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Abstract. We consider a finite universe U (more exactly - a family U of them),
second order quantifiers QK , where for each U this means quantifying over a family
of n(K)-place relations closed under permuting U . We define some natural orders
and shed some light on the classification problem of those quantifiers.
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2 SAHARON SHELAH

Annotated Content

§0 Introduction

[We explain our problem: classifying second order quantifiers for finite
model theory. We review relevant works, mainly, the work done on infinite
ones. We then define the basic order relations on such quantifiers inter-
pretability and expressability. We also explain why they are reasonable: as
for definable quantifiers, those give the desired recursiveness result.]

§1 On some specific quantifiers

[We define the quantifier we shall use: monadic, partial one-to-one functions,
equivalence relations and linear order. All have versions with a cardinality
restriction (say cardinality of the domain of a one-to-one function), which
depends on U , the universe, only. For example Qmon

≤λ is the quantifier over

sets of cardinality ≤ λ,Q1−1
≤λ is the quantifier over unary one-to-one func-

tions with domain of cardinality≤ λ, andQeq the quantifier over equivalence
relations. We shall investigate the natural partial orders on them (by the
so-called interpretability and expressibility).]

§2 Monadic analyses of ∃R

[Concentrating first on ∃R, quantifying on the isomorphic copies of one
n(R)-place relation R, we try to analyze its “monadic content”. We essen-
tially characterize the maximal cardinality of a set interpreted by cases of
R by a first order formula (actually of low quantifier depth) as λ0(R) and
show that using such a set we can reduce R to R1 which has domain of
cardinality λ0(R). So up to bi-interpretability, QR and {QR1 , Q≤λ0(R)} are
equivalent. Now when λ0(R) is too near to the cardinality of the universe
U , we have to be more careful but we interpret the (full) monadic quantifier
(with no cardinality restriction). Lastly, we do the same for QK .]

§3 The one-to-one function analysis

[We define a cardinal λ1(R) which essentially characterizes the maximal
cardinality of the domain of a one-to-one function interpretable by cases of
R. It is called λ1(R) and we can find a set A ⊆ U such that the order
of magnitude of its cardinality is λ1(R) (here - a constant multiple), and
show that QR is equivalent by bi-interpretability to {QR1 , Q

eq
E } where E is

an equivalence relation with not too many equivalence classes and R1 has
domain of cardinality ∼ λ1(R). Of course, QK is analyzed similarly. Now,
unlike the infinite case, up to bi-expressability Q1−1

λ is maximal in the sense

that if R1 has domain ≤ λ1/n(R) then it is expressible by Q1−1
λ . Hence,

under bi-expressibility and up to polynomial order of magnitude we have a
complete classification. Of course, on top of Q1−1

λ1(R) we have the equivalence

relation, which is understood.]
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§0 Introduction

We investigate and classify to a large extent quantifiers in the following frame-
work

(∗) for a natural number n, for a (large) finite set U , consider a quantifier QK

on n-place relations on U , so K is a family of n-place relations on U close
under isomorphism (i.e. permutation of U ).

It is natural to restrict ourselves to such families defined by the logic we have in
mind (usually first order), but it seems natural to investigate two partial orders,
interpretability and expressibility defined below, which for such definable classes
give the right answer so the use of definability occurs only in the conclusion.

Earlier this was investigated for infinite U , see (below and) in [Sh 28], [Bl], [Sh
171], but though related, there are some differences. A related work is [BlSh 156]
which deals mainly with monadic logic on the class of models of a first order theory
T , so its complicatedness measures the complexity of T . We have said on some
occasion during this decade that those are adaptable to finite model theory. Here
we deal with this and shall continue in [Sh:F334].

In [Sh 28] we gave a complete classification of the class of second order quantifiers:
those which are first-order definable (see below an exact definition). We find that for
infinite models up to a very strong notion of equivalence, bi-interpretability, there
are only four such quantifiers: first order, monadic, one-to-one partial functions,
and second-order. See Baldwin [Bl].

Now §1-§3 of the present work are parallel to §1, §2, §3 of [Sh 171], so below we
describe the latter and then explain what we shall do here. In [Sh 171] our aim
was to see what occurs if we remove the restriction that the quantifier is first-order
definable. As we do not want to replace this by a specific L -definable (L -some
logic) we restricted ourselves in [Sh 171] to a fixed infinite universe U . If we then
want to restrict ourselves to L -definable quantifiers, we are able to remove the
restriction to a fixed universe U .

The strategy in [Sh 171] is to squeeze the quantifier QR (similarly for QK) be-
tween some well understood quantifiers to get, eventually, equality. Unfortunately,
for interpretability we get a lower bound and an upper bound which are close but
not necessarily equal; i.e. both of the form QE, where E is a set of equivalence re-
lations and they are quite close (see below). More specifically we use cases of Qeq

λ,µ

(i.e. on equivalence relations with λ classes each of cardinality ≤ µ). Carrying out
the strategy we first “find” the monadic content of, say, QR, by interpreting in it
Qmon

λ0(R) which is quantifying on sets of cardinality ≤ λ0(R) and λ0(R) is maximal

(and reduce the problem to “the remainder”, that is a relation R1 with Dom(R1) of
cardinality ≤ λ0(R) and QR1 ≤int QR). Next interpret Q

1−1
λ1(R) which is quantifying

on partial one-to-one functions of cardinality ≤ λ1(R). Now we succeed to squeeze
QR, for “the remainder” between Qλ,λ and Qµ,µ, λ ≤ µ ≤ Min{2λ, |U |} but in
general cannot show this with λ = µ. Clearly if |U | is ℵ0, this does not occur and
we can get a complete picture (see below 1.2). Also by “expressibility” (a stronger
equivalence relation but O.K. for the application to logic) if V = L, then the gap
does not occur, but in some generic extensions it does.

So by [Sh 171] we can e.g. conclude
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1.1 Theorem. Assume K is a family of n-place relations over U where |U | = ℵ0.
Then QK is bi-interpretable (see below) with QE for some family E of equivalence
relations.

We can make this more specific.
The present situation is more complicated. For example, the finite cardinalities

allow a family of monadic quantifiers: for the case |U | = n we have Qln n, Qln ln n,
etc. However, modulo these cardinality restrictions we are able to get a picture
analogous to the original case. Also in the fine analysis we do not get an equivalence
relation E on U such that QR, QE are bi-interpretable or even just bi-expressible,
but just “squeeze” QR between two such quantifiers, which are quite closed (i.e.
size of one bounded by polynomial in the size of another). That is (concentrating
on the case U is fixed (and finite)): assume R is an n-place relation on U then
we can uniformly attach it to a cardinal λ1(R), and an equivalence relation E such
that:

(α) Qeq
E , Q

1−1
λ1(R) are interpretable in QR (quantifiers over equivalence relations

isomorphic to E and partial 1− 1-functions of cardinality ≤ λ1(R))

(β) if λ = λ1(R)
n(R) ≤ |U | then QR is expressible by (Qeq

E , Q
1−1
λ )

(γ) if λ1(R)
n(R) > |U |, then any binary relation on a set A ⊆ U with cardinality

|A| 1
2n(R) is interpretable in QR.

The uniformly means that the formulas involved in interpretability or expressibility
does not depend on R and U but on n, in fact we can give explicit bounds on their
size from n.

Note that we abuse notation using R as a relation and predicate; of course, the
formulas have an n-place predicate to stand for copies of R (see below).

Note we actually deal also with quantifying on appropriate families of R’s of fix
arity (e.g. those satisfying some sentence). Note that we cannot get much better
results by counting.

∗ ∗ ∗

We thank C. Steinhorn, J. Tyszkiewicz and J. Baldwin for helpful discussions on
preliminary versions in MSRI 10/89, Dimacs 95/96 and Rutgers Fall 1997, respec-
tively. Much more is due to Baldwin, Fall 1998, for helping to greatly improve the
presentation.

Let us now make some conventions and definitions.

