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Abstract: Compared to traditional chaotic systems like Lorenz, Chua, logistic map and Rössler 
systems. A different generation of new chaotic systems emerged, based on the mathematical 
model of a variable structure model of neurons (VSMNs). A detailed bifurcation analysis of the 
new chaotic system with theory and simulations is discussed. Our new discovery has some 
attractive features valuable for engineering applications, such as security communication. In this 
paper, we present some types of coupling of our new chaotic system. Using VSMN, the system 
can generate a single, spiral and double-scroll chaotic attractor. With changing parameters and 
adding oscillators, their behaviour changes into four symmetric and coexisting of double-scroll 
chaotic attractors. We conclude that coupling with chaotic attractors, does not only increases the 
chaos’ complexity but also generates multi hyperchaotic attractors. Finally, we couple between 
two chaotic attractors using neurons, which lead to a multi-stability system. They illustrate that 
our multi-scroll system is hyperchaotic and its complexity can ensure a perfect security for 
telecommunication systems for the future. 
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1 Introduction 

Chaos is a very important phenomenon in nonlinear systems 
which has been intensively studied in the last decades and 
used in many commercial applications (Ben Slimane et al., 
2017; Gámez-Guzmán et al., 2009; Trejo-Guerra et al., 
2009). It can be used in the encryption domain too. 
Benkouider et al. (2020a) created a new family of 5D, 6D, 
7D and 8D hyperchaotic systems from the 4D hyperchaotic 
Vaidyanathan system, the dynamic analysis of the 8D 
hyperchaotic system with six positive Lyapunov exponents 
and an application to secure communication design, and an 
other new family of 9D and 10D hyperchaotic systems from 
the 8D hyperchaotic Benkouider system, the bifurcation 
analysis of the 10D hyperchaotic system, circuit design and 
an application to secure voice communication (Benkouider 
et al., 2020b). Ben Slimane et al. (2018b) proposed a fast 
and secure scheme for image encryption using the nested 
chaotic maps and the DNA sequence operation. They also 
designed an efficient image cryptosystem (Ben Slimane  
et al., 2018a) using a single neuron model, a chaotic map 
and DNA sequence operations. Puteaux and Puech (2017) 
put forward a new reversible data hiding method in 
encrypted images based on an adaptive local Shannon 
entropy analysis. They also suggested (Puteaux and Puech, 
2018) an efficient method of reversible data hiding in 
encrypted images based on most-significant-bit prediction 
with a very high embedding capacity. They described an 
efficient method (Puteaux and Puech, 2020) of  
noisy encrypted image correction relying on a new  
(cipher-feedback then electronic-code-book-mode-based) 
image encryption technique. Here we can use our 
hyperchaotic system for a new efficient encryption method 
as future work. 

Chaotic systems include several basic properties, such 
as the high sensitivity to the initial conditions and system 
parameters, topological transitivity, non-periodicity, and 
pseudo-random properties (Ben Slimane et al., 2018c; Nasr 
et al., 2018; Devaney et al., 1993). Various chaotic systems 
have been developed, such as Chua circuits, Lorenz 
attractors and logistic maps (Wu and Baleanu, 2015; 
Bouallegue et al., 2011). Al-Sawalha et al. (2020) proposed 
an adaptive combination synchronisation of unknown 
chaotic Lorenz, Lü, Rössler and Chen systems. 
Vaidyanathan et al. (2020) designed a new multi-stable 
hyperjerk dynamical system with self-excited chaotic 
attractor, its complete synchronisation via backstepping 
control, circuit simulation and FPGA implementation, he 
also submitted a new chaotic dynamical system with a 
hyperbolic curve of rest points, its complete synchronisation 
via integral sliding mode control and circuit design 
(Vaidyanathan et al., 2019b). Ben Slimane et al. (2017) 
suggested a new behaviour of chaotic attractors with 
separated scrolls using the combination between the fractal 
process and the chaotic attractors. Bouallegue (2015b) 
found a method to generate a new class of chaotic attractors 
that possessed a multi-fractal scroll based on the fractal 
process. Khan and Shikha (2019) created a robust adaptive 
sliding mode control technique for combination 

