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Verification of Markov Decision Processes with Risk-Sensitive Measures

Murat Cubuktepe and Ufuk Topcu

Abstract— We develop a method for computing policies in
Markov decision processes with risk-sensitive measures subject
to temporal logic constraints. Specifically, we use a particular
risk-sensitive measure from cumulative prospect theory, which
has been previously adopted in psychology and economics.
The nonlinear transformation of the probabilities and utility
functions yields a nonlinear programming problem, which
makes computation of optimal policies typically challenging. We
show that this nonlinear weighting function can be accurately
approximated by the difference of two convex functions. This
observation enables efficient policy computation using convex-
concave programming. We demonstrate the effectiveness of the
approach on several scenarios.

I. INTRODUCTION

Markov decision processes (MDPs) model sequential

decision-making problems in stochastic dynamic environ-

ments [30]. MDP formulations typically focus on the risk-

neutral expected cost or reward model. On the other hand,

MDPs with risk-sensitive measures, such as exponential

utility [17], percentile risk criteria [14] and conditional value

at risk [13], [12], [34]. have been studied in the literature.

MDPs also found applications in portfolio management [8],

robotics [27], stochastic shortest-path problems [7], optimal

control [16] and operations research [10], [17]. These mea-

sures capture the variability in the cost due to stochastic

transitions in an MDP, and aim to minimize the effect of the

outcomes with high cost.

We focus on a particular risk-sensitive measure that comes

from cumulative prospect theory (CPT) [35]. This measure

is widely used in psychology and economics to build models

that explain the risk-sensitive behavior of humans in decision-

making. Empirical evidence suggest CPT characterizes hu-

man preferences in decision-making [24], [35]. The key

elements of this theory are a value function that is concave

for gains, convex for losses, and steeper for losses than

for gains, and a nonlinear transformation of the probability

range, which inflates small probabilities and deflates high

probabilities. It is also a generalization of other risk-sensitive

measures like VaR or CVaR [28]. Additionally, with different

nonlinear weighting functions, CPT-based measures can rep-

resent risk-taking measures as well as risk-averse measures.

We investigate model checking with respect to temporal

logic specifications. Formal verification of temporal logic

specifications has been extensively studied for MDPs with

risk-neutral measures [5], and mature tools exist for efficient
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verification with such risk-neutral measures [19]. Probabilis-

tic model checking verifies reachability properties such as

“the probability of reaching a set of unsafe states is less than

5%” and expected costs properties such as “the expected

cost of reaching a goal state is less than 10%”. A rich set

of properties, specified by temporal logic specifications, can

be reduced to reachability properties, which can then be

verified automatically [18]. To the best of our knowledge,

formal quantitative verification with respect to risk-sensitive

measures has not been considered in the literature.

Dynamic programming equations for MDPs with CPT-

based measures for finite-horizon MDPs in [22] and for

infinite-horizon MDPs in [21] exist. However, computing

an optimal policy requires optimizing integrals of nonlinear

functions over continuous variables, which can be compu-

tationally impractical. CPT-based measures have been used

in reinforcement learning [28], where it was shown that the

policy gradient approach converges to the optimal CPT value

asymptotically.

The main challenge in computing policies with CPT-based

measures is the nonlinear transformation of the probability

range and utilities. This transformation yields a nonlinear

programming problem. For efficient verification of MDPs

with CPT-based measures, we approximate the nonlinear

CPT weighting function by a difference of convex function

to utilize convex-concave procedure [23], which efficiently

computes locally optimal solutions for optimization problems

with difference of convex functions. We propose methods to

approximate the CPT weighting function, and discuss the

trade-offs between different approximations. Experimental

results show the applicability of our approach in numerical

experiments.

II. PRELIMINARIES

Definition 1 (Distribution): A probability distribution

over a finite or countably infinite set X is a function

µ : X → [0, 1] ⊆ R with
∑

x∈X µ(x) = 1. The set of all

distributions on X is denoted by Distr(X).

Definition 2 (Monomials, Posynomials): Let V =
{x1, . . . , xn} be a finite set of strictly positive real-valued

variables. A monomial over V is an expression of the form

g = c · xa1
1 · · ·xan

n ,

where c ∈ R is a real coefficient, and ai ∈ R are exponents

for 1 ≤ i ≤ n. A posynomial over V is a sum of one or

more monomials:
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f =

K
∑

k=1

ck · xa1k
1 · · ·xank

n . (1)

Definition 3 (Markov decision process): A Markov deci-

sion process (MDP) is a tuple M = (S, sI ,Act , V,P) with a

finite set S of states, an initial state sI ∈ S, a finite set Act of

actions, and a transition function P : S×Act×S → Distr(S)
satisfying for all s ∈ S : Act(s) 6= ∅, where Act(s) = {α ∈
Act | ∃s′ ∈ S.P(s, α, s′) 6= 0}. For given a state s, we

denote the set of successor states by S(s). A state s′ is in

S(s) if there exists an α ∈ Act such that P(s, α, s′) > 0.

