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Abstract: The current boom in IoT is changing daily life in many ways, from wearable devices to connected vehicles and smart 

cities. We used to regard fog computing as an extension of cloud computing, but it is now becoming an ideal solution for trans-

mitting and processing large-scale geo-distributed big data. In this paper, we propose a Byzantine fault tolerant networking method 

and two resource allocation strategies for IoT fog computing. Our aim is to build a secure fog network called SIoTFog to resist 

Byzantine faults and improve the efficiency of transmitting and processing IoT big data. We consider two cases: a case with a 

single Byzantine fault and a case with multiple faults to compare their performances when facing different degrees of risk. We 

chose latency, forwarding hops in the transmission and device use rate as the metrics for analysis of the simulation results. The 

simulation results show that our strategies can help achieve an efficient and reliable fog network. 

 

Key words: Byzantine Fault Tolerance; Fog Computing; Resource Allocation; Internet of Things 

https://doi.org/10.1631/FITEE.1000000 CLC number: TP 

 

 

1  Introduction 

 

Recent years have witnessed the boom in the 

Internet of Things and the hypergrowth of cloud 

computing which again overturned our perception of 

information technology. By 2020 there will be more 

than 20 billion IoT devices manufactured and put into 

use after increases of 15 percent occurring 

year-after-year (IHS Markit report, 2017). Originally, 

as an extension of cloud computing, fog computing 

relied on collaborative end-user clients or near-user 

edge devices to provide a substantial amount of 

storage capacity and communication solutions. Now, 

the fog has already become a research hotspot which 

not only broadens our perspective in distributed 

computation but also provides brand new ideas to 

exploit the potential of "Things" besides the "Inter-

net." 

Byzantine fault tolerance (BFT) describes the 

dependability of fault-tolerant computing systems, 

especially distributed ones. The Byzantine Generals’ 

Problem or the BFT Problem was first raised by 

Leslie Lamport, Robert Shostak and Marshall Pease 

early in 1982 (Lamport et al., 1982). In BFT, a group 

of generals are trying to reach an agreement to decide 

whether to attack or retreat according to their votes in 

the majority. Considering the appearances of mes-

sengers or the presence of traitors who want to disrupt 

the whole group, the final agreement may run in a 

direction opposite of the original intentions of all 

loyal generals. A Byzantine fault stands for the in-

consistency whereby generals receive different mes-

sages from a single general, and Byzantine failure is 

the system malfunction caused by Byzantine fault. 

The occurrence of Byzantine faults can be very 

common in distributed systems such as fog networks. 

Sometimes fog nodes may fail and there is imperfect 
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information about whether a particular node has 

failed. The only way to completely solve this problem 

is to find the failed node. However, we cannot ask a 

running distributed system to stop and troubleshoot 

all nodes. Instead, a relative compromise is a solution 

that designs a fault tolerance mechanism. That is, 

what we prefer to do is to cope with BFT while in-

troducing as little impact as possible to the network 

computing performance. 

In this paper, we focus on the issue of Byzantine 

fault tolerance in resource allocation of fog compu-

ting for IoT applications. The property of fault toler-

ance enables a system to continue working properly 

when some of its components go down. Therefore, 

good fault-tolerance performance can greatly avoid 

the interruption of retransmissions in network com-

munications and reduce extra energy consumption 

and time costs. 

In fog computing, the role of large central serv-

ers is carried out by a massive number of 

geo-distributed small- and medium-sized fog devices 

at the edge of the network structure. Thus, rather than 

setting dedicated standby replicas for all fog devices, 

we can simply let the fog devices help each other for 

state machine replication. Thus, a fog device can 

serve as the replica of its neighbor to reduce the in-

fluence of a possible Byzantine fault. Taking into 

account the mobility of IoT devices, the relationship 

between replicas and primary devices can also change 

while the entire network is running. As a result, we 

need a dynamic resource allocation strategy to solve 

BFT in fog computing. The main contributions of our 

work are as follows. 

• A 3-tiered heterogeneous fog network model is 

designed in which the routers as fog devices are 

providing services to IoT users such as sensors, smart 

devices and vehicles. 

• A Byzantine-resilient fog networking method 

and two resource allocation strategies are proposed to 

help reduce the influence of Byzantine faults. 

• The case of a single Byzantine fault and the 

case of multiple faults are considered to test the per-

formance of the strategies when facing different de-

grees of risk. 

• Total latency, forwarding hops in the trans-

mission and the device use rate are chosen as the 

metrics for analysis of the simulation results. 

