
SIoTFog: Byzantine-resilient IoT fog networking

言語: English

出版者: Springer Nature

公開日: 2019-08-27

キーワード (Ja):

キーワード (En): Byzantine fault tolerance, Fog

computing, Resource allocation, Internet of Things

(IoT)

作成者: XU, Jianwen, 太田, 香, 董, 冕雄, LIU, Anfeng, LI,

Qiang

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10258/00009989URL

 1

SIoTFog: Byzantine Resilient IoT Fog Networking*

Jian-wen XU1, Kaoru OTA1, Mian-xiong DONG‡1, An-feng LIU2, Qiang LI3
1 Department of Information and Electronic Engineering, Muroran Institute of Technology, Muroran 0508585, Japan

2 School of Information Science and Engineering, Central South University, Changsha 410083, China

3 Key Laboratory of Symbol Computation and Knowledge Engineering (Jilin University), Ministry of Education, Changchun 130012, China

†E-mail: {17096011, ota, mxdong}@mmm.muroran-it.ac.jp; afengliu@mail.csu.edu.cn; li_qiang@jlu.edu.cn

Received Aug. 31, 2018; Revision accepted Nov. 19, 2018; Crosschecked mmm. dd, 2018

Abstract: The current boom in IoT is changing daily life in many ways, from wearable devices to connected vehicles and smart

cities. We used to regard fog computing as an extension of cloud computing, but it is now becoming an ideal solution for trans-

mitting and processing large-scale geo-distributed big data. In this paper, we propose a Byzantine fault tolerant networking method

and two resource allocation strategies for IoT fog computing. Our aim is to build a secure fog network called SIoTFog to resist

Byzantine faults and improve the efficiency of transmitting and processing IoT big data. We consider two cases: a case with a

single Byzantine fault and a case with multiple faults to compare their performances when facing different degrees of risk. We

chose latency, forwarding hops in the transmission and device use rate as the metrics for analysis of the simulation results. The

simulation results show that our strategies can help achieve an efficient and reliable fog network.

Key words: Byzantine Fault Tolerance; Fog Computing; Resource Allocation; Internet of Things

https://doi.org/10.1631/FITEE.1000000 CLC number: TP

1 Introduction

Recent years have witnessed the boom in the

Internet of Things and the hypergrowth of cloud

computing which again overturned our perception of

information technology. By 2020 there will be more

than 20 billion IoT devices manufactured and put into

use after increases of 15 percent occurring

year-after-year (IHS Markit report, 2017). Originally,

as an extension of cloud computing, fog computing

relied on collaborative end-user clients or near-user

edge devices to provide a substantial amount of

storage capacity and communication solutions. Now,

the fog has already become a research hotspot which

not only broadens our perspective in distributed

computation but also provides brand new ideas to

exploit the potential of "Things" besides the "Inter-

net."

Byzantine fault tolerance (BFT) describes the

dependability of fault-tolerant computing systems,

especially distributed ones. The Byzantine Generals’

Problem or the BFT Problem was first raised by

Leslie Lamport, Robert Shostak and Marshall Pease

early in 1982 (Lamport et al., 1982). In BFT, a group

of generals are trying to reach an agreement to decide

whether to attack or retreat according to their votes in

the majority. Considering the appearances of mes-

sengers or the presence of traitors who want to disrupt

the whole group, the final agreement may run in a

direction opposite of the original intentions of all

loyal generals. A Byzantine fault stands for the in-

consistency whereby generals receive different mes-

sages from a single general, and Byzantine failure is

the system malfunction caused by Byzantine fault.

The occurrence of Byzantine faults can be very

common in distributed systems such as fog networks.

Sometimes fog nodes may fail and there is imperfect

Frontiers of Information Technology & Electronic Engineering

www.jzus.zju.edu.cn; engineering.cae.cn; www.springerlink.com

ISSN 2095-9184 (print); ISSN 2095-9230 (online)

E-mail: jzus@zju.edu.cn

‡ Corresponding author
* This work is partially supported by JSPS KAKENHI (Grant No.

JP16K00117), and the KDDI Foundation.

 ORCID: Mian-xiong DONG,

 http://orcid.org/0000-0002-2788-3451

© Zhejiang University and Springer-Verlag GmbH Germany, part of

Springer Nature 2018

 2

information about whether a particular node has

failed. The only way to completely solve this problem

is to find the failed node. However, we cannot ask a

running distributed system to stop and troubleshoot

all nodes. Instead, a relative compromise is a solution

that designs a fault tolerance mechanism. That is,

what we prefer to do is to cope with BFT while in-

troducing as little impact as possible to the network

computing performance.

In this paper, we focus on the issue of Byzantine

fault tolerance in resource allocation of fog compu-

ting for IoT applications. The property of fault toler-

ance enables a system to continue working properly

when some of its components go down. Therefore,

good fault-tolerance performance can greatly avoid

the interruption of retransmissions in network com-

munications and reduce extra energy consumption

and time costs.

In fog computing, the role of large central serv-

ers is carried out by a massive number of

geo-distributed small- and medium-sized fog devices

at the edge of the network structure. Thus, rather than

setting dedicated standby replicas for all fog devices,

we can simply let the fog devices help each other for

state machine replication. Thus, a fog device can

serve as the replica of its neighbor to reduce the in-

fluence of a possible Byzantine fault. Taking into

account the mobility of IoT devices, the relationship

between replicas and primary devices can also change

while the entire network is running. As a result, we

need a dynamic resource allocation strategy to solve

BFT in fog computing. The main contributions of our

work are as follows.

