policy a WDT policy. The
WDT policy satisfies the monotonicity property in The-
orem 2 that ãiT 4x

4−151 y5 ¶ 0. Indeed, observe that the
thresholds (T WDT4x1 y5) of a WDT policy satisfy

ãiT
WDT4x1 y5=

{

−11 if T 4x1 y5 > 0;

01 otherwise.

This is shown graphically in Figure 5, where the optimal
thresholds are shown with the best WDT thresholds. As
before, the most convenient way to interpret Figure 5 is to
think of it as a switching curve: If x1 is on or above the
shown line for some x2, then expedite the repair, otherwise
do not expedite repair.

For m > 1, finding the best WDT policy is about as
difficult as finding an optimal policy since the stationary
distribution of X4t5 under such a policy still requires the
evaluation of an m+1 dimensional Markov chain. A notable
exception, that we discuss in Section 7.2, occurs when
demand is a stationary Poisson process, i.e., �ä� = 1. In
general, for �ä� > 1 and ce < pƐ6Lr 7, we propose the
following heuristic way of finding a good WDT policy.
Instead of working with the 4m + 15-dimensional space,
move to two-dimensional space by approximating Lr by
a single exponential phase with the same mean �1 = � =

1/Ɛ6Lr 7. Then we are left with a two-dimensional space
for which we can easily solve the resulting MDP to opti-
mality using any common algorithm to solve finite state
and action space MDPs.

The WDT policies that result from this procedure are not
necessarily optimal within the class of WDT policies and
the computed cost is not exact but an approximation. Since
the system under study is equivalent to a type of ample
server queue, we may expect this approximation to be quite
accurate. In the next subsection, we show that this approach
is exact for Poisson demand and in Section EC.3, we pro-
vide numerical evidence that WDT policies that are found
in this manner perform exceptionally well compared to
optimal policies under Markov modulated Poisson demand.

7.2. Special Case: Poisson Demand

Now we consider the evaluation of WDT policies for the
special case where �ä� = 1, so that we are dealing with
stationary Poisson demand. We termed this system P(y) in
Section 6 when demand intensity is �y . With a slight abuse
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Figure 5. Optimal and heuristic policies.
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Notes. Part (a) shows the optimal state dependent threshold in conjunction with the best WDT policy for the case with �= 1, Ɛ�Lr �= 4, le = 2, p= 10,
ce = 8, S = 8 and m= 2. Part (b) shows the optimal state dependent threshold in conjunction with the best heuristic policy for the same case except S = 12.

of notation we now call such a system P(�) when demand
intensity is �. In this case, the evaluation of a WDT policy
can be done exactly for any distribution of Lr in closed-
form using the results of Song and Zipkin (2009). (In this
context, it might be appropriate to refer to a WDT policy
simply as a threshold policy. For convenience, we use the
name WDT policy also in this context.) Alternatively, one
may simply observe that under such a policy, X�t
eT has
the same stationary distribution as the number of customers
in an M/G/c/c queue, where the number of servers c is set
equal to the threshold T and the service time is distributed
as Lr . In this equivalence, a customer being blocked from
the queue because all T servers are busy corresponds to a
repair being expedited because there are T or more parts
that will not arrive within le. The average expediting and
backorder penalty cost rate for such a policy with thresh-
old level T and base-stock level S, gP��
�S� T 
 is therefore
given by

gP��
�S� T 
 = �ceB�T ��Ɛ�Lr �


+

T
∑

x=0

cp�x �S

��Ɛ�Lr �


x/x!
∑T

k=0��Ɛ�Lr �

k/k!

� (31)

where B�c��
 = ��c/c!
/�
∑c

k=0 �
k/k!
 is the Erlang loss

function with c servers and traffic intensity �, and
cp�x �S
= cp�x�1 �S
. Expression (31) also reveals that the
performance of a WDT policy is insensitive to the distri-
bution of Lr for the special case of Poisson demand. This
insensitivity does not hold for Markov modulated Poisson
demand. However, as a direct consequence of Theorem 4,
this insensitivity does hold for system MMP��) as � ↓ 0.
In Section EC.3, we provide evidence that the performance

evaluation of a WDT policy is nearly insensitive to the
exact distribution of Lr for Markov modulated Poisson
demand processes.

