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Abstract

The growing utilization of planning tools in practical scenar-
ios has sparked an interest in generating multiple high-quality
plans. Consequently, a range of computational problems un-
der the general umbrella of top-quality planning were intro-
duced over a short time period, each with its own definition.
In this work, we show that the existing definitions can be
unified into one, based on a dominance relation. The differ-
ent computational problems, therefore, simply correspond to
different dominance relations. Given the unified definition,
we can now certify the top-quality of the solutions, leverag-
ing existing certification of unsolvability and optimality. We
show that task transformations found in the existing litera-
ture can be employed for the efficient certification of various
top-quality planning problems and propose a novel transfor-
mation to efficiently certify loopless top-quality planning.

Introduction
A body of research on generating plans of top quality (Katz
et al. 2018; Speck, Mattmüller, and Nebel 2020; Lee, Katz,
and Sohrabi 2023) has recently yielded various computa-
tional problems, including unordered top-quality planning
(Katz, Sohrabi, and Udrea 2020), subset top-quality plan-
ning (Katz and Sohrabi 2022), and loopless top-k planning
(von Tschammer, Mattmüller, and Speck 2022). Each of
these problems is defined in an ad-hoc manner, addressing
specific issues, often identified by an application of inter-
est. For instance, unordered top-quality planning addresses
the equivalence of plans that perform the same actions in a
different order, a property that holds in many applications.
Subset top-quality planning handles unnecessary actions on
plans, while the loopless setting specifically addresses un-
necessary loops on plans. Clearly, these problems cover only
a fraction of possible cases, and there may be various yet
unspecified computational problems of practical use. As it
is impractical to specify each such computational problem
separately, we propose to unify the existing definitions un-
der the framework we call dominance top-quality plan-
ning. Essentially, any relation over plans defines a compu-
tational problem in top-quality planning and the definition
specifies whether a set of plans constitutes a solution to the
problem. The natural next step is to check whether a set of
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plans is a solution to the problem. We follow the existing
work on certificates of unsolvability (Eriksson, Röger, and
Helmert 2017) and of optimality (Mugdan, Christen, and
Eriksson 2023) and propose certifying top-quality planning
solutions. We show how to certify top-quality for the unified
definition, exploiting existing tools that can certify optimal-
ity (Mugdan, Christen, and Eriksson 2023). Further, for the
computational problems of unordered top-quality planning
and subset top-quality planning, the existing in the litera-
ture task transformations (Katz, Sohrabi, and Udrea 2020;
Katz and Sohrabi 2022) can be used for efficient certifica-
tion. For loopless top-quality planning no such transforma-
tion exists. We close the gap by introducing a new trans-
formation that allows us to efficiently certify solutions for
loopless top-quality planning.

Background
A planning task Π = 〈V ,O, s0, s?, cost〉 in SAS+ formal-
ism (Bäckström and Nebel 1995) consists of a finite set of
finite-domain state variables V , a finite set of actions O, an
initial state s0, and the goal s?. Each variable v ∈ V is asso-
ciated with a finite domain D(v) of values. An assignment
of d ∈ D(v) to v ∈ V is denoted by 〈v,d〉. A partial as-
signment p maps a subset of variables V(p) ⊆ V to values
in their domains. For a variable v ∈ V and a partial assign-
ment p, the value of v in p is denoted by p[v] if v ∈ V(p)
and is undefined otherwise. A full assignment s is called a
state, and the set of all states is denoted by S . State s is
consistent with a partial assignment p if they agree on all
variables in V(p), denoted by p ⊆ s. Each action o in O is
a pair 〈pre(o), eff (o)〉, where pre(o) and eff (o) are partial
assignments called precondition and effect, respectively. We
denote by prv(o) the precondition restricted to the variables
not affected by the action. Furthermore, o has an associated
non-negative cost denoted by cost(o) ∈ R0+. An action o is
applicable in state s if pre(o) ⊆ s. Applying o in s results
in a state denoted by sJoK, where sJoK[v] = eff (o)[v] for all
v ∈ V(eff ), and sJoK[v] = s[v] for all other variables. An ac-
tion sequence π = 〈o1 . . . on〉 is applicable in state s if there
are states s1, . . . , sn+1 such that s = s1, oi is applicable in
si and siJoiK = si+1 for 0 ≤ i ≤ n. We denote sn by sJπK.
An action sequence with s? ⊆ s0JπK is called a plan. The
cost of a plan π, denoted by cost(π) is the sum of the costs
of the actions in the plan. The set of all plans is denoted by
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PΠ, and an optimal plan is a plan in PΠ with the minimum
cost. Next, we present the top-k planning problem, as de-
fined by Sohrabi et al. (2016) and Katz et al. (2018). Given a
classical planning task Π and a natural number k, find a set
of plans P ⊆ PΠ that satisfy the following properties: (I)
For all plans π ∈ P , if there exists a plan π′ ∈ PΠ such that
cost(π′) < cost(π), then π′ ∈ P , and (II) |P | ≤ k, and if
|P | < k, then P = PΠ. Note that cost-optimal planning is
a special case of top-k planning for k = 1. Extending cost-
optimal planning, top-quality planning (Katz, Sohrabi, and
Udrea 2020) deals with finding all plans of up to a specified
cost. Given a planning task Π and a number q ∈ R0+, find
the set of plans P ={π ∈ PΠ | cost(π) ≤ q}. In some cases,
an equivalence between plans can be specified, allowing to
possibly skip some plans, if equivalent plans are found. The
corresponding problem is called quotient top-quality plan-
ning and it is formally specified as follows. Given a planning
task Π, an equivalence relation N over its set of plans PΠ,
and a number q ∈ R0+, find a set of plans P ⊆ PΠ such that⋃
π∈P N [π] is the solution to the top-quality planning prob-

lem. The most common case of such an equivalence relation
is when the order of actions in a valid plan is not significant
from the application perspective. In other words, when you
can reorder some of the actions in a plan and still get a valid
plan. The corresponding problem is called unordered top-
quality planning and is formally specified as follows. Given
a planning task Π and a number q ∈ R0+, find a set of plans
P ⊆ PΠ such that P is a solution to the quotient top-quality
planning problem under the equivalence relation RU =
{(π, π′) | π, π′ ∈ PΠ,MS(π) = MS(π′)}, where MS(π) is
the multi-set of the actions in π. Going beyond equivalence
relations, let R⊂ = {(π, π′) | MS(π) ⊂ MS(π′)} denote
the relation defined by the subset operation over plan action
multi-sets. The subset top-quality planning problem (Katz
and Sohrabi 2022) is defined as follows. Given a planning
task Π and a natural number q, find a set of plans P ⊆ PΠ

s.t. (i) ∀π ∈ P , cost(π) ≤ q, and (ii) ∀π′ ∈ PΠ \P with
cost(π′)≤ q, ∃π ∈ P s.t. (π, π′) ∈ R⊂. In words, a plan π
with cost(π) ≤ q may be excluded from the solution to the
subset top-quality planning problem only if its subset is part
of the solution. Note, while a top-quality and unordered top-
quality solutions are also subset top-quality solutions, we are
interested in finding the smallest (in the number of plans)
such solutions. While unordered top-quality solutions can
be of infinite size, the smallest subset top-quality planning
solutions are always finite. Yet another problem is the loop-
less top-k planning problem (von Tschammer, Mattmüller,
and Speck 2022). It is defined in the literature similarly to
the top-k planning problem, where the set of all plans PΠ is
replaced with the set of all loopless plans P``Π . Here, we con-
sider the corresponding loopless top-quality planning prob-
lem. We therefore define the top-quality variant as follows.
Given a planning task Π and a number q ∈ R0+, find the set
of plans P ={π ∈ P``Π | cost(π) ≤ q}.

Unifying Top-quality Planning
We start by noticing that the definition for quotient top-
quality planning can be rewritten similarly to the one
for subset top-quality planning, by requiring the plans of

bounded by q costs missing from the solution to be in re-
lation to the ones that are in the solution. With that, given
any relation R, we extend the Definition 1 of Katz and
Sohrabi (2022) as follows.
Definition 1 Let Π be some planning task, PΠ be the set of
its plans, and R be some relation over PΠ. The dominance
top-quality planning problem is defined as follows. Given
a natural number q, find a set of plans P ⊆ PΠ such that
1. ∀π ∈ P , cost(π) ≤ q,
2. ∀π′ 6∈P with cost(π′)≤q, ∃π∈P such that (π, π′)∈R,
3. P is minimal under ⊆ among all P ′ ⊆ PΠ for which

conditions 1 and 2 hold.
Observe that for an empty relation we get the top-quality

planning problem, for RU we get the unordered top-quality
planning (Katz, Sohrabi, and Udrea 2020), while for R⊂
we get sub-multi-set top-quality planning (Katz and Sohrabi
2022). It is worth noting that in these publications, the third
condition was not part of the definition, but the aim was to
find solutions of minimal size.

Moving on to loopless top-quality planning, while the ex-
isting definition is not expressed via a relation over plans,
there can be various such relations. While varying in detail,
the idea is the same – a plan without loops dominates plans
with loops. Concrete relations may require that the loopless
plan could be obtained from the one with loops by removing
these loops. A relation we adopt in this work, however, is
somewhat more general: (π, π′) ∈ R`` if and only if (a) π
is a loopless plan and (b) if S′ are the states traversed by π,
then π′ traverses some s ∈ S′ more than once.

Theorem 1 The dominance top-quality planning problem
for R`` is the loopless top-quality planning problem.

For the proof see Katz, Lee, and Sohrabi (2024).
While none of the common properties of relations (re-

flexivity, transitivity, and symmetry) are required to make
Definition 1 well defined, it is worth discussing the rela-
tions we considered so far. The quotient top-quality plan-
ning problem in general and unordered top-quality in par-
ticular deal with equivalence relations. On the other hand,
the relations R⊂ and R`` are transitive and anti-symmetric,
but they are not reflexive and therefore not a partial order.
In principle extending these relations by adding the ele-
ments (π, π) for all π ∈ PΠ would not affect what is con-
sidered to be a solution under the definition. In general, if
(π, π′) ∈ R and (π′, π′′) ∈ R, if both π′ and π′′ are not
in P , while π is, transitivity would suffice to ensure con-
dition 2. It is not strictly necessary though. An example is
R = {(πa, πb), (πc, πd), (πb, πd), (πd, πb)} over the set of
plans PΠ = {πa, πb, πc, πd}, all of the same cost q. The set
P = {πa, πc} is a solution to the R dominance top-quality
problem according to Definition 1. Note that the example
relation is neither symmetric nor anti-symmetric.

Certificate of Top Quality
Given a planning task Π and a set of plans P ⊆ PΠ, note that
it is possible to obtain another (transformed) planning task
ΠP with the set of plans being PΠ \ P (Katz et al. 2018).
The family of such transformations is generally called plan
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forbidding, and several such transformations exist in the lit-
erature, forbidding plans and their reorderings (Katz and
Sohrabi 2020; Katz, Sohrabi, and Udrea 2020) or plans and
their super-multi-sets (Katz and Sohrabi 2022).

We start with certifying the top-quality planning problem.

Theorem 2 A set of plans P can be checked for being a
solution to the top-quality planning problem.

Proof: P is a solution to the top-quality planning problem
if and only if (a) ∀π ∈ P , cost(π) ≤ q, and (b) ΠP has
no plans of cost smaller or equal to q. That means that we
can certify top-quality planning solutions for Π by certifying
optimality for the transformed task ΠP (Mugdan, Christen,
and Eriksson 2023). �

Moving now to dominance top-quality planning, for a set
of plans P , we define an extended under R set of plans

P := P ∪
⋃
π∈P
{π′ ∈ PΠ | cost(π′) ≤ q, (π, π′) ∈ R}.

Theorem 3 If P is a solution to the dominance top-quality
planning problem, then P is a solution to the top-quality
planning problem.

The proof is technical, see Katz, Lee, and Sohrabi (2024).
We can now certify solutions to the dominance top-quality
planning problem.

Theorem 4 A set of plans P can be checked for being a
solution to the dominance top-quality planning problem.

Proof: We can certify P in two steps.

• Certify P to be a solution to the top-quality planning
problem, and

• For every π ∈ P , show that P \ {π} is not a solution to
the top-quality planning problem.

The latter is needed for certifying the condition 3 of Def-
inition 1. The first two conditions of Definition 1 imply that
if P is a solution, then so is its superset. Therefore, it is suf-
ficient to ensure that removing any single plan prevents the
extended set from being a top-quality solution. �

Given P , it can be impossible to compute P explicitly.
One example is the R`` relation, where while the set of
all loopless plans P``Π is finite and therefore all solutions
to the loopless top-quality planning problem are finite, the
extended under R`` set can be infinite. In what follows, we
show how to efficiently certify dominance top-quality with-
out explicitly computing P .

Efficient Computation
In practice, when R is specified implicitly, like RU for un-
ordered top-quality, R⊂ for subset top-quality or R`` for
loopless top-quality, it may be computationally intensive or
even infeasible to explicitly generate the extended set P
from a solution P . In such cases, we can instead directly
transform Π into a task ΠP that forbids the entire set P .

Such transformations exist for the cases of RU (Katz and
Sohrabi 2020) and R⊂ (Katz and Sohrabi 2022). Similarly

to the case of top-quality planning, we can now certify P
to be a solution to the unordered respectively subset top-
quality planning by certifying optimality of the respective
transformation. Such transformation however does not ex-
ist for loop-less top-quality planning. In what follows, we
present a novel transformation for the R`` relation, allowing
us to certify P to be a solution to the loopless top-quality
planning.

Forbidding Plans With Loops Here we present a novel
transformation for forbidding plans with loops. Specifically,
for a plan π, it forbids π and all π′ such that (π, π′) ∈ R``.

The idea is based on the transformation that forbids a sin-
gle plan (Definition 3 by (Katz et al. 2018)), with an addi-
tional dimension added, ensuring that no action enters the al-
ready traversed states of π. Each original action is extended
with additional preconditions and effects, allowing to cap-
ture whether the execution (a) is following the prefix of the
input plan π, (b) diverging from π, or, (c) has already di-
verged from π. Each of these is further split to sub-cases.
Figure 1 visualizes the various sub-cases in different col-
ors. It shows three different areas of the state space, with
the bottom one including the initial state, the top one includ-
ing only sink states, and the middle one, where all the goal
states are. In what follows, we will refer to the colors of the
edges to simplify the explanation. Further, in what follows,
for simplicity, we use disjunctive preconditions, which can
be compiled away by introducing multiple action instances.

Let Π = 〈V ,O, s0, s?, cost〉 be a planning task and π =
o1·. . .·on be some plan for Π traversing the states s0, . . . , sn.
For every 0 ≤ i ≤ n, let

Oi := {o ∈ O | prv(o) ∪ eff (o) ⊆ si}
denote the actions that may lead to the state si. For an action
o ∈ Oi, let

cond i(o) := si \ (prv(o) ∪ eff (o))

denote the extra condition that would ensure the state
achieved by applying o is exactly si. We denote the nega-
tion of cond i(o) by

cond i(o) :=
∨

v∈V(condi(o))

D(v) \ {cond i(o)[v]}.

The task Π``
π = 〈V ′,O′, s′0, s′?, cost′〉 is defined as follows.

• V ′ = V ∪ {vd, ve} ∪ {vi | 0 ≤ i ≤ n}, with vd and ve
being binary variables and vi being ternary variables,

• s′0[v] = s0[v] for all v ∈ V , s′0[vd] = F , s′0[ve] = F ,
s′0[v0] = C, and s′0[vi] = 0 for all i > 0, and

• s′?[v]=s?[v] for all v ∈ V s.t. s?[v] defined, s′?[v
d] = T ,

and s′?[v
e] = F .

As mentioned before, the actions O′ extend the actions in
O by introducing additional preconditions and effects, with
multiple copies covering the various cases. Specifically,

ofi = 〈pre(oi) ∪ {〈ve,F 〉, 〈vd,F 〉, 〈vi−1,C〉},
eff (oi) ∪ {〈vi−1,1〉, 〈vi,C〉}〉

are the copies of the actions on π (colored black in Figure 1)
that follow the execution of the plan π, until a diverging from
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Figure 1: Visualization of the transformation.

π is happening. When that happens, there are five options.
First, the first action o 6= ok+1 diverging from π (after op1 ·
. . . · ok were applied) is in Oi for some i < k and it reaches
an already traversed state si, with an action copy (red)

oei = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,F 〉, 〈vi,1〉, 〈vk,C〉} ∪ cond i(o),

eff (o) ∪ {〈ve,T 〉}〉.
Second, it reaches a not yet traversed state sj for j > k + 1
with an action copy (magenta)

oj = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,F 〉, 〈vj ,0〉, 〈vk,C〉} ∪ cond j(o),

eff (o) ∪ {〈vd,T 〉, 〈vj ,1〉, 〈vk,1〉}〉.
Third, it reaches the state sk+1 with an action copy (cyan)

ok+1 = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,F 〉, 〈vk,C〉} ∪ condk+1(o),

eff (o) ∪ {〈vd,T 〉, 〈vk,1〉, 〈vk+1,1〉}〉.
Forth, it reaches a different state with an action copy (blue)

o = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,F 〉, 〈vk,C〉} ∪
k−1∧
i=0

cond i(o),

eff (o) ∪ {〈vd,T 〉} ∪ {〈vk,1〉}〉.
Fifth and last, if the action o is not in any Oi, 0 ≤ i ≤ n, it
reaches a different state with an action copy (violet)

o′ = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,F 〉, 〈vk,C〉},
eff (o) ∪ {〈vd,T 〉} ∪ {〈vk,1〉}〉.

Once diverged from π, the action copies only need to record
whether they reached one of the states si more than once.
This can be done with the following cases:

oi = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,T 〉, 〈vi,0〉} ∪ cond i(o),

eff (o) ∪ {〈vi,1〉}〉,
for reaching si for the first time (green),

oi
e = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,T 〉, 〈vi,1〉} ∪ cond i(o),

eff (o) ∪ {〈ve,T 〉}〉,

for reaching si for the second time (red), or

o = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,T 〉} ∪
k−1∧
i=0

cond i(o), eff (o)〉,

(colored orange) for reaching a state not on π. Here as well,
if the action o is not in any Oi, 0 ≤ i ≤ n, it reaches a
different state with an action copy (purple)

o′ = 〈pre(o) ∪ {〈ve,F 〉, 〈vd,T 〉}, eff (o)〉.
The costs of these copies is the same as of the original action.
We say that Π``

π is the loopless transformation of Π under π.
Theorem 5 Let Π be a planning task, π be its loopless plan
and Π``

π be the loopless transformation under π. Then Π``
π

forbids exactly π and all plans dominated by π.
For the proof see Katz, Lee, and Sohrabi (2024).

Certificate of Top-k
We can also certify solutions for top-k planning problem.
Theorem 6 A set of plans P can be checked for being a
solution to the top-k planning problem.
Proof: First, if |P | < k, we certify unsolvability of ΠP .
Otherwise, let m = maxπ∈P cost(π) and P1 := {π ∈ P |
cost(π) < m} and P2 := {π ∈ P | cost(π) = m} be the
partition of P into the set of plans of maximal cost and the
set of plans of lower than maximal cost. If P1 is empty, then
all plans in P are of the same cost m, and we can certify
top-k planning by certifying optimality of m. Now, assume
that P1 is not empty and let q = maxπ∈P1 cost(π) be the
maximal cost in P1. Observing that P1 must be a solution
for the top-quality planning problem for q, we can certify
top-k planning solution in two steps: (I) certify P1 to be a
solution to the top-quality planning problem, and (II) certify
optimality of m for ΠP1

. �

Discussion and Future Work
We present a definition that unifies existing computational
problems under the umbrella of top-quality planning. Based
on the definition, we show that certification of top-quality
can be obtained with the help of task transformations and
certification of optimality. We further show that existing task
transformations can be used for efficient certification of un-
ordered and subset top-quality planning problems. Finally,
we present a novel transformation and use it for certifying
loopless top-quality planning.

We plan to extend our analysis to the recently introduced
partially ordered top-quality planning (Katz et al. 2024).
Further, we would like to certify planning algorithms for
the various top-quality problems. While the ForbidIterative
planners are relatively straightforward to certify, other meth-
ods, such as K∗ search or symbolic search are more chal-
lenging. Same can be said for search pruning methods used
in these planners, such as symmetry reduction (Katz and Lee
2023b) or partial order reduction. (Katz and Lee 2023a). An-
other interesting direction for future work is to use the sug-
gested in this work transformation for loopless top-quality
planning, e.g., as part of the ForbidIterative framework.
While the transformation significantly increases the number
of actions, it might still pay off in several domains.

322



References
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