• A 3-tiered heterogeneous fog network model is

designed in which the routers as fog devices are

providing services to IoT users such as sensors, smart

devices and vehicles.

• A Byzantine-resilient fog networking method

and two resource allocation strategies are proposed to

help reduce the influence of Byzantine faults.

• The case of a single Byzantine fault and the

case of multiple faults are considered to test the per-

formance of the strategies when facing different de-

grees of risk.

• Total latency, forwarding hops in the trans-

mission and the device use rate are chosen as the

metrics for analysis of the simulation results.

This paper is divided into six sections to elabo-

rate on our work on Byzantine fault tolerant resource

allocation for an IoT fog network. Section 2 intro-

duces related work in the fields of fog computing and

the Byzantine fault tolerance problem. Section 3

formulates the mathematical model of a 3-tiered het-

erogeneous IoT fog network structure and describes

the problems to solve. Section 4 proposes the resource

allocation methods. Section 5 describes the simula-

tion experiments carried out and analyzes the per-

formance of the proposed methods. Section 6 sum-

marizes the work.

2 Related work

In this section, we present the related work on

fog computing and the Byzantine fault tolerance

problem.

2.1 From the cloud to the fog

First put forward by Cisco Systems Inc. (Bonomi

et al., 2012), fog computing serves as an extension of

cloud computing as a way to share responsibility for

data storage and processing at the edge of the network

structure. Vaquero et al. from the Hewlett-Packard

Company (HP) offered a comprehensive view of fog

computing, and correlated it with existing technolo-

gies such as the cloud, sensor networks, peer-to-peer

networks and the network virtualization function

(NFV) to reach a definition of "the fog" (Vaquero and

Rodero-Merino, 2014). The group led by Satyana-

rayanan et al. conducted research for years into mo-

bility-enhanced small-scale instances of cloud data-

centers, the cloudlet, to mobile edge computing

(MEC) in IoT (Satyanarayanan et al., 2009; Satya-

narayanan, 2017). Liu et al. focused on streaming

media in heterogeneous edge networks and proposed

a device-to-device relay-assisted scheme to help solve

video frame recovery for picocell edge users (Liu et

al., 2016). Tao et al. integrated fog and cloud compu-

ting to build a hybrid network model for Vehi-

cle-to-Grid (V2G) and 5G services (Tao et al., 2017a).

Stojmenovic et al. analyzed the real-world application

scenarios of the fog such as in smart grids, smart

traffic and software defined networks (SDN). In these

scenarios, the man-in-the-middle attack is regarded as

a typical security issue to represent new features in

the fog (Stojmenovic and Wen, 2014a). Yi et al. fo-

cused on the new security and privacy challenges

 3

besides those inherited from the cloud and proposed

ideas for solutions (Yi et al., 2015). Alrawais et al.

considered the fog and IoT as a whole and put forward

a mechanism to improve the distribution of certificate

revocation information for security enhancement

among IoT devices in the fog (Alrawais et al., 2017).

Li et al. propose the idea of introducing deep learning

to solve problems in edge computing (Li et al., 2018).

Hu et al. addressed face identification and resolution

technology, and implemented a prototype system to

evaluate their proposed security and privacy preser-

vation method (Hu et al., 2017).

Compared with cloud computing, fog computing

was originally intended to share the high load of a

central architecture and help save on the extra cost

that occurs between cloud servers and IoT devices at

the edge of a network. Jalali et al. believed that fog

computing could just help to reduce the energy con-

sumption in cloud computing (Jalali et al., 2016). Tao

et al. investigated the problem of energy efficiency in

mobile-edge computing and applied a request of-

floading scheme to improve the performance of en-

ergy consumption and bandwidth capacity (Tao et al.,

2017b). Perera et al. surveyed the existed research and

the problems to solve in fog computing for sustaina-

ble smart cities (Perera et al., 2017). Castillo-Cara et

al. put forward a fog node design to solve the energy

consumption problem and network resilience provi-

sioning in wireless sensor networks (WSNs) (Cas-

tillo-Cara et al., 2018). Zeng et al. study how to ex-

plore energy generation diversity in a cyber physical

fog system (CPFS) considering source rate control,

service replica deployment and load balancing (Zeng

et al., 2018). Wu et al. combine information-centric

networks (ICNs) in designing content awareness fil-

tering to help increase the safety factor of fog com-

puting (Wu et al., 2018b).

2.2 Research on the Byzantine fault tolerance

problem

Fault tolerance refers to the property where no

global errors or interruptions occur in a system due to

local faults. As a result, fault-tolerant design is very

common and important in research fields related to an

overall system structure (Khosravi and Seifi Kavian,

2016; Gao et al., 2017; Zhang et al., 2018). Since the

idea was first raised by Lamport et al. (1982), re-

search into Byzantine fault tolerance has undergone

decades of development. Castro et al. first explored in

depth the practice of BFT and implemented a generic

program library and the first BFT network file system

(NFS). Their experiment results showed that a NFS

with BFT, i.e., a BFS, performs better than the NFS

protocol without replicas (Castro and Liskov, 2002).

Driscoll et al. redefined the concepts in Byzantine

problems including the widely known existence of

Byzantine faults and their possibility of leading to

Byzantine failures. Their work points out some mis-

understandings about the conditions needed for the

appearance of a Byzantine attack as well as prevent-

ing those mechanism (Driscoll et al., 2003, 2004).

Kotla et al. propose a speculative BFT protocol, the

Zyzzyva, to simplify the design of BFT state machine

replication and ensure that responses to the correct

clients become stable. They compare this with exist-

ing BFT protocols including (Castro and Liskov, 2002)

in cost, throughput and latency, and proved that

Zyzzyva can maintain properties of safety and

liveness (Kotla et al., 2010).

Today BFT is now widely accepted as a basic

security necessity especially for distributed systems

with system-level consensus requirements and mutual

clock synchronization (Driscoll et al., 2004). Aublin

et al. designed a Redundant-BFT (RBFT) approach to

closely monitor the performance of instances from the

primary to replicas on different machines (Aublin et

al., 2013). Bessani et al. improved the previous BFT

protocols by applying an open Java-based library

source to make the state machine replication robust

(Bessani et al., 2014). Li et al. designed a secure

software-defined network (SDN) structure to resist

Byzantine attacks on the communication links be-

tween SDN controllers and switches (Li et al., 2014).

Wu et al. present optimization algorithms to achieve

secure cluster management in SDNs (Wu et al.,

2018a). Zhang et al. focused on the case of a cognitive

radio network (CRN) and introduced the Byzantine

attack and defense in cooperative spectrum sensing

which is one of the key security issues in a CRN

(Zhang et al., 2015). Miller et al. argued that the

former synchronous BFT protocols relied critically on

network time assumptions and came up with the idea

of an asynchronous one to extend the adaptability to

asynchronous systems such as blockchain technology

(Miller et al., 2016).

 4

3 Problem formulation

In this section, we design the system model and

formulate the problem of BFT in fog computing.

In contrast to a traditional centralized network

design, fog computing prioritizes local distributed

devices at the edge of the network to provide

low-latency resource-constrained processing and

storage services. In the fog, there can exist more

complex relations between users and the fog devices

as service providers. That is, each user may not stay in

contact with the same service provider all the time.

Rather than a dedicated wide bandwidth, fog users

prefer flexible dynamic resource allocation which

may save extra time and energy consumption in mul-

ti-hop forwarding.

To resist the influence of Byzantine faults, we

need to set replicas for network nodes as backups to

restore and recover data when necessary. In the case

of the fog, we may not need to prepare dedicated

devices for Byzantine fault tolerance and may just be

able to assign neighbor fog devices to serve as repli-

cas.

3f + 1n (1)

As shown in Equation (1), existing BFT proto-

cols including PBFT (Castro and Liskov, 2002),

Zyzzyva (Kotla et al., 2010) and Honey Badger BFT

(Miller et al., 2016) elaborate on how we need at least

3f extra devices as replicas to tolerate f Byzantine

faults while all communications are synchronous or in

bounded delays. For example, if the number of Byz-

antine faults reaches 3, we may need at least 10 fog

nodes to avoid Byzantine failure.

3.1 System outline

Fog Tier

User Tier
Vehicles

Smart Devices

Sensors

Cloud Tier

Fig. 1 A 3-tiered heterogeneous IoT fog network structure.

Shown in Fig. 1, we formulate the mathematical

model of a 3-tiered heterogeneous IoT fog network

structure (Stojmenovic and Wen, 2014a) (Reznik et

al., 2017). Our aim is to reduce the impact of Byzan-

tine faults in resource allocation for fog computing.

As a result, we consider that this three-tiered model

can more intuitively show the relationship between

the fog nodes as service providers and the users as

service receivers than models with more tiers.

User nodes (u1, u2, …, un) in the User Tier send

requests upwards to ask the routers as fog nodes (f1,

f2, …, fn) in the Fog Tier for computational resources

through access points. The Cloud Tier serves as reli-

able data centers providing stable network connec-

tions. The solid and dotted lines, respectively, stand

for Ethernet and wireless connections. That is,

communications between the User Tier and Fog Tier

are wireless broadcasting, those inside the Fog Tier

are wired broadcasting, and those between the Fog

Tier and the Cloud Tier are wired point-to-point.

i

Camera
ON

Camera
OFF

Camera
OFF

Camera
OFF

Fig. 2 BFT threat model in the fog service.

Figure 2 shows the threat model in our work.

When users choose some fog nodes as service pro-

viders, they also need to accept some permissions for

authority. The situation is similar to a pop-up window

that appears before installation or the first time one

opens an app on a smart device; for example, when

the user in the figure chooses f1 to finish a task on a

mobile phone. For account certification, a user allows

f1 to use the camera when a service is provided. In

normal cases, f1 will send a message to let the user

turn off the camera after certification. However, when

f1 is controlled by someone who wants to obtain ad-

ditional personal privacy information, the message

may be modified to remain open. To guarantee the

operation of the fog network, we cannot interrupt

service extensively to troubleshoot some individual

 5

malicious nodes. It is better to draw support from a

suitable fault tolerant strategy to avoid possible sys-

tem failures.

To implement Byzantine fault tolerance in this

3-tiered fog network, we need geo-distributed routers

to work as fog nodes to help each other when facing

Byzantine faults. After choosing f1 as a service pro-

vider, we also set replicas (f2, f3 and f4) to ensure state

machine replication when necessary. Here, we con-

sider the case of a single Byzantine fault in which

three replicas are required by one primary fog node.

The entire procedure of Byzantine-resilient commu-

nication in the design of our fog network is as follows.

• i. A mobile user in the User Tier requests

computational resources from the Fog Tier.

• ii. A fog node in the Fog Tier within a suitable

distance to the user accepts the request and then for-

wards it to the other 3f fog nodes as replicas.

• iii. Both the primary and the replicas execute

the task and send back responses to the original user.

As a result, the original user can then check the

responses that even if f1 wants to keep the camera on,

he/she is still able to avoid a Byzantine failure from

the single fault by checking responses from f2 to f4.