If for all s ∈ S it holds that |Act(s)| = 1, M is called a

discrete-time Markov chain (MC).
Act(s) is the set of enabled actions at state s; as Act(s) 6=

∅, there are no deadlock states. Costs are defined using a

state–action cost function Ct : S×Act ×T → R+. Rewards

are defined similarly.
Definition 4 (Policy): Given a finite horizon T , a (random-

ized) policy for an MDP M is a function σ : S × T →
Distr(Act) such that σ(st, α) > 0 implies α ∈ Act(st) at

time t. The set of memoryless policies over M at time t is

denoted by Pol
M

t , which only depends on the current state.
Definition 5 (Induced Markov chain): For MDP M =

(S, sI ,Act ,P) and policy σ ∈ Pol
M, the Markov chain

induced by M and σ is Mσ = (S, sI ,Act ,Pσ) where for

all s, s′ ∈ S,

Pσ(s, s′) =
∑

α∈Act(s)

σ(s)(α) · P(s, α, s′).

We consider reachability properties. For Markov chain

D with states S, let PrDs (♦T ) denote the probability of

reaching a set T ⊆ S of target states from state s ∈ S;

simply, PrD(♦T ) denotes the probability for initial state

sI . We use the standard probability measure as in [5].

The interest of this paper is a synthesis problem, where

the objective is to find a policy in Pol
M

t such that the

probability PrD(♦T ) of satisfying the reachability property

is maximized or minimized.
The classical risk-neutral MDP problem is [30]

inf
π∈PolM

E

[

T
∑

t=0

Ct(st, at)

]

. (2)

The problem in (2) can be solved with value iteration,

policy iteration or linear programming, and the optimal

policy will be a deterministic memoryless policy. The op-

timal policy for problem (2) will maximize the proba-

bility of satisfying the reachability property or minimize

the expected cost, therefore it is a risk-neutral solution.

Following from [32], we consider the risk-sensitive value

function starting at s0, with a policy PolM, and the resulting

trajectory (s0,Pol
M

0 , s1,Pol
M

1 , ..., sT ), which is given by

CT (Pol
M, s0) = ρ0(c(s0,Pol

M

0 ) + ρ1(c(s1,Pol
M

1 ) + ... +
ρT−1(c(sT−1,Pol

M

T−1) + CT (sT ))...)), where ρt is a one-

step conditional risk measure at time t. Then, we consider

the following optimization problem where ρ is replaced by

a CPT-based measure:

inf
π∈PolM

CT (Pol
M, sI ). (3)

A dynamic programming equation exists for the problem

in (3), and the optimal policies are memoryless [32]. Any

CPT-based measure is a one-step conditional risk measure,

therefore the problem (3) can be solved by solving the

dynamic programming equations [22].

III. CUMULATIVE PROSPECT THEORY (CPT)

For a random variable X , the CPT value is a generalization

of the expected value of X with a utility function that is

concave on gains and convex on losses, and a probability

weighting function that transforms the probability measure

such that it inflates small probabilities and reduces larger

probabilities.

Definition 6 (CPT value): For a random variable X , the

CPT value is defined as

C(X) =

∫ ∞

0

w+ (P (u+ (X) > z)) dz

−

∫ ∞

0

w− (P (u− (X) > z)) dz, (4)

where w+ and w− : [0, 1] → [0, 1] are two continuous

non-decreasing functions with w+(0) = w−(0) = 0 and

w+(1) = w−(1) = 1, u+ and u− : R → R+ are two utility

functions.

Remark 1: CPT value generalizes the expected value

of a random variable, i.e, C(X) = E [X ] =
∫∞

0 (P (X > z)) dz −
∫∞

0 (P (−X > z)) dz, when u+(x) =
u−(x) = x, and w+(x) = w−(x) = x.

The functions w+ and w− are the weighting functions that

capture the concept of humans deflating high probabilities

and inflating low probabilities when they make decisions

under uncertainty. For instance, consider a scenario where

one can earn $100 with probability 1/100 and nothing

otherwise, or can earn $1 with probability 1. It is shown

that the humans tend to choose the former option [35], [6],

showing that the value of a decision by a human is nonlinear

with respect to the transition probabilities. Reference [29]

suggests the weighting function w(k) = exp(−0.5(− lnk)η),
with 0 < η < 1 and [35] suggests

w(k) =
kη

(kη + (1− k)η)1/η
.

Both of the functions have a similar inverted-S shape and

they are concave for small values of p, and convex for large

values of p.

The utility functions u+ and u− represent how humans

value gains (X ≥ 0) and losses (X ≤ 0) separately. For

example, if we change the scenario in the above paragraph

into losses, i.e, one will lose $100 with probability 1/100 and

nothing otherwise, or will lose $1 with probability 1, then the

humans tend to choose the latter option, showing that there is

a difference between evaluating the gains and losses, and the

CPT-based measures can handle losses and gains separately.



A suggestion for the utility function is given in [35], which

is u+(x) = |x|m, and u−(x) = −2.25|x|m, with m = 0.88.

Note that, u+ is a concave function for x > 0, and u− is a

convex function for x < 0.

Remark 2 ([28]): CPT-based measures generalize other

risk-sensitive measures. For example, it is possible to rep-

resent value at risk or conditional value at risk by proper

choice of weighting and utility functions.

IV. MDPS WITH CPT-BASED MEASURES

Reