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HOW TO COMPUTE THE WEDDERBURN DECOMPOSITION

OF A FINITE-DIMENSIONAL ASSOCIATIVE ALGEBRA

MURRAY R. BREMNER

Abstract. This is a survey paper on algorithms that have been developed
during the last 25 years for the explicit computation of the structure of an
associative algebra of finite dimension over either a finite field or an algebraic
number field. This constructive approach was initiated in 1985 by Friedl and
Rónyai and has since been developed by Cohen, de Graaf, Eberly, Giesbrecht,
Ivanyos, Küronya and Wales. I illustrate these algorithms with the case n =
2 of the rational semigroup algebra of the partial transformation semigroup
PTn on n elements; this generalizes the full transformation semigroup and the
symmetric inverse semigroup, and these generalize the symmetric group Sn.

Introduction

Part 1 of this survey begins by recalling the classical structure theory of finite-
dimensional associative algebras over a field; the most important results are Dick-
son’s Theorem characterizing the radical in characteristic 0, the Wedderburn-Artin
Theorem on the structure of semisimple algebras, and the Wedderburn-Malcev The-
orem on lifting the semisimple quotient to a subalgebra. It continues by quoting
observations from Friedl and Rónyai [13] to motivate a constructive computational
approach to the theory. This explicit approach requires a presentation of the alge-
bra by a basis and structure constants, and algorithms for calculating the following:
a basis for the radical of the algebra; structure constants for the semisimple quo-
tient; a basis for the center of the semisimple quotient; a new basis for the center
consisting of orthogonal idempotents; the identity matrices in the simple ideals of
the quotient; an isomorphism of each simple ideal with a full matrix algebra; ex-
plicit matrices for the irreducible representations; and a subalgebra isomorphic to
the semisimple quotient. This survey emphasizes characteristic 0: in this case, all
calculations can be reduced to computing the row canonical form of a matrix.

Part 2 begins by introducing some classical semigroups of Boolean matrices which
are natural generalizations of the symmetric group. The main example is the semi-
group of partial transformations on n elements. It continues by presenting explicit
calculations for n = 2 to illustrate the theory and algorithms of Part 1.

1. Theory and algorithms

1.1. Structure theory of associative algebras. We consider only associative
algebras A of finite dimension over a field F . We usually assume that F is a finite
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extension of either the field Q of rational numbers or the field Fp with p elements
(p prime); that is, an algebraic number field or a finite field. To keep the exposition
as simple as possible, we often assume that F = Q. For the classical structure
theory of finite-dimensional associative algebras, our main reference is Drozd and
Kirichenko [7]. For an account of the historical development, see Parshall [17].

Definition 1. [7, §2.2] A left A-module M is semisimple if it is isomorphic to
a direct sum of simple modules. An algebra A is semisimple if its left regular
module is semisimple. A left ideal I of A is nilpotent if Im = {0} for some m ≥ 1.
An element x ∈ A is strongly nilpotent if the principal left ideal Ax is nilpotent.

Theorem 2. [7, Corollaries 2.2.5, 2.2.6] The following conditions are equivalent:
(i) A is semisimple; (ii) A contains no nonzero nilpotent left ideals; (iii) A contains
no nonzero strongly nilpotent elements.

Theorem 3. [7, Theorem 2.4.3, Corollary 2.4.5] (Wedderburn-Artin Theorem)
Every semisimple algebra Q has a unique decomposition Q = Q1 ⊕ · · · ⊕ Qc into
the direct sum of simple ideals where QiQj = {0} for i 6= j. Every simple algebra
is isomorphic to a full matrix algebra Mn(D) for some division algebra D over F .

Definition 4. [7, §3.1] The radical R(M) of a left A-module M consists of all
y ∈ M such that f(y) = 0 for every homomorphism f from M to a simple left A-
module. The radical R(A) of the algebra is the radical of the left regular module.

Theorem 5. [7, Theorems 3.1.6, 3.1.10] The radical R(A) is the set of all strongly
nilpotent elements; it is a two-sided ideal and Q = A/R(A) is semisimple.

Definition 6. [7, §6.1] An algebra A over a field F is separable if the scalar
extension A⊗F K is semisimple for every field extension K of F .

Theorem 7. [7, Corollary 6.1.4] Every separable algebra is semisimple; the con-
verse holds if F is a perfect field (in particular, if charF = 0 or F is finite).

Definition 8. [7, §6.2] Let π : A → Q = A/R(A) be the canonical surjection. A
lifting of Q to A is a homomorphism ǫ : Q → A such that πǫ is the identity on
Q. It is clear that ǫ is injective, that ǫ(Q) is a subalgebra of A isomorphic to Q,
and that A = ǫ(Q)⊕R(A) as vector spaces. Two liftings ǫ and η are conjugate if
there is an invertible element a ∈ A such that η(x) = a−1ǫ(x)a for all x ∈ Q, and
unipotently conjugate if a = 1 + ζ for some ζ ∈ R(A).

Theorem 9. [7, Theorem 6.2.1] (Wedderburn-Malcev Theorem) If Q = A/R(A)
is separable then a lifting exists and any two liftings are unipotently conjugate.

1.2. A constructive approach to the classical theory. As motivation for a
computational approach, we quote the following passages (with slight changes)
from Friedl and Rónyai [13, §§1.1, 1.2, 1.4]: “The textbook proofs of these results
are not constructive. They mostly start by picking ‘any minimal [left] ideal’. But
the minimal [left] ideals may not cover more than a tiny fragment of the algebra
and might be quite difficult to find. . . . Finding the radical and the simple factors
of the [semisimple] quotient are as essential to computational algebra as factoring
integers and finding composition factors are to computational number theory and
group theory. . . . Such results are likely to have applications to computational
group theory as well since group representations are a major source of problems
on matrix algebras. . . . The case of commutative associative algebras generalizes
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the problem of factoring polynomials over [a field] F . Indeed, let f ∈ F [x] and
let f = ge11 · · · gekk where the gi are irreducible over F . Consider the commutative
associative algebra A = F [x]/〈f〉. The radical of A comes from the ‘degeneracy’
of f , i.e. the presence of multiple factors: R(A) is generated (as an ideal of A) by
h = g1 · · · gk. The quotient A/R(A) is isomorphic to F [x]/〈h〉. This in turn is
the direct sum of its simple components, the fields F [x]/〈gi〉 (i = 1, ..., k). Finding
these components is equivalent to factoring f .”

1.3. Limitations of this survey. The goal of this brief survey is to present the
essential ideas in enough detail that the algorithms can be translated more-or-less
directly into computer programs. Therefore, some important issues are ignored,
but references will be given: (i) Computational complexity: Most of the algorithms
terminate in a number of steps which is a polynomial function of the size of the
input. (ii) Computing the radical in characteristic p: This is much more difficult
than in characteristic 0. (iii) The possibility that the minimal polynomials of cen-
tral elements do not split over the base field: This seems like a severe restriction,
but it is satisfied by many important examples, such as the group algebra of the
symmetric group. (iv) The general case of finding a minimal left ideal in a sim-
ple ideal of the semisimple quotient: This is equivalent to computing an explicit
isomorphism of the simple ideal with a full matrix algebra.

1.4. Structure constants. Since the algebra A is finite dimensional over the field
F , it is completely determined by a basis {a1, . . . , an} over F and structure con-
stants ckij ∈ F such that

aiaj =

n
∑

k=1

ckijak (1 ≤ i, j, k ≤ n).

1.5. The radical: Dickson’s theorem. The definition of the radical does not
depend on the base field, and so we can regard A as an algebra over Q or Fp. In
characteristic 0, Dickson’s Theorem reduces finding a basis for the radical to solving
a linear system. In characteristic p, the problem is more difficult; see Friedl and
Rónyai [13], Rónyai [19], Cohen et al. [3]. In this survey we consider only F = Q.

Definition 10. For x ∈ A the left multiplication operator Lx ∈ EndF (A) is
Lx(y) = xy, and [Lx] is its matrix with respect to the given basis of A.

We assume that A is unital, adjoining an identity if necessary; then the repre-
sentation x 7→ [Lx] of A is faithful and A is isomorphic to a subalgebra of Mn(F ).

Theorem 11. [5, §65] (Dickson’s Theorem) If charF = 0 and A is a subalgebra of
Mn(F ) then x is in the radical of A if and only if trace(xy) = 0 for every y ∈ A.

We use this to express the radical as the nullspace of a matrix. Let x be a linear
combination of {a1, . . . , an} such that trace(xy) = 0 for every y. By linearity, it
suffices to assume trace(xai) = 0 for i = 1, . . . , n. For xj ∈ F we have

x =

n
∑

j=1

xjaj ∈ A, xai =

n
∑

j=1

xjajai =

n
∑

j=1

xj

n
∑

k=1

ckjiak =

n
∑

k=1

n
∑

j=1

ckjixjak,

xaiaℓ =

n
∑

k=1

n
∑

j=1

ckjixjakaℓ =

n
∑

k=1

n
∑

j=1

ckjixj

n
∑

m=1

cmkℓam =

n
∑

m=1

n
∑

j=1

n
∑

k=1

ckjic
m
kℓxjam.
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Hence the matrix representing left multiplication by xai and its trace are as follows:

[Lxai
]mℓ =

n
∑

j=1

n
∑

k=1

ckjic
m
kℓxj , trace([Lxai

]) =

n
∑

j=1

(

n
∑

k=1

n
∑

ℓ=1

ckjic
ℓ
kℓ

)

xj .

Corollary 12. The radical of A is the nullspace of the n× n matrix ∆ such that

∆ij =

n
∑

k=1

n
∑

ℓ=1

ckjic
ℓ
kℓ.

If A is a semigroup algebra then aiaj = aµ(i,j) and ckij = δµ(i,j),k, and hence

∆ij =

n
∑

k=1

n
∑

ℓ=1

δµ(j,i),kδµ(k,ℓ),ℓ =

n
∑

ℓ=1

δµ(µ(j,i),ℓ),ℓ.

Corollary 13. (Drazin [6]) For a semigroup algebra A we have

∆ij = | { ℓ | µ(µ(j, i), ℓ) = ℓ } |.

To calculate a basis for the radical R(A), we compute the row canonical form
RCF(∆) and extract the canonical basis for the nullspace in the usual way: Suppose
that ∆ has rank r and that the leading 1 of row i of the RCF occurs in column ji
where 1 ≤ j1 < · · · < jr ≤ n. Let Λ = {j1, . . . , jr} and set Φ = Xn \ Λ. For each
k = 1, . . . , n−r set the n−r free variables xj (j ∈ Φ) equal to the k-th unit vector
in Fn−r and solve for the leading variables xj (j ∈ Λ). We obtain n−r vectors in
Fn which form a basis of R(A).

1.6. Structure constants for the semisimple quotient. Let Σ be the (n−r)×n
matrix in which row k contains the coefficients of the k-th radical basis vector. In
RCF(Σ), let ℓi be the column containing the leading 1 of row i. Row k of RCF(Σ)
contains the coefficients of the k-th reduced radical basis vector. Set

L = {ℓ1, . . . , ℓn−r}, M = {1, . . . , n} \ L = {m1, . . . ,mr}.

The reduced radical basis vectors have the following form for some ρij ∈ F :

aℓi +
∑

j∈M, j>ℓi

ρijaj (1 ≤ i ≤ n−r).

We use this reduced basis to compute the structure constants for Q = A/R. A
basis of Q consists of the cosets am = am + R for m ∈ M . To compute aiaj we
observe that aiaj = aiaj , but aiaj may contain aℓ with ℓ ∈ L. These terms must
be rewritten using the reduced radical basis relations:

aℓi = −
∑

m∈M,m>ℓi

ρimam = −

r
∑

k=1

σikamk
, σik =

{

0 if mk < ℓi,

ρimk
if mk > ℓi.

Because we are using the reduced basis, only am for m ∈ M occur in aiaj . At this
point we reindex the basis of Q: we set bi = ami

for 1 ≤ i ≤ r. We have

bibj = ami
amj

=

n
∑

k=1

ckmimj
ak =

r
∑

k=1

cmk
mimj

amk
+

n−r
∑

h=1

cℓhmimj
aℓh

=
r

∑

k=1

cmk
mimj

bk −
n−r
∑

h=1

cℓhmimj

r
∑

k=1

σhkbk =
r

∑

k=1

(

cmk
mimj

−
n−r
∑

h=1

cℓhmimj
σhk

)

bk.
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These structure constants for Q have the following form for some dkij ∈ F :

bibj =
r

∑

k=1

dkijbk (i, j = 1, . . . , r).

1.7. The center of a semisimple algebra. The next step is to compute the
center Z(Q) = {x ∈ Q | xy = yx for all y ∈ Q}. We quote the following facts:

Theorem 14. [7, Corollary 2.2.8, Theorem 2.4.1] The center of a semisimple alge-
bra is semisimple. Every commutative semisimple algebra is a direct sum of fields.

Since Q is the direct sum of simple matrix algebras, and since the center of a
simple matrix algebra consists of the scalar matrices, the decomposition

Q = Q1 ⊕ · · · ⊕Qc = Mn1
(D1)⊕ · · · ⊕Mnc

(Dc),

implies the decomposition Z(Q) = F1 ⊕ · · · ⊕ Fc where F1, . . . , Fc are extension
fields of F . Furthermore, Qi = QFi for 1 ≤ i ≤ k, and this reduces the problem
to the commutative case: if we can decompose Z(Q) into the direct sum of fields,
then we can decompose Q into the direct sum of simple matrix algebras.

We can represent Z(Q) as the nullspace of a matrix. Let b1, . . . , br be a basis
of Q with structure constants dkij . Then x ∈ Z(Q) if and only if xbi = bix for
1 ≤ i ≤ r. We have

x =

r
∑

j=1

xjbj , bix =

r
∑

j=1

xjbibj =

r
∑

j=1

xj

r
∑

k=1

dkijbk =

r
∑

k=1

r
∑

j=1

dkijxjbk,

xbi =

r
∑

k=1

r
∑

j=1

dkjixjbk, bix− xbi =

r
∑

k=1

( r
∑

j=1

(dkij − dkji)xj

)

bk.

Corollary 15. The center Z(Q) is the nullspace of the r2 × r matrix in which the
entry in row (i−1)r + k and column j is dkij − dkji for 1 ≤ i, j, k ≤ r.

We compute the RCF of this matrix and the canonical basis of row vectors
z1, . . . , zc for the nullspace. For 1 ≤ i, j ≤ c we use the structure constants for Q
to compute a row vector vij representing zizj as a linear combination of b1, . . . , br.
The coefficients of zizj with respect to the basis z1, . . . , zc are the first c entries in
the last column of the RCF of the following augmented matrix:

[

zt1 · · · ztc vtij
]

.

From this we obtain the structure constants for Z(Q) where fk
ij ∈ F :

zizj =

c
∑

k=1

fk
ijzk (1 ≤ i, j ≤ c).

1.8. Orthogonal idempotents in a commutative semisimple algebra. Our
next task is to decompose the commutative semisimple algebra Z = Z(Q) into a
direct sum of fields. We need to find a new basis e1, . . . , ec of orthogonal primitive
idempotents: e2i = ei and eiej = 0 (i 6= j). We use a recursive ideal-splitting
procedure following Ivanyos and Rónyai [16]. Let u be a (nonzero) element of a
commutative semisimple algebra Z. We compute a basis for the ideal I generated
by u, and calculate the identity element of I. We choose a basis element v of I
that is not a scalar multiple of the identity element. We compute the minimal
polynomial f of v as an element of I, and factor f over F . We have two cases:
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(a) If f is irreducible, then F (v) is a field. If F (v) = I then we are done: the
ideal I is a field. If F (v) 6= I then we choose a basis element w of I with
w /∈ F (v) and compute the minimal polynomial of w over F (v). We repeat
this process until we have either (i) constructed a proof that I is a field or
(ii) found an element of I whose minimal polynomial is reducible over F .

(b) If f is reducible, then f = gh where g, h ∈ F [x] \ F are relatively prime.
Hence there exist s, t ∈ F [x] for which sg+th = 1. It follows that the ideals
J and K generated by g(v) and h(v) split I: that is, J and K are proper
ideals of I such that I = J ⊕K and JK = {0}.

This algorithm starts with I = Z(Q) and recursively performs (a) and (b) to
decompose Z into the direct sum of fields. It uses three subprocedures: (1) given
a generator of an ideal I, compute a basis of I; (2) given a basis of I, compute the
identity element of I; (3) given an element of I, compute its minimal polynomial.

For subprocedure (1), we start with an element u ∈ Z. We use the structure
constants of Z to compute the products ziu for i = 1, . . . , c. We put these products
into the rows of a c× c matrix and compute its RCF. The nonzero rows of the RCF
form a basis of the ideal I generated by u.

For subprocedure (2), let z1, . . . , zc be a basis of Z and let I be an ideal with
basis y1, . . . , yd. We consider an arbitrary x ∈ I and express yj in terms of zk:

xyk =
(

d
∑

j=1

xjyj

)

yk =
d

∑

j=1

xjyjyk =
d

∑

j=1

xj

c
∑

ℓ=1

yjℓzℓ

c
∑

m=1

ykmzm

=

d
∑

j=1

c
∑

ℓ=1

c
∑

m=1

xjyjℓykm(zℓzm) =

d
∑

j=1

c
∑

ℓ=1

c
∑

m=1

xjyjℓykm

c
∑

p=1

fp
ℓmzp

=

c
∑

p=1

( d
∑

j=1

(

c
∑

ℓ=1

c
∑

m=1

yjℓykmfp
ℓm

)

xj

)

zp.

The conditions xyk = yk for 1 ≤ k ≤ d give a linear system of cd equations in the
d variables x1, . . . , xd:

d
∑

j=1

(

c
∑

ℓ=1

c
∑

m=1

yjℓykmfp
ℓm

)

xj = ykp (1 ≤ k ≤ d, 1 ≤ p ≤ c).

The unique solution of this system is the identity element e of the ideal I.
For subprocedure (3), we start with an element u ∈ I, and the previously com-

puted identity element e ∈ I. We represent e as a column vector with respect to the
basis z1, . . . , zc. Assume that for j ≥ 1 we have already computed the c× j matrix
whose column vectors are uj−1, . . . , u, e and that this matrix has rank j; this holds
when j = 1. We use the structure constants for Z to multiply the first column by u,
obtaining uj ; we then augment the matrix on the left. If this c× (j+1) matrix has
rank j+1, we repeat; otherwise, we have a dependence relation among uj , . . . , u, e,
and this is the (not necessarily monic) minimal polynomial. The coefficients of the
minimal polynomial are the last column of the RCF.

1.9. Bases for the simple ideals of the semisimple quotient. We now have
a new basis e1, . . . , ec of orthogonal idempotents in Z(Q); these elements are the
identity elements in the extension fields in the decomposition Z(Q) = F1 ⊕ · · · ⊕
Fc; and these fields are the centers of the simple ideals Qi = Mni

(Di) in the
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decomposition Q = Q1⊕· · ·⊕Qc. We have the coefficients of e1, . . . , ec with respect
to the basis z1, . . . , zc of Z(Q), and the coefficients of z1, . . . , zc with respect to the
basis b1, . . . , br of Q. We obtain elements ei ∈ Q (note the ambiguous notation):

ei =

c
∑

j=1

eijzj =

c
∑

j=1

eij

r
∑

k=1

zjkbk =

r
∑

k=1

(

c
∑

j=1

eijzjk

)

bk.

These elements of Q are the identity matrices in the matrix algebrasQi = Mni
(Di);

they are orthogonal idempotents in Q, but ei is primitive if and only if ni = 1. We
compute a basis of Qi by constructing a 2r × r matrix; in row j of the upper
(resp. lower) r× r block we put the coefficients of bjei (resp. eibj), with respect to
b1, . . . , br. We compute the RCF; the nonzero rows form a basis of Qi.

1.10. Isomorphism of a simple ideal with a full matrix algebra. Suppose
that we have a basis s1, . . . , sq2 and structure constants for an algebra S isomorphic
to Mq(F ). To construct an explicit isomorphism, we need to find a new basis Eij

(1 ≤ i, j ≤ q) satisfying the matrix unit relations EijEkℓ = δjkEiℓ. This is easy
if we can find a basis for a minimal (q-dimensional) left ideal I ⊂ S: we identify
the basis elements of I with the standard basis U1, . . . , Uq ∈ F q, and solve the
linear equations EijUk = δjkUi to determine the elements Eij . If F is finite, then
this can be done in polynomial time; but if F = Q, then the problem is more
difficult, and seems to be equivalent to hard number-theoretic problems such as
integer factorization; see Rónyai [20]. If we are lucky, one of the basis elements of
S generates a minimal left ideal; this happens in the example in Part 2.

1.11. Explicit matrices for the irreducible representations. Suppose that we
have found an explicit isomorphism of each simple ideal with a full matrix algebra.
We then have a new basis of Q = Q1 ⊕ · · · ⊕Qc consisting of matrix units:

E
(k)
ij ∈ Qk ≈ Mqk(F ) (1 ≤ k ≤ c, 1 ≤ i, j ≤ qk).

Let M be the r× r matrix which expresses the matrix units E
(k)
ij , ordered in some

way, in terms of the original basis: the (ℓ,m) entry ofM is the coefficient of bℓ in the
m-th matrix unit. The inverse matrix expresses the original basis in terms of the
matrix units, and has a horizontal block structure: for each k = 1, . . . , c the rows
of M−1 with indices m from q21+ · · ·+q2k−1+1 to q21+ · · ·+q2k define the projection
of Q onto Qk. The ℓ-th column of the k-th horizontal block contains the matrix
entries in the projection of bℓ onto Mqk(F ), and from this we obtain the matrix for
bℓ in the k-th irreducible representation. Composing the map A → A/R = Q with
the projection Q → Qk gives the matrices representing the basis elements of A.

1.12. Lifting the semisimple quotient to a subalgebra. The last step is to
find a subalgebra B ⊆ A which is isomorphic to the semisimple quotient Q and is
a vector space complement to the radical R; the existence of B is guaranteed by
the Wedderburn-Malcev Theorem. Let A be an associative algebra of dimension
n over F with radical R and semisimple quotient Q = A/R. Let β1, . . . , βr be a
basis of Q where βi = βi + R with βi ∈ A. We need to find γ1, . . . , γr ∈ R so that
βi + γi ∈ A have the same structure constants dkij ∈ F as βi ∈ A/R; that is,

(βi + γi)(βj + γj) =

r
∑

k=1

dkij(βk + γk) where βiβj =

r
∑

k=1

dkijβk.
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These equations can be rewritten as follows where δij ∈ R:

βiβj =

r
∑

k=1

dkijβk + δij , βiβj + βiγj + γiβj + γiγj =

r
∑

k=1

dkijβk +

r
∑

k=1

dkijγk.

We combine these equations, and consider the special case in which R2 = {0}:

βiγj + γiβj + γiγj −

r
∑

k=1

dkijγk = −δij , βiγj + γiβj −

r
∑

k=1

dkijγk = −δij .

The last equation is a linear system in the coefficients xiℓ ∈ F of the radical terms
γi with respect to a basis ζ1, . . . , ζn−r of R. We have

γi =

n−r
∑

ℓ=1

xiℓζℓ,

n−r
∑

ℓ=1

xjℓβiζℓ +

n−r
∑

ℓ=1

xiℓζℓβj −

r
∑

k=1

dkij

n−r
∑

ℓ=1

xkℓζℓ = −δij .

We expand βiζℓ, ζℓβj and δij in terms of ζ1, . . . , ζn−r where λt
iℓ, ρ

t
ℓj , σ

t
ij ∈ F :

βiζℓ =

n−r
∑

t=1

λt
iℓζt, ζℓβj =

n−r
∑

t=1

ρtℓjζt, δij =

r
∑

t=1

σt
ijζt.

We obtain
n−r
∑

ℓ=1

xjℓ

n−r
∑

t=1

λt
iℓζt +

n−r
∑

ℓ=1

xiℓ

n−r
∑

t=1

ρtℓjζt −
n−r
∑

t=1

r
∑

k=1

dkijxktζt = −
n−r
∑

t=1

σt
ijζt.

Extracting the coefficient of ζt gives

n−r
∑

ℓ=1

λt
iℓxjℓ +

n−r
∑

ℓ=1

ρtℓjxiℓ −

r
∑

k=1

dkijxkt = −σt
ij (1 ≤ i, j ≤ r, 1 ≤ t ≤ n−r).

The terms γi are the solution of these r2(n−r) linear equations in the r(n−r)
variables xiℓ. This solution is not unique: since any two liftings of the quotient are
unipotently conjugate by an element of the form 1 + ζ where ζ ∈ R (Theorem 9),
the number of parameters will equal the dimension of the radical.

In the general case where R2 6= {0}, suppose that Rν 6= {0} but Rν+1 = {0}
for some ν ≥ 1; the special case R2 = {0} corresponds to ν = 1. We sketch the
approach developed by de Graaf et al. [4] which uses induction on µ = 1, . . . , ν.
The inductive step applies the computations in the special case to compute a lifting
of A/Rµ to A/Rµ+1 by solving a linear system in the coefficients of terms γi ∈
Rµ/Rµ+1 using a basis for a complement of Rµ+1 in Rµ. At the last step, when
µ = ν, we have obtained a lifting of A/R to a subalgebra of A/Rν+1 = A/{0} = A.

2. Semigroups of Boolean matrices

2.1. Binary relations on a finite set. Perhaps the most general associative
structure is the collection of binary relations on a set under the operation of rela-
tional composition.

Definition 16. Let n be a positive integer and set Xn = {1, . . . , n}. The power
set P (X2

n) of the Cartesian square is the collection of all binary relations on Xn.
The natural associative operation on P (X2

n) is relational composition:

R ◦ S = { (i, k) | there exists j ∈ Xn such that (i, j) ∈ R and (j, k) ∈ S }.
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Sn SIn FTn PTn HMn QPn Bn

n!
n
∑

i=1

(

n

i

)2

i! nn (n+1)n open [12]
n−1
∑

k=0

(−1)k
(

n

k

)

(2n−k−1)n 2n
2

Table 1. Orders of subsemigroups of the semigroup of binary relations

We represent the relation R ∈ P (X2
n) as the n × n zero-one matrix (mij) where

mij = 1 if and only if (i, j) ∈ R. Relational composition corresponds to matrix
multiplication using Boolean arithmetic (1 + 1 = 1). This structure is called the
semigroup of binary relations on n elements and is denoted Bn.

The most familiar subsemigroup ofBn is the symmetric group Sn, consisting of
all matrices in which each row and each column has exactly one 1. The symmetric

inverse semigroup SIn, consisting of all matrices in which each row and each
column has at most one 1, corresponds to partial bijections between subsets of Xn.
The full transformation semigroup FTn, consisting of all matrices in which
each column has exactly one 1, corresponds to functions Xn → Xn. The partial

transformation semigroup PTn, consisting of all matrices in which each column
has at most one 1, corresponds to functions from subsets of Xn to Xn. (These four
classes are the classical finite transformation semigroups; see Ganyushkin and
Mazorchuk [14].) The semigroup of Hall matrices HMn consists of all matrices
(mij) which contain a permutation matrix in the sense that for some σ ∈ Sn we
have mi,σ(i) = 1 for i = 1, . . . , n. The semigroup of quasipermutations QPn

consists of all matrices in which each column and each row has at least one 1.
(Every Hall matrix is a quasipermutation, but the converse is false for n ≥ 3.)
These semigroups can be regarded as generalizations of the symmetric group; their
orders are given in Table 1.

For the semigroup algebra of a finite semigroup, we have two different bases:
first, the elements of the semigroup; second, the matrix units in the Wedderburn
decomposition together with the reduced basis of the radical. The projections onto
the simple ideals in the semisimple quotient provide irreducible representations of
the semigroup; see Bremner and El Bachraoui [1] for a general result regarding Bn.

2.2. The partial transformation semigroup on two elements. We explic-
itly compute the structure of the semigroup algebra A = QPT2 of the semigroup
{a1, . . . , a9} of all 2× 2 zero-one matrices in which each column has at most one 1:
{[

0 0
0 0

]

,

[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]

,

[

1 1
0 0

]

,

[

1 0
0 1

]

,

[

0 1
1 0

]

,

[

0 0
1 1

]}

.

The multiplication in PT2 is displayed in Table 2: aiaj = aµ(i,j) where µ(i, j) is
the entry in row i and column j. We study A since (i) it is a small algebra with a
nonzero radical in characteristic 0; (ii) there is a unique irreducible representation of
dimension > 1; (iii) the minimal polynomials of the central elements have rational
roots; (iv) the radical has square zero, so we can lift the quotient in one step.

From the multiplication table we obtain the matrix ∆ which has the radical R
as its nullspace (Corollary 13), and we compute its RCF; see Table 3. The matrix
has rank 7, and so R has dimension 2. We set the free variables (x6, x9) equal to
(1, 0) and (0, 1) to obtain the canonical basis of the nullspace and then the reduced
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



























1 1 1 1 1 1 1 1 1
1 2 3 1 1 6 2 3 1
1 1 1 2 3 1 3 2 6
1 4 5 1 1 9 4 5 1
1 1 1 4 5 1 5 4 9
1 2 3 2 3 6 6 6 6
1 2 3 4 5 6 7 8 9
1 4 5 2 3 9 8 7 6
1 4 5 4 5 9 9 9 9





























Table 2. Multiplication table for PT2





























1 1 1 1 1 1 1 1 1
1 4 1 1 1 4 4 1 1
1 1 1 4 1 1 1 4 4
1 1 4 1 1 4 1 4 1
1 1 1 1 4 1 4 1 4
1 4 1 4 1 4 4 4 4
1 4 1 1 4 4 9 1 4
1 1 4 4 1 4 1 9 4
1 1 4 1 4 4 4 4 4

























































1 . . . . −1 . . −1
. 1 . . . 1 . . .
. . 1 . . 1 . . .
. . . 1 . . . . 1
. . . . 1 . . . 1
. . . . . . 1 . .
. . . . . . . 1 .
. . . . . . . . .
. . . . . . . . .





























Table 3. The radical matrix for A = QPT2 and its row canonical form

[

1 −1 −1 . . 1 . . .
1 . . −1 −1 . . . 1

] [

1 . . −1 −1 . . . 1
. 1 1 −1 −1 −1 . . 1

]

Table 4. The canonical and reduced bases of the radical of QPT2

basis of the radical; see Table 4. The reduced basis consists of these elements of A:

ζ1 =

[

0 0
0 0

]

−

[

0 0
1 0

]

−

[

0 0
0 1

]

+

[

0 0
1 1

]

,

ζ2 =

[

1 0
0 0

]

+

[

0 1
0 0

]

−

[

0 0
1 0

]

−

[

0 0
0 1

]

−

[

1 1
0 0

]

+

[

0 0
1 1

]

.

We have these corresponding relations in Q = A/R:

a1 = a4 + a5 − a9, a2 = − a3 + a4 + a5 + a6 − a9.

The semisimple quotient Q has dimension 7. We compute the RCF of the matrix
whose nullspace is the center, and extract the canonical basis of Z(Q); see Table
5. The center has dimension 4; its structure constants are in Table 6. We need to
find a new basis of orthogonal idempotents.

To start, I = Z(Q) with identity element z2. Since z21 = 1, the minimal polyno-
mial of z1 is f = t2 − t and so we take g = t− 1 and h = t which gives I = J ⊕K
where J = 〈z1−z2〉 and K = 〈z1〉. A basis for J (resp. K) is z1−z2 and z3−z4
(resp. z1 and z4). In J the identity element is −z1+z2, and z3−z4 has minimal
polynomial t2−1. Hence J splits into 1-dimensional ideals with bases z1−z2+z3−z4



HOW TO COMPUTE THE WEDDERBURN DECOMPOSITION 11





1 . . 1 . 1 .
. 1 . . . 1 1
. . 1 −1 . . 1



 ,









−1 . 1 1 . . .
. . . . 1 . .

−1 −1 . . . 1 .
. −1 −1 . . . 1









.

Table 5. RCF of center matrix, and canonical center basis

· z1 z2 z3 z4
z1 z1 z1 z4 z4
z2 z1 z2 z3 z4
z3 z4 z3 −z1+z2−z4 −z4
z4 z4 z4 −z4 −z4

Table 6. Structure constants for Z(Q)

and z1−z2−z3+z4. In K the identity element is z1, and z4 has minimal polynomial
t2 + t. Hence K splits into 1-dimensional ideals with bases z4 and z1+z4. Scaling
these basis elements so that they satisfy the idempotent equation e2 = e, we obtain

e1 = 1
2 (−z1+z2−z3+z4), e2 = 1

2 (−z1+z2+z3−z4), e3 = −z4, e4 = z1+z4.

These primitive idempotents in Z(Q) correspond to these elements of Q:

e1 = b1 − b3 −
1
2b4 +

1
2b5 −

1
2b6 +

1
2b7, e2 = − 1

2b4 +
1
2b5 +

1
2b6 −

1
2b7,

e3 = b2 + b3 − b7, e4 = − b1 − b2 + b4 + b7.

The ideals in Q generated by e1, e2, e3, e4 have dimensions 1, 1, 1, 4 and so

Q = A/R ≈ Q⊕Q⊕Q⊕M2(Q).

The 4-dimensional ideal generated by e4 has basis

α = b1 − b7, β = b2 − b7, γ = b3 − b7, δ = b4 − b7.

We need to compute an explicit isomorphism of this ideal with M2(Q); that is,
a new basis Eij which satisfies the matrix unit relations EijEkℓ = δjkEiℓ. The
dimensions of the left ideals generated by α, β, γ, δ are 4, 2, 2, 2. In particular, β
generates a 2-dimensional left ideal with basis U1 = b1 − b3 and U2 = b2 − b7. We
identify U1, U2 with (1, 0), (0, 1) ∈ Q2, and solve for the matrix units; we obtain

E11 = −b1 + b3 + b4 − b7, E12 = −b4 + b7, E21 = b3 − b7, E22 = −b2 − b3 + 2b7.

We now have two bases for Q: the old basis b1, . . . , b7 and the new basis e1, e2, e3,
E11, E12, E21, E22. Let M be the matrix whose (i, j) entry is the coefficient of old
basis element i in new basis element j. The columns of M express the new basis
with respect to the old basis, and hence the columns of M−1 express the old basis
with respect to the new basis; see Table 7.