1.2 Convention. 1) Informally U will be a fixed finite universe (usually large com-
pared to n) but, if not said otherwise, we are proving things uniformly. So more
exactly, U varies on U, a family of such sets. You may choose U = {(0, n) :
n a natural number}.
2) Informally, K will denote a family of n-place relations over U , (for a natural
number n = n(K)), closed under isomorphism, i.e. if R1, R2 are n-place relations
on U and (U , R1) ∼= (U , R2) then R1 ∈ K iff R2 ∈ K. So formally K is a function
with domain U and K[U ] is as above; but n(K) = n(K[U ]) for each U ∈ U. Also
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below without saying in e.g. Definition 1.5 the formula ϕ is the same for all U ∈ U.
3) Let K̄ denote a finite sequence of such K’s, that is

K̄ = 〈Kℓ : ℓ < ℓg(K̄)〉, so K̄j
i = 〈Kj

i,ℓ : ℓ < ℓg(K̄j
i )〉.

4) Let R denote a relation, its domain is Dom(R) = ∪{ā :|= R(ā)}, n = n(R) if R is
an n-place relation (or predicate; we shall not always strictly distinguish). Usually
R is on U which is clear from the context. Formally, R is a function with domain
U and R[U ] is an n(R)-place relation on U ).

1.3 Definition. For anyK, ∃K (orQK) denotes a second order quantifier, intended
to vary on members of K. More exactly, L(∃K1 , . . . , ∃Km

) is defined like first order
logic but we have for each ℓ = 1,m (infinitely many) variables R which serve as
n(Kℓ)-place predicates, and we can form (∃Ki

R)ϕ for a formula ϕ (when R is
n(Ki)-place). Defining satisfaction, we look only at models with universe U , and
|= (∃Kℓ

R)ϕ(R, · · · ) iff for some R0 ∈ Kℓ[U ] we have ϕ(R0, · · · ).
We may display the predicates (or relations) appearing in ϕ, i.e. ϕ(x, y, R̄). Of

course, we may write K not K[U ], etc., abusing notation.

Remark. Note that quantifiers depending on parameters are not allowed, e.g. au-
tomorphisms; on such quantifiers see [Sh:e].

1.4 Definition. We say that K (or QK) is L -definable (where L is a logic) if
there is a formula ϕ(R) ∈ L , in the vocabulary {R} and is appropriate, i.e. an
n(K)-place predicate, such that for any n-place relation R on U

(U , R) |= ϕ(R) iff R ∈ K.

1.5 Definition. 1) We say that ∃K1 ≤int ∃K2 (in other words ∃K1 is interpretable
in ∃K2) if for some first-order formula ϕ(x̄, S̄) = ϕ(x0, . . . , xn(K1)−1, S0, . . . , Sm−1),
(each Sℓ is an n(K2)-place predicate) the following holds:

(∗) for every U ∈ U and R1 ∈ K1[U ] there are S0, . . . , Sm−1 ∈ K2[U ] such
that (U , S0, . . . , Sm−1) |= (∀x̄)[R1(x̄) ≡ ϕ(x̄, S0, . . . , Sm−1)]

(so in (∗), ϕ does not depend on U ).
2) We say k-interpretable if we demand m ≤ k, and then write ≤k-int.
3) We can define ∃K1 ≤L

int ∃K2 or ∃K1 ≤int ∃K2 mod L similarly, by letting ϕ ∈ L .
Similarly for ≤L

k-int. Instead we may say modulo L .

We define a weaker relative of interpretability; we say ∃K1 is expressible by ∃K2 if
in the notion of interpretable we take the formula ϕ to be in the logic L(∃K2). This
is then a special but very important case of 1.5(3).
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1.6 Definition. 1) We say that ∃K1 ≤exp ∃K2 (in other words ∃K1 is expressible
by ∃K2) if there is a formula ϕ(x̄, S0, . . . , Sm−1) in the logic L(∃K2) such that:

(∗) for every U ∈ U and R1 ∈ K1[U ], there are S0, . . . , Sm−1 ∈ K2[U ] such
that (U , S0, . . . , Sm−1) |= (∀x̄)[R1(x̄) ≡ ϕ(x̄, S0, . . . , Sm−1)].

2) We say that ∃K1 ≤inex ∃K2 (in other words ∃K2 is invariantly expressible by
∃K2) if there is a formula ϕ(x̄, S0, . . . , Sm−1) in the logic L(∃K2) such that:

(∗) for every U ∈ U and R1 ∈ K1[U ], there are S0, . . . , Sm−1 ∈ K2[U ] such
that for every K3 which extends K2, letting ϕ

′ be ϕ when we replace ∃K2

by ∃K3 we have:

(U , S0, . . . , Sm−1) |= (∀x̄)[R1(x̄) ≡ ϕ′(x̄, S0, . . . , Sm−1)].

3) We define k-expressible, ≤k-exp, invariantly k-expressible and ≤k-inex and may
add L as a superscript parallel to 1.5(2).

1.7 Definition. 1) We say that ∃K1 ≡int ∃K2 (in other words ∃K1 , ∃K2 are bi-
interpretable) if ∃K1 ≤int ∃K2 and ∃K2 ≤int ∃K1 .
2) We say ∃K2 ≡exp ∃K2 (in other words ∃K1 , ∃K2 are bi-expressible) if ∃K1 ≤exp ∃K2

and ∃K2 ≤exp ∃K1 . Similarly for ≡inex: ∃K1 ≡inex ∃K2 (in other words ∃K2 , ∃K1 are
invariantly bi-expressible) if ∃K1 ≤inex ∃K2 and ∃K2 ≤inex ∃K1 .
3) We can define ∃K1 ≤int {∃K0 , . . . , ∃Kk−1

} as in Definition 1.5 but S0, . . . ,∈
k⋃

i=1

Ki[U ], we let ∃K̄ stand for {∃K0 , . . . , ∃Kk−1
} where K = 〈K0, . . . ,Kk−1〉; we

define ∃K̄1 ≤int ∃K̄2 if ∃K1
ℓ
≤int ∃K̄2 for each ℓ; we also define expressible, invari-

antly expressible, bi-interpretable and (invariantly) bi-expressible similarly.
4) Let ∃K1 ≡1-int ∃K2 (in other words ∃K1 , ∃K2 are 1-bi-interpretable) if ∃K1 ≤1-int

∃K2 and ∃K2 ≤1-int ∃K1 ; recall ≤1−int is defined in 1.5(2) for k = 1. Similarly
∃K1 ≡1-exp ∃K2 and ∃K1 ≡1-inex ∃K2 .
5) In all those notions we add “modulo K̄” if parameters from ∪{Kℓ : ℓ < ℓg(K̄)}
are allowed. We can combine this with 1.5(3) so have modulo (K̄,L ).

1.8 Notation. 1) If Rℓ is an nℓ-place relation for ℓ < n then we let

n−1∑

ℓ=0

Rℓ =

{ā0ˆ · · · ˆān−1 : āℓ ∈ Rℓ}; more formally (

n−1∑

ℓ=0

Rℓ)(U ) =

n−1∑

ℓ=0

Rℓ[U ].

2) Let

n−1∑

ℓ=0

Kℓ = {
n−1∑

ℓ=0

Rℓ : Rℓ ∈ Kℓ for ℓ < n}.

3) ∃R stands for ∃K where K = {R1 : (U , R1) ∼= (U , R)} and so formally if
R = 〈R[U ] : U ∈ U〉 then KR is defined by KR[U ] = {R1 : (U , R1) ∼= (U , R)}.
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1.9 Lemma. 1) ≤int,≤inex and ≤exp as well as ≤1-int,≤1-inex and ≤1-exp are partial
quasi orders. Hence ≡int,≡inex,≡exp are equivalence relations as well as ≡1-int

,≡1-inex and ≡1-exp.
2) ∃K̄1

≤int ∃K̄2
implies ∃K̄1

≤inex ∃K̄2
which implies ∃K̄1

≤exp ∃K̄2
. Similarly for

the “1-” versions. Also each “1-” version implies the one without.

3) ∃K̄ and ∃K are bi-interpretable if K =
∑

i

Ki or K =
⋃

i

Ki (where n(Ki)

constant in the second case).
4) In all those cases we can do everything modulo K̄0 or modulo L (if L is a
reasonable logic closed by first order operations) or modulo (K̄0,L ).

Proof. Straight.

1.10 Lemma. 1) If K̄1, K̄2 are L -definable (i.e. each Kℓ,i is, see Definition 1.4)
and ∃K̄1

≤exp ∃K̄2
then we can recursively attach to every formula in L (∃K̄1

) an
equivalent formula in L (∃K̄2

).

2) If K̄1, K̄2 are L -definable, ∃K̄1
≤exp ∃K̄2

then the set of valid L (∃K̄1
)-sentences

that is L (∃K1,0 , . . . , ∃K1,ℓg(K̄)−1
)-sentences, recursive in the set of valid L (∃K̄2

)-
sentences.

Proof. Easy.

Remark. 1) The need of “L -definable” is clearly necessary. Though at first glance
the conclusions of 1.10 may seem the natural definition of interpretable, I think
reflection will lead us to see it isn’t.
2) Note that naturally we use 1.10 with 1.9.
3) Note that, of course, in 1.10, it is understood that the formulas from L are the
same for all U ∈ U .
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§1 On some specific quantifiers

2.1 Definition. 0) Ktr = {A ⊆ U : |A| = 1}, and we can write ∃ for ∃Ktr ; here
tr stands for trivial.
1) Let Kmon

λ = {A ⊆ U : |A| = λ} for a number λ ≤ |U |/2; here mon stands for
monadic.
2) But we write Qmon

λ for ∃Kmon
λ

, and similarly for the other quantifiers defined
below.
3) K1−1

λ = {f : f is a partial one-to-one function, |Dom(f)| = λ} when λ ≤ |U |/2.
4) Keq

λ,µ = {E : E is an equivalence relation on some A ⊆ U , with λ equivalence

classes, each of power µ}.
5) In 4) we can replace “µ” by “< µ” if each equivalence class has < µ elements.
Similarly replacing λ by “< λ”. Similarly ≤ λ,≤ µ.

6) Kmon
<λ =

⋃

µ<λ

Kmon
µ and K1−1

<λ =
⋃

µ<λ

K1−1
µ . Similarly with ≤ λ; here the “less

than half” is not so important.
7) Kmon = Kmon

∗ = {A : A ⊆ U } and K1−1 = K1−1
∗ = {f : f is a partial one-to-

one function}.
8) Keq

λ,∗ = {E : E is an equivalence relation on some A ⊆ U with λ-equivalence

classes} and Keq
∗,<µ = {E : E is an equivalence relation on some A ⊆ U each

equivalence class < µ} and Keq = Keq
λ,∗ = {E : E is an equivalence relation on some

A ⊆ U } and lastly Keq
≤λ = {E : E an equivalence relation on A ⊆ U , |A| ≤ λ}.

2.2 Remark. More formally λ, µ, etc., are functions from U to N which satisfy

conditions such as λ(U ) < |U |
2 . We write |U |

2 as shorthand for [U2 ].
Claims 2.3 through 2.8 are established by similar arguments. To illustrate the

technique we prove 2.3(4). If ϕ(x, S0, S1) denotes “x ∈ S0 ∨ x ∈ S1” then as

S1, S2 range over subsets of U with |U | < λ < |U |
2 clearly all sets of cardinality

κ, |U |
4 ≤ κ ≤ |U |

2 are represented; all sets of cardinality < |U |
4 are represented by

x ∈ S0 & x ∈ S1. (Note this depends on |Si| ≤ |U |
2 ). Finally sets with cardinality

between |U |
2 and |U | are represented by taking compliments.

The choice |U |
2 and |U |

4 is arbitrary. But if |U |
k for larger k were choice, the union

of two sets would have to be replaced by a union of more sets. A lower bound of

the form |U |
k permits the uniform choice of the formula ϕ.

2.3 Claim. Let λ ≤ χ < |U |
2 . Then, uniformly (the choice of the interpreting

formula ϕ does not depend on U ) we have:
0) Qmon

χ is ∃R for some R.
1) Qmon

λ ≡int Q
mon
≤λ and Qmon

<λ ≤int Q
mon
<χ .

2) Qmon
<µ ≡int Q

eq
1,<µ.

3) Qmon
λ ≡int Q

mon
λ+λ if λ(U ) ≤ |U |

4 .
4) If |U |/2 ≥ λ ≥ |U |/4, then Qmon

λ ≡int Q
mon.

5) More generally, for any constants a and b, if |U |
a ≥ λ ≥ |U |

b , then Qmon
λ ≡int

Qmon.

Proof. Straightforward. For 0) recall Notation 1.8(3). For 2) recall Definition
2.1(4).



ON QUANTIFICATION WITH A FINITE UNIVERSE 9

2.4 Claim. Let λ ≤ χ be as in 2.3.
0) Q1−1

λ is ∃R for some R.

1) λ ≤ |U |/2 ⇒ Q1−1
λ ≡int Q

1−1
≤λ ; and χ ≤ |U |/2 ⇒ Q1−1

<λ ≤int Q
1−1
<χ .

2) Qmon
<λ ≤int Q

1−1
<λ .

3) If λ ≥ |U |/4, then Q1−1
λ ≡int Q

1−1
∗ .

4) Q1−1
λ+λ ≡int Q

1−1
λ if λ ≤ |U |/4.

5) If R is a graph of a partial one-to-one function on U , λ = Min{|Dom(R), R}
then QR ≡int Q

1−1
λ .

Proof. Straightforward.

2.5 Claim. Let λ ≤ χ and µ ≤ κ (as in 2.3).
0) Qeq

λ,µ is ∃R for some R.

1) If χ ≤ |U |/2, κ ≤ |U |/2, then Qeq
λ,µ ≤int Q

eq
χ,κ ≡int Q

eq
≤χ,≤κ.

1A) Qeq
<λ,<µ ≤int Q

eq
<χ,<κ.

2) If |U |/4 ≤ λ ≤ |U |/2 then Qeq
≤λ ≡int Q

eq
∗,∗.

3) For equivalence relations E1, E2 on U , natural sufficient condition for inter-
pretability works. Similarly for families of equivalence relations.
4) ∃K ≤int Q

eq
≤λ if (∀R ∈ K)[|Dom(R)|n(R) ≤ (λ− 1)2] and λ ≤ |U |/2.

Proof. Left to the reader.

2.6 Definition. 1) Qord
λ = {R : R a linear order of a subset A of U of cardinal-

ity1 λ}.
2) Qord

<λ =
⋃

µ<λ

Qord
µ .

2.7 Claim. 0) Qord
λ has the form QR.

1) Qmon
≤λ ≤int Q

ord
λ .

2) If µ× κ ≤ λ then Qeq
µ,κ ≤int Q

ord
λ and Qeq

≤λ ≤int Q
ord
λ .

3) µ < κ ≤ λ⇒ Qeq
µ,κ ≤1-int Q

ord
λ mod Qord

≤λ and Qeq
≤λ ≤1-int Q

ord
λ mod Qord

≤λ .

4) Qord
λ ≤1-int Q

1−1
λ mod L (Q1−1

≤µ ) if λ ≤ µ.

5) Qord
λ ≤int Q

eq
λ,λ, in fact, one E0 ∈ Qeq

λ,λ, one E1 ∈ Qeq
(λ2),2 and one P ∈ Qmon

(λ2)

suffice.

Proof. Straight.

2.8 Claim. 1) QK1 ≤int QK2 mod Q1−1
∗ is equivalent to QK1 ≤1-int QK2 mod

Q1−1
∗ .

2) Similarly for ≤inex,≤exp.

1for the infinite case we demand otp(A,R) = λ
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2.9 Definition. For any equivalence relation E on a set Dom(E) ⊆ U we define
1) nu≥k(E) is the number of equivalence classes of E with ≥ k members.
2) uqk(E) = Max{|B| : B ⊆ U and there are E0, . . . , Ek−1 ∈ QE [U ] such that:
b 6= c ∈ B ⇒ (∃ℓ < k)[(bEℓb ≡ ¬cEℓc) ∨ (bEℓb & cEℓc & ¬bEℓc)]}.
3) For x ∈ U \ Dom(E) let x/E be U \ Dom(E).

2.10 Claim. 1) Q1−1
nu≥2(E) ≤int QE.

2) Q1−1
uqk(E) ≤int QE.

Proof. Let U ∈ U.
1) We can find a sequence 〈ai : i < 2 nu≥2(E)〉 with no repetitions, ai ∈ U such
that for i < j we have aiEaj ⇔ j = i + 1 & “i is even”. Let P0 = {a2i : i}, P1 =
{a2i+1 : i}. So P0(x) & P1(y) & xEy defines a partial one to one function
with domain of cardinality 2 nu≥2(E). We finish as we can interpret Qmon

|P0|
(or see

3.2(2)).
2) Easy, too. �2.10

2.11 Definition. Qn-ary
µ is quantifying on n-place relation with domain of cardi-

nality ≤ µ(U ).

2.12 Claim. 1) For n, letting x̄ = 〈x0, . . . , xn−1〉 there is a formula ϕ(x̄, F0, . . . , Fn−1)
in monadic logic (Fℓ unary function symbol), such that:

(∗) for U ∈ U, A ⊆ U , an n-place relation R on A we can find a model
M = (U , FM

0 , . . . , FM
n−1) and partial one-to-one functions FM

0 , . . . , FM
n−1

from U to U such that ϕ(x̄;FM
0 , . . . , FM

n−1) define R in M , where the
monadic quantifier is being interpreted as Qmon

<λ , λ ≥ |R| provided that

⊗ |A|n + |A| ≤ |U | or just |R| ≤ |U |.

Proof. Let {〈ajℓ : ℓ < n〉 : j < |R|} list the n-tuples in R. Choose bj ∈ U \A for

j < |R| with no repetition. For each a ∈ A and ℓ < n let Y ℓ
a = {j : ajℓ = a}, so

clearly a′ 6= a′′ ⇒ Y ℓ
a′ ∩Y ℓ

a′′ = ∅ and let 〈ja,ℓ,k : k < |Y ℓ
a |〉 list Y ℓ

a with no repetition.
Define FM

ℓ by: FM
ℓ (a) = bja,ℓ,0

, FM
ℓ (bja,ℓ,k

) = bja,ℓ,k+1
except if Y ℓ

a = ∅ then

FM
ℓ (aj) = a.

Let

ϕ(x̄, F0, . . . , Fn−1) = (∃z)
∧

ℓ

[Fℓ(xℓ) well defined

& ¬(∃y)(y 6= xℓ & Fℓ(y) = xℓ) & θ(xℓ, z, Fℓ)]

where
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θ(xℓ, z, Fℓ) =: ∀X(xℓ ∈ X & (∀y1, y2)
(y1 ∈ X & y2 = Fℓ(y1) & y1 6= z → y2 ∈ X) → z ∈ X).

Those are monadic formulas. Clearly,

(∗)1 ϕ does not depend on U

(∗)2 M |= θ(a, b, Fℓ) iff b ∈ {F [i]
ℓ (a) : i} where F

[0]
ℓ (a) = a, F

[α]
ℓ (a) = Fℓ(F

[i]
ℓ (a))

(if well defined)

(∗)3 M |= “Fℓ(a) well defined & ¬(∃x)(y 6= F (y) = a) iff a ∈ A [check].

Hence if ā = 〈aℓ : ℓ < n〉 ∈ A, by (∗)1 + (∗)2 and definition of the FM
ℓ ’s, ϕ and θ:

M |= ϕ[ā, FM
0 , . . . ] iff for some z,

∧

ℓ<n

(aℓ ∈ A & z ∈ {F (i)
ℓ (a) : i})

iff for some j, 〈aℓ : ℓ < n〉 = 〈ajℓ : ℓ < n〉.

�2.12

2.13 Conclusion. If µ1, µ2 are functions with domain U, n < ω and (∀U ∈ U)[µ1(U )n ≤
µ2(U )] then

Qn-ary
µ1

≤int Q
1−1
µ2

mod Qmon
≤(µ1)n

hence

Qn-ary
µ1

≤exp Q
1−1
µ2

.
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§2 Monadic analysis of ∃R

Our aim is to interpret Qmon
λ in ∃R for a maximal λ and show that except on λ

elements R is trivial. So continuing later the analysis of ∃R, we can instead analyze
{Qmon

λ , ∃R1} or analyze ∃R1 mod Qmon
λ where |Dom(R1)| ≤ λ and ∃R1 ≤int QR and

even ∃R1 ≤1-int QR mod Qmon
λ . This is made exact below.

3.1 Definition. 1) For any relation R (on U ) let

λ0 = λ0(R) = Min{ |U |
2
, λ′0(R)}

where

λ′0(R) = Min{|A| :A ⊆ U and for every sequence b̄, c̄ ∈ U

(of length n(R)) we have b̄ ≈A c̄ implies R[b̄] ≡ R[c̄]}

where on ≈A see below
2) b̄ ≈A c̄ means b̄ = 〈bi : i < n〉, c̄ = 〈ci : i < n〉 and

(a) bi ∈ A iff ci ∈ A

(b) bi ∈ A implies bi = ci

(c) bi = bj iff ci = cj .

3) For a set ∆ of formulas ϕ(x̄) (where ϕ is a formula, x̄ a finite sequence of variables
including all variables occuring freely in ϕ) let

tp∆(b̄, A, M̄) = {ϕ(x̄, ā) : ϕ(x̄, ȳ) ∈ ∆, ā ⊆ A and M |= ϕ[b̄, ā]}.

We omitM when its identity is clear, and whenM = (U , R) we may write R instead
of M . We may write U |= ϕ[b̄, ā;R]. Replacing ∆ by bs means ∆ = {ϕ(x̄) : ϕ
atomic or negation of atomic formula}, here bs stands for basic. We may write ϕ
instead {ϕ} and ∆ will be always finite.
4) Sm

∆ (A,M) = {tp∆(b̄, A,M) : b̄ ⊆M and ℓg(b̄) = m}.

3.2 Remark. 1) Note that λ0(R) ≤ λ′0(R) ≤ |Dom(R)|.
2) Note that if an equivalence relation E on a subset of U contains an equivalence

class of cardinality k ≥ |U |
2 or exactly k ≥ |U |

2 singleton classes or k = |Dom(E)| ≥
|U |
2 , then λ′0(R) = λ0(R) = |U | − k < |U |

2 . Otherwise, λ′0(R) >
|U |
2 and λ0(R) =

|U |
2 .

The main result of this section is:

3.3 Theorem. 1) Qmon
λ0(R) ≤int ∃R; we mean, of course, uniformly.

2) There is a relation R1 on U with n(R1) = n(R) and, |Dom(R1)| ≤ λ′0(R) + n
such that ∃R ≡int {∃R1 , Q

mon
λ′
0(R)}. In fact, ∃R ≡1−int ∃R1 mod Qmon

λ0(R).

The proof is broken into some claims.
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3.4 Claim. Let R be an n-place relation on U such that n > 1. We can find

a set A, sequences āi and elements bi, ci for i < i∗, where i∗ ≥ λ′
0(R)

n(R)(n(R)−1) or

i∗ ≥ |U |−n(R)
n(R)(n(R)−1) such that:

(a) āi is with no repetition and is ⊆ A

(b) bi, ci /∈ A,

(c) 〈(bi, ci) : i < i∗〉 is with no repetition, i.e. i 6= j ⇒ bi 6= bj & ci 6= cj &
bi 6= cj

(d) tpbs(āiˆ〈bi〉, ∅, R) 6= tpbs(āiˆ〈ci〉, ∅, R), that is for some atomic formula ϕ
we have (U , R) |= ϕ(āi, bi) ≡ ¬ϕ(āi, ci).

Proof. We try to choose by induction on i, 〈Ai
ℓ : ℓ < n(R)〉, 〈āi, bi, ci〉 and ℓ(i) <

n(R) such that:

(i) ℓ < k < n(R) ⇒ Ai
ℓ ∩Ai

k = ∅
(ii) Ai

ℓ ⊆ Ai
ℓ+1 and A0

ℓ = ∅
(iii) āiˆ〈bi〉ˆ〈ci〉 is with no repetition and has length ≤ n(R) + 1

(iv) tpbs(āiˆ〈bi〉, ∅, R) 6= tpbs(āiˆ〈ci〉, ∅, R), that is for some atomic formula
ϕ(x̄, y) (so gotten from R(x0, . . . , xn(R)−1) by substitution) we have
ϕ(āi, bi) ≡ ¬ϕ(āi, ci)

(v) bi, ci /∈ ∪{Ai
ℓ : ℓ < n(R)}

(vi) ℓ(i) = Min{ℓ : āi ∩Ai
ℓ = ∅}

(vii) Ai+1
ℓ(i) = Ai

ℓ(i) ∪ {bi, ci}

(viii) Ai+1
ℓ is Ai

ℓ ∪ {Rang(āi)\
⋃

m

Ai
m}

if (ℓ = 0 & ℓ(i) > 0) ∨ (ℓ = 1 & ℓ(i) = 0)

(ix) Ai+1
ℓ = Ai

ℓ in the other cases.

So for some i = i(∗) we cannot continue; we claim that A =:
⋃

ℓ

Ai
ℓ has cardinality

≥ λ′0(R) or ≥ |U | − n(R).
Why? Otherwise by the definition of λ′0(R) there are sequence b̄, c̄ from U of
length n(R) such that b̄ ≈A c̄ but b̄ ∈ R ≡ c̄ /∈ R. Hence we can find sequences b̄′, c̄′

from U of the same length ≤ n(R), each with no repetitions such that b̄′ ≈A c̄′

but for some ϕ = R(x̄) = R(xi0 , xi1 , . . . , xinR
−1), ℓg(x̄) = ℓg(b̄′) = ℓg(c̄′) we have

ϕ(b̄′) & ¬ϕ(c̄′). Now we can find k and d̄0, . . . , d̄k such that: d̄0 = b̄′, d̄k = c̄′, and
d̄ℓ is with no repetitions, ℓ < k ⇒ d̄ℓ ≈A d̄ℓ+1 and ℓ < k ⇒ (∃! i)dℓ,i 6= dℓ+1,i; here
we use the assumption toward contradiction |A| ≤ |U | − n.

So for some ℓ < k we have ϕ(d̄ℓ) & ¬ϕ(d̄ℓ+1). Now let r be such that dℓ,r 6= dℓ+1,r,
so without loss of generality r = ℓg(x̄) − 1, let āi(∗) = d̄ℓ,r ↾ (ℓg(b̄ℓ) − 1), bi(∗) =
dℓ,r, ci(∗) = dℓ+1,r. Clearly they are as required in clause (iii) + (iv), now ℓ(i(∗)) is
well defined by clause (vi) as |Rang(āi)| ≤ n(R)−1, so |Rang(āi)∩(

⋃

ℓ

Ai
ℓ)| < n(R).

Now we can define A
i(∗)+1
ℓ for ℓ < n(R) by clauses (vii), (viii) and (ix). Trivially,
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clauses (i) and (ii) hold, and we get a contradiction to the choice of i(∗). So really
|A| ≥ λ′0(R) or |A| ≥ |U | − n(R).

Now note that |
⋃

ℓ

A
i(∗)
ℓ | ≤ (n(R) + 1) × i(∗), by clauses (vii), (viii), (ix) so

i(∗) ≥ |
⋃

ℓ

A
i(∗)
ℓ |/(n(R) + 1) and for some ℓ we have |{i < i(∗) : ℓ(i) = ℓ}| ≥

i(∗)/n(R). So if λ′0(R) < |U | − n(R) we get |{i < i(∗) : ℓ(i) = ℓ}| ≥ i(∗)/n(R) ≥
λ′0(R)/((n(R) + 1)(n(R)). If λ′0(R) ≥ |U | − n(R) we get |{i < i(∗) : ℓ(i) = ℓ}| ≥
(|U | − n(R))/(n(R)(n(R) + 1)). So renaming we are done. �3.4

3.5 Claim. There is a formula ϕ∗ = ϕ∗(x, ȳ;R), in first order logic, of course,
such that:

(∗) if (R is an n(R)-place relation on U and) λ′0(R) <
2
3 |U |, then ϕ∗ exempli-

fies Qλ0(R) ≤int QR even Qλ0(R) ≤1-int QR specifically, for some

d̄ we have {a : (U , R) |= ϕ∗(a, d̄, R)} has λ0(R) members.

Proof. Without loss of generality 1
3 |U | > n(R)2 + n(R).

Let A ⊆ U be a set of power λ′0(R) such that b̄ ≈A c̄ implies R[b̄] ≡ R[c̄]. As
|U |−λ′0(R) is large enough, we can find pairwise distinct di ∈ U \A for i < n(R)2.
Define d̄ = 〈di : i < n(R)2〉 and ϕ∗(x, d̄, R) =

∨{(∃y0, . . . , yk−1) [the elements
y0, . . . , yk−1, x are pairwise distinct and for anym if the elements y0, . . . , yk−1, dm, x
are pairwise distinct and ϕ(x, y0, . . . , yk−1) ≡ ¬ϕ(dm, y0, . . . , yk−1)] : ϕ = ϕ(z0, . . . , zk, R)
is an atomic formula in L(R) (so k + 1 ≤ n(R)) and m < n(R)2, so m, k are
natural numbers}. By the choice of A we have x /∈ A ⇒ ¬ϕ∗(x, d̄, R), hence
B =: {x ∈ U : U |= ϕ∗[x, d̄, R]} is a subset of A. Clearly Qmon

|B| ≤int ∃R (uni-

formly); hence it suffices to prove |B| = λ′0(R) which follows if we show

(∗) if b̄ ∼=B c̄ then R[b̄] ≡ R[c̄].

For this it suffices to prove

(∗∗) if ϕ(x̄, R) ∈ L(R) is atomic, b̄, c̄ are sequences of length ℓg(x̄) ≤ n(R)
without repetition then b̄ ∼=B c̄ implies ϕ(b̄, R) ≡ ϕ(c̄, R).

To prove (∗∗), by reordering the sequences we let b̄ˆc̄0, b̄ˆc̄1 be sequences from U ,
without repetition, b̄ ⊆ B, c̄0, c̄1 disjoint to B; by the transitivity of ≡, without
loss of generality c̄1 is disjoint to d̄. Now for some i, 〈di, di+1, . . . , di+k−1〉 (where
k = ℓ(c̄0)) is disjoint to c̄0 (and obviously to c̄1).

Now we shall prove that for every atomic ϕ(x̄, ȳ, R), ℓg(x̄) = k, ℓg(ȳ) = ℓg(b̄) we
have |= ϕ(c̄ℓ, b̄, R) ≡ ϕ(〈di, . . . , di+k−1〉, b̄, R) thus finishing. For this we define
c̄ℓ,m(m ≤ k) such that each c̄ℓ,m is with no repetitions, disjoint to B ∪ b̄ and
c̄ℓ,0 = c̄ℓ, c̄ℓ,k = 〈di, . . . , di+k−1〉, c̄ℓ,m+1, c̄ℓ,m are distinct in one place only. By
the definition of B (and ϕ) for every atomic ϕ(x̄, ȳ, R) we have |= ϕ(c̄ℓ,m, b̄, R) ≡
ϕ(c̄ℓ,m+1, b̄, R̄) so we finish easily. (Being more careful, e.g. 1

9 |U | ≥ n(R) suffices).
�3.5

Remark. Note that definition of λ0 applies to any relation, in particular, the relation
being defined by a formula so we may freely speak at λ0(ψ) or λ0(ψ(x̄)).
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3.6 Claim. Qmon
≤λ0(R) ≤int QR.

Proof. If we can replace in R some variables by constants or other variables having
at least one equality getting a relation R′ such that λ0(R

′) ≥ Min{λ0(R), 1
7n(R) |U |}

we do it: or in other words we are inducting on n(R) ≥ 1.

Case 1: n(R) = 1.
So R is unary; now note that each of the sets A = R,A′ = U \R can serve in

the definition of λ′0(R), hence

λ′0(R) ≤ Min{|A|, |A′|} = Min{R, |U \R|} ≤ |U |
2

so we are clearly done.

Case 2: n(R) > 1.

If λ′0(R) ≤ 2
3 |U | we can interpret Qmon

≤λ0(R) by 3.5, as it suffices to show that at

least one of several ϕ’s interpret. So assume λ′0(R) >
2
3 |U |. Hence λ0(R) =

|U |
2 and we shall prove that we can interpret Qmon

≤λ0(R), for this it is enough if we

can show that we can interpret Qmon

≤[ |U |

22
n(R)

]
. For this is enough to find first order

θ(x̄1, ȳ1, R), . . . , θk(x̄k, ȳk, R) with the k and θℓ depending only on n(R) and not on
|U | such that ℓg(x̄ℓ) < n(R) and for some ℓ ∈ {1, . . . , k} and b̄ ∈ ℓg(ȳℓ)U , we have

|U |
22n(R)

≤ λ′0(θℓ(−, b̄, R)).

For any ℓ < k < n(R) we can consider the formula Rℓ,k(x0, . . . , xn(R)−1) =

R(x0, . . . , xn(R)−1) & xℓ = xk and R∗ = R(x0, . . . , xn−1) &
∧

ℓ<k

xℓ 6= xk.

Easily λ′0(R) ≤ λ′0(R
∗) +

∑

ℓ<k<n(R)

λ′0(Rℓ,k). Now if for some ℓ < k, λ0(Rℓ,k) ≥

|U |
3n(R)(n(R−1)) we are done by the induction hypothesis. So we can assume λ′0(R

∗) ≥
|U |

3n(R)(n(R)−1) hence by the above without loss of generalityλ′0(R
∗) ≥ 2

3 |U |, so we
can assume

(∗)0 R = R∗.

So atomic formulas not equivalent to a fix truth value except equality are just
R(. . . , xσ(ℓ), . . . ) for σ ∈ Per(n(R)).
Let A, āi, bi, ci for i < j∗ = (|U |−n(R))/(n(R)(n(R)−1)) be as guaranteed by 3.4.
For some atomic ϕ = ϕ(x̄, y) = ϕ(x̄, y, R) we have |{i : ϕ(āi, bi) ∧ ¬ϕ(āi, ci)}| ≥
j∗/n(R), by (∗)0. Without loss of generality this occurs for i < j∗/n(R). For
i ≤ j∗ let Fi be the permutation of U , interchanging bj , cj for j < i and being the
identity otherwise. Let Ri = F ′′

i (R), ψi = ψi(x̄, y) =: [ψ(x̄, y, R,Ri) = ϕ(x̄, y, R) &
¬ϕ(x̄, y, Ri)] so

(∗) ψj(āi, bi) & ¬ψj(āi, ci) if i < j.
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So by the definition of λ′0(−) we have λ′0(ψj) ≥ j for j ≤ j∗/n(R), where we
consider ψj as a (ℓg(x̄) + 1)-place relation.
[Why? If A ⊆ |U |, |A| < j exemplifies the failure of this assertion (by the definition
of λ′0(R)) then w =: {i < j : A∩{bi, ci} 6= ∅} has ≤ |A| members, so choose i ∈ j\w,
now U |= ψj(āi, bi, ci) & ¬ψj(āi, ci, bi), (holds by (∗)) contradict the choice of A.]

So if
∨

j

[|U |/3 ≤ λ′0(ψj) <
2

3
|U |] we are done; hence assume not.

If for every j we have λ′0(ψj) <
|U |
3 , then we get [ |U |−n(R)

n(R)2(n(R)−1) ] = [j∗/n(R)] ≤
λ′0(ψ[j∗/n(R)]) ≤ |U |

3 , so we easily finish by 3.5.
Also λ′0(ψ0) = λ′0(∅) = 0 as R0 = R so U |= ϕ(x̄, y, R) ≡ ϕ(x̄, y, R0) hence U |=
¬ψ0(x̄, y, R,R0). Without loss of generality ϕ is R. So the bad case is that for some
j we have λ′0(ψj) <

1
3 |U | and λ′0(ψj+1) ≥ 2

3 |U |. Let B∗ ⊆ U exemplify λ′0(ψj) <
1
3 |U |. Let for ℓ < n(R), θℓ(x0, . . . , xn(R)−2, y, R) = R(x0, . . . , xℓ−1, y, xℓ, . . . , xn(R)−2)
and on θℓ(〈xm : m < n(R) − 1〉, cj ;Rj) we apply our induction hypothesis as its
arity is ℓg(x̄) which is at most n(R) − 1 (see the beginning of the proof) hence
λ′0(θℓ(〈xm : m < n(R) − 1〉, cj , R)) ≤ 1

7n(R) |U | and let Bℓ ⊆ U exemplify it.

Similarly let B′
ℓ ⊆ U exemplify λ′0(θℓ(〈xm : m < n(R) − 1〉, bj , R)) ≤ 1

7n(R) .

Let B = B∗ ∪
⋃

ℓ<n(R)

Bℓ ∪
⋃

ℓ<n(R)

B′
ℓ ∪ {bj, cj}. Now B is a subset of U with

< (27 + 1
3 )|U |+ 2 < 2

3 |U | elements. By the definition of ψj , ψj+1 and (∗)0 such B

exemplifies λ′0(ψj+1) <
2
3 |U |, contradiction.

�3.6

We have implicitly used:

3.7 Claim. If R is a Boolean combination of R0, . . . , Rn−1 then λ
′
0(R) ≤

∑

ℓ<n

λ′0(Rℓ)

hence λ0(R) ≤
∑

ℓ<n

λ0(Rℓ).

Proof. If Aℓ witnesses the value λ′0(Rℓ) then A =
⋃

ℓ<k

Aℓ witnesses λ′0(R) ≤ |A| ≤
∑

i<k

|Aℓ|. �3.7

Now we turn to 3.3

Proof of 3.3(1).
Immediate by 3.5, 3.6.

∗ ∗ ∗

Proof of 3.3(2). Let di (for i < n(R)) be distinct elements of U \A where A ex-
emplifies λ′0(R) as if λ

′
0(R) + n ≥ |U | then we can choose R1 = R. Of course, we

can concentrate on the case n(R) > 1. Let R1 = R ↾ (A ∪ {di : i < n(R)}. So
〈a1, . . . , an〉 ∈ R iff for some 〈a′1, . . . , a′n〉 ∈ R1 we have 〈a1, . . . , an〉 ≈A 〈a′1, . . . , a′n〉
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and
∧

ℓ

[a′ℓ /∈ A →
∨

m

[a′ℓ = dm], so we can define R1 from R and R from R1

by a quantifier free formula using the unary relation A and individual constants
d0, d1, . . . , dn(R)−1. Hence ∃R ≤1-int ∃R1 mod Qmon

λ′
0(R) but λ′0(R) ≤ 2λ0(R) so

∃R ≤1-int ∃R1 mod Qmon
λ0(R).

Also easily {∃R1 , Q
mon
λ0(R)} ≤1−int ∃R. �3.3

We can get the parallel result for QK .

3.8 Definition. Let λ0(K) = Min{λ : R ∈ K ⇒ λ0(R) < λ} note that the
minimum is taken for each U ∈ U separately.

3.9 Theorem. 1) Qmon
≤λ0(K) ≤int ∃K .

2) There is K1, n(K1) = n(K) such that

(a) ∃K ≡int {∃K1 , Q
mon
<λ0(K)}

(b) R ∈ K ⇒ |Dom(K)| < λ0(K)

(c) ∃K ≡1-int ∃K1 mod Qmon
<λ0(K).

Proof. Immediate by the uniformity of our results.

3.10 Discussion: The interpretation here uses first order formulas of low complexity
but use several copies of R. We may wonder if we can just use one copy of R by
complicating the formula. Now if R is a connected graph every node having a
valency ≤ m << |U |, we see that not. But we can prove that the general situation
in the problematic case is not far from this (similar to a model of a strongly minimal
theory, a local version). Also in general 2 copies of R suffice.
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§3 The one-to-one function analysis

The aim of this section is similar to the previous one, going one step further, i.e.
we want to analyze ∃R, interpreting in it Q1−1

λ for a maximal λ, hoping that “the
remainder” has domain ≤ λ.

4.1 Definition. Let λ1(R) be Max{|{tpbs(a,A,R) : a ∈ U \A}| : A ⊆ U }. (On
tpbs see 3.1(3)).

4.2 Fact. λ1(R) ≤ λ′0(R) + 1 and if equality holds then λ1(R) ≤ 22
n(R)2

.

Proof. Straight, assumeA0 exemplifies λ′0(R) and let A ⊆ U . Then a, b ∈ (U \A)\A0 ⇒
tpbs(a,A,R) = tpbs(b, A,R) by the choice of A0 hence |{tpbs(a,A,R) : a ∈
U \A}| ≤ |A0\A| + 1 ≤ |A0| + 1 = λ′0(R) + 1. Next assume that equality
holds, so necessarily |A0\A| = |A0| hence A ∩ A0 = ∅; now choose A′ ⊆ A with
Min{n(R)− 1, |A|} elements. By the choice of A0, if b, c ∈ U \A then

tpbs(b, A,R) = tpbs(c, A,R) ⇔ tpbs(b, A
′, R) = tpbs(c, A

′, R).

[Why? ⇒ holds as A′ ⊆ A; next we shall prove ⇒. This suffices so assume
tpbs(b, A

′, R) = tpbs(c, A
′, R). So let ϕ(x, ȳ, R) be an atomic formula (i.e. a

substitution in R(x0, . . . , xn(R)−j), so ℓg(ȳ) + 1 ≤ n(R)) and let ā1 be a sequence
of length ℓg(ȳ) from A, we shall show that ϕ(b, ā1, R) ≡ ϕ(c, ā1, R), this suffices. If
|A| < n(R), then A′ = A and we are done, so assume |A| ≥ n(R).

We can find a sequence ā2 from A′ which realizes the same equality type as ā1
(because ℓg(ā1) = ℓg(ȳ) ≤ n(R)− 1 = |A′|). Now by our assumption ϕ(b, ā2, R) ≡
ϕ(c, ā2, R) (that is as tpbs(b, A

′, R) = tpbs(c, A
′, R)), so to get our desired ϕ(b, ā1, R) ≡

ϕ(c, ā1, R) it suffices to prove ϕ(b, ā1, R) ≡ ϕ(b, ā2, R) and ϕ(c, ā1, R) ≡ ϕ(c, ā2, R).
But on both b and c we just assume they are in U \A, so by symmetry it is enough
to show ϕ(b, ā1, R) ≡ ϕ(b, ā2, R). Now as ā1, ā2 are included in A and have the
same equality type (over the ∅), by the choice of A0 and as A0 ∩ A = ∅ neces-
sarily ā1, ā2 realizes the same equality type over U \A, so as b ∈ U \A we have
ϕ(b, ā1, R) ≡ ϕ(b, ā2, R).]
Hence λ1(R) ≤ |{tpbs(b, A′, R) : b ∈ U }| ≤ 2|Φ| where Φ is the set of atomic

formulas ϕ(x, ā) such that ā ⊆ A′, |Φ| ≤ n(R)× (n(R)− 1)n(R)−1 ≤ 2n(R)2 . �4.2

4.3 Claim. Q1−1
λ1(R) ≤int ∃R; of course uniformly.

Proof. Suppose h is a one-to-one, one place partial function from U to U with
λ = |Dom(h)| ≤ λ1(R) and λ ≤ 1

n(R)+1 |U | (we use freely 2.4). Let A ⊆ U

be such that {tpbs(a,A,R) : a ∈ U \A} has cardinality λ1(R). So we can find
ai ∈ U \A (for i < λ) such that tpbs(ai, A,R) are pairwise distinct. Retaining the
last sentence (by not necessarily the original demand on A) without loss of gener-
ality |A| ≤ |U | − λ− λ.
[Why? Just for each i = 1, . . . , λ − 1 choose d̄i ⊆ A of length < n(R) such that
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〈tpbs(aj ,

i⋃

ℓ=1

d̄ℓ) : j ≤ i〉 is with no repetitions so without loss of generality |A| ≤

(n(R) − 1) × λ and compute.] Let h = {〈bi, ci〉 : i < λ}, without loss of gen-
erality bi, ci /∈ A (just permute R, i.e. using an isomorphic R′) and we can
find F1, F2 permutation of U which are the identity on A such that F1(ai) =
bi, F2(ai) = ci. Let R1 = F1(R) and R2 = F2(R) and define the monadic relations
P0 = A,P1 = {bi : i < λ}, P2 = {ci : i < λ} (all of cardinality ≤ λ0(R)). Let
ϕ(x, y, P0, P1, P2, R1, R2) “say” that for every atomic ψ(x, z̄, R) ∈ L(R) and t̄ ∈ P0

we have: ϕ(x, t̄, R1) ≡ ϕ(y, t̄, R2) and P1(x), P2(y). Clearly ϕ defines h. �4.3

4.4 Lemma. Assume λ1(R) × n(R)2 + n(R) < |U |. For any set A ⊆ U , let EA

be the following equivalence relation on U : tpbs(a,A,R) = tpbs(b, A,R). For any
A ⊆ U and C̄ = 〈Cℓ : ℓ < k〉 such that Cℓ ⊆ U let EA,C̄ be the following equivalent

relation on U : aEA,C̄b iff aEAb &
∧

ℓ

a ∈ Cℓ ≡ b ∈ Cℓ. There are a set A ⊆ U

and sequence C̄ = 〈Cℓ : ℓ < n(R)− 2〉 with Cℓ ⊆ U such that

(A) |A| ≤ n(R)× n(R)× λ1(R)

(B) if b̄ ∼=∅ c̄ and biEA,C̄ci for all i < ℓg(b̄) then R(b̄) ≡ R(c̄)

(C) EA has at most |A|+ λ1(R) classes

(D) each Cℓ has at most λ1(R) elements.

Proof. We try by induction on i to choose 〈Ai
ℓ : ℓ < n(R)〉 such that

(i) Ai
ℓ ⊆ U

(ii) ℓ < k < n(R) ⇒ Ai
ℓ ∩Ai

k = ∅
(iii) |Ai

ℓ| ≤ i

(iv)
∑

k<n(R)

|{tpbs(b,
⋃

ℓ 6=k

Ai
ℓ) : b ∈ Ai

k}| is at least i

(v) j < i⇒ Aj
ℓ ⊆ Ai

ℓ.

Now for i = 0 let Ai
ℓ = ∅.

We necessarily are stuck for some i = i(∗) ≤ λ1(R)× n(R); i.e. Aj
ℓ are defined for

j ≤ i(∗) but we cannot choose 〈Ai(∗)+1
ℓ : ℓ < n(R)〉, otherwise by clause (iv) for

some k the set {tpbs(b,
⋃

ℓ 6=k

Ai
ℓ) : b ∈ Ai

k} has at least i/n(R) elements which is (by

the assumption toward contradiction) > λ1(R), but now A =
⋃

ℓ 6=k

Ai
ℓ contradicts

the definition of λ1(R) as Ai
k ∩ A = ∅ by clause (ii). Let A =

⋃

ℓ<n(R)

A
i(∗)
ℓ . For

ℓ < n(R)−2, choose Cℓ as a set of representatives for {a/EA : a/EA has ≤ n(R) but

at least 2 + ℓ elements}, such that Cℓ is disjoint to
⋃

m<ℓ

Cm and we shall show that

A, C̄ is as required. Now clause (A) holds by clause (iii) and the choice of A (and
the bound above on i(∗)). Toward proving clause (B) assume b̄ ∼=∅ c̄ and bℓEA,C̄cℓ
for ℓ < ℓg(b̄). Without loss of generality b̄ has no repetitions. Note if bℓ 6= cℓ then
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bℓ, cℓ /∈ A (as b̄ ≈A c) and bℓEAcℓ (see definition of EA,C̄), but by the choice of the

Cℓ’s, bℓ/EA = cℓ/EA has > n(R) elements, so there is d ∈ bℓ/EA\{bk : k < ℓg(b̄)}.
Hence by transitivity of all the relevant conditions without loss of generality for

some k(∗) < ℓg(b̄) we have bk(∗) 6= ck(∗) &
∧

m 6=k(∗)

bm = cm hence bk(∗), ck(∗) /∈ A.

For some t < n(R) we have {bm : m < ℓg(b̄),m 6= k(∗)} is disjoint to A
i(∗)
t .

We can find a function σ from {0, . . . , ℓg(b̄) − 1} to {0, . . . , n(R) − 1} such that

σ(k) = t ≡ k = k(∗), bm ∈ A
i(∗)
ℓ ⇒ σ(m) = ℓ and ℓ1 6= ℓ2 & bℓ1 /∈ A & bℓ2 /∈

A ⇒ σ(ℓ1) 6= σ(ℓ2). For s ∈ {1, 2} and r < n(R) let Bs
r = A

i(∗)
r ∪ {bℓ : σ(ℓ) = t}

if r 6= k(∗) and B1
r = A

i(∗)
r ∪ {bk(∗)}, B2

r = A
i(∗)
r ∪ {ck(∗)} if r = k(∗). For each

s ∈ {1, 2} we ask, choosing 〈Ai(∗)+1
r : r < n(R)〉 as 〈Bs

r : r < n(R)〉 which of the

demands hold. Now Bs
r extends A

i(∗)
r (so clause (v) holds), is a subset of U with ≤

|Ai(∗)
r |+1 ≤ i(∗)+1 element (by the choice of σ), so clauses (i) + (iii) holds and r1 6=

r2 ⇒ Bs
r1∩Bs

r2 = ∅ (again look at the choice of σ) so clause (ii) holds. So necessarily
clause (iv) fails. For r < n(R) let Er be the following equivalence relation on

A
i(∗)
r : a′Era

′′ iff a′, a′′ ∈ A
i(∗)
r and tpbs(a

′,
⋃

m 6=r

Ai(∗)
m , R) = tpbs(a

′′,
⋃

m 6=r

Ai(∗)
m , R).

For s ∈ {1, 2}, k < n(R) let Es
r be the following equivalence relation on Bs

r : a′Era
′′

iff a′, a′′ ∈ Bs
r and tpbs(a

′,
⋃

m 6=r

Bs
m, R) = tpbs(a

′′,
⋃

m 6=r

Bs
m, R).

Now by the definition of Er clearly

|{tpbs(a,
⋃

m 6=r

Ai(∗)
m , R) : a ∈ Ai(∗)

r }| = |Ai(∗)
r /Er|

hence as 〈Ai(∗)
r : r < n(R)〉 satisfies (i)− (iv) we know that

(∗)1 i(∗) ≤
∑

r<n(R)

|Ai(∗)
r /Ek|.

Also

|{tpbs(a,
⋃

m 6=r

Bs
m, R) : a ∈ Bs

r}| = |Bs
r/E

s
r |

hence as 〈Bs
r : k < n(R)〉 fail condition (iv) (see above) we have

(∗)2 i(∗) + 1 >
∑

r<n(R)

|Bs
r/Er|.

Now for each r < n(R), clearly Es
r ↾ A

i(∗)
r is an equivalence relation refining Er,

hence

(∗)3 |Ai(∗)
r /Er| ≤ |Ai(∗)

r /Es
r | ≤ |Bs

r/E
s
r |.

The three together gives

(∗)4 |Ai(∗)
r /Er| = |Ai(∗)

r /Es
r | = |Bs

r/E
s
r |
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hence

(∗)5 Er = Es
r ↾ A

i(∗)
r

(∗)6 if d ∈ Bs
r\Ai(∗)

r then for some d′ ∈ A
i(∗)
r we have dEs

kd
′.

Apply (∗)6 to r = t choosing ds = bk(∗) if s = 1 and choosing ds = ck(∗) if s = 2 so

ds ∈ Bs
t \Ai(∗)

t hence there is d′s ∈ A
i(∗)
t such that dsE

s
t d

′
s so tpbs(ds,

⋃

m 6=t

Bs
m, R) =

tpbs(d
′
s,

⋃

mr 6=t

Bs
m, R) hence tpbs(ds,

⋃

m 6=t

Ai(∗)
m , R) = tpbs(d

′
s,

⋃

m 6=t

Ai(∗)
m , R).

But tpbs(d1,
⋃

m 6=t

Ai(∗)
m , R) = tpbs(bk(∗),

⋃

m 6=t

Ai(∗)
m , R) = tpbs(ck(∗),

⋃

m 6=t

Ai(∗)
m , R) =

tpbs(d2,
⋃

m 6=t

A
i(∗)
t , R) (second equality as bk(∗)EAck(∗) by the choice of b̄, c̄).

So together with the previous sentences tpbs(d
′
1,

⋃

m 6=t

Ai(∗)
m , R) = tpbs(d

′
2,

⋃

m 6=t

Ai(∗)
m , R)

that is d′1Etd
′
2 (recall d′1, d

′
2 ∈ A

i(∗)
t ). So by (∗)5 we have d′1E

s
t d

′
2 for s = 1, 2.

Clearly m < n(R) & m 6= t ⇒ B1
m = B2

m hence
⋃

m 6=t

B1
m =

⋃

m 6=t

B2
m and let

E∗
t be the following equivalence relation on U : a′E∗

t a
′′ iff tpbs(a

′,
⋃

m 6=t

Bs
m, R) =

tpbs(a
′′,

⋃

m 6=t

Bs
m, R). Clearly Es

t = E∗
s ↾ Bs

t , hence d1E
∗
t d

′
1 (by the choice of d′1),

d′1E
∗
t d

′
2 (see the previous sentences) and d′2E

∗
t d2 (by the choice of d′2). Together as

d1 = bk(∗), d2 = ck(∗) we have bk(∗)E
∗
t ck(∗); but {cℓ : ℓ 6= k(∗)} = {bℓ : ℓ 6= k(∗)} ⊆⋃

m 6=t

Bs
m (by the choice of σ) so tpbs(bk(∗), {cℓ : ℓ 6= k(∗)}, R) = tpbs(ck(∗), {cℓ : ℓ 6=

k(∗)}, R) a contradiction to the choice of b̄, c̄.

So A =
⋃

r<n(R)

Ai(∗)
r satisfies clause (B) of 4.4. Note that EA has ≤ |A|+ λ1(R)

equivalence classes by the definition of λ1(R), so A satisfies clause (C), and C̄
satisfies clause (D) so is really as required. �4.4

4.5 Conclusion. Letting λℓ = λℓ(R) we have ∃R is bi-interpretable with
{Qmon

λ0
, Q1−1

λ1
, ∃R1 , ∃E}, where |Dom(R1)| ≤ n(R)2λ1(R) and E is an equivalence

relation on U . This is done uniformly (i.e. the formulas depend on n(R) only).

Remark. Note that Qmon
λ0

can be omitted being swallowed by ∃E .

Proof. We’ve shown Q1−1
λ1(R) ≤int ∃R (see 4.3). Let A,C be as in the lemma

4.4, choose A1 such that A1 ∩ A = ∅, |A1| ≤ n(R)2λ1(R) and A ∪ A1 includes
≥ Min{n(R), |a/EA|} elements of each EA equivalence class a/EA. Lastly let
R1 = R ↾ (A ∪ A1).
Now by the choice of A and C̄ clearly

R(x1, . . . , sn(R)) iff
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(∃y1) · · · (∃yn(R))(
∧

1≤i≤n(R)

xiEA,C̄yi &
∧

i,j=1,...,n(R)

x1 = xj ≡ yi = yj

& R1(ȳ)).

So ∃R ≤int {Q1−1
λ1

, ∃R1 , ∃EA,C̄
}. Now ∃R1 ≤int {∃R, Qmon

λ1
} by the definition of

R1, ∃EA,C̄
≤int {∃R, Qmon

λ1
} directly and Q1−1

λ1
≤ ∃R by 4.3 and Qmon

λ1
≤ Q1−1

λ1
. So

{Q1−1
λ1

, Qmon
λ0

, ∃R1 , ∃EA
} ≤int {∃R, Qmonλ0} and we finish. �4.5

—> scite{3.5} undefined

4.6 Remark. Note the Q1−1
|Dom(R1)|

is uniformly interpretable (for fixed n(R)) in Q1−1
λ1

including the case λ1 is finite, so 4.5 holds for it too.
—> scite{3.5} undefined

4.7 Claim. If |U | > λ1 ≥ λk, R a k-place relation on A ⊆ U and |A| ≤ λ (and
U finite) then QR ≤exp Q

1−1
λ1

.

Proof. By 2.12.

4.8 Conclusion. If R is an n(R)-place relation on U and λ1(R)
n(R) ≤ |U |, then

for some equivalence relation E we have

{Qeq
E , Q

1−1
λ1(R)} ≤int QR ≤exp {Qeq

E , Q
1−1
λ1(R)n(R)}.

Proof. We have by 4.3 that Q1−1
λ1(R) ≤ ∃R. By 4.7 for every binary relation S on

√
λ1 we have ∃S ≤ Q1−1

λ1(R). So every relation on U
1

2n(R) is interpreted in ∃R.

4.9 Remark. So up to expressability and up to a power by n(R) (and possibly
increasing U ), we have that {Qeq

E , Q
1−1
λ1(R)} exhaust all the information on QR (up

to interpretability).

We can get the parallel result for QK .

4.10 Definition. λ1(K) = {λ : for every R ∈ K we have λ1(R) < λ}. Note that
the maximum is taken for each U separately.

4.11 Conclusion. 1) Q1−1
<λ1(K) ≤int ∃K .

2) There are K1 and E, a family of equivalence relations (for each U ∈ U, closed
under permutations of U ) such that:

(a) ∃K ≡int {∃K1 , Q
1−1
<λ1(K), QE}

(b) for any R ∈ K1 we have |Dom(R)| < n(R)2 ×µ(K) where µ(K) = Min{µ :
R ∈ K ⇒ |Dom(R)| < µ} the minimum taken for each U ∈ U separately.

Proof. Straight by uniformity.
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