3.2 Performance metrics

To compare the actual performances of our

proposed BFT resource allocation strategy, we choose

total latency and forwarding hops in the transmission

as the two main metrics to evaluate the performance

of our work.

To achieve Byzantine fault tolerance and avoid

Byzantine failures, our strategies operate at the ex-

pense of reducing some computing performance in

the fog network. That is, in the process of multiple fog

nodes working together to complete a user request, an

additional information exchange is implemented to

eliminate the possible impact of the failed nodes.

Latency is a basic metric widely used in performance

evaluation in engineering. Here we use it to prove that

our strategies can achieve BFT with as little time cost

as possible.

all trans prop procL L L L

 2/ /
pktn

hop pkt bit e e prop

i

n s i r l v (2)

 /
pktn

pkt MTR

i

s i r

As shown in Equation (2), the total end-to-end

latency Lall mainly includes three parts, the latencies

of transmission, propagation and processing proce-

dures. Transmission latency Ltrans represents the

amount of time for pushing all bits of packets into the

transmission medium like the wires or air. Ltrans has

nothing to do with the distance between any two

nodes and only relates to the total size of the packets.

npkt and spkt are the number and size of the packets. rbit

is the bandwidth or bit rate of the transmission link. In

contrast, propagation latency Lprop depends on the

travel distance between the sender and receiver and

the property of the transmission medium. For wireless

communication, vprop is equal to the speed of light c,

and for wired communication, it ranges from 0.59c to

0.77c. Thus, le2e may stand for the end-to-end length

added up by all distances between any two nodes

taking part in the current communication. Lastly, to

calculate the processing latency, we need the maxi-

mum transfer rate rMTR of the fog devices and the total

packet size.

i. i. ii. iii.

all trans prop

userL L L L (3)

Then, to obtain the latency in practice, in the

entire procedure described in Fig. 2, as shown in

Equation (3), we may need to calculate each part of

the three steps. For step i., we just sum up the trans-

mission and propagation latencies since there is only

one connection between the user and primary fog

node f1.

ii. iii. ii. iii.{ | 1,2,3,4}ifL max L i (4)

However, for steps ii and iii, since the replicas

may differ from each other in their positions from the

user and primary fog node and processing capacity,

etc., we need to figure out the practical latency values

of the primary and each replica, and pick the maxi-

mum one as shown in Equation (4).

2

1, 2 2 2ii. iii. ,

f trans prop trans prop proc

f f f user fL L L L

 (5)

 6

Lastly, Equation (5) gives the expression of

summation. We take f2 in Fig. 2 as the example, with

latencies in steps ii and iii. includes the two steps for

Ltrans, Lprop, and Lproc.

Moreover, we also choose the number of for-

warding hops in the transmission which can reflect

the quantity of work in our fog network and show the

practical efficiency.

1

4

, , ,

2

2
i i

all hop hop hop

hop user pri f f f user

i

n n n n

 (6)

As shown in Equation (6), in contrast to the total

latency, to calculate total number of forwarding hops

in the transmission we need to consider all the con-

nections in the three steps of Fig. 2.

Besides total latency forwarding hops, to gain a

thorough understanding of the network structure, we

add the fog nodes’ use rates and the percentages of

workload capacity occupied by the primary/replicas

as two auxiliary metrics to provide more details into

the analysis of the simulation results.

The use rate stands for the overall resource oc-

cupancy of all fog nodes. Here, we use it to study the

actual working conditions of the entire IoT fog net-

work, and the possible changes brought about by

resource allocation strategies. In the section on sim-

ulation, we consider the cases of both workload ca-

pacities occupied as primary service providers and as

replicas. Moreover, we treat the two cases separately

to calculate the percentages.

Table 1 summarizes and lists the main symbols

used in this paper.

Table 1 Notations in the design of the Byzantine-resilient

fog network

Symbol Meaning

U, ui Set of user nodes and one in it

F, fi Set of fog nodes and one in it

Ltrans/prop/proc
Latencies of total, transmission, propa-

gation and processing

nhop
Number of forwarding hops in the

transmission

npkt, Spkt Number and size of packets

rbit Bit rate of the transmission link

le2e
End-to-end length of the network con-

nection

vprop
Wave propagation speed of the transmis-

sion medium

rMTR Maximum transfer rate of the device

Ci,j Distance or number of forwarding hops

between fi and fj

Pi Position coordinates of fi

path(Pi, Pj)
Summation of all connections between fi

and fj

wthis
Needed workload capacity of the current

request from the user

Cpri, Crep
Workload capacities of the fog nodes

occupied as primary and replicas

4 Byzantine fault tolerant resource sllocation

strategy

In this section, we propose resource allocation

strategies for a fog network aimed at resisting the

influence of Byzantine faults.

4.1 BFT fog networking

Before choosing the primary nodes and replicas

for users in need of fog service, we first build up a

BFT fog network which considers all neighbor rela-

tionships among the routers as fog nodes. Here our

target is to fulfill the requirements of the BFT proto-

col called Zyzzyva in (Kotla et al., 2010) (n = 3f + 1).

Algorithm 1 Breadth-First BFT Fog Networking

Input: F = {f1, f2, …, fn} // all n fog nodes in the network

structure

 Pi // position coordinates of all the fog nodes

 fi.adj // the list of all adjacent nodes to fi

 Qfog, Qsave // FIFO queues to keep fog nodes

 layer, leaves (layer) // layers and leaves in tree map

Output:
,{ | , {1,2,..., }, }i jc i j n i j //connections between

any fi and fj

1 for i ← 2 to n do

2 for j ← 1 to i – 1 do

3 Qfog ← , Qsave ←

4 if find(fi.adj = j) then

5 ci.j.nhop ← 1,ci,j.le2e ← path(Pi,Pj)

6 end if

7 push all fi.adj into Qfog and Qsave

8 layer ← 1, leaves (layer) ← sizeof (fi.adj)

9 while Qfog do

10 if leaves(layer) = 0 then

11 layer ← layer + 1

12 end if

13 this ← Qfog.pop()

14 leaves(layer) ← leaves(layer) – 1

15 if find(fthis.adj = j) then

16 ci,j.nhop ← layer + 1,ci,j.le2e ← path(Pi, Pj)

17 break

18 end if

19 drop any fthis.adj already in Qsave and push into

Qfog and Qsave one by one

20 leaves(layer) ← leaves(layer) + sizeof(f'this.adj)

 7

21 end while

22 end for

23 end for

Algorithm 1 is based on a non-recursive

breadth-first search (BFS) method to implement BFT

fast networking. To obtain the connection situations

ci,j between any two fog nodes { f1, f2,…, fn} including

geographical distances and forwarding hops in rout-

ing, we need the two-dimension positions (Pi) and

neighbor lists recording all adjacent nodes (fi.adj).

The two first-in first-out (FIFO) queues Qfog, Qsave

and the variables layer, leaves are used to build the

tree maps formulated by the BFS method. Some key

points are as follows.

• Qfog is used as the main data structure to take

the whole situation into account. The cyclic condition

in line 9 could not be broken unless no existing path is

found between fi and fj after traversing all other nodes.

• Qsave is an instrumental variable to save all

non-repetitive nodes which means no path will be

tried twice. In line 19 we drop the neighbors of fthis

which are already covered by Qsave before pushing the

rest into two queues.

, 1

1

1

(,) (,)
i jn

i j n n

n

path length

 P P P P (7)

• The path (Pi,Pj) function in lines 5 and 16

stands for the summation of all connections between

any two of the nodes in the full path from fi to fj.

Equation (7) gives the calculation of path() in which

ni,j represents the number of nodes in the path be-

tween fi and fj.

• A tree map is obtained through the BFS method

and we use the layer and leaves(layer) to record the

current layer and how many nodes are within this

layer.

To set the primary fog node and replicas for user

in a request, we need to ensure the protocol commu-

nications between any two different nodes. That is to

say, although our fog network is not a real full con-

nected network, we still can make sure that fi can

exchange messages with fj at any time after limited

forwarding hops. The time complexity of Algorithm 1

is O(n2(1 + n)) = O(n3 + n2) = O(n3).

4.2 BFT resource allocation strategy

To resist f Byzantine faults in our fog network,

we set the nearby fog nodes as replicas to help achieve

state machine replication. Thus, each replica needs to

repeat what the primary fog node is doing and send

back the processing result to the user in a request.

Algorithm 2 OPMD: One Phase Minimum Dis-

tance

Input: wthis // workload need by user

 Cpri,Crep // capacities of fog nodes used as primary and

replicas

 cthis,j // connections between user and fog node fj

 fneed // 3f + 1 fog nodes as primary and replicas

 Cleft // resource capacity of fog nodes

Output: resource allocation results for all users

1 for i ← 2 to 3f + 1 do

2 find fj with minimum cthis,j.le2e and set as fneed(i)

3 if !find(fneed(1 to i - 1) = fneed(i)) && fneed (i) .Cleft ≥

wthis then

4 if i = 1 then

5 fneed.Cpri ← fneed.Cpri + wthis

6 else

7 fneed.Crep ← fneed.Crep + wthis

8 end if

9 fneed.Cleft ← fneed.Cleft - wthis

10 else

11 continue

12 end if

13 end for

OPMD gives an entire procedure for setting one

primary fog node and 3f replicas for workload wthis

requested by the current user. Cpri and Crep, respec-

tively, stand for the resource allocation result where a

part of the workload capacity is set as the primary or

replica. We sort all the fog nodes by their distances

away from the position of the current user and judge if

the remaining workload capacity Cleft is full as well as

if no fog node is being requested twice. Some key

points are as follows.

• We use the fneed as a set of temporary choices

of fog nodes during the 3f + 1 cycles and regard the

first choice as the primary fog node.

• !find(fneed(1 to i - 1) = fneed(i)) in line 3 is a

function to make sure that the current chosen fneed(i) is

not included in the former fneed.

OPMD focuses on shortening the communica-

tion distances between users and fog nodes, which

may extensively cut down on the propagation laten-

cies Lprop in Equation (2). The algorithm itself makes

full use of the advantages of fast networking in the

BFS method and is able to find all 3f + 1 required fog

 8

nodes in a simple and straightforward way. The time

complexity of Algorithm 2 is O((3f + 1)(n + 1)) =

O(3fn + 3f + n + 1) = O(fn).

However, OPMD may also place an extra burden

on communications among the primary fog nodes and

replicas providing service for the same users to some

extent. As a result, we put forward a two-phase algo-

rithm to optimize this issue between the primary fog

nodes and replicas.

Algorithm 3 TPSP: Two-Phase Shortest Path

Input: wthis // workload need by user

 Cpri,Crep // capacities of fog nodes used as primary and

replicas

 fpri, frep // fog nodes set as primary and replicas

 cthis,j // connections between user and fog node fj

 fneed // 3f + 1 fog nodes as primary and replicas

 Cleft // resource capacity of fog nodes

Output: resource allocation results for all users

1 find fj with minimum cthis,j.le2e && fj.Cleft ≥ wthis and

set as fpri(i)

2 fpri.Cpri ← fpri.Cpri + wthis

3 fpri.Cleft ← fpri.Cleft - wthis

4 for i ← 1 to 3f do

5 find fj with least cpri,j.nhop or minimum cpri,j .le2e and

set as frep(i)

6 if frep fpri && !find(frep(1 to i - 1) = frep(i)) &&

frep(i).Cleft ≥ wthis then

7 frep .Crep ← frep.Crep + wthis

8 frep .Cleft ← frep.Cleft - wthis

9 else

10 continue

11 end if

12 end for

Compared to OPMD, TPSP adopts a two-phase

design which first chooses the optimal fog node as

primary and lets the primary look for its 3f replicas.

Thus, after choosing one of the fog nodes as fj, sub-

sequent sorting and other work will be carried out

around it instead of the current user who requests wthis.

Some key points are as follows.

• The sum of fpri and frep is equal to fneed in TPSP.

• Line 5 shows two selections in choosing suit-

able neighbor fog nodes as replicas which may show

different performances such as the majority in total

latency as shown in Equation (2) whereby Ltrans pays

more attention to the number of forwarding hops and

Lprop relies on the transmission distance.

The time complexity of Algorithm 3 is

O(1+3f(n+ 1)) = O(3fn + 3f + 1) = O(fn).

5 Simulation and analysis

In this section, we carry out experimental simu-

lations to evaluate the performance of the resource

allocation strategies designed for a BFT fog network

in two cases: a case of a single Byzantine fault and a

case of multiple Byzantine faults. The simulation

scenario is a 10 km2 square open area in which we set

up 100 routers with access points as fog nodes. There

are 50 to 500 mobile IoT users requesting fog service

from nearby fog nodes.

Table 2 Experimental setups

Bit rate of transmission

Wireless (802.11ad) 6.8 Gbit/s

Ethernet 10 Gbit/s

Maximum transfer unit (802.11) 2304 Bytes

Wave propagation speed of transmission

Wireless (air) c (speed of light)

Ethernet (thick coax) 0.77 c

Device settings of the fog nodes

Maximum transfer rate (SATA3) 750 MB/s

Workload capacity of fog node 32~512 MB

As shown in Table 2, we consider the conditions

of both wireless and Ethernet connections with their

respective transmission bit rate and wave propagation

speed. The workload capacity of a single fog node

would be in one of {32, 64, 128, 256, 512} MB ac-

cording to the case of a single Byzantine fault or of

multiple faults. We take multiple time-slots for

sending and answering requests, processing and

storage. We repeat each set of experiments 10 times

with different numbers of IoT users.

5.1 Single Byzantine fault

First, we consider the condition of a single

Byzantine fault (f = 1) which means our aim here is to

resist the influence of a single fault in the procedure of

answering a request from an IoT user. As a result, we

need to choose four fog nodes in total for one user in

each time-slot as the primary device and replicas. The

workload capacity range set for the fog nodes is {32,

64, 128, 256}.

 9

(a)

(b)

Fig. 3 Simulation results of a single Byzantine fault: (a)

total latency and (b) total forwarding hops in the trans-

mission.

As shown in Fig. 3, we calculate the total laten-

cies and forwarding hops in the transmission of dif-

ferent numbers of users. The blue, red, yellow and

green broken lines, respectively, stand for OPMD,

two cases of TPSP and a random method as a contrast.

In Fig. 3a, all four methods show a linear increase in

the trend from 50 to 500 IoT users requesting fog

services from 100 routers. Although the differences

among the four methods are not large when there are

only a few users, the gap between the random one and

the other three appears with the growth in number of

users. The performance of OPMD is relatively poor in

the three methods which matches our expectation.

Compared with TPSP which applies two phases in fog

node selections, the same treatment for the primary

fog device and replicas does generate some impact on

the total latencies. That is, the position of the primary

fog node is more of an issue in not only receiving the

request but also distributing it to all replicas. There-

fore, the overlong distance or redundant forwarding

hops between the primary fog node and replicas may

cost extra time in data transmission.

For TPSP, the red and yellow lines represent the

simulation results of different standards in choosing

suitable neighbor fog nodes shown in line 5 of Algo-

rithm 3. The yellow line in consideration of the for-

warding hops exceeds the red one in distance in total

latencies, which may illustrate that the time cost for

transmission latency Ltrans takes up a larger proportion

than that of propagation latency Lprop.

The total forwarding hops is the second metric

we chose to compare and analyze for the performance

of the simulation results for BFT resource allocation

in the 3-tiered heterogeneous IoT fog network. From

Fig. 3b we can see that the yellow broken line of the

hop standard in TPSP still holds the lead in practical

efficiency whereby more transmission hops mean

extra energy consumption in the transmissions be-

tween IoT users and the fog nodes. In particular, when

there is a large number of users, the TPSP-hop may

behave better in solving situations where demand

exceeds supply. Thus, service capacities could be

insufficient relative to the user’s needs, and some-

times the user may have to choose a service node with

a relatively high cost in time and energy consumption.

5.2 Multiple Byzantine faults

Because we cannot be sure that only one Byz-

antine fault would occur in the BFT communication

procedure shown in Fig. 2, the case of multiple

Byzantine faults also should be taken into account. In

this part of the simulation, f relates to the size of the

requested workload capacity which means the possi-

bility of multiple Byzantine faults is proportional to

how many resources are being allocated to users. To

fulfill the larger need of available resources in total,

we also adjusted the workload capacity range set of

the fog nodes to {64, 128, 256, 512}.

(a)

 10

(b)

Fig. 4 Simulation results of multiple Byzantine faults: (a)

total latency and (b) total forwarding hops in the trans-

mission.

5.3 Device use rate and percentage for the pri-

mary and replicas

Lastly, to figure out the composition and the

actual working conditions of the entire IoT fog net-

work, we add the results of the fog nodes’ use rates as

well as the percentage of workload capacity occupied

by the primary or replicas as auxiliary metrics to

provide more detail.

The six subfigures in Figs. 5 and 6 show the use

rates and primary and replica percentages of three

resource allocation methods in cases of single and

multiple faults. The green broken lines stand for the

actual occupancy rates calculated from the average of

10 time slots. The blue and red bars are the average

values of percentages of workload capacity occupied

by the replicas and primary. First, in the comparisons

between two cases of the same method, the occupied

workload capacity proportions of the replicas all in-

crease when there are more replicas needed as well as

the times a single fog node is set as replicas in multi-

ple requests. Second, in Fig. 5 the use rates of

TPSP-hop are always lower than the other two

methods for the range between 5% to 10% which can

also be an asset for efficiency. That is, TPSP-hop may

be able to complete the same amount of work using

fewer computational resources. Third, compared to

the second point above, in Fig. 6 the gap between

TPSP-hop and the other two methods in the device

use rate is narrowed when more than one Byzantine

fault occurs in a single BFT communication proce-

dure.

In summary, from the simulation results in the

two cases of a single Byzantine fault and multiple

faults, TPSP with the selection standard of fewer

transmission hops shows better performance in total

latency, number of forwarding hops and device use

rate. As a result, our BFT resource allocation strategy

does help build a reliable fog network structure to

resist the influence of a single Byzantine fault or

multiple faults.

6 Conclusion

In this paper, our SIoTFog focuses on how to

resist the influence of Byzantine faults and improve

the transmission and processing efficiency in fog

computing for IoT. First, we designed a 3-tiered het-

erogeneous IoT fog network model which was mainly

made up of routers as fog nodes to provide fog service

to IoT users. To solve the problem of Byzantine fault

tolerance in fog services, we proposed a fog net-

working method based on breath-first searching and

two BFT resource allocation strategies to distribute

workload capacities of the fog nodes to users upon

request. We consider the cases of both a single Byz-

antine fault and multiple faults in experimental set-

tings. The simulation results show that our proposed

strategies can help build an efficient and reliable fog

network when faced with Byzantine faults.

In the future, we will focus on further improving

our approach to deal with the various situations that

may occur in actual network operations. Two per-

formance bounds in our proposed strategies that are a

priority to be solved are the following. First, to ensure

BFT in fog computing, we rely on the mutual assis-

tance of the geographically distributed fog nodes

themselves, which means there may be significant

differences in performance for different node distri-

butions. Second, in a distributed network composed

of large-scale fog nodes, the fact that BFT does in-

crease the relationships among the nodes may lead to

new issues when the network topology changes.

References
Alrawais A, Alhothaily A, Hu C, et al., 2017. Fog computing

for the internet of things: Security and privacy issues.

IEEE Internet Computing, 21(2):34-42.

https://doi.org/10.1109/MIC.2017.37

Aublin P, Mokhtar SB, Quema V, 2013. Rbft: Redundant

byzantine fault tolerance. 2013 IEEE 33rd International

Conference on Distributed Computing Systems,

 11

p.297-306.

https://doi.org/10.1109/ICDCS.2013.53

Bessani A, Sousa J, Alchieri EEP, 2014. State machine repli-

cation for the masses with bft-smart. 2014 44th Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks, p.355-362.

https://doi.org/10.1109/DSN.2014.43

Bonomi F, Milito R, Zhu J, et al., 2012. Fog computing and its

role in the internet of things. Proceedings of the First

Edition of the MCC Workshop on Mobile Cloud Com-

puting, New York, NY, USA, p.13-16.

https://doi.org/10.1145/2342509.2342513

A Castillo-Cara M, Huaranga-Junco E, Quispe-Montesinos M,

et al., 2018. Frog: A robust and green wireless sensor

node for fog computing platforms. Journal of Sensors,

2018.

https://doi.org/10.1155/2018/3406858

Castro M, Liskov B, 2002. Practical byzantine fault tolerance

and proactive recovery. ACM Trans Comput Syst,

20(4):398-461.

https://doi.org/10.1145/571637.571640

Driscoll K, Hall B, Paulitsch M, et al., 2004. The real byzan-

tine generals. The 23rd Digital Avionics Systems Con-

ference (IEEE Cat No04CH37576), 2:6.D.4-61.

https://doi.org/10.1109/DASC.2004.1390734

Driscoll K, Hall B, Sivencrona H, et al., 2003. Byzantine fault

tolerance, from theory to reality. Computer Safety, Reli-

ability, and Security, Berlin, Heidelberg, p.235-248.

Gao D, Wang Q, Lei Y, 2017. Distributed fault-tolerant

strategy for electric swing system of hybrid excavators

under communication errors. Frontiers of Information
Technology & Electronic Engineering, 18(7):941-954.

https://doi.org/10.1631/FITEE.1601021

Hu P, Ning H, Qiu T, et al., 2017. Security and privacy

preservation scheme of face identification and resolution

framework using fog computing in internet of things.

IEEE Internet of Things Journal, 4(5):1143-1155.

https://doi.org/10.1109/JIOT.2017.2659783

Jalali F, Hinton K, Ayre R, et al., 2016. Fog computing may

help to save energy in cloud computing. IEEE Journal on

Selected Areas in Communications, 34(5):1728-1739.

https://doi.org/10.1109/JSAC.2016.2545559

Khosravi A, Seifi Kavian Y, 2016. Autonomous faultdiagnosis

and decision-making algorithm for determining faulty

nodes in distributed wireless networks. Frontiers of In-

formation Technology & Electronic Engineering,

17(9):885-896.

https://doi.org/10.1631/FITEE.1500176

Kotla R, Alvisi L, Dahlin M, et al., 2010. Zyzzyva: Speculative

byzantine fault tolerance. ACM Trans Comput Syst,

27(4):7:1-7:39.

https://doi.org/10.1145/1658357.1658358

Lamport L, Shostak R, Pease M, 1982. The byzantine generals

problem. ACM Trans Program Lang Syst, 4(3):382-401.

https://doi.org/10.1145/357172.357176

Li H, Li P, Guo S, et al., 2014. Byzantine-resilient secure

Fig. 5 Device use rate and percentage of the primary and replicas (single Byzantine fault): (a) OPMD, (b) TPSP-dist,

and (c) TPSP-hop.

(b) (b) (c)

Fig. 6 Device use rate and percentage of the primary and replicas (multiple Byzantine faults): (a) OPMD, (b)

TPSP-dist, and (c) TPSP-hop.

(a) (b) (c)

 12

software-defined networks with multiple controllers in

cloud. IEEE Transactions on Cloud Computing,

2(4):436-447.

https://doi.org/10.1109/TCC.2014.2355227

Li H, Ota K, Dong M, 2018. Learning iot in edge: Deep

learning for the internet of things with edge computing.

IEEE Network, 32(1):96-101.

https://doi.org/10.1109/MNET.2018.1700202

Liu Z, Dong M, Zhou H, et al., 2016. Device-to-device assisted

video frame recovery for picocell edge users in hetero-

geneous networks, :1-6.

https://doi.org/10.1109/ICC.2016.7511342

IHS Markit, 2017. IoT Trend Watch 2017

https://ihsmarkit.com/Info/0117/IoT-trend-watch-2017.ht

ml [Accessed on Aug. 29, 2018]

Miller A, Xia Y, Croman K, et al., 2016. The honey badger of

bft protocols. Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security,

New York, NY, USA, p.31-42.

https://doi.org/10.1145/2976749.2978399

Perera C, Qin Y, Estrella JC, et al., 2017. Fog computing for

sustainable smart cities: A survey. ACM Comput Surv,

50(3):32:1-32:43.

https://doi.org/10.1145/3057266

Reznik A, Arora R, Cannon M, et al., 2017. Developing

software for multi-access edge computing. ETSI, White

Paper, (20).

Satyanarayanan M, Bahl P, Caceres R, et al., 2009. The case

for vm-based cloudlets in mobile computing. IEEE Per-

vasive Computing, 8(4):14-23.

https://doi.org/10.1109/MPRV.2009.82

Satyanarayanan M, 2017. The emergence of edge computing.

Computer, 50(1):30-39.

https://doi.org/10.1109/MC.2017.9

Stojmenovic I, Wen S, 2014a. The fog computing paradigm:

Scenarios and security issues. 2014 Federated Conference

on Computer Science and Information Systems, p.1-8.

https://doi.org/10.15439/2014F503

Tao M, Ota K, Dong M, 2017a. Foud: Integrating fog and

cloud for 5g-enabled v2g networks. IEEE Network,

31(2):8-13.

https://doi.org/10.1109/MNET.2017.1600213NM

Tao X, Ota K, Dong M, et al., 2017b. Performance guaranteed

computation offloading for mobile-edge cloud computing.

IEEE Wireless Communications Letters, 6(6):774-777.

https://doi.org/10.1109/LWC.2017.2740927

Vaquero LM, Rodero-Merino L, 2014. Finding your way in the

fog: Towards a comprehensive definition of fog compu-

ting. SIGCOMM Comput Commun Rev, 44(5):27-32.

https://doi.org/10.1145/2677046.2677052

Wu J, Dong M, Ota K, et al., 2018a. Big data analysis-based

secure cluster management for optimized control plane in

software-defined networks. IEEE Transactions on Net-

work and Service Management, 15(1):27-38.

https://doi.org/10.1109/TNSM.2018.2799000

Wu J, Dong M, Ota K, et al., 2018b. Fcss: Fog computing

based content-aware filtering for security services in in-

formation centric social networks. IEEE Transactions on

Emerging Topics in Computing, :1-1.

https://doi.org/10.1109/TETC.2017.2747158

Yi S, Li C, Li Q, 2015. A survey of fog computing: Concepts,

applications and issues. Proceedings of the 2015 Work-

shop on Mobile Big Data, New York, NY, USA, p.37-42.

https://doi.org/10.1145/2757384.2757397

Zeng D, Gu L, Yao H, 2018. Towards energy efficient service

composition in green energy powered Cyber–Physical

Fog Systems. Future Generation Computer Sys-

tems, :1-1 .

https://doi.org/10.1016/j.future.2018.01.060

Zhang L, Ding G, Wu Q, et al., 2015. Byzantine attack and

defense in cognitive radio networks: A survey. IEEE

Communications Surveys Tutorials, 17(3):1342-1363.

https://doi.org/10.1109/COMST.2015.2422735

Zhang W, Lu K, Wang X, 2018. Versionized process based on

non-volatile random-access memory for fine-grained

fault tolerance. Frontiers of Information Technology &

Electronic Engineering, 19(2):192-205.

https://doi.org/10.1631/FITEE.1601477