synchronisation of non-identical time delay chaotic systems. 
However, apart from chaos’ applications in various fields, it 
has a lot of disadvantages, especially in relation to the 
nature and living things (Sabir et al., 2020). Therefore, the 
control of such unpredictable systems has caught the 
attention of researcher since 1990s. Luo (2015) investigated 
an easy control implementation of the unpredictable 
behaviour of a hyperchaotic system with model 
uncertainties, external noise and anonymous parameters. A 
class of chaotic systems are characterised by the coexistence 
of many different types of attractors, a phenomenon referred 
to the multi-stability which has become a very important 
research topic and received much attention recently (Yu  
et al., 2020; Lin et al., 2020). In Signing et al. (2018), a 
smooth piece-wise quadratic nonlinear four-wing chaotic 
system is proposed. When the appropriate parameters 
including a two-wing and four-wing chaotic attractor are 
selected, the system can observe four kinds of unconnected 
coexisting stable states under different initial values and 
show rich dynamic behaviours. 

Hyperchaos have more than one positive Lyapunov 
exponent (Bouallegue, 2015a; Ott, 2002). There are 
frequent similar systems such as the hyperchaotic Rössler 
system (Rössler, 1979; Li et al., 2005) the hyperchaotic 
Chua circuit and the hyperchaotic Lorenz system 
(Mahmoud, 2012). Li et al. (2012) introduced a 
hyperchaotic system using the combination between linear 
coupling and the systems of Mathieu and van der Pol, which 
were very complicated chaos behaviour having three 
positive Lyapunov exponents. Vaidyanathan et al. (2019a) 
proposed a new hyperjerk dynamical system with 
hyperchaotic attractor and two saddle-focus rest points 
exhibiting Hopf bifurcations, its hyperchaos synchronisation 
and circuit implementation. 

It is worth knowing that neurons in the work of 
Bouallegue (2017) were used with only one dendrite. 
Various versions of neural networks have been intensively 
and extensively studied and successfully applied to many 
fields such as identifying patterns, recognising voices, 
controlling systems, processing signal systems, treating 
static images, and solving nonlinear algebraic systems 
(Kundu et al., 2013; Yuan and Yang, 2007; Meng and 
Wang, 2007; Lenze and Raddatz, 2002; Korkmaz and Kilic, 
2014; Isokawa et al., 2008; Chen et al., 2014; Hsu, 2012). 
Our approach consists in coupling different chaotic 
attractors using a variable structure model of neuron 
(VSMN). From this structure, we give some examples of 
neurons with two dendrites. Then, we couple two neurons, 
each one with two dendrites, and the numerical simulation 
are done using C++ and Python. Finally, we use those 
neurons to couple two chaotic oscillators. Therefore, a 
chaotic generation by neurons with multidentrites. The 
numerical examples will illustrate that our multi-scroll 
system with hidden oscillators, symmetric, coexisting and 
multi-stability results is hyperchaotic. 

The rest of this paper is organised as follows: in  
Section 2, we elaborate the new VSMN with two dendrites, 
their activation function, degraded activation functions and 
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a definition of the hidden attractors. After that we use this 
new neuron to generate a chaotic attractor, and we give 
three examples for this generation with parametric 
bifurcation of one of them. In Section 3, we couple two 
neurons each one with two dendrites with the same 
activation function presenting two examples, and then with 
different activation functions providing two examples too. 
In Section 4, we couple between two chaotic attractors 
using neurons giving an example and we find a  
multi-stability system. In Section 5, we conclude this paper 
by providing a summary of the above findings. 

2 Neuron with two dendrites 

In this section, we elaborate the new model of neurons 
presented in Bouallegue (2017), Bouallegue et al. (2020) 
and Nasr et al. (2020), but with two dendrites in order to 
increase the system’s precision. The VSMN is described by 
the following model: 

2.1 Model of neuron with two dendrites 

The system is composed of two differential equations: 
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The structure depends on seven variables n1, n2, p1, p2, q1, q2 
and c. Moreover, u and v are the activity’ states of neurons 
(Li and Chen, 2005). n1, n2, q1 and q2 are related to the 
behaviour of dendrites, p1 and p2 are related to the positions 
of dendrites, and χ represents the neuron’s polarity. 

Furthermore, Function 2 /2( ) ,tf t e  k = 1, τ is a time 

constant, p and q are real numbers, and ,  and l are 
positive real numbers. 

Figure 1 illustrates the neuron with two dendrites and its 
simulation using C++ program. 

Figure 1 Simulation of neuron with two dendrites  
(see online version for colours) 

 

2.2 Activation function of neuron with two dendrites 

The activation function of the neuron with two dendrites can 
be described by: 
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The critical points of the function are given by  
equation (3.1): 
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We study the case when n1 = n2 = 2, p1 = –p2, p1 = q1 and  
p2 = q2. The roots of equation (3.1) are: x1 = 0, x2 = p1,  

x3 = p2. If 4
1 2p   then 2 2

4 51 12 , 2 ,x p x p      
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In order to study the behaviour of a neuron with two 
dendrites influenced by a stimulator, we investigate four 
cases in Subsection 2.3. 

2.3 Neuron model with dendrites with the same 
activation function 

In this section, we show the results of the implementation of 
neuron model presented with the same activation function. 
Figure 2 presents the numerical simulation of VSMN with 
two dendrites. The two activation functions have the same 
value of n1 = n2 and the positions of dendrites are 
symmetric: p1 = –p2, q1 = –p1 and q2 = –p2. 

VSMN becomes as follows: 
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The activation function is: 

    12 2 2 2
21 1( ) .
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To study the model, we focus on the following function: 
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We consider χ = 1. If n ≠ 0 and n ≠ 1, then the critical points 
of the function are given by: 
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The roots of equation (7) are 2
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Figure 2 Behaviour of neuron with two dendrites, (a) n1 = 0 and 
n2 = 0 (b) n1 = 2 and n2 = 2 (c) n1 = 1 and n2 = 1  
(d) n1 = 3 and n2 = 3 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

The values of the function at these critical points are  

g(x1) = 0, 
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In order to study the behaviour of a VSMN influenced 
by two dendrites, we investigate four cases, with u = f(v): 

2.3.1 Case 1 

n1 = n2 = 0, so the function becomes 
2 2 2

1( ) /2( ) .x pg x e   

Actually we have two critical points, x1 = –p1, x2 = p2 and 
g(–p1) = g(–p2) = 1, are the maximal function’ values. 
Figure 2(a) is illustrated with a form that contains two lobes 
with the same size, one on the left and the other on the right. 

2.3.2 Case 2 

n1 = n2 = 1, so if q1 = p1, the function becomes 
2 2 2

1 1( ) /22 2
1( ) ( ) ,x png x x p e    and the critical points are 

2
1 1 1x p   and 2

2 1 1.x p   The maximum value of the 

function is g(x1) = e–1/2 and the minimal’ function value is 
1/2

2( ) .g x e   Figure 2(b) displays the form of the model. 

This form contains four lobes, every two lobes with 
alternate directions (up and down). 

2.3.3 Case 3 

n1 = n2 = 2 and p1 = q1, so the critical points are x1 = p1,  

2 1 1x p n   and 3 1 1 .x p n   The values of g at these 

critical points are: 
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If function g(x) has two critical points with the same 
absolute maximal value, we say that the VSMN model has a 
stable behaviour. When the values of n are identical, the 
function has two maximum values: 

      1 2
1 1 1( 2 ) 2

2 3 1 1 12 .
n

n p ng x g x n p n e    

2.4 Degraded activation functions 

In this section, we describe the normalised equations of the 
(VSMN). This method is used to obtain the degradation 
limits of the activation function in the neuron with the first 
and second dendrites (Bouallegue et al., 2020). From 
Figurw 3 we can conclude that if we add an epsilon only in 
the p2 position of the second dendrite in the VSMN model, 
we find the degradation only on the right of the neuron. 
Equation (8) presents the method for the first dendrite. 
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Figure 3 Behaviour of degraded neuron with one only dendrite 
(see online version for colours) 

 

Figure 4 Behaviour of degraded neuron with two dendrites  
(see online version for colours) 

 

In Figure 4, note ε = 0:01, by adding just one epsilon at 
positions p1 and p2 of the dendrites in the VSMN model, we 
find a degradation on the right and on the left of the neuron. 
We notify that this degradation induces a reduction in both 
spikes at different positions. The system of the behaviour of 
the degraded neuron with two dendrites is: 
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2.5 Chaotic attractors generated by neuron with two 
dendrites 

The movement of neurons is affected by an oscillator. 
Oscillations and chaos are ubiquitous phenomena that are 
encountered in many different areas of physics (Bouallegue, 
2017). We define in this section the meaning of the hidden 
attractors and oscillations, and we clarify them with a 

generation of the oscillations of three models from the 
VSMN and we give a parametric bifurcation diagrams of 
the first example. 

2.5.1 Hidden attractors 

Recently a new concept concerning the classification of 
attractors has been introduced: Periodic or chaotic attractors 
belong either to the class of self-excited attractors or to the 
class of hidden attractors (Tidjani et al., 2016; Leonov et al., 
2012, 2011). 

The basin of attraction of a self-excited attractor 
overlaps with the neighbourhood of an equilibrium point, so 
self-excited attractors are very easy to be find. On the 
contrary, a hidden attractor has a basin of attraction that 
does not intersect with small neighbourhoods of any 
equilibrium points thereby making it very difficult to find; 
that is why one can call it hidden. Hidden attractors are 
important in engineering applications because they allow 
unexpected and potentially disastrous responses to 
perturbations in a structure like an aircraft control systems, 
drilling systems, electrical machines, and secure 
communications. 

Leonov (2009) and Leonov et al. (2010) proposed an 
effective method for the numerical localisation of hidden 
attractors in multidimensional dynamical systems. This 
method was based on homotopy and numerical 
continuation. They constructed sequence of similar systems 
such that for the first system. The initial data for the 
numerical computation of the oscillating solution could be 
obtained analytically. 

Then the transformation of this starting solution was 
tracked numerically while passing from one system to 
another. The first example of a hidden chaotic strange 
attractor was found in the Chua attractor (Leonov et al., 
2012). In our case, you will find the hidden attractor in the 
next section. 

2.5.2 Single scroll chaotic system 

It turns out that the relationship between the behaviour of 
chaos and oscillations is the common factor on the 
parameters that depend on the mathematical model. Let us 
present two recurrent equations of oscillators to generate the 
dynamic of neuron with kx = 1/8,000 and ky = 1: 

 2 1 02cos 2 .n x n nx πk x x   (10) 

The second oscillator takes the same form, its used for the 
second example: 

 2 1 02cos 2 .n y n ny πk y y   (11) 

We give the first example of the new behaviour of the 
chaotic attractor generated by the neuron with two 
dendrites. The first model of the neuron with two dendrites 
is: 
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Table 1 Initial conditions of single scroll chaotic system 

u0 v0 p1 p2 q1 q2   ρ λ 

0.25 0.25 –0.8 0.6 p1 p2 0.1 2.667 (1 + ε) 2.5 3.75 

With n1 = 2, n2 = 2 and the initial conditions clarified in 
Table 1, the new model becomes: 
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3.75( 0.8)( 0.6) 2.5sin(2 )

0.1 0.1

3.75( 0.8)( 0.6) .

u
u u u f ε v

τ
f u u π f t

v v χ u p u p

f u u

     

     
     
  




 (13) 

Figure 5 2D chaotic system from 0 to 0.8 as abscissa and from 0 
to –2 as ordinate (see online version for colours) 

 

Figure 6 3D chaotic system in u-v-w space, from 0 to 0.8 as 
abscissa then from –0.3 to 0.3 as ordinate and from 
0.25 to 1.75 as applicate (see online version  
for colours) 

 

Figure 5 shows the implementation result of equation (8). 
Figures 5 and 6 illustrate a spiral chaotic behaviour with 
two orbits connected with a linear straight line. We can call 
them hidden chaotic attractors, too. 

Figure 7 2D bifurcation diagram showing steady state behaviour 
of equation (13) with different gain pairs (p1, p2),  
(a) n1 = 0 and n2 = 0 (b) n1 = 2 and n2 = 2 (c) n1 = 1 and 
n2 = 1 (d) n1 = 3 and n2 = 3 (see online version  
for colours) 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
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2.5.3 Bifurcation of first example of our chaotic 
system 

During the last two decades, tools of analysing bifurcations 
and chaos have been well developed. Therefore, the 
investigation of the very peculiar aspect of this phenomenon 
has become an attractive endeavour. In this section, we 
analyse the time-delay influence on the stability of the 
steady state by taking p1 as bifurcation parameter and fixing 
the value of p2 (Li et al., 2015). The stability of equation 
(13) will be changed and a family of periodic orbits will 
bifurcate from the equilibrium with an increase of p1. 

Table 2 Four cases of the bifurcation diagrams 

n1 n2 Figure 7 

0 0 a 

1 1 b 

2 2 c 

3 3 d 

Four 2D bifurcation diagrams are depicted in Figure 7 and 
they show the steady state behaviour of equation (13) for 
different pairs (p1, p2). In addition to that, four cases are 
presented in Table 2. It can be easily deduced that as p1 
increases, then the first period (stable) behaviour shown in 
the colour orange is extended for higher values of p1 (Miladi 
and Feki, 2015). 

Figure 7 depicts in the colour orange the zone of the first 
period mode and, this matches the higher periods. 
Furthermore, the chaotic zones are also shown as 
parameters p1 and p2 vary (Robert et al., 2006). Particularly, 
when p1 = 0, we observe that as p2 raises, the output of 
period 6,000 becomes period 5,000. For a short interval of 
p1, it becomes period 4,000 before it goes into the black 
period, which is the chaotic mode. We can conclude from 
Figure 7 that when n1 and n2 increase, the system takes a 
short periods to attack the chaotic zone. 

2.5.4 Spiral chaotic system 

The second model of neuron with two dendrites is: 

1

2

( , )

( , ) .

u f u v X

v f u v Y

 
  


  (14) 

With X = ρ1sin(2π × f × t) and Y = ρ2sin(2π × f × t) the 
model become: 

  

   
   

   

1 2

1 2

1 2 1

1 2

2
1 2 2

( )
( )

sin(2 )

sin(2 ).

n n

u
u u p u p f v

τ

f λ u p u p ρ π f t

v v χ u q u q

f λ u p u p ρ π f t

    

     

     
     











 (15) 

Figure 8 illustrates two scrolls in the form of two ears, 
connected with three curved lines to a new scroll chaotic 
system, where u and v are the coordinate states. We add two 

oscillators 2nx  and 2ny  to states u and v of our new 

structure, and we show that equation (15) exhibits a chaotic 
attractor. When we take the parameter values as n1 = 2 and 
n2 = 2 and the initial conditions presented in Table 3, with 
the compilation of the algorithm system, the results are in 
Table 3. 

Table 3 Initial conditions of spiral chaotic system with two 
ears 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

0.035 0.035 0.6 –0.2 0.3 p2 0.1 2.667 (1 + ε) 2.5 2.5 3.75 

Figure 8 Spiral chaotic system connected to two-ears attractors 
(see online version for colours) 

 

2.5.5 Double scroll chaotic system 

The third proposed model of the neuron with two dendrites 
is presented in equation (17). Figure 9 shows the phase plot 
of the merged chaotic attractor when  = 0.1 (we can obtain 
this phase plot with both u0 = 0.035, v0 = 0.035, …). It takes 
the form of a spiral chaotic attractor with two nests. 

1

2

( , )

( , ) .

u f u v X

v f u v Y

  
   


  (16) 

The model become: 

  

   
   

   

1 2

1 2

1 2 1

1 2

2
1 2 2

( )
( )

sin(2 )

sin(2 ).

n n

u
u u p u p f v

τ

f λ u p u p ρ π f t

v v χ u q u q

f λ u p u p ρ π f t

    

     

     
     











 (17) 

When n1 = 1 and n2 = 2, using the initial conditions in  
Table 4, two separated attractors become a connected one. 

Therefore, the VSMN system is: 
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    

 
   

 

1 2

1 2
1 2

2

( )
2.667(1 )

3.75( 0.6)( 0.2) 2.5sin(2 )

0.1 0.1

3.75( 0.6)( 0.2) 2.5sin(2 ).

u
u u p u p f ε v

τ
f u u π f t

v v χ u p u p

f u u π f t

     

     
     
     




 (18) 

Table 4 Initial conditions of spiral chaotic system with two 
ears 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

0.035 0.035 0.6 –0.2 0.3 p2 0.1 2.667 (1 + ε) 2.5 2.5 3.75 

Figure 9 Spiral chaotic attractor with two nests  
(see online version for colours) 

 

3 Coupling between two neurons having two 
dendrites 

In this section, we give two examples for the model of 
neurons with two dendrites with same activation function 
and two examples for dendrites with different activation 
functions. In fact, each neuron has two dendrites. 

3.1 Neurons with two dendrites with same activation 
function 

Coupling between two different sets of neurons has been the 
subject of many theoretical papers over the last few years 
(Njitacke et al., 2020; Börgers, 2017). Despite this large 
amount of effort, many key issues remain open. Nonlinear 
dynamic system widely used to synthesise multi-scroll 
chaotic attractors in 2D is given. In this section, we present 
different cases of coupling chaotic attractors using neurons 
with the same activation function. 