Semigroup elements a1, a2 are congruent modulo R to linear combinations of
a3, . . . , a9; combining this with M−1 we express a1, a2 in terms of the matrix units.
In this way we express all nine elements of A in terms of the matrix units, and this
gives the four irreducible representations; see Table 8. The first two are the unit and
sign representations of the symmetric group; the third is the unit representation of
the semigroup; the fourth is the irreducible 2-dimensional representation.
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M =























1 0 0 −1 0 0 0
0 0 1 0 0 0 −1

−1 0 1 1 0 1 −1
− 1

2 − 1
2 0 1 −1 0 0

1
2

1
2 0 0 0 0 0

− 1
2

1
2 0 0 0 0 0

1
2 − 1

2 −1 −1 1 −1 2























, M−1 =





















0 0 0 0 1 −1 0
0 0 0 0 1 1 0
1 1 1 1 1 1 1

−1 0 0 0 1 −1 0
−1 0 0 −1 0 −1 0
1 −1 1 0 0 0 0
1 0 1 1 1 1 1





















.

Table 7. Change of basis matrices for Q

element Q Q Q M2(Q)
[

0 0
0 0

]

0 0 1

[

0 0
0 0

]

[

1 0
0 0

]

0 0 1

[

1 0
−1 0

]

[

0 1
0 0

]

0 0 1

[

−1 −1
1 1

]

[

0 0
1 0

]

0 0 1

[

0 0
−1 0

]

[

0 0
0 1

]

0 0 1

[

0 0
1 1

]

[

1 1
0 0

]

0 0 1

[

0 −1
0 1

]

[

1 0
0 1

]

1 1 1

[

1 0
0 1

]

[

0 1
1 0

]

1 −1 1

[

−1 −1
0 1

]

[

0 0
1 1

]

0 0 1

[

0 0
0 1

]

Table 8. Irreducible representations of PT2

The last step is to find a subalgebra of A isomorphic to the semisimple quotient
Q = A/R. We use the following ordered basis of A:

β1 = e1, β2 = e2, β3 = e3, β4 = E11, β5 = E12, β6 = E21, β7 = E22, ζ1, ζ2.

We compute the quantities δij and solve a linear system for the coefficients xiℓ of
the terms γi for which βi + γi satisfy the structure constants for Q. We obtain
the following matrix, in which row i gives the coefficients of γi with respect to the
semigroup elements a1, . . . , a9; the free variables are α = x42, β = x52. The number
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





























0 − 1
2

1
2

1
2 − 1

2 0 1
2 − 1

2 0

0 − 1
2 − 1

2
1
2

1
2 0 1

2
1
2 −1

1 0 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 0 0 0 −1 0 0 1
1 0 0 −1 0 0 0 0 0

−1 0 0 0 0 0 0 0 1
1 0 0 −1 −1 0 0 0 1
0 1 1 −1 −1 −1 0 0 1































Table 9. Basis for Wedderburn decomposition of QPT2

of parameters is the dimension of the radical, as expected:




















0 − 1
2 − 1

2
1
2

1
2

1
2 0 0 − 1

2
−β 1

2−α 1
2−α −1

2+α+β − 1
2+α+β −1

2+α 0 0 1
2−α−β

1 0 0 −1 −1 0 0 0 1
0 α α −α −α −α 0 0 α
0 β β −β −β −β 0 0 β
α 0 0 −α −α 0 0 0 α

−1+β 0 0 1−β 1−β 0 0 0 −1+β





















We add the terms γi to the original coset representatives βi to obtain a lifted basis
of a subalgebra of A isomorphic to Q. We include the radical basis elements ζi to
obtain a new basis of A. Choosing α = 1, β = 0 gives the basis for A in Table 9.
We now have the complete decomposition of the semigroup algebra A = QPT2.

2.3. Further computations. The Maple program used to decompose QPT2 can
also be used to decompose QPT3 and QPT4. We obtain the following results:

A dimA dimR dimQ structure of Q (matrix sizes)
QPT2 9 2 7 1, 1, 1, 2
QPT3 64 30 34 1, 1, 1, 2, 3, 3, 3
QPT4 625 416 209 1, 1, 1, 2, 3, 3, 4, 4, 4, 6, 6, 8

2.4. A constructive approach to the structure of algebras. Since the original
paper of Friedl and Rónyai [13], there has been much research on polynomial-time
algorithms for explicit computation of the structure of finite-dimensional associative
algebras and Lie algebras. In addition to the references already cited, the work of
Eberly and Giesbrecht [8, 9, 10, 11] deserves particular mention.

2.5. Representation theory of finite semigroups. There is a substantial lit-
erature on the structure theory of semigroup algebras of finite semigroups; the
classical reference is Clifford and Preston [2]. A recent monograph is Ganyushkin
and Mazorchuk [14]; see also the paper [15]. For the symmetric inverse semigroup,
see Solomon [21]. For the full transformation semigroup, see Putcha [18].
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