This paper is divided into six sections to elabo-

rate on our work on Byzantine fault tolerant resource 

allocation for an IoT fog network. Section 2 intro-

duces related work in the fields of fog computing and 

the Byzantine fault tolerance problem. Section 3 

formulates the mathematical model of a 3-tiered het-

erogeneous IoT fog network structure and describes 

the problems to solve. Section 4 proposes the resource 

allocation methods. Section 5 describes the simula-

tion experiments carried out and analyzes the per-

formance of the proposed methods. Section 6 sum-

marizes the work. 

 

2  Related work 

 

In this section, we present the related work on 

fog computing and the Byzantine fault tolerance 

problem. 

2.1  From the cloud to the fog 

First put forward by Cisco Systems Inc. (Bonomi 

et al., 2012), fog computing serves as an extension of 

cloud computing as a way to share responsibility for 

data storage and processing at the edge of the network 

structure. Vaquero et al. from the Hewlett-Packard 

Company (HP) offered a comprehensive view of fog 

computing, and correlated it with existing technolo-

gies such as the cloud, sensor networks, peer-to-peer 

networks and the network virtualization function 

(NFV) to reach a definition of "the fog" (Vaquero and 

Rodero-Merino, 2014). The group led by Satyana-

rayanan et al. conducted research for years into mo-

bility-enhanced small-scale instances of cloud data-

centers, the cloudlet, to mobile edge computing 

(MEC) in IoT (Satyanarayanan et al., 2009; Satya-

narayanan, 2017). Liu et al. focused on streaming 

media in heterogeneous edge networks and proposed 

a device-to-device relay-assisted scheme to help solve 

video frame recovery for picocell edge users (Liu et 

al., 2016). Tao et al. integrated fog and cloud compu-

ting to build a hybrid network model for Vehi-

cle-to-Grid (V2G) and 5G services (Tao et al., 2017a). 

Stojmenovic et al. analyzed the real-world application 

scenarios of the fog such as in smart grids, smart 

traffic and software defined networks (SDN). In these 

scenarios, the man-in-the-middle attack is regarded as 

a typical security issue to represent new features in 

the fog (Stojmenovic and Wen, 2014a). Yi et al. fo-

cused on the new security and privacy challenges 
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besides those inherited from the cloud and proposed 

ideas for solutions (Yi et al., 2015). Alrawais et al. 

considered the fog and IoT as a whole and put forward 

a mechanism to improve the distribution of certificate 

revocation information for security enhancement 

among IoT devices in the fog (Alrawais et al., 2017). 

Li et al. propose the idea of introducing deep learning 

to solve problems in edge computing (Li et al., 2018). 

Hu et al. addressed face identification and resolution 

technology, and implemented a prototype system to 

evaluate their proposed security and privacy preser-

vation method (Hu et al., 2017). 

Compared with cloud computing, fog computing 

was originally intended to share the high load of a 

central architecture and help save on the extra cost 

that occurs between cloud servers and IoT devices at 

the edge of a network. Jalali et al. believed that fog 

computing could just help to reduce the energy con-

sumption in cloud computing (Jalali et al., 2016). Tao 

et al. investigated the problem of energy efficiency in 

mobile-edge computing and applied a request of-

floading scheme to improve the performance of en-

ergy consumption and bandwidth capacity (Tao et al., 

2017b). Perera et al. surveyed the existed research and 

the problems to solve in fog computing for sustaina-

ble smart cities (Perera et al., 2017). Castillo-Cara et 

al. put forward a fog node design to solve the energy 

consumption problem and network resilience provi-

sioning in wireless sensor networks (WSNs) (Cas-

tillo-Cara et al., 2018). Zeng et al. study how to ex-

plore energy generation diversity in a cyber physical 

fog system (CPFS) considering source rate control, 

service replica deployment and load balancing (Zeng 

et al., 2018). Wu et al. combine information-centric 

networks (ICNs) in designing content awareness fil-

tering to help increase the safety factor of fog com-

puting (Wu et al., 2018b). 

2.2  Research on the Byzantine fault tolerance 

problem 

Fault tolerance refers to the property where no 

global errors or interruptions occur in a system due to 

local faults. As a result, fault-tolerant design is very 

common and important in research fields related to an 

overall system structure (Khosravi and Seifi Kavian, 

2016; Gao et al., 2017; Zhang et al., 2018). Since the 

idea was first raised by Lamport et al. (1982), re-

search into Byzantine fault tolerance has undergone 

decades of development. Castro et al. first explored in 

depth the practice of BFT and implemented a generic 

program library and the first BFT network file system 

(NFS). Their experiment results showed that a NFS 

with BFT, i.e., a BFS, performs better than the NFS 

protocol without replicas (Castro and Liskov, 2002). 

Driscoll et al. redefined the concepts in Byzantine 

problems including the widely known existence of 

Byzantine faults and their possibility of leading to 

Byzantine failures. Their work points out some mis-

understandings about the conditions needed for the 

appearance of a Byzantine attack as well as prevent-

ing those mechanism (Driscoll et al., 2003, 2004). 

Kotla et al. propose a speculative BFT protocol, the 

Zyzzyva, to simplify the design of BFT state machine 

replication and ensure that responses to the correct 

clients become stable. They compare this with exist-

ing BFT protocols including (Castro and Liskov, 2002) 

in cost, throughput and latency, and proved that 

Zyzzyva can maintain properties of safety and 

liveness (Kotla et al., 2010). 

Today BFT is now widely accepted as a basic 

security necessity especially for distributed systems 

with system-level consensus requirements and mutual 

clock synchronization (Driscoll et al., 2004). Aublin 

et al. designed a Redundant-BFT (RBFT) approach to 

closely monitor the performance of instances from the 

primary to replicas on different machines (Aublin et 

al., 2013). Bessani et al. improved the previous BFT 

protocols by applying an open Java-based library 

source to make the state machine replication robust 

(Bessani et al., 2014). Li et al. designed a secure 

software-defined network (SDN) structure to resist 

Byzantine attacks on the communication links be-

tween SDN controllers and switches (Li et al., 2014). 

Wu et al. present optimization algorithms to achieve 

secure cluster management in SDNs (Wu et al., 

2018a). Zhang et al. focused on the case of a cognitive 

radio network (CRN) and introduced the Byzantine 

attack and defense in cooperative spectrum sensing 

which is one of the key security issues in a CRN 

(Zhang et al., 2015). Miller et al. argued that the 

former synchronous BFT protocols relied critically on 

network time assumptions and came up with the idea 

of an asynchronous one to extend the adaptability to 

asynchronous systems such as blockchain technology 

(Miller et al., 2016). 

 



 4 

3  Problem formulation 

 

In this section, we design the system model and 

formulate the problem of BFT in fog computing. 

In contrast to a traditional centralized network 

design, fog computing prioritizes local distributed 

devices at the edge of the network to provide 

low-latency resource-constrained processing and 

storage services. In the fog, there can exist more 

complex relations between users and the fog devices 

as service providers. That is, each user may not stay in 

contact with the same service provider all the time. 

Rather than a dedicated wide bandwidth, fog users 

prefer flexible dynamic resource allocation which 

may save extra time and energy consumption in mul-

ti-hop forwarding. 

To resist the influence of Byzantine faults, we 

need to set replicas for network nodes as backups to 

restore and recover data when necessary. In the case 

of the fog, we may not need to prepare dedicated 

devices for Byzantine fault tolerance and may just be 

able to assign neighbor fog devices to serve as repli-

cas. 

 

3f + 1n                               (1) 

 

As shown in Equation (1), existing BFT proto-

cols including PBFT (Castro and Liskov, 2002), 

Zyzzyva (Kotla et al., 2010) and Honey Badger BFT 

(Miller et al., 2016) elaborate on how we need at least 

3f extra devices as replicas to tolerate f Byzantine 

faults while all communications are synchronous or in 

bounded delays. For example, if the number of Byz-

antine faults reaches 3, we may need at least 10 fog 

nodes to avoid Byzantine failure. 

3.1  System outline 

Fog Tier

User Tier
Vehicles

Smart Devices

Sensors 

Cloud Tier

 
Fig. 1  A 3-tiered heterogeneous IoT fog network structure. 

Shown in Fig. 1, we formulate the mathematical 

model of a 3-tiered heterogeneous IoT fog network 

structure (Stojmenovic and Wen, 2014a) (Reznik et 

al., 2017). Our aim is to reduce the impact of Byzan-

tine faults in resource allocation for fog computing. 

As a result, we consider that this three-tiered model 

can more intuitively show the relationship between 

the fog nodes as service providers and the users as 

service receivers than models with more tiers. 

User nodes (u1, u2, …, un) in the User Tier send 

requests upwards to ask the routers as fog nodes (f1, 

f2, …, fn) in the Fog Tier for computational resources 

through access points. The Cloud Tier serves as reli-

able data centers providing stable network connec-

tions. The solid and dotted lines, respectively, stand 

for Ethernet and wireless connections. That is, 

communications between the User Tier and Fog Tier 

are wireless broadcasting, those inside the Fog Tier 

are wired broadcasting, and those between the Fog 

Tier and the Cloud Tier are wired point-to-point. 

i

Camera
ON

Camera
OFF

Camera
OFF

Camera
OFF

 
Fig. 2  BFT threat model in the fog service. 

Figure 2 shows the threat model in our work. 

When users choose some fog nodes as service pro-

viders, they also need to accept some permissions for 

authority. The situation is similar to a pop-up window 

that appears before installation or the first time one 

opens an app on a smart device; for example, when 

the user in the figure chooses f1 to finish a task on a 

mobile phone. For account certification, a user allows 

f1 to use the camera when a service is provided. In 

normal cases, f1 will send a message to let the user 

turn off the camera after certification. However, when 

f1 is controlled by someone who wants to obtain ad-

ditional personal privacy information, the message 

may be modified to remain open. To guarantee the 

operation of the fog network, we cannot interrupt 

service extensively to troubleshoot some individual 
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malicious nodes. It is better to draw support from a 

suitable fault tolerant strategy to avoid possible sys-

tem failures. 

To implement Byzantine fault tolerance in this 

3-tiered fog network, we need geo-distributed routers 

to work as fog nodes to help each other when facing 

Byzantine faults. After choosing f1 as a service pro-

vider, we also set replicas (f2, f3 and f4) to ensure state 

machine replication when necessary. Here, we con-

sider the case of a single Byzantine fault in which 

three replicas are required by one primary fog node. 

The  entire procedure of Byzantine-resilient commu-

nication in the design of our fog network is as follows. 

• i. A mobile user in the User Tier requests 

computational resources from the Fog Tier. 

• ii. A fog node in the Fog Tier within a suitable 

distance to the user accepts the request and then for-

wards it to the other 3f fog nodes as replicas. 

• iii. Both the primary and the replicas execute 

the task and send back responses to the original user. 

As a result, the original user can then check the 

responses that even if f1 wants to keep the camera on, 

he/she is still able to avoid a Byzantine failure from 

the single fault by checking responses from f2 to f4. 

3.2  Performance metrics 

To compare the actual performances of our 

proposed BFT resource allocation strategy, we choose 

total latency and forwarding hops in the transmission 

as the two main metrics to evaluate the performance 

of our work. 

To achieve Byzantine fault tolerance and avoid 

Byzantine failures, our strategies operate at the ex-

pense of reducing some computing performance in 

the fog network. That is, in the process of multiple fog 

nodes working together to complete a user request, an 

additional information exchange is implemented to 

eliminate the possible impact of the failed nodes. 

Latency is a basic metric widely used in performance 

evaluation in engineering. Here we use it to prove that 

our strategies can achieve BFT with as little time cost 

as possible. 

 

all trans prop procL L L L    

  2/ /
pktn

hop pkt bit e e prop

i

n s i r l v         (2) 

  /
pktn

pkt MTR

i

s i r   

 

As shown in Equation (2), the total end-to-end 

latency Lall mainly includes three parts, the latencies 

of transmission, propagation and processing proce-

dures. Transmission latency Ltrans represents the 

amount of time for pushing all bits of packets into the 

transmission medium like the wires or air. Ltrans has 

nothing to do with the distance between any two 

nodes and only relates to the total size of the packets. 

npkt and spkt are the number and size of the packets. rbit 

is the bandwidth or bit rate of the transmission link. In 

contrast, propagation latency Lprop depends on the 

travel distance between the sender and receiver and 

the property of the transmission medium. For wireless 

communication, vprop is equal to the speed of light c, 

and for wired communication, it ranges from 0.59c to 

0.77c. Thus, le2e may stand for the end-to-end length 

added up by all distances between any two nodes 

taking part in the current communication. Lastly, to 

calculate the processing latency, we need the maxi-

mum transfer rate rMTR of the fog devices and the total 

packet size. 

 

i. i. ii. iii.

all trans prop

userL L L L                   (3) 

 

Then, to obtain the latency in practice, in the 

entire procedure described in Fig. 2, as shown in 

Equation (3), we may need to calculate each part of 

the three steps. For step i., we just sum up the trans-

mission and propagation latencies since there is only 

one connection between the user and primary fog 

node f1. 

 

ii. iii. ii. iii.{ | 1,2,3,4}ifL max L i            (4) 

 

However, for steps ii and iii, since the replicas 

may differ from each other in their positions from the 

user and primary fog node and processing capacity, 

etc., we need to figure out the practical latency values 

of the primary and each replica, and pick the maxi-

mum one as shown in Equation (4). 

 

2

1, 2 2 2ii. iii. ,

f trans prop trans prop proc

f f f user fL L L L 

          (5) 
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Lastly, Equation (5) gives the expression of 

summation. We take f2 in Fig. 2 as the example, with 

latencies in steps ii and iii.   includes the two steps for 

Ltrans, Lprop, and Lproc. 

Moreover, we also choose the number of for-

warding hops in the transmission which can reflect 

the quantity of work in our fog network and show the 

practical efficiency. 

 

 
1

4

, , ,

2

2
i i

all hop hop hop

hop user pri f f f user

i

n n n n


         (6) 

 

As shown in Equation (6), in contrast to the total 

latency, to calculate total number of forwarding hops 

in the transmission we need to consider all the con-

nections in the three steps of Fig. 2. 

Besides total latency forwarding hops, to gain a 

thorough understanding of the network structure, we 

add the fog nodes’ use rates and the percentages of 

workload capacity occupied by the primary/replicas 

as two auxiliary metrics to provide more details into 

the analysis of the simulation results. 

The use rate stands for the overall resource oc-

cupancy of all fog nodes. Here, we use it to study the 

actual working conditions of the entire IoT fog net-

work, and the possible changes brought about by 

resource allocation strategies. In the section on sim-

ulation, we consider the cases of both workload ca-

pacities occupied as primary service providers and as 

replicas. Moreover, we treat the two cases separately 

to calculate the percentages. 

Table 1 summarizes and lists the main symbols 

used in this paper. 

Table 1  Notations in the design of the Byzantine-resilient 

fog network 

Symbol Meaning 

U, ui Set of user nodes and one in it 

F, fi Set of fog nodes and one in it 

Ltrans/prop/proc 
Latencies of total, transmission, propa-

gation and processing 

nhop 
Number of forwarding hops in the 

transmission 

npkt, Spkt Number and size of packets 

rbit Bit rate of the transmission link 

le2e 
End-to-end length of the network con-

nection 

vprop 
Wave propagation speed of the transmis-

sion medium 

rMTR Maximum transfer rate of the device 

Ci,j Distance or number of forwarding hops 

between fi and fj 

Pi Position coordinates of fi 

path(Pi, Pj) 
Summation of all connections between fi 

and fj 

wthis 
Needed workload capacity of the current 

request from the user 

Cpri, Crep 
Workload capacities of the fog nodes 

occupied as primary and replicas 

 

4  Byzantine fault tolerant resource sllocation 

strategy 

 

In this section, we propose resource allocation 

strategies for a fog network aimed at resisting the 

influence of Byzantine faults. 

4.1  BFT fog networking 

Before choosing the primary nodes and replicas 

for users in need of fog service, we first build up a 

BFT fog network which considers all neighbor rela-

tionships among the routers as fog nodes. Here our 

target is to fulfill the requirements of the BFT proto-

col called Zyzzyva in (Kotla et al., 2010) (n = 3f + 1). 

Algorithm 1    Breadth-First BFT Fog Networking 

Input:  F = {f1, f2, …, fn} // all n fog nodes in the network 

structure 

              Pi // position coordinates of all the fog nodes 

              fi.adj // the list of all adjacent nodes to fi 

              Qfog, Qsave // FIFO queues to keep fog nodes 

              layer, leaves (layer) // layers and leaves in tree map 

Output:  
,{ | , {1,2,..., }, }i jc i j n i j   //connections between 

any fi and fj 

1    for i ← 2 to n do 

2        for j ← 1 to i – 1 do  

3       Qfog ←  , Qsave ←   

4            if find(fi.adj = j) then 

5                ci.j.nhop ← 1,ci,j.le2e ← path(Pi,Pj) 

6            end if 

7            push all fi.adj into Qfog and Qsave 

8            layer ← 1, leaves (layer) ← sizeof (fi.adj) 

9            while Qfog    do  

10              if leaves(layer) = 0 then 

11                  layer ← layer + 1 

12              end if 

13              this ← Qfog.pop() 

14              leaves(layer) ← leaves(layer) – 1 

15              if find(fthis.adj = j) then 

16                  ci,j.nhop ← layer + 1,ci,j.le2e ← path(Pi, Pj) 

17                  break 

18              end if 

19              drop any fthis.adj already in Qsave and push into 

Qfog and Qsave one by one 

20                leaves(layer) ← leaves(layer) + sizeof(f'this.adj) 
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21           end while 

22       end for 

23   end for 

 

Algorithm 1 is based on a non-recursive 

breadth-first search (BFS) method to implement BFT 

fast networking. To obtain the connection situations 

ci,j between any two fog nodes { f1, f2,…, fn} including 

geographical distances and forwarding hops in rout-

ing, we need the two-dimension positions (Pi) and 

neighbor lists recording all adjacent nodes (fi.adj). 

The two first-in first-out (FIFO) queues Qfog, Qsave 

and the variables layer, leaves are used to build the 

tree maps formulated by the BFS method. Some key 

points are as follows. 

• Qfog is used as the main data structure to take 

the whole situation into account. The cyclic condition 

in line 9 could not be broken unless no existing path is 

found between fi and fj after traversing all other nodes. 

• Qsave is an instrumental variable to save all 

non-repetitive nodes which means no path will be 

tried twice. In line 19 we drop the neighbors of fthis 

which are already covered by Qsave before pushing the 

rest into two queues. 

 

, 1

1

1

( , ) ( , )
i jn

i j n n

n

path length







 P P P P        (7)  

 

• The path (Pi,Pj) function in lines 5 and 16 

stands for the summation of all connections between 

any two of the nodes in the full path from fi to fj. 

Equation (7) gives the calculation of path() in which 

ni,j represents the number of nodes in the path be-

tween fi and fj. 

• A tree map is obtained through the BFS method 

and we use the layer and leaves(layer) to record the 

current layer and how many nodes are within this 

layer. 

To set the primary fog node and replicas for user 

in a request, we need to ensure the protocol commu-

nications between any two different nodes. That is to 

say, although our fog network is not a real full con-

nected network, we still can make sure that fi can 

exchange messages with fj at any time after limited 

forwarding hops. The time complexity of Algorithm 1 

is O(n2(1 + n)) = O(n3 + n2) = O(n3). 

4.2  BFT resource allocation strategy 

To resist f Byzantine faults in our fog network, 

we set the nearby fog nodes as replicas to help achieve 

state machine replication. Thus, each replica needs to 

repeat what the primary fog node is doing and send 

back the processing result to the user in a request. 

Algorithm 2    OPMD: One Phase Minimum Dis-

tance 

Input:   wthis // workload need by user 

              Cpri,Crep // capacities of fog nodes used as primary and 

replicas 

              cthis,j // connections between user and fog node fj 

              fneed // 3f + 1 fog nodes as primary and replicas 

              Cleft // resource capacity of fog nodes 

Output:  resource allocation results for all users 

1    for i ← 2 to 3f + 1 do 

2        find fj with minimum cthis,j.le2e and set as fneed(i) 

3   if !find(fneed(1 to i - 1) = fneed(i)) && fneed ( i) .Cleft ≥ 

wthis then 

4            if i = 1 then 

5                fneed.Cpri ← fneed.Cpri + wthis 

6            else 

7                fneed.Crep ← fneed.Crep + wthis 

8            end if 

9            fneed.Cleft ← fneed.Cleft - wthis  

10      else 

11          continue 

12      end if 

13   end for 

 

OPMD gives an entire procedure for setting one 

primary fog node and 3f replicas for workload wthis 

requested by the current user. Cpri and Crep, respec-

tively, stand for the resource allocation result where a 

part of the workload capacity is set as the primary or 

replica. We sort all the fog nodes by their distances 

away from the position of the current user and judge if 

the remaining workload capacity Cleft is full as well as 

if no fog node is being requested twice. Some key 

points are as follows. 

• We use the fneed as a set of temporary choices 

of fog nodes during the 3f + 1 cycles and regard the 

first choice as the primary fog node. 

• !find(fneed(1 to i - 1) = fneed(i)) in line 3 is a 

function to make sure that the current chosen fneed(i) is 

not included in the former fneed. 

OPMD focuses on shortening the communica-

tion distances between users and fog nodes, which 

may extensively cut down on the propagation laten-

cies Lprop in Equation (2). The algorithm itself makes 

full use of the advantages of fast networking in the 

BFS method and is able to find all 3f + 1 required fog 
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nodes in a simple and straightforward way. The time 

complexity of Algorithm 2 is O((3f + 1)(n + 1)) = 

O(3fn + 3f + n + 1) = O(fn). 

However, OPMD may also place an extra burden 

on communications among the primary fog nodes and 

replicas providing service for the same users to some 

extent. As a result, we put forward a two-phase algo-

rithm to optimize this issue between the primary fog 

nodes and replicas. 

Algorithm 3    TPSP: Two-Phase Shortest Path 

Input:   wthis // workload need by user 

              Cpri,Crep // capacities of fog nodes used as primary and 

replicas 

              fpri, frep // fog nodes set as primary and replicas 

              cthis,j // connections between user and fog node fj 

              fneed // 3f + 1 fog nodes as primary and replicas 

              Cleft // resource capacity of fog nodes 

Output:  resource allocation results for all users 

1    find fj with minimum cthis,j.le2e && fj.Cleft ≥ wthis and 

set as fpri(i) 

2    fpri.Cpri ← fpri.Cpri + wthis 

3    fpri.Cleft ← fpri.Cleft - wthis 

4    for i ← 1 to 3f do 

5         find fj with least cpri,j.nhop or minimum cpri,j .le2e and 

set as frep(i) 

6        if frep   fpri && !find(frep(1 to i - 1) = frep(i)) && 

frep(i).Cleft ≥ wthis then 

7            frep .Crep ← frep.Crep + wthis 

8            frep .Cleft ← frep.Cleft - wthis 

9      else 

10          continue 

11      end if 

12   end for 

 

Compared to OPMD, TPSP adopts a two-phase 

design which first chooses the optimal fog node as 

primary and lets the primary look for its 3f replicas. 

Thus, after choosing one of the fog nodes as fj, sub-

sequent sorting and other work will be carried out 

around it instead of the current user who requests wthis. 

Some key points are as follows. 

• The sum of fpri and frep is equal to fneed in TPSP. 

• Line 5 shows two selections in choosing suit-

able neighbor fog nodes as replicas which may show 

different performances such as the majority in total 

latency as shown in Equation (2) whereby Ltrans pays 

more attention to the number of forwarding hops and 

Lprop relies on the transmission distance. 

The time complexity of Algorithm 3 is 

O(1+3f(n+ 1)) = O(3fn + 3f + 1) = O(fn). 

 

5  Simulation and analysis 

 

In this section, we carry out experimental simu-

lations to evaluate the performance of the resource 

allocation strategies designed for a BFT fog network 

in two cases: a case of a single Byzantine fault and a 

case of multiple Byzantine faults. The simulation 

scenario is a 10 km2 square open area in which we set 

up 100 routers with access points as fog nodes. There 

are 50 to 500 mobile IoT users requesting fog service 

from nearby fog nodes. 

Table 2  Experimental setups 

Bit rate of transmission 

Wireless (802.11ad) 6.8 Gbit/s 

Ethernet 10 Gbit/s 

Maximum transfer unit (802.11) 2304 Bytes 

Wave propagation speed of transmission 

Wireless (air) c (speed of light) 

Ethernet (thick coax) 0.77 c 

Device settings of the fog nodes 

Maximum transfer rate (SATA3) 750 MB/s 

Workload capacity of fog node 32~512 MB 

As shown in Table 2, we consider the conditions 

of both wireless and Ethernet connections with their 

respective transmission bit rate and wave propagation 

speed. The workload capacity of a single fog node 

would be in one of {32, 64, 128, 256, 512} MB ac-

cording to the case of a single Byzantine fault or of 

multiple faults. We take multiple time-slots for 

sending and answering requests, processing and 

storage. We repeat each set of experiments 10 times 

with different numbers of IoT users. 

5.1  Single Byzantine fault 

First, we consider the condition of a single 

Byzantine fault (f = 1) which means our aim here is to 

resist the influence of a single fault in the procedure of 

answering a request from an IoT user. As a result, we 

need to choose four fog nodes in total for one user in 

each time-slot as the primary device and replicas. The 

workload capacity range set for the fog nodes is {32, 

64, 128, 256}. 
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(a) 

 
(b) 

Fig. 3  Simulation results of a single Byzantine fault: (a) 

total latency and (b) total forwarding hops in the trans-

mission. 

As shown in Fig. 3, we calculate the total laten-

cies and forwarding hops in the transmission of dif-

ferent numbers of users. The blue, red, yellow and 

green broken lines, respectively, stand for OPMD, 

two cases of TPSP and a random method as a contrast. 

In Fig. 3a, all four methods show a linear increase in 

the trend from 50 to 500 IoT users requesting fog 

services from 100 routers. Although the differences 

among the four methods are not large when there are 

only a few users, the gap between the random one and 

the other three appears with the growth in number of 

users. The performance of OPMD is relatively poor in 

the three methods which matches our expectation. 

Compared with TPSP which applies two phases in fog 

node selections, the same treatment for the primary 

fog device and replicas does generate some impact on 

the total latencies. That is, the position of the primary 

fog node is more of an issue in not only receiving the 

request but also distributing it to all replicas. There-

fore, the overlong distance or redundant forwarding 

hops between the primary fog node and replicas may 

cost extra time in data transmission. 

For TPSP, the red and yellow lines represent the 

simulation results of different standards in choosing 

suitable neighbor fog nodes shown in line 5 of Algo-

rithm 3. The yellow line in consideration of the for-

warding hops exceeds the red one in distance in total 

latencies, which may illustrate that the time cost for 

transmission latency Ltrans takes up a larger proportion 

than that of propagation latency Lprop. 

The total forwarding hops is the second metric 

we chose to compare and analyze for the performance 

of the simulation results for BFT resource allocation 

in the 3-tiered heterogeneous IoT fog network. From 

Fig. 3b we can see that the yellow broken line of the 

hop standard in TPSP still holds the lead in practical 

efficiency whereby more transmission hops mean 

extra energy consumption in the transmissions be-

tween IoT users and the fog nodes. In particular, when 

there is a large number of users, the TPSP-hop may 

behave better in solving situations where demand 

exceeds supply. Thus, service capacities could be 

insufficient relative to the user’s needs, and some-

times the user may have to choose a service node with 

a relatively high cost in time and energy consumption. 

5.2  Multiple Byzantine faults 

Because we cannot be sure that only one Byz-

antine fault would occur in the BFT communication 

procedure shown in Fig. 2, the case of multiple 

Byzantine faults also should be taken into account. In 

this part of the simulation, f relates to the size of the 

requested workload capacity which means the possi-

bility of multiple Byzantine faults is proportional to 

how many resources are being allocated to users. To 

fulfill the larger need of available resources in total, 

we also adjusted the workload capacity range set of 

the fog nodes to {64, 128, 256, 512}. 

 
(a) 
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(b) 

Fig. 4  Simulation results of multiple Byzantine faults: (a) 

total latency and (b) total forwarding hops in the trans-

mission. 

5.3  Device use rate and percentage for the pri-

mary and replicas 

Lastly, to figure out the composition and the 

actual working conditions of the entire IoT fog net-

work, we add the results of the fog nodes’ use rates as 

well as the percentage of workload capacity occupied 

by the primary or replicas as auxiliary metrics to 

provide more detail. 

The six subfigures in Figs. 5 and 6 show the use 

rates and primary and replica percentages of three 

resource allocation methods in cases of single and 

multiple faults. The green broken lines stand for the 

actual occupancy rates calculated from the average of 

10 time slots. The blue and red bars are the average 

values of percentages of workload capacity occupied 

by the replicas and primary. First, in the comparisons 

between two cases of the same method, the occupied 

workload capacity proportions of the replicas all in-

crease when there are more replicas needed as well as 

the times a single fog node is set as replicas in multi-

ple requests. Second, in Fig. 5 the use rates of 

TPSP-hop are always lower than the other two 

methods for the range between 5% to 10% which can 

also be an asset for efficiency. That is, TPSP-hop may 

be able to complete the same amount of work using 

fewer computational resources. Third, compared to 

the second point above, in Fig. 6 the gap between 

TPSP-hop and the other two methods in the device 

use rate is narrowed when more than one Byzantine 

fault occurs in a single BFT communication proce-

dure. 

In summary, from the simulation results in the 

two cases of a single Byzantine fault and multiple 

faults, TPSP with the selection standard of fewer 

transmission hops shows better performance in total 

latency, number of forwarding hops and device use 

rate. As a result, our BFT resource allocation strategy 

does help build a reliable fog network structure to 

resist the influence of a single Byzantine fault or 

multiple faults. 

 

6  Conclusion 

 

In this paper, our SIoTFog focuses on how to 

resist the influence of Byzantine faults and improve 

the  transmission and processing efficiency in fog 

computing for IoT. First, we designed a 3-tiered het-

erogeneous IoT fog network model which was mainly 

made up of routers as fog nodes to provide fog service 

to IoT users. To solve the problem of Byzantine fault 

tolerance in fog services, we proposed a fog net-

working method based on breath-first searching and 

two BFT resource allocation strategies to distribute 

workload capacities of the fog nodes to users upon 

request. We consider the cases of both a single Byz-

antine fault and multiple faults in experimental set-

tings. The simulation results show that our proposed 

strategies can help build an efficient and reliable fog 

network when faced with Byzantine faults. 

In the future, we will focus on further improving 

our approach to deal with the various situations that 

may occur in actual network operations. Two per-

formance bounds in our proposed strategies that are a 

priority to be solved are the following. First, to ensure 

BFT in fog computing, we rely on the mutual assis-

tance of the geographically distributed fog nodes 

themselves, which means there may be significant 

differences in performance for different node distri-

butions. Second, in a distributed network composed 

of large-scale fog nodes, the fact that BFT does in-

crease the relationships among the nodes may lead to 

new issues when the network topology changes. 
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