3.2 Coupling between double-scroll chaotic 
attractors using oscillators 

In Figure 10, with the initial conditions from Table 5, that 
chaos can be triggered in a large parameter region. 
Furthermore, this portrait is plotted to illustrate the 
dependence of the attractor profile on the number of 
dendrites and the activation function. The first proposed 
equation is: 

1

2

( , )

( , ) .

u f u v X

v f u v Y

 
  




 (19) 

  

   
   

   

1
2 1 2

1 2 1

2 2
2 1 1 2

2
1 2 2

( )

sin(2 )

sin(2 ).

u
u u p u p f v

τ

f λ u p u p ρ π f t

v v χ u q u q

f λ u p u p ρ π f t

    

     

     
     



 







 (20) 

Figure 10 illustrates a coupling chaotic behaviour with 
hidden attractors. They are four orbits connected with two 
neurons from the buttons of the first scroll to those of the 
second one. 

Table 5 Initial conditions of coupling between two chaotic 
scrolls with hidden attractors 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

0.25 –0.5 0.8 –0.6 p1 p2 0.1 2.667 (1 + ε) 4 14 3.75 

3.2.1 Symmetric behaviour of four chaotic systems 

We couple equation (22) symmetrically with a new one 
using two neurons, with the initial conditions of Table 6. 

The system takes the following form: 

1

2

( , )

( , ) .

u f u v X

v f u v Y

  
   


  (21) 

  

   
   

   

1
2 1 2

1 2 1

2 2
2 1 1 2

2
1 2 2

( )

sin(2 )

sin(2 ).

u
u u p u p f v

τ

f λ u p u p ρ π f t

v v χ u q u q

f λ u p u p ρ π f t

    

     

     
     



 







 (22) 

Figure 11 depicts two chaotic scrolls symmetrically coupled 
by neurons with the same chaotic scroll. 

Table 6 Initial conditions of symmetric behaviour of four 
chaotic scrolls coupled with neurons 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

–7 –5 –0.5 0.5 p1 p2 0.2 5.36067 4 14 3.75 
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Figure 10 Coupling between two chaotic scrolls with hidden 
attractors using u and v as states of the caption  
(see online version for colours) 

 

Figure 11 Symmetric behaviour of four chaotic scrolls coupled 
with neurons (see online version for colours) 

 

3.2.2 Coupling between two similar chaotic 
attractors 

In 1988, Chua and Yang introduced the cellular neural 
network as a nonlinear dynamical system composed of an 
array of elementary and locally interacting nonlinear 
subsystems (Chua and Yang, 1988; Vaidyanathan, 2015). In 
this example, we analyse the properties of the new VSMN 
equation (22) and the interaction between the two spiral 
attractors with ears in Figure 12. 

Applying equation (22), with the initial conditions of  
Table 7, we find the result illustrated in Figure 12. 

Table 7 Initial conditions of two coexisting periodic spiral 
attractors with two ears 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

0.035 0.035 1 –1 p1 p2 0.2 5.36067 2.5 –2.5 3.75 

In Figure 12, using the curved lines in the middle of the 
strange chaotic attractor, we couple between two spiral 
chaotic systems connected with form attractors in the form 
of ears. 

 

Figure 12 Two coexisting periodic spiral attractors with two 
ears (see online version for colours) 

 

3.2.3 Four coexisting chaotic systems 

Equation (22) provides the result illustrated in Figure 13, 
and the initial conditions are provided in Table 8. 

In Figure 13, using the curved lines in the middle of the 
strange chaotic attractor, we couple between four spiral 
chaotic systems connected in the form of ears attractors. 

Table 8 Initial conditions of four coexisting periodic spiral 
attractors with two ears 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

0.35 0.35 13 –13 p1 p2 0.2 5.36067 2.5 –2.5 3.75 

Figure 13 Four coexisting periodic spiral attractors with two 
ears (see online version for colours) 

 

3.3 Dendrites with different activation functions 

Producing coexisting attractors provides a new pathway for 
exploring the general multi-stability mechanism.  
Self-reproducing systems with many attractors can be 
constructed when a periodic function is introduced into the 
system and the initial conditions are used for offset control 
(Li et al., 2017; Li and Sprott, 2018; Li et al., 2019) where 
lattices of coexisting attractors are positioned in the phase 
space. A symmetric system hatches a symmetric pair of 
coexisting attractors when its symmetry is broken (Zhou  
et al., 2018; Lai et al., 2018). In this section, we present 
different examples of coexisting coupling attractors using 
neurons with various activation functions. 
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3.3.1 Coupling between double scroll chaotic systems 