7.3. Joint Optimization Heuristics

We propose the following heuristics for the joint optimiza-
tion of stocking level and expediting policy using the WDT
expediting policy of Section 7.1.
• E-WDT heuristic: The E-WDT heuristic greedily opti-

mizes C�S
 where we approximate Lr as being exponen-
tially distributed by setting m= 1 and �1 = �= 1/Ɛ�Lr �.
This simple heuristic ignores that Lr may not be exponen-
tial and that C�S
 may not be convex.
• POIS-ASYMP heuristic: Theorem 5 shows that that as

fluctuations occur arbitrarily slowly, the optimal expediting
policy when Y �t
 = y coincides with the expediting pol-
icy that is optimal for P(y). Therefore the POIS-ASYMP
heuristic finds S and T �y
 for all y ∈ � by greedily
minimizing

CPOIS-ASYMP�S� T �1
� � � � � T ����



= hS+
∑

y∈�

��Y = y
gP��y

�S� T �y

�

where gP��y

�S �T �y

 is the cost of applying a WDT expe-

diting policy with threshold T �y
 in a system with Poisson
demand with rate �y; see (31). Since CPOIS-ASYMP�S� T �1
�
� � � � T ����

 has a closed-form, this is easy to implement.
The expediting policy is the WDT policy characterized by
T �y
 for y ∈�.
• POIS-AVG heuristic: An easy, but naive, heuristic

is to ignore entirely that demand fluctuates. The POIS-
AVG heuristic does exactly this by greedily minimizing
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Table 1. Average and maximum percentage optimality
gaps for different heuristics.

Heuristic E-WDT POIS-ASYMP POIS-AVG POIS-MAX

AVG 0.11 0.33 12.81 11.66
MAX 0.76 2.37 68.1 26.35

CP4�̄54S1 T 5 with �̄ =
∑

y∈ä P4Y = y5�y . The WDT expe-
diting policy then has a single threshold T independent
of Y 4t5. Proposition 5 shows that this heuristic can turn out
arbitrarily bad. Its most important merit is its simplicity.

• POIS-MAX heuristic: Another easy, and seemingly
prudent, policy is to account for demand fluctuations by
optimizing for peak demand. The POIS-MAX heuristic
does this by greedily minimizing CP4�max5

4S1 T 5. Here too,
the expediting policy has a single threshold T independent
of Y 4t5.

7.4. Numerical Results

We report extended numerical result in Section EC.3,
including a detailed description of our test-bed of 512
problem instances, and simulation results for different dis-
tributional assumptions on Lr . This section only reports
aggregate statistics of percentage optimality gaps of the
heuristics in Section 7.3 in Table 1. The E-WDT heuristic
is the most sophisticated and performs very well with an
average gap of 0.11% and maximum gap of only 0.76%.
Nevertheless, the POIS-ASYMP heuristic performs almost
as well and requires only the optimization of a closed-form
expression. The POIS-AVG and POIS-MAX heuristics per-
form quite poorly. Proposition 5 already suggested that
POIS-AVG can perform quite poorly and optimality gaps
up to 68.1% confirm this. This shows that there is great
value in leveraging knowledge about demand fluctuations
when making expediting and stocking decisions.

Finally, the results show that although the optimal pol-
icy uses information about the progress of orders in the
pipeline, the E-WDT and POIS-ASYMP heuristics that
ignore this information perform quite well. This suggests
that order progress information has limited value beyond
knowing whether an order will arrive within le time units.
At the same time, the value of information about demand
fluctuations that is ignored by the POIS-AVG and POIS-
MAX heuristics appears to be very important for good
performance.

8. Conclusion
In this paper, we have considered the joint problem of find-
ing the best turn-around stock and expediting policy for
repairables that experience fluctuating demand. We have
confirmed a conjecture by Song and Zipkin (2009) regard-
ing the form of the optimal expediting policy and pro-
posed the WDT expediting policies that perform well and
are computationally tractable. We have shown that when
demand fluctuates slowly, the performance of the system

can be written as a weighted sum of the performance of
systems facing stationary Poisson demand. Numerical and
analytical results show that there is great value in lever-
aging knowledge about demand fluctuations when making
expediting and stocking decisions.
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