
The impact of malware evolution on the analysis

methods and infrastructure

Krzysztof Cabaj, Piotr Gawkowski, Konrad Grochowski, Alexis Nowikowski, Piotr Żórawski

Institute of Computer Science

Warsaw University of Technology

ul. Nowowiejska 15/19

00-665 Warsaw, Poland

Email: {K.Cabaj, P.Gawkowski, K.Grochowski, A.Nowikowski, P.Zorawski}@ii.pw.edu.pl

Abstract—The huge number of malware introduced each
day demands methods and tools for their automated analyses.
Complex and distributed infrastructure of malicious software
and new sophisticated techniques used to obstruct the analyses
are discussed in the paper based on real-life malware evolution
observed for a long time. Their impact on both toolsets and
methods are presented based on practical development of systems
for malware analyses and new features for existing tools.

I. INTRODUCTION

A
TTACKERS must continuously improve the tactics used

to lure more and more users. An attempt to send an

executable attached to an e-mail is well known to the most

users and can be easily stopped by any anti-virus software.

Nowadays attackers divide infection process into two stages.

At the first stage some kind of executable code is delivered

to the victim. Often it can be a simple macro embedded in a

document or a link to an URL with malicious script. This code

is responsible for downloading a second stage that contains the

main malicious code, which is responsible for further hostile

activity. In the most cases the second stage code is hosted

on web servers (sites hacked without the knowledge of their

owners). The more detailed description of attack techniqes

used nowadays can be found in [1] [2]. Some of them are

also discussed with a QNAP NAS vulnerability case study

presented in [3].

The next section presents an overview of the authors’ ana-

lytical infrastructure and the background for the development

of some new systems due to the growing malware complexity

as well as the obfuscation and other hinder techniques used.

Some practical solutions are proposed and discussed.

Section III presents in details the authors’ analyses of the

Locky malware campaigns evolution since March 2016 until

January 2017. The authors have observed mainly two aspects

of changes: related to the code used for downloading the

second stage and to some hinder techniques. These changes

had a significant impact on the methods and tools used in the

analyses (discussed in Section IV).

To allow continues analyses of the new tricks introduced

by the Locky authors, some changes to the used analytical

tools and a completely new tool called StealthGuardian were

developed. Section V presents its details and the techniques

used. The paper concludes in Section VI.

II. OVERVIEW OF THE ANALYTICAL INFRASTRUCTURE

The first problem is the acquisition of malware samples.

The well known solution utilized for years are HoneyPot

systems [4][5]. In a HoneyPot the whole attacker’s activity

is carefully monitored and recorded for further analysis. Over

the time a special kind of HoneyPot systems were introduced

for direct gathering of malware samples (e.g. Nepenthes [6]

or Dionaea [7]). HoneyPot systems can be of high- or low-

interaction level [4]. Depending on the type, a HoneyPot can

cover different types of malware distribution and sometimes

also conduct preliminary dynamic analysis of the malware

behaviour. Indisputably, HoneyPots are very useful.

However, to handle dynamically changing first stage mal-

ware distribution and attack vectors, HoneyPots have to be

continuously developed. Another difficulty is introduced by

obfuscation and anti-analysis techniques (e.g. multi-stage in-

fection process) used by the malware. The authors faced these

problems during this research (see further sections). Most of

the papers describe HoneyPot systems itself and a malware

analyses as separate tasks (e.g. [8][9]). Obviously, such an

approach is not practical as the whole process depends on

iterative improvements of HoneyPots to allow deeper analysis

of multi-stage attack scenarios. Each stage of the attack require

some specific actions to be made by the HoneyPot.

It is reasonable to extend the set of the sample sources

and use more than just own HoneyPots. The results given

in further sections are based on samples freely available

in malwr.com service [10]. Everyone can send a suspicious

sample to this service and it will be executed in the controlled

environment (Cuckoo sandbox [11]). The popularity of the

malwr.com service guarantees a very rich set of different kind

of malicious software in a wide range of technologies and

attack techniques. Currently 67% of more than 720 thousands

of samples analysed by the malwr.com (as of May 2017) are

public and available for security researchers. It is worth to

note that malwr.com service is not a substitution of HoneyPots

as a source of samples but their valuable complement.

As there is no direct data accessibility API in malwr.com

service, the paper’s authors have developed a Malwr-Scraper

system. It downloads and parses HTML analyses description

pages (details of the analysis are stored in internal database).

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 549–553

DOI: 10.15439/2017F415

ISSN 2300-5963 ACSIS, Vol. 11

IEEE Catalog Number: CFP1785N-ART c©2017, PTI 549

After manual analyses of the most recently added samples,

some dedicated queries are prepared to identify all the samples

of a given malware family and these samples are downloaded

from the malwr.com. During the conducted research (further

described in Section III), the whole process of data gathering

lasted for 6 days (more than 620 thousands analyses of the

malwr.com service was downloaded and parsed - more than

815 GiB of HTML). The analysis revealed more than 5900

samples associated with the Locky ransomware family.

In the next step a malicious code is investigated with static

and/or dynamic analyses. During static analysis a malicious

code is carefully investigated by a security researcher. This

process gives much valuable information concerning code

internal structure, used libraries and overall functionality.

However, it is a very time consuming one.

Contrary, a dynamic analysis approach can reveal useful

information automatically [11], almost without any security

researcher activities. The gathered sample is executed in a

specially crafted environment, often called a sandbox. All

activities of the malicious code are carefully monitored (e.g.

created processes, files downloaded from the Internet and all

of the network communication). The evident hostile activity

(e.g. sending SPAM or working exploits) are denied by the

environment protection mechanism. Of course, the Internet

traffic cannot be completely denied due to the fact that modern

malware, during the infection, downloads further elements

from the Internet (e.g. the second stage of Locky ransomware)

or contact Command and Control servers (C&C) [12]. The

security researcher must determine the trade off between the

risk introduced and collection of possibly valuable information

when some protection mechanisms are loosen.

One of the most notable sandbox environment is Cuckoo

[11]. In the most cases Cuckoo uses VmWare or Virtual

Box virtualization hypervisors. Unfortunately, due to the great

popularity of this system, these two virtual environments are

the most often detected by the malware (in such case it simply

stops its hostile activity). To deal with that, during our research

we have developed two different environments dedicated for

dynamic analysis - Maltester [13] and MESS [12].

Both systems have similar structure. The management sys-

tem receives commands from the user. In effect, a clean virtual

machine is created (a sandbox system) – a snapshot feature

of the hypervisor is used. Launched sandbox machine has a

custom software responsible for receiving a malware sample

for the analysis and its execution. Due to security concerns all

the traffic between the Internet and the sandbox system (with a

suspicious file) is forwarded by an additional gateway system

which implements Firewall and NAT services. Any hostile

activity is stopped at this system. The overall infrastructure

of the developed Maltester and MESS systems is very similar

to the one used by the Cuckoo sandbox. However, our systems

utilize not so common (in a security world) hypervisors:

respectively Xen and Microsoft Hyper-V. Our research shows

that for some malware samples the analysis has failed in well

known systems but they were successfully evaluated in our

custom dynamic analysis environments.

III. LOCKY CASE STUDY

The results presented in this paper are continuation of the

previous works associated with the analysis of the CryptoWall

ransomware conducted at the beginning of 2015 [13]. Because

of unknown reasons new samples of the CryptoWall were not

observed in the January 2016 and later the whole CryptoWall

infrastructure was shut down. However, around the middle

of the February a new ransomware family appeared - called

Locky. Like its predecessor, it encrypts user data and uses

asymmetric cryptography. Public key used for the encryption

is downloaded from a C&C server. Contrary to the CryptoWall,

the Locky family uses more complicated schema for C&C

access. Each sample has a few hard-coded C&C IP addresses.

If they are shutdown, Locky uses domain generation algorithm

(DGA) for finding other working C&C servers.

Since the middle of the March 2016 to the beginning of the

January 2017 more than 5900 samples associated with Locky

malware were reported in the malwr.com service. Around 700

of them are in Windows executable (PE32) format. In the

remaining 5200 samples of the first stage we identified 278

hostile Excel and 753 hostile Word documents (around 20%

of samples).

The characteristic for Locky campaigns is that the first stage

code is very often in JavaScript and is sent to the victims

as files with .js and .wsf extensions. The conducted research

revealed that in more than 75% of the Locky first stage code

samples. What should be emphasized, Microsoft Windows

silently executes JavaScript code if given file extension is .js.

Among all the analysed JavaScript-based Locky samples,

the simplest and the shortest code is contained in 17 lines

(693 bytes)1. In more recent samples, this first stage code

become obfuscated using various methods. In effect, the code

became longer and more complicated for analysis. The longest

observed Locky first stage code has a length slightly more than

1 Megabyte - exactly 1064661 bytes2. The code presented

in the Fig. 1 as Original Code with high probability was

manually de-obfuscated by a security analyst (used variables,

function names and all parameters use human readable names).

However, obfuscated code with the same functionality can be

observed in real samples sent to the victims. Fig. 1 presents a

few sample obfuscation techniques (parts A, B, and C).

In all three presented cases variables with strange names

(Njofagi, DqWgVQeF, and JBGUHYm2e) represents Ac-

tiveXObject MSXML2.XMLHTTP, which is used for prepara-

tion of a HTTP request and downloading of the Locky second

stage code. The first obfuscated excerpt code presented in

the Fig. 1 obfuscate only variable names. Code presented in

excerpt B encodes parts of JavaScript code using Unicode.

Despite complicated appearance, this code can be easily de-

obfuscated even using Unicode decoding services freely avail-

able online3. The last excerpt in Fig. 1 presents a technique

in which the program text parts (like web server address and

1Sample from malwr.com with MD5 dafb1c1626d822e9de4a7ae5b33eae59.
2Sample with MD5 9b823aeed9fda550bddeb735f35e6d3b.
3For example https://www.branah.com/unicode-converter.

550 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

/∗ ∗ O r i g i n a l Code ∗ ∗ /
x m l h t t p [’ open ’]

(’GET ’ , ’ h t t p : / / XXX.YY/ 4 5 g456 ’ , f a l s e) ;
x m l h t t p [’ send ’] () ;

/∗ ∗ A ∗ ∗ /
N j o f a g i [Uzkoy]

("GET" , " h t t p : / / XXX.YY/ 4 5 g456 " , f a l s e) ;
N j o f a g i [" send "] () ;

/∗ ∗ B ∗ ∗ /
DqWgVQeF[’ o \ u0070 \ u0065n ’]

(’G\ u0045T ’ ,
’ \ u0068 \ u0074 \ u0074 \ u0070 . . . ’ , f a l s e) ;

DqWgVQeF[’ se \ u006E \ u0064 ’] () ;

/∗ ∗ C ∗ ∗ /
JBGUHYm2e[TTBLVVx3k]

("G\ x45T " ,
" h t "+" t p "+" : / / "+"XX"+"X. "+"YY"

+" / a "+" se "+" 32 f "+" f " ,
f a l s e) ;

JBGUHYm2e[" s "+" end "] () ;

Fig. 1. Various obfuscation techniques (A, B, and C) and the Original Code.

function names as well) are divided into short chunks and

dynamically concatenated before use. Code excerpts are taken

from the samples with code lengths of 24684, 17075, and

5332566 bytes.

A huge span of sizes of the Locky first stage code sizes

was observed - from below 1000 bytes to more than 1 MiB

during the analyses period. The most evident strange behaviour

which was observed between April and May concerns a sharp

rise of the JavaScript code size. Analysis of these samples

revealed that core part of the code is similar to the already

observed. However, some random text is placed in variously

defined comments7. Further samples, with even larger sizes

have introduced various lines of random text, for example, a

repeated pattern of ‘12345667890’8. We suspected that these

changes in code utilize some flaws in security software, for

example, anti-virus software which cannot properly detect

malware in such a big JavaScript code.

Analysing another sharp rise in the size of the exploits

(from a few kibibytes to more than 10 KiB) showed that a

new kind of obfuscation was introduced by the attackers: the

whole protected JavaScript code is partitioned into some small

chunks and concatenated just before the execution9.

In the third case, instead of partitioning the code into

chunks, a final code is included as an encrypted text. The

simple mono-alphabetic cipher is used. The most characteristic

part of this type of downloader is a slightly obfuscated array

used in decryption procedure of the final downloader code.

4Sample with MD5 73a65a07887c705971d6d01a546bc748.
5Sample with MD5 0ed65a747b98989f24e660d495c71524.
6Sample with MD5 e04892726b496ce5f0c9fc9d08fd73b5.
7e.g. a sample with MD5 c9e26aec4405e79131a585802bcd0de9.
8Sample with MD5 fcbfe7604f94f15abdbe6fea1c865cc4.
9Sample with MD5 d6eeeb79c1be9decd781a200c67a92e6.

In another case a completely different kind of the first

stage code was identified. Previously used Locky downloader

was directly downloading a second stage executable. However,

around 24th of May this behaviour changed: Locky started to

download a second stage malware which was encrypted.

During the conducted research we observed the evolution

of the used encryption techniques. The first encrypted samples

(which appeared first on distribution servers at 24th of May)

were using a simple mono-alphabetic substitution cipher. De-

cryption code implementation uses XOR function with a single

byte key - even during viewing of such file in hex-editor, the

repeating strings of the same byte can be observed (due to

many 0-valued bytes in the Windows executable format). To

hinder the analysis, the attacker reverses the whole file and

adds a few random bytes at the end of the file. Due to the

used key - 0x73, which represents in the ASCII letter s, a

downloaded second stage file in hex-editor have a catching in

the eye numerous strings of letter s.

In the following weeks some longer keys were observed.

The longest one was automatically generated from two num-

bers and have a length of 256 bytes. However, from the June

2016 in most cases some shorter keys were observed - in the

most cases using 32 bytes of ASCII characters. Due to the

fact that most hex-editors presents in one line multiplicity of

8 or 16 bytes, this size of a key produce repeatable pattern

easily visible in the viewed file, which in effect simplify

reproduction of the original key. Despite these drawbacks, this

behaviour was most common to the end of the year. However,

occasionally other key lengths appear, but all of them are only

within ASCII characters range.

Additional change in the downloaded second stage of the

Locky malware, which appears together with encryption, con-

cerns a format of the executable which takes the form of

DLL library. The DLL-based second stage samples appeared

for the first time at the 29th of August 2016. Usage of the

DLL is well known hinder behaviour used nowadays by the

attackers. However, owners of the Locky have extended this

technique. In the previously analysed malware, the samples

distributed as a DLL required a usage of the rundll32 utility –

Locky samples do not run by the execution of a standard DLL

entry function executed by the rundll32. To make it difficult,

Locky malware uses additional entry function, which name

is is included in the encrypted first stage code. Moreover,

the name of that secret entry function was not given in the

exported functions table. After some initial investigation, we

suspect that the used entry function is dynamically decrypted

by some other standard entry function. In effect, to run Locky

malware sample, this entry function must be discovered before

any further analyses. So, to conduct dynamic analysis of such

sample, some modifications of the analysing environment have

to be introduced.

To the end of the November only one simple entry function

name was used (“qwerty”). Later, this entry function was

changed more and more often – at the end almost on daily

basis. The last analysed Locky campaign used 25 of such

functions.

KRZYSZTOF CABAJ ET AL.: THE IMPACT OF MALWARE EVOLUTION ON THE ANALYSIS METHODS AND INFRASTRUCTURE 551

IV. MALWARE DEFENCE TECHNIQUES

Malware evolution is driven not only by new attack possi-

bilities, but also by the need to obstruct analysis efforts. The

longer analyses of malware behaviour means longer activity

in the environment – infection of thousands of additional

machines. So, the obstruction of analysis is a natural next step

in the evolution of any malware.

To overcome static analysis efforts, malware can use various

mixes of encoding, encryption, mutation and other operations

(some real-life examples are presented in Sec. III). This

made the dynamic analysis more and more important in the

past years, yet malware creators are aware of that and also

enhanced their software. The most basic, but very effective,

malwares’ defence strategy is to detect the fact of being

analysed and just stop to do anything. Because dynamic

analysis requires some supervisor software to be present, the

easiest way for malware to detect the analysis is to check if

it runs in a supervised environment or not. For example, a

debugger connected to the infected process or execution on a

virtual machine can mean that the software is being analysed.

Malware does not need to make any additional checks for

the potential reasons of debugging or presence of virtual

environment – vast majority of users does not use debuggers

and works on a real hardware, so, even if malware will loose

some targets, it still gains a lot more.

Some common supervision detection techniques targeting

Microsoft Windows operating system are described below.

Nevertheless, variations of the same techniques can be also

used by malware working on any other system.

1) Checking for debugger presence using system API:

Standard Windows API library kernel32 provides two func-

tions which can be used by any software to detect debugger

connected to the current process: IsDebuggerPresent

and CheckRemoteDebuggerPresent. It is one of the

simplest check a malware can perform, but will be effective

against simple debugging of infected process.

2) Checking for remote debugger presence: Instead of

relying on system API, a process can retrieve remote de-

bugger information by directly querying the kernel using

NtQueryInformationProcess from ntdll library. This

method is used to retrieve EPROCESS structure that contains

information about potentially connected remote debuggers.

3) Checking PEB structure: Low level check of debugger

presence can be achieved by direct read of BeingDebugged

flag from the PEB structure which is available at a predefined

address for each process (i.e. fs:[0x30] on 32-bit system

and gs:[0x60] on 64-bit). Reading this flag requires some

assembly code, but makes software independent from any

external library.

4) Instruction execution time measurement: It is harder to

determine if a program executes in a virtual or real machine,

as, in theory, virtualization should be transparent to the guest

system (end its processes). However, the simplest check can

be achieved by measuring the execution time of a single

processor instruction - in a virtual system this time is longer.

Using the RDTSC instruction a program can read TSC registry

value, which contains the number of cycles since the last

processor power-on. Comparing two consequent reads with

some expected difference can hint the presence of additional

virtualization layer between the hardware and the software.

Although simple, this method is not very accurate and can

yield many false positives.

5) Validating machine and user name: Names of machines

used by analysis systems can contain strings like maltest, sand-

box, virus etc. Malware can compare current machine or user

name against dictionary to quickly get hint for being analysed.

Library advapi32 provides the method GetUserName for

reading user name while the kernel32 library provides machine

name via GetComputerName method.

6) Validating peripherals properties: Various hipervisors

can use some predefined names for emulated peripherals. For

example Hyper-V uses it’s name in the name of some peripher-

als, including BIOS name and version. Other properties which

can be used by a malware include MAC address of a network

card, which usually comes from a pool assigned for the virtual

machine manufacturer. Reading those values usually requires

checking various keys from Windows Registry.

7) Checking parent process name: Usually a malware after

infection is executed on each user login (parent process: ex-

plorer.exe) or as a system service (parent process: svchost.exe).

Other parent processes can mean that malware sample was

executed by some kind of a supervisor process, which is some-

times needed even in virtualized environment. Process parent

can be found in PROCESSENTRY32 structure, which can

be queried using Process32First and Process32Next

functions from the kernel32 library.

8) Expecting cursor movements: Some malware tries to

detect if there is any real live user interaction ongoing before

deciding to attack the system. One of the easiest techniques

malware uses is to check a mouse cursor position on the

screen. Basic, virtual machine based, sandboxes, executed

in automated way for the analysis do not simulate mouse

cursor movements. Process can acquire cursor status using

GetCursorInfo provided by the user32 library.

V. STEALTHGUARDIAN

Overcoming malware counter-analysis efforts is required to

continue with efficient dynamic analysis of future samples.

The idea is to enhance the system for the analysis in such

a way that it will appear as stealth to the analysed sample

as possible. Various techniques of achieving that goal were

developed, tested and implemented in the authors’ Institute

as a StealthGuardian software. It wraps the execution of a

sample providing additional layer upon the operating system.

It can be integrated with any analysis system as it does not

introduce any new requirements for the supervisor system. In

our Institute it became a part of the MESS infrastructure - a

supervisor program running inside a sandbox virtual machine,

which is used in MESS to launch the analysed sample, can

now launch StealthGuardian which then executes the sample

for the analysis.

552 PROCEEDINGS OF THE FEDCSIS. PRAGUE, 2017

First tested solution was based on attaching to the executed

sample as a debugger and switching into single-step execution

mode. However, this extremely reduces the performance of the

analysis – sample execution can take even a couple of thousand

times longer. This technique could still be used if a single-step

would be turned on only for some critical parts of the sample

execution, but some preliminary analysis of the sample has to

be performed to determine these parts.

The obstruction techniques described in Section IV can be

divided into two groups based on a method of implementation:

1) direct processor instruction execution, 2) Windows API

methods call. Using a debugger can handle the first group

and some of the calls from the second group - those which

can be easily recognized as assembly instruction sequence.

But recognizing all the calls using a debugger seems to be

too complicated and costly in terms of the performance. So,

the proposed solution requires capturing all the calls of API

functions and temper with their results before providing them

to the analysed sample. It will not cover all the techniques

used by malware but it is effective and efficient.

Capturing Windows API calls can be achieved using inline

hooking technique. It involves replacing the code of the

selected library functions with the calls to the substituted

functions, which then can call the original functions. A

trampoline is quite well known and popular technique, so

various implementations are available. StealthGuardian uses

MinHook library10 to intercept Windows API calls responsible

for malware defence techniques described in Section IV. To

make it work properly, it was necessary to prepare both x32

and x64 versions of StealthGuardian, so it can work with all

architectures used by different malware. It was also necessary

to overcome some other technical issues, like supporting both

ASCII and UTF versions of some API functions and hooking

libraries loaded by direct calls to the LoadLibrary function,

even in new threads or processes spawned by the original

(parent) process. Proper behaviour of the hooked methods had

to be designed – returning completely random values may not

trick smart malware (e.g. user name can be random, but has

to be constant for the whole sandbox execution).

Final version of StealthGuardian was able to trick spe-

cial sample prepared in the Institute, which was using all

supported by StealthGuardian defence techniques. Following

experiments on some real samples also proved usefulness of

this solution. For example, it allowed to observe the whole

known behaviour of the Win32/Urnsnif 11.

VI. CONCLUSION

For the last few years we observe arms race between

black hats and security community. Cybercriminals introduce

new attack tactics which later are discovered, analysed and

mitigated using new security mechanisms. When more and

more users start using these mitigation mechanisms, cyber-

criminals introduce new methods and the cycle starts once

10https://github.com/TsudaKageyu/minhook
11Sample with MD5 4df3ce5c9a83829c0f81ee1e3121c6ea.

again. However, the time between the next cycle is decreasing.

Few years ago we observed a new sample of a given malware

family once a few weeks. During the analysis of the Locky we

observed from two to three distinct samples daily.

These rapid changes of cybercriminal tactics are challenging

for the security community. Conducted research showed that

the usage of dynamic analysis could reduce the time needed for

performing the analysis of a new malware sample. However,

sometimes the changes introduced by the malware are so

significant that the environment for the analysis must be

upgraded. This paper describes with details some of these

developments which allow the analysis of the most recently

appearing malware samples.

REFERENCES

[1] T. Herr and E. Armbrust, “Milware: Identification and implications
of state authored malicious software,” in Proceedings of the

2015 New Security Paradigms Workshop, ser. NSPW ’15. New
York, NY, USA: ACM, 2015, pp. 29–43. [Online]. Available:
http://doi.acm.org/10.1145/2841113.2841116

[2] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis,
“A Lustrum of malware network communication: Evolution and
insights,” in S&P 2017, 37th IEEE Symposium on Security and Privacy,

May 23-25, 2017, San Jose, USA, San Jose, UNITED STATES, 05
2017. [Online]. Available: http://www.eurecom.fr/publication/5177

[3] K. Cabaj, K. Grochowski, and P. Gawkowski, “Practical problems
of internet threats analyses,” in Theory and Engineering of Complex

Systems and Dependability. Proceedings of the Tenth International Con-

ference on Dependability and Complex Systems DepCoS-RELCOMEX,
ser. Advances in Intelligent Systems and Computing, W. Zamojski,
J. Mazurkiewicz, J. Sugier, T. Walkowiak, and J. Kacprzyk, Eds., vol.
365. Springer International Publishing, 2015, pp. 87–96.

[4] K. Cabaj and P. Gawkowski, “Honeypot systems in practice,” Przegląd

Elektrotechniczny, vol. 91, no. 2, pp. 63–67, 2015.
[5] M. L. Bringer, C. A. Chelmecki, and H. Fujinoki, “A survey: Recent

advances and future trends in honeypot research,” International Journal

of Computer Network and Information Security, vol. 4, no. 10, p. 63,
2012.

[6] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling,
The Nepenthes Platform: An Efficient Approach to Collect Malware.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 165–184.
[Online]. Available: http://dx.doi.org/10.1007/11856214_9

[7] T. Sochor and M. Zuzcak, Study of Internet Threats and Attack Methods

Using Honeypots and Honeynets. Cham: Springer International
Publishing, 2014, pp. 118–127. [Online]. Available: http://dx.doi.org/
10.1007/978-3-319-07941-7_12

[8] P. Baecher, M. Koetter, T. Holz, M. Dornseif, and F. Freiling,
The Nepenthes Platform: An Efficient Approach to Collect Malware.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 165–184.
[Online]. Available: http://dx.doi.org/10.1007/11856214_9

[9] M. Xu, L. Wu, S. Qi, J. Xu, H. Zhang, Y. Ren, and N. Zheng, “A
similarity metric method of obfuscated malware using function-call
graph,” Journal of Computer Virology and Hacking Techniques, vol. 9,
no. 1, pp. 35–47, 2013. [Online]. Available: http://dx.doi.org/10.1007/
s11416-012-0175-y

[10] C. Guarnieri and A. Tanasi. malwr.com website. [Online]. Available:
http://malwr.com

[11] M. Vasilescu, L. Gheorghe, and N. Tapus, “Practical malware analysis
based on sandboxing,” in 2014 RoEduNet Conference 13th Edition: Net-

working in Education and Research Joint Event RENAM 8th Conference,
Sept 2014, pp. 1–6.

[12] K. Cabaj, P. Gawkowski, K. Grochowski, and A. Kosik, “Developing
malware evaluation infrastructure,” in Proceedings of the 2016 Federated

Conference on Computer Science and Information Systems, ser. Annals
of Computer Science and Information Systems, M. Ganzha, L. A.
Maciaszek, and M. Paprzycki, Eds., vol. 5. IEEE, 2016, pp. 1001–
1009.

[13] K. Cabaj, P. Gawkowski, K. Grochowski, and D. Osojca, “Network
activity analysis of cryptowall ransomware,” Przegląd Elektrotechniczny,
vol. 91, no. 11, pp. 201–204, 2015.

KRZYSZTOF CABAJ ET AL.: THE IMPACT OF MALWARE EVOLUTION ON THE ANALYSIS METHODS AND INFRASTRUCTURE 553