We couple two coexisting chaotic attractors with two nests 
using equation (25) and we find a new strange form of the 
chaotic system. With the initial conditions in Table 9, in 
addition to p1 = a1 and p2 = a2, the model becomes: 

  

   
   

   

1
2 1 2

1 2 1

2 2
2 1 1 2

2
1 2 2

( )

sin(2 )

sin(2 ).

u
u u u f v

τ

f λ u u ρ π f t

v v χ u u

f λ u u ρ π f t

    

     
     
     



 

  

 

  

  

 (23) 

Figure 14 depicts the coupling between two strange chaotic 
attractors with nests, with four curved lines. 

Table 9 Initial conditions of two strange chaotic attractors 
with two merged nests 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

0.035 0.035 1 –1 p1 p2 0.2 5.36067 2.5 –2.5 3.75 

Figure 14 Two strange chaotic attractors with two merged nests 
(see online version for colours) 

 

3.3.2 Coupling between chaotic systems by the same 
frequency 

We couple four coexisting chaotic attractors with two nests 
using equation (26) and we find another strange form of the 
chaotic system. 

We take the parameters in Table 10 as the initial 
conditions. 

Table 10 Initial conditions of four strange chaotic attractors 
with two merged nests 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

0.25 –0.5 12 6 0.3 p2 0.2 5.36067 2.5 –2.5 3.75 

In Figure 15, two coexisting attractors are positioned in the 
phase space coupled by two neurons. 

 

Figure 15 Four strange chaotic attractors with two nests merged 
(see online version for colours) 

 

3.3.3 Coexisting of double scroll chaotic systems 

We modify the sign of each position of dendrites. Figure 16 
shows the same behaviour of chaotic attractors in another 
organisation, using the initial conditions in Table 11. 

Table 11 Initial conditions of simulation of phase portrait of 
new chaotic system 

u0 v0 p1 p2 q1 q2   ρ1 ρ2 λ 

0.25 –0.5 12 12 6 p2 0.2 5.36067 2.5 –2.5 3.75 

Eight coexisting attractors are positioned Figure 16 in the 
phase space coupled by two neurons joined with eight 
curved lines. 

Figure 16 Numerical simulation of phase portrait of new 
chaotic system (see online version for colours) 

 

4 Multi-stability by coupling between two chaotic 
oscillators 

It is well-known that multi-stability can lead to very 
complex behaviours in a dynamical system, which has been 
reported in some chaotic systems (Zhang et al., 2018; Li  
et al., 2014; Sambas et al., 2019). It is very interesting that 
the system can exhibit multi-stability. In this section, we 
present results by coupling two chaotic attractors, each one 
generated by a neuron with two dendrites. The VSMN 
model [equation (28)] and the interaction between the spiral 
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attractors are illustrated in Figure 17. Figure 17(a) shows 
the scroll chaotic attractor with two ears, and Figure 17(b) 
presents the same behaviour with three ears. Accordingly, 
strange developed attractor is plotted. 

  

   
   

   

1 2

1 2

1 2 1

2 1 2

2
1 2 1

( )
( )

.

n n

u
u u p u p f v

τ

f λ u p u p ρu

v v χ u q u q

f λ u p u p ρv

    

   

     
   















 (24) 

We couple two chaotic attractors with neurons with  
multidentrites, and we find a multi-scroll system. We can 
conclude that the system is hyper-chaotic. 

Figure 17 Coupling between two chaotic attractors with neurons 
having multidentrites, (a) three merged scrolls  
(b) four merged scrolls (see online version  
for colours) 

 

(a) 

 

(b) 

5 Conclusions 

In this work we have explored various possibilities of 
coupling different chaotic systems using neurons. Those 
attractors contain separated, hidden and nested scrolls. Each 
scroll looks like a chaotic oscillator. The method proposed 

in this article put forward a new chaotic system construction 
and its way of generating, that’s what provide new types of 
hyperchaotic systems. Some numerical simulation 
characteristics such as symmetric, coexisting and  
multi-stability have been provided to demonstrate that those 
systems are a discover of a new nonlinear chaotic system. 
The strong point of our new system is that it is different 
inside and outside from the traditional ones. That is why it 
will ensure a better security in the encryption or the secure 
communication system as future work. 
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