
 

Repositório ISCTE-IUL
 
Deposited in Repositório ISCTE-IUL:
2023-07-24

 
Deposited version:
Accepted Version

 
Peer-review status of attached file:
Peer-reviewed

 
Citation for published item:
Freire, D. L., Mazzonetto, A., Frantz, R. Z., Roos-Frantz, F., Sawicki, S. & Basto-Fernandes, V.
(2021). Performance evaluation of thread pool configurations in the run-time systems of integration
platforms. International Journal of Business Process Integration and Management. 10 (3-4), 318-329

 
Further information on publisher's website:
10.1504/IJBPIM.2021.124036

 
Publisher's copyright statement:
This is the peer reviewed version of the following article: Freire, D. L., Mazzonetto, A., Frantz, R. Z.,
Roos-Frantz, F., Sawicki, S. & Basto-Fernandes, V. (2021). Performance evaluation of thread pool
configurations in the run-time systems of integration platforms. International Journal of Business
Process Integration and Management. 10 (3-4), 318-329, which has been published in final form at
https://dx.doi.org/10.1504/IJBPIM.2021.124036. This article may be used for non-commercial
purposes in accordance with the Publisher's Terms and Conditions for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in the Repository

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1504/IJBPIM.2021.124036




2 Daniela L. Freire et al.

services. Software ecosystems, made up of these applications and services, have
become even more heterogeneous, increasing the need for integration amongst
them, so that they work in a synchronised manner and support business
processes. However, many of these applications still need to be adapted to
operate in the context of cloud computing, maintaining or improving the same
performance, which they achieve by running locally [21, 29, 33]. Performance
is a dominating user requirement in the software enterprise and is probably
the most studied quality attribute in the software quality field [8].

The integration Platform as a Service (iPaaS) is an example of software
provided as a cloud service. Adopting iPaaS lowers the maintenance and
operations costs of local integration platforms and is, therefore, a good fit for
small and mid-sized businesses that need to integrate the business processes
without increasing their costs [10]. Integration platforms are specific tools
that allow the design, execution and monitoring of integration processes. Such
processes orchestrate applications and services such that data are synchro-
nised and new functionalities are developed on top of what currently exists,
with minimal impact [17]. Generally, integration platforms provide a domain-
specific language, a development toolkit, a testing environment, a monitoring
tool, and a run-time system. The domain-specific language allows the creating
conceptual models for the integration process, whose level of abstraction
facilities the understanding of the problem. The development toolkit consists
of a set of tools for the implementation of the process, i.e., the conversion of
the conceptual model into executable code. The testing environment allows
performing tests in the entire integration process to mitigate or eliminate
possible inadequacies in the implementation. The monitoring tool aims to
monitor the operation of the integration process and detects errors in run-
time. The run-time system provides all the support required to execute these
integration processes. An integration process carries out a workflow made up
of distinct atomic tasks that process data, encapsulated within the messages,
which flow through the process. The tasks of the integration process are
executed by threads, which are present in the run-time system grouped in
thread pools.

Our literature review has found that most integration run-time systems
adopt a single thread pool, which is usually e�cient with low amounts of
messages. However, when the number of messages increases, the total execution
time of the processes also increases [40]. The addition of threads is the approach
usually adopted, but this alternative increases the financial costs of the
enterprises, especially in the context of cloud computing, whose billing system
where value is proportional to the consumption of computational resources.
Besides, there is a saturation point, from which the increase in the number of
threads will not bring any benefit, and may even degrade the performance of
the run-time system [37, 27, 30].

Recent research proposes an optimal configuration to local thread pools
using Particle Swarm Optimisation (PSO) [18] to the execution of tasks of
integration processes by run-time systems of integration platforms. However,
this study did not compare the traditional configuration that uses a global



Title Suppressed Due to Excessive Length 3

thread pool with the proposal configuration that uses local thread pools.
Our article extends this previous work [18] to fill this lack and, thus, to help
researchers and practitioners with arguments that allow a chose of the more
adequate thread pools configuration model in di↵erent scenarios of message
processing by integration platforms. We simulate the behaviour of a real-world
integration process executed both global and local thread pools, submitted
to high workloads. The results show that the local thread pools optimised
provided a lower average total time of message processing than the global
thread pool, been this di↵erence directly propositional to workload. For that,
we used rigorous statistical techniques to validate the results found.

The rest of this article is organised as follows: Section 2 discusses related
work; Section 3 provides background information on the run-time system and
the thread pool configuration models; Section 4 formulates the performance
metric and objective function; Section 5 describes a study case; Section 6
reports our simulation; and, Section 7 presents our conclusions.

2 Related Work

In this section, we discuss related work that simulations and report ex-
periences regarding performance analysis and thread pool configuration. It is
possible to divide these works according to their goals, such as, performance of
power transmitting systems, the performance of web-based software systems,
load balancing and fault detection.

Braun and Krus [11] presented an automatic approach for parallel continuous-
time simulation of tightly coupled power transmitting systems destined for in-
dustrial problems. They developed an automated algorithm for partitioning the
distributed system models for multi-core processors with proper load balancing
and another synchronisation algorithm for running several simulation threads
concurrently. Ágnes Bogárdi-Mészöly and Rövid [9] proposed mathematical
models, in the form of di↵erence equations by subspace identification, to
simulate the behaviour of thread pools and queued requests to predict the
performance of web-based software systems. Pasha et al. [31] presented a
simulation framework for code-level energy estimation. The framework has
an instruction-level power estimator module that estimates the average power
consumption of individual machine instructions simulated using gate-level net-
lists of the target processors. In addition, it has a high-level energy estimation
module parses the assembly code written for a target processor and gives
the estimated energy consumed while taking the inherent data and control
dependencies into consideration. Ahmad et al. [1] proposed an approach
for performance testing of web applications that place the worst path of
sequences of user interactions, subject to a workload model that demands high
resource utilisation on the system under test. They presented an exact and an
approximate method for detecting the worst path in the workload model and
analysed the performance of both analytically and empirically. Altmann et al.
[3] investigated the value creation for providers and users of software service



4 Daniela L. Freire et al.

platform at di↵erent levels of interoperability under an economic approach.
Their goal was to provide a knowledge of how investments in interoperability
and portability impact cost, enable cost-e↵ective service integration and create
value, as well as design new strategies for optimising investments for platform
providers. Bahadur et al. [4] presented a distributed framework that tunes
the thread pool systems based on request arrival rate and balances the load
between nodes of distributed systems. Besides, the framework adjusts the
thread pool size, when its overload control mechanism detects throughput fall
caused by the increase of requests. Tarvo and Reiss [38] presented an approach
for design performance models of multithreaded programs using hierarchical
discrete-event models, in which each tier of the model simulate a factor that
impact the performance of programs and the interaction between the model
tiers simulates the mutual influence of these factors on performance. Jeon
and Jung [25] proposed an approach that optimises thread pool management
by controlling the number of threads in the handler thread pool according
to the number of received packets. They aimed to increase the performance
concerning the speed of processing of the requests, by adjusts the number of
threads and throughput according to the number of packets, the capacity of
the queue, and retransmission time of each packet in IoT networks. Stetsenko
and Dyfuchyna [36] designed a model of the multithreaded algorithm using
Petri-object simulation technology based on stochastic Petri net and object-
oriented approach. The model o+9-6f a thread pool was developed to prove
the relationship between algorithm complexity, computing resources and pa-
rameters of the thread pool. [12] propose a model for parallel real-time tasks
implemented with thread pools and with blocking synchronization mechanisms
to meeting precedence constraints. The work compares the proposed analysis
approaches with prior work to evaluate the schedulability due to reduction of
concurrency. Berned et al. [6] propose a generic methodology for to rightly
tune the number of threads according to the application, using learning
algorithms in static strategics, by inferring the execution behaviour of parallel
applications. The work compares the performance and the energy consumption
of the execution of the applications using the number of threads found by their
learning algorithm with a dynamic one.

The purpose of our article is di↵erent from the others because it aims to
evaluate the performance of run-time systems of integration platforms using
two distinct thread pool configuration models: global and local thread pool. In
Table 1, we summarised the works related to performance analysis and thread
pool configuration.

3 Background

In this section, we present an overview of integration processes and run-
time systems of integration platforms. After, we describe the main thread pool
configuration models: global and local.



Title Suppressed Due to Excessive Length 5

Table 1 Related works comparison.

Work Research field Goal
Braun and Krus [11] Power systems Load balancing and synchronisation

Ágnes Bogárdi-Mészöly and Rövid [9] Software system Prediction performance

Pasha et al. [31] Power systems Prediction of power consumption

Ahmad et al. [1] Software system Prediction performance

Altmann et al. [3] Software system Interoperability

Bahadur et al. [4] Distributed system Load balancing

Tarvo and Reiss [38] Software system Prediction performance

Jeon and Jung [25] IoT networks Increase the performance

Stetsenko and Dyfuchyna [36] Software system Prediction performance.

Casini et al. [12] Software system Evaluation of schedulability

Berned et al. [6] Software system Energy consumption

[Our proposal] EAI Evaluation of performance

3.1 Integration Process

An integration process is a computational program that allows the ex-
change of data and functionalities amongst a set of applicationsA = A1, A2, ..Ak.
Its conceptual model is a workflow composed of set of tasks T = T1, T2, ..Tn

connected by «communication channels». Data, wrapped as «messages», flow
through the workflow. A message has a header and a body. The former
carries data custom properties, and the latter, the payload data. A message
is transformed into one or more messages in its processing in the workflow.
Usually, there are more of one path that a message can follow into a workflow.
Figure 1 depicts a conceptual model of an integration process. Small rectangles,
identified with a letter «T», represent tasks. Arrows linking tasks represent
communication channels. Rectangles outside the integration process, identified
with a letter «A», represent applications. Dark small rectangles and arrows
highlight one possible path to this process.

A

A

T

T

T

T

T T

A

A

A

TT TT TT

TT

TT

TT TT TT

TT TT

1

2

3

4

5

1 2 3

4

5

6 7 8

9 10

14

15 1612 11

13

Fig. 1 Integration process conceptual model.



6 Daniela L. Freire et al.

Each task implements an integration pattern, which represents an atomic
operation that transforms, filters, splits, joins or routes messages. Messages
arrive into a task by one or more inputs, as well as messages leave by one or
more outputs of tasks, according to the operation that they implement. The
tasks are arranged in order of dependence in which must be executed. Thus,
a message only can be processed by a task after this message has already
processed by every predecessor task of a path. After a task processes a message,
it is written to the communication channel that connects this task with the
next tasks of the path. The workflow usually has parts that can be executed
in parallel, obeying the order of dependence in an integration process.

3.2 Run-time System

The run-time system is the component of the integration platform respon-
sible for the execution of integration processes. Usually, it has a scheduler, task
queue, thread pool, and monitors. The schedule is the main element since it
manages and orchestrates the activities of the other elements. The task queue
maintains the tasks that wait for threads to execute them. Thread pools are
groups of threads that perform tasks. Monitors control frequency and logging
system to notify about warnings and errors.

The execution model of a run-time system settles the execution way of the
integration processes, sequencing tasks and allocated threads. In our article,
we address the execution model task-based that treats task instances, i.e. tasks
assigned to execution by a thread. In this model, a task is considered ready to
be executed when there are messages in all their inputs. However, when there
is no available thread, the task waits in a queue. When there is an available
thread, it iteratively polls the task queue and selects a task instance to execute
it.

The thread pool configuration model of a run-time system determines the
way how threads are grouped. We approach two kinds of configuration model:
global and local thread pool.

In the configuration model of the global thread pool, there is a single task
queue and a single thread pool to all the tasks of the integration process. All
threads are responsible for executing the instances of the first task, processing
the incoming messages that arrive at the input channel of the first task. Only
when all messages finish their processing by a task, it is that the messages
begin to be processed by the subsequent task.

In the configuration model of the optimised local thread pool, there is
a task queue and thread pool for every task. In the proposal of [18], the
number of threads in each local thread pool is determined by an optimisation
algorithm whose objective function is to minimise the average total processing
time of incoming messages per unit time. Each thread pool is responsible by
the execution of the instances of an only task to which it is dedicated. In
this way, the initial message load are arriving at the channel of the first task
is processed in the pool responsible by the first task. Thus, when a message



Title Suppressed Due to Excessive Length 7

finishes being processed by a task, it can already be processed in the successor
task as long as there are available threads in the dedicated pool to perform
this next task.

4 Objective Function

Execution time and processing time are generally used as performance
metrics for systems. This section, we describe mathematical models for these
metrics involved in message processing in an integration process. After, we
define the objective function used to minimise these times.

The processing time TPti of a task ti of the integration process is calculated
by the sum of its execution time TEti with its waiting time in the queue TFti ,
c.f. Equation 1.

TPti = TEti + TFti (1)

Makespan is the most extended time interval between the start and end
of processing a message within an integration solution [2], [7]. We propose an
analytical model for makespan of integration processes, in each one of thread
pool configuration models, considering the non-variation of the processing time
of tasks. For the global thread pool model, the makespan can be calculated by
Equation 2. For the local thread pool model, the makespan can be calculated
by Equation 3, where to, tmessages is the total number of message, totthreads is
the total number of threads, Tottasks is the total number of tasks, and ↵ is a
constant equals one, when the mod of the integer division of the total number
of message by the total number of threads is greater than zero, and, otherwise,
↵ equals zero.

makespanglobal thread pool =

✓
totmessages

totthreads
+ ↵

◆
·
tottasksX

i=1

TPti

↵ =

(
1, if totmessages

totthreads
> 0,

0, otherwise.

(2)

makespanlocal thread pool =
tottasksX

i=1

✓
totmessages

totthreads(ti)
+ ↵i

◆
· TPti

↵i

(
1, if totmessages

totthreads(ti)
> 0,

0, otherwise.

(3)

We define makespan average by the division of the makespan by the total
number of messages, cf. Equation 4.

makespan =
makespan

totmessages
(4)



8 Daniela L. Freire et al.

The objective function seeks to minimise the makespan average and this
formulation is represented by Equation 5:

Minimise {makespan} (5)

5 Study Case

In this section, we describe the case study used in our experiment. It
involves a real-world integration problem whose objective is to improve the
call centre application at Unijúı University, by automatisation of the charge
of personal phone calls by means phones of the university. Every call has an
access code that identifies who employee. The call is registered to future debt
in the wages of employees. Employees can be notified about their calls and
their respective charges both by e-mail and short message service (SMS).

5.1 Software Ecosystem

The software ecosystem is composed of five applications that were designed
without integration concerns in mind; their data layer makes the interaction
with them. Figure 2 shown the integration process and the applications: Call
Centre, Human Resources System, Payroll System, Mail Server, and SMS
Notifier. The Call Centre records every call every employee makes from a
university belonged phone. The code is also used to correlate phone calls with
the information in the Human Resources System and the Payroll System.
The Human Resources System supplies personal data concerning employees,
and the Payroll System computes their wages. The Mail Server and the SMS
Notifier notify employees about their charges. The former provides e-mail
service and the later o↵ers short message system services. There are 16 tasks
identified with Ti, where i ranges from 1 to 16. The T1 is an input task, in
which messages are firstly processed. The T5 is a task that solicits and receives
data of the Human Resources System application. The T10, T1 and T16 are
output tasks, in which messages are lastly processed.

5.2 Computational Model of Simulation

To simulate the execution with both thread pool configuration (global
and local), we implemented two computer programs, whose source codes are
publicly available for download 1. The first program simulates the execution of
the tasks through a global thread pool and the second simulates the execution
of the same tasks through the optimal local thread pool model. For the global
thread pool, we have implemented an algorithm that calculates the makespan
by Equation 2, after, we calculates the makespan average by Equation 4. For

1 https://github.com/gca-research-group/Simulation-ThreadPoolConfig.git

https://github.com/gca-research-group/Simulation-ThreadPoolConfig.git


Title Suppressed Due to Excessive Length 9

T12 T11

T14

T15

TT1 TT2 TT3

TT4

TT5

TT6 TT7 TT8

TT9

TT10

Mail 

Call Centre
System

Human
Resources

System

Payroll
System

SMS

T16T13

NofierServer

Fig. 2 Integration process real-world.

optimal local thread pool model, we use the implementation of the algorithm
based on the metaheuristic PSO, which finds the best thread configuration
for local pools [18], calculates the makespan by Equation 3 and the makespan
average by Equation 4. In both cases, the number of threads is the same,
i.e., the number of threads in the global thread pool is equal to the sum of
the number of threads in the local pools. The input parameters for the two
programs are (1) total number of threads, (2) the total number of incoming
messages (workload), and (3) vector containing the processing times of the
tasks. In this last input parameter (3), the number of columns in the vector
defines the number of tasks to be performed, and the column index denotes
the order of execution.

The programs generate an array with the final processing times of each
message for each of the tasks of the flow. The array row index represents the
executed task, and the column index represents the message. The makespan
average is calculated by the arithmetic average of the final message times in
the last flow task. The program graphically shows the sequence of message
processing in the tasks and returns the makespan average. In the case of the
optimal local thread pool model, it also returns the optimal configuration of
the pools.

6 Experimental Results

In this section, we present the experiment that compares two implemen-
tations of algorithms concerning the performance of the execution in an
integration process by the global and local thread pool configuration models.
First, we describe the environment in which the experiment was carried out



10 Daniela L. Freire et al.

and present the scenarios used and, the observed variables. Next, we report
and discuss the results obtained in each model.

Simulation in multithreaded architectures allows the evaluation of mul-
tithreading techniques and their influence on performance as well as the
investigation of the dependence between the performance and characteristics
of di↵erent numbers of messages [39]. We used the protocols of procedures
for controlled experiments in the engineering studies field indicated by [23],
[42], and [5]. Besides, we followed the guidelines of literature, which claim that
statistical theory must be used to validate results from experiments on perfor-
mance [20] because the statistic deals adequately with the non-determinism
factors present in computational systems, such as run-time systems [16]. Thus,
we used ANOVA [41] and Scott & Knott [35] statistical techniques to validate
the results. Every step of the experiment and its validation is detailed in the
following sections.

6.1 Research Questions and Hypothesis

Our experiment answer the following research question:

RQ: In a high number of messages, is the performance of the execution
of integration processes better using a thread pool configuration of the
optimised local model than using the global model?

We provide a hypothesis that has to be confirmed or refuted by the
experiment, respectively:

H: In a high number of messages, the performance of the execution of inte-
gration processes using an optimal local thread pool model is better than
using the global model.

6.2 Environment and Support Tools

The experiments were conducted on a machine containing with 16 proces-
sors Intel Xeon CPU E5-4610 V4, 1.8 GHz, 32GB of RAM, and operating
system Windows Server 2016 Datacenter 64-bits. The Matlab [28] software,
version R2018, was used to create and execute the algorithms. The Genes [13]
software, version 2015.5.0, was used to process the descriptive statistics,
ANOVA and Scott & Knoot techniques for the makespan measured in this
study.

6.3 Variables

The independent variables are:

Number of threads. The number of threads that can be distributed to the
thread pools. The value for this variable was 100 threads.



Title Suppressed Due to Excessive Length 11

Number of messages. The total number of incoming messages (workload).
The values for this variable were 102, 103, 104, 105, and 106.

Thread pool models. The model for thread pool configuration. The values
for this variable were global and optimal local.

The dependent variables are:

Makespan average. The meantime, a message takes to be processed by all
tasks that compose the longest path of the integration process.

6.4 Execution and Data Collection

The execution of the algorithms was conducted using the longest path of
the integration process, highlighted in Figure 2, aiming to evaluate how the
processing performs under an increased number of messages triggered by the
worst-case scenario. Table 2 shows the times, in milliseconds (ms), for every
task of the path, obtained from the execution of the actual implementation of
the integration process and supported from the literature [22].

Table 2 Processing times of tasks.

Task Execution Time Waiting Time Processing Time

t1, t9 0.005 2 2.005

t2, t11, t14 0.003 1 1.003

t3, t8 0.553 1 1.553

t4, t7, t10, t12, t13, t15, t16 0.005 1 1.005

t5 0.005 4 4.005

t6 0.004 1 1.004

The literature classified the experiment as a termination simulation, where
the experiment output is express as a function of the initial conditions. Usually,
the method of the repetitions, with a repetitions number between 20 and 30,
is adopted for statistical analysis of the results. This repetitions number is
su�cient to obtain a population mean, considering distributions with more
extreme values that a normal distribution [34]. We used 200 di↵erent scenarios,
which are synthesised, cf. Table 3. We executed the algorithms by setting the
input parameters:

– Total number of threads: 100.
– Total number of incoming messages: 102, 103, 104, 105,and 106.
– Processing time vector: [2.005; 1.003; 1.553; 1.005; 4.005; 1.004; 1.005;

1.553; 2.005; 1.005; 1.003; 1.005; 1.005; 1.003; 1.005; 1.005]

We considered the execution algorithm and the number of tasks of the
integration process, thus considered that 10 is a reasonable number to amount
of solutions tested by algorithm of optimisation of the optimal local thread
pool model. The execution of each algorithm was repeated 20 times for every



12 Daniela L. Freire et al.

number of messages. In every execution, we collected the makespan average
processing time and the time that each algorithm consumed to execution. We
exported the data collected to a spreadsheet application, where we analysed
them to build the mathematical model and charts.

Table 3 Scenarios tested.

Number of Number of Thread pool Number of:

threads: messages: models: repetitions:

«100» «102, 103, 104, 105, 106» «global and local» «1, 2, ..., 20»
1 5 2 20

Total of scenarios: 1 x 5 x 2 x 20 = 200

6.5 Results

In this section, we present and discuss the results of the experiment. Line
charts present the average of the makespan measured in 20 execution of each
algorithm, cf. Figure 3. The x-axis represents the number of messages, and the
y-axis represents the makespan average, in milliseconds (ms). The rectangles
represent the di↵erence between the makespan of using the global and local
thread pool configuration. This di↵erence was 2.105 ms for 102 messages,
21.282 ms for 103 messages, 212.878 ms for 104 messages, 2129.206 ms for 105

messages, and 14209 ms for 106 messages. The table below chart of Figure 3
shows the average of the makespan measured in each number of messages. In
the first line are the averages of the makespan measured using the global thread
pool configuration and in the second line are the averages of the makespan
measured using the local thread pool configuration optimised.

102 103 104 105 106

Global 2.216 22.169 221.69 2216.9 22169
Local 0.111 0.886 8.81 87.6 7960

0

5 000

10 000

15 000

20 000

25 000

M
ak

es
pa

n 
Av

er
ag

e 
(m

s)

2.105 21.282
2129.206

212.878

14209.000

Number of messages

Fig. 3 Makespan average.



Title Suppressed Due to Excessive Length 13

The variance analysis statistical technique allows the evaluation of the
di↵erence of the variations in the makespan average, which derived from thread
pool configuration models and the ones that caused by other random factors,
named error. Table 4 presents the analysis of variance of the makespan average.

The total of results was calculated upon the multiplication of the number
of repetitions, by the number of configuration models, cf. Equation 6. In our
case, Total results = 20 · 2 = 40. The total of results minus 1 calculates the
total freedom degree, cf. Equation 7. In our case, dftotal = 40 � 1 = 39. The
degree of freedom of the configuration models is calculated by the number of
possible values of configuration models tested subtracting 1, cf. Equation 8.
In our case, dfmodels = 2� 1 = 1. The degree of freedom of error is calculated
by the di↵erence between total freedom degree and the degree of freedom of
models, cf. Equation 9. In our case, dferror = 39� 1 = 38.

Total results = repetitions · number of models (6)

dftotal = total results� 1 (7)

dfmodels = number of models� 1 (8)

dferror = dftotal � dfmodels (9)

The analysis of variance of the makespan average shows the average
square of 4412.04 for the thread pool configurations models and 200.83 for
error. The overall average was equal to 39.99 seconds, and the coe�cient of
variation (cv) was 35.43 %. Coe�cient of variation is a standardised measure
of the dispersion of a probability or frequency distribution, which shows the
spread of the variability of the data relative to the mean. This measure is
capable of comparing results from di↵erent works involving the same variable-
response, making it possible to quantify the precision of the research [26],
[19]. Parameters of the experiment, such as the number of repetitions and
experimental design influence the experimental error But, in similar conditions,
the lower the coe�cient of variation, the more accurate is the experiment with
lower [19].

Table 4 Variance analysis of the makespan average.

Sources of
variation

Degree of
freedom

Average square
Number of messages

10
2

10
3

10
4

10
5

10
6

Thread pool model 1 44.31
†

4529.33
†

453170.98
†

45335191.48
†

2018956810
†

Error 38 0.0001 0.0182 1.4809 183.96 2375092.10

Total 39

Overall average 1.16 11.52 115.25 1152.29 15064.50

Coe�cient of variation (%) 0.85 1.17 1.05 1.17 10.23

† significant statistical by Fisher-Snedecor’s Probability and error level of 5%.



14 Daniela L. Freire et al.

Scott & Knoot technique is widely adopted in performance experiments
because it is simple. The literature considers this technique rigorous because
it only considers relevant di↵erences between the experimented alternatives. In
this case, the alternatives are the two models of thread pool configuration. The
Level of significance is a parameter used in the Scott & Knott algorithms to
create the groups of averages, which the default value is 0.05. This parameter
helps to measure the relevance of the di↵erence between the alternatives [24].
Usually, this technique is used when the analysis of variance indicates signif-
icant statistical between the dependent variable. It allowed the identification
of the e↵ect in the use of every model of thread pool configuration in the
makespan average, cf. Table 5. For every number of messages, there are two
columns: «Average» and «Group». «Average» presents the makespan average
in the 20 repetitions. «Group» classifies the makespan averages, where groups
of the di↵erent letter are statistically di↵erent between themselves. There were
two groups «a» and «b». In «a» group is the thread pool model with the
highest makespan average and, in «b» group is the thread pool model with
the lowest makespan average.

Table 5 Average of makespan by Scott & Knott technique.

Thread pool
model

Makespan average & Group
Number of messages

10
2

10
3

10
4

10
5

10
6

Global 2.2169 a 22.169 a 221.69 a 2216.90 a 22169 a

Local 0.119 b 0.8868 b 8.8119 b 87.69 b 7960 b

Error level of 5% by the Scott & Knoot technique.

6.6 Discussion and Comparison

Analysing all numbers of messages tested, we realised that the makespan
average achieved with local thread pool configuration optimised model is
lower than that obtained with the global thread pool. Figure 3 shows that
as greater the number of messages as greater is this di↵erence between the
makespan averages. Figure 4 shows the di↵erence of makespan average as a
function of the number of messages and an approximation found by linear
regression, represented by a dotted line. This approximation is an exponential
function, described by Equation 10, where totmessages is the total number
of message. This equation indicates that this di↵erence exponentially grows
when the number of messages grows. The correlation coe�cient, better known
as R2, allows the determination of the degree of linear correlation of variables,
considering regression analysis. Thus, the closer the R2 is of the 1, the exacter
the mathematical model will be. For Equation 10, the R2 equals 0.9986
indicates the mathematical model is a reliable approximation.

makespan = 0.248 e2.224·totmessages (10)



Title Suppressed Due to Excessive Length 15

2.11 21.28 212.88

2129.21

14209.00

0

3 000

6 000

9 000

12 000

15 000

Di
ffe

re
nc

e 
of

 m
ak

es
pa

n 
Av

er
ag

e
(m

s)

Number of messages
102 103 104 105 106

Fig. 4 Di↵erence makespan average.

The analysis of variance reported confirmed that the local thread pool
optimised generates a significant improvement in makespan average in every
scenario tested. The low values for coe�cients of variation indicated the
adequacy and reliability of the experiment. In The Scott & Knott averages
comparison technique, the lowest makespan averages occurred with the local
thread pool optimised in every scenario tested, cf. Table 5. The largest
di↵erence between makespan was 14209 ms when the number of messages was
106. In this table, groups of di↵erent letters indicate that there is a di↵erence
statistically between them. The makespan average using the global thread
pool, which belongs group «a», is di↵erent statistically compare to makespan
average using local thread pool optimised, which belongs to group «b».

6.7 Threats to Validity

According to Cruzes and ben Othman [14], validity threats are presented
in any empirical researches. We sought to identify the possible causes of
disturbance in the experiment and tried to mitigate these threats. We discuss
the validity threats, separating into constructor, conclusion, internal, and
external validity.

6.7.1 Constructor Validity

To deal with constructor validity threats, we studied previous articles [18]
and based our experiment based on the procedures from empirical software
engineering presented by Jedlitschka and Pfahl [23], Wohlin et al. [42],
and Basili et al. [5]. We gather information about the execution environment,
supporting tools, variables, execution and data collection. Then, we design
the experiment with 200 di↵erent scenarios and used statistical techniques to
validate the experimental results.



16 Daniela L. Freire et al.

6.7.2 Conclusion Validity

According to Feldt and Magazinius [15], conclusion validity refers to the
assurance that the treatment used in the experiment is the cause of the actual
outcome observed. To obtain this assurance, we resorted statistical techniques
and, then, we verified the performance measures observed in our experiment
is associated with the number of messages and also with algorithms used.

6.7.3 Internal Validity

Internal validity copes uncertain factors or not measured in order to their
e↵ects do not impact the outcome of the treatment [15]. We mitigated these
factors in the execution time of the algorithm, performing the experiment with
the machine set on security mode, using minimal features and disconnected
from the Internet during all executions.

6.7.4 External Validity

External validity refers to expand the results beyond the ambit of our
study [15]. The experiment can be used to compare other scenarios with other
integration processes, di↵erent numbers of messages to generalise the results.
To generalise the results, in future work, we intend to perform our experiment
with an extensive data set.

7 Conclusion

Enterprises have taken advantages of services o↵ered by cloud computing,
amongst them, integration Platform as a Service (iPaaS) that are specialised
software tools that allow for keeping the consistency and the synchronism
of the data on all the applications. The iPaaS represents a new option for
small and mid-sized businesses that need to integrate their business processes
without increasing their costs [10]. However, integration platforms need to
be adapted to tackle environments involve the large volume, velocity, and
variety of data from several di↵erent sources and types of devices [32]. The
run-time system is the component of the integration platforms responsible for
running integration processes so, it is directly related to the performance of
the integration platforms.

The e�ciency of the run-time system of the integration platforms is directly
related to the scheduling algorithm of the tasks and the allocation of threads to
execute them. An ine�cient algorithm leads to an increase in execution time,
thus degrading the performance of the execution of integration processes. This
article aims to analyse the behaviour of thread pool configuration models,
at high workloads. Our experiment compared two models of thread pool
configuration: global and local optimised. In the first, there is a single thread
pool for all tasks. In the second, there is a thread pool for each task, and



Title Suppressed Due to Excessive Length 17

the algorithm finds the best distribution of the threads to the local pools,
taking into account the processing time of the task. We used a case study with
a real-world integration process in the scenarios that varied the numbers of
messages.

The results showed that, in high workload scenarios, the optimised local
thread pool model performs better than the global thread pool model. This
assessment can help save costs for the companies, especially ones that use
cloud services, due to the pay-as-you-go charging model of the cloud, where
companies pay for the use time of the services. We evaluated the models by
the makespan average and the results validated by the statistical techniques
ANOVA and Scott & Knott. We sum up the main conclusions from the results
found in our experiment, answered our research questions and validate our
hypothesis. Regarding the conclusions:

– The makespan average using global thread pool configuration can be
analytically calculated by Equation 2.

– The makespan average using local thread pool configuration can be ana-
lytically calculated by Equation 3.

– The local thread pool configuration optimised generated lower makespan
average than global thread pool configuration.

– An exponential equation represents the di↵erence of makespan average
between two models of thread pool configuration as a function of the
number of messages. Thus, the makespan average tends to infinite when
the number of messages is huge.

– The results of the experiment are valid according to the statistical tech-
niques: ANOVA and Scott & Knoot.

Results of the experiment confirmed our hypothesis, and we answered our
research question, following as.

– RQ: The makespan average obtained with local thread pool optimised
configuration model in run-time systems of integration platforms was 2.8
times lower than the makespan average obtained with a global thread pool,
with a workload of 106 messages. Thus, the performance of the execution
of integration processes better using local thread pool optimised.

8 Acknowledgements

This work was supported by the Brazilian Co-ordination Board for the
Improvement of University Personnel (CAPES) under grants 73318345415
and the Research Support Foundation of the State of Rio Grande do Sul
(FAPERGS) under grant 17/2551-0001206-2.



18 Daniela L. Freire et al.

References

1. Ahmad T, Truscan D, Porres I (2018) Identifying worst-case user scenarios
for performance testing of web applications using markov-chain workload
models. Future Generation Computer Systems 87:910–920

2. Ali S, Maciejewski AA, Siegel HJ, Kim JK (2003) Definition of a robustness
metric for resource allocation. In: Parallel and Distributed Processing
Symposium (PDPS), pp 10–21

3. Altmann J, Ángel Bañares J, Petri I (2018) Economics of computing
services: A literature survey about technologies for an economy of fungible
cloud services. Future Generation Computer Systems 87:828 – 830

4. Bahadur F, Umar AI, Khurshid F (2018) Dynamic tuning and overload
management of thread pool system. International Journal of Advanced
Computer Science and Applications 9:444–450

5. Basili VR, Rombach D, Kitchenham KSB, Selby D, Pfahl RW (2007)
Empirical Software Engineering Issues. Springer Berlin/Heidelberg

6. Berned G, Rossi FD, Luizelli MC, Beck ACS, Lorenzon AF (2020)
Decreasing the learning cost of o✏ine parallel application optimization
strategies. In: Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pp 144–151

7. Blythe J, Jain S, Deelman E, Gil Y, Vahi K, Mandal A, Kennedy K (2005)
Task scheduling strategies for workflow-based applications in grids. In:
Cluster Computing and the Grid (CCGrid), vol 2, pp 759–767

8. Bogado V, Gonnet S, Leone H (2014) Modeling and simulation of software
architecture in discrete event system specification for quality evaluation.
Simulation 90:290–319

9. Ágnes Bogárdi-Mészöly, Rövid A (2016) Performance modeling of web-
based software systems with subspace identification. Acta Polytechnica
Hungarica 13:27–41

10. Brahmi Z, Gharbi C (2014) Temporal reconfiguration-based orchestration
engine in the cloud computing. In: International Conference on Business
Information Systems (ICBIS), pp 73–85

11. Braun R, Krus P (2016) Multi-threaded distributed system simulations
using the transmission line element method. Simulation 92:921–930

12. Casini D, Biondi A, Buttazzo G (2019) Analyzing parallel real-time
tasks implemented with thread pools. In: ACM/IEEE Design Automation
Conference (DAC), pp 1–6

13. Cruz CD (2006) Programa Genes - Estat́ıstica Experimental e Matrizes.
Editora Universidade Federal de Viçosa

14. Cruzes DS, ben Othman L (2017) Threats to validity in empirical software
security research. In: Empirical Research for Sof. Security, pp 295–320

15. Feldt R, Magazinius A (2010) Validity threats in empirical software engi-
neering research-an initial survey. In: Int. Conf. on Software Engineering
and Knowledge Engineering (SEKE), pp 374–379

16. Frantz RZ, Corchuelo R, Arjona JL (2011) An e�cient orchestration
engine for the cloud. In: Int. Conf. on Cloud Computing Technology and



Title Suppressed Due to Excessive Length 19

Science (CloudCom), pp 711–716
17. Frantz RZ, Corchuelo R, Roos-Frantz F (2016) On the design of a

maintainable software development kit to implement integration solutions.
Journal of Systems and Software 111:89–104

18. Freire DL, Frantz RZ, Roos-Frantz F (2019) Towards optimal thread pool
configuration for run-time systems of integration platforms. International
Journal of Computer Applications in Technology 60:1–18

19. Garcia CH (1989) Tabelas para classificação do coeficiente de variação.
IPEF

20. Georges A, Buytaert D, Eeckhout L (2007) Statistically rigorous java
performance evaluation. ACM SIGPLAN Notices 42:57–76

21. Harman M, Lakhotia K, Singer J, White DR, Yoo S (2013) Cloud
engineering is search based software engineering too. Journal of Systems
and Software 86:2225–2241

22. Haugg IG, Frantz RZ, Roos-Frantz F, Sawicki S, Zucolotto B (2019)
Towards optimisation of the number of threads in the integration platform
engines using simulation models based on queueing theory. Revista
Brasileira de Computação Aplicada 11:48–58

23. Jedlitschka A, Pfahl D (2005) Reporting guidelines for controlled experi-
ments in software engineering. In: Int. Sym. Empirical Soft. Engineering
(ESEM), pp 95–104

24. Jelihovschi E, Faria J (2014) Scottknott: A package for performing the
scott-knott clustering algorithm in r. Tendências em Matemática Aplicada
e Computacional 15(1):3–17

25. Jeon S, Jung I (2018) Experimental evaluation of improved IoT middle-
ware for flexible performance and e�cient connectivity. Ad Hoc Networks
70:61–72

26. Kalil EB (1977) Prinćıpios de técnica experimental com animais. ESALQ
27. Lee J, Wu H, Ravichandran M, Clark N (2010) Thread tailor: dynamically

weaving threads together for e�cient, adaptive parallel applications. ACM
SIGARCH Computer Architecture News 38:270–279

28. Leonard NE, Levine WS (1995) Using MATLAB to analyze and design
Control Systems. Benjamin-Cummings Publishing Company

29. Linthicum DS (2017) Cloud computing changes data integration forever:
What’s needed right now. IEEE Cloud Computing 4:50–53

30. Lorenzon AF, Cera MC, Beck ACS (2016) Investigating di↵erent general-
purpose and embedded multicores to achieve optimal trade-o↵s between
performance and energy. Journal of Parallel and Distributed Computing
95:107–123

31. Pasha MA, Gul U, Mushahar M, Masud S (2017) A simulation frame-
work for code-level energy estimation of embedded soft-core processors.
Simulation 93:809–823

32. Ritter D, May N, Sachs K, Rinderle-Ma S (2016) Benchmarking
integration pattern implementations. In: International Conference on
Distributed and Event-based Systems (DEBS), pp 125–136



20 Daniela L. Freire et al.

33. Ritter D, Dann J, May N, Rinderle-Ma S (2017) Hardware accelerated
application integration processing: Industry paper. In: International
Conference on Distributed and Event-based Systems (DEBS), pp 215–226

34. Sargent RG (2013) Verification and validation of simulation models. J of
simulation 7:12–24

35. Scott AJ, Knott M (1974) A cluster analysis method for grouping means
in the analysis of variance. Biometrics 30(3):507–512

36. Stetsenko IV, Dyfuchyna O (2019) Thread pool parameters tuning
using simulation. In: International Conference on Computer Science,
Engineering and Education Applications (ICCSEEA), pp 78–89

37. Suleman MA, Qureshi MK, Patt YN (2008) Feedback-driven threading:
power-e�cient and high-performance execution of multi-threaded work-
loads on cmps. ACM Sigplan Notices 43:277–286

38. Tarvo A, Reiss SP (2018) Automatic performance prediction of multi-
threaded programs: a simulation approach. Automated Software Engineer-
ing 25:101–155

39. Vlassov V, Ayani R, Thorelli LE (1997) Modeling and simulation of
multithreaded architectures. Simulation 68:219–230

40. van der Weij W, Bhulai S, van der Mei R (2009) Dynamic thread assign-
ment in web server performance optimization. Performance Evaluation
66:301–310

41. Wilkinson GN, Rogers CE (1973) Symbolic description of factorial models
for analysis of variance. Journal of the Royal Statistical Society Series C
22(3):392–399

42. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012)
Experimentation in software engineering. Springer Science & Business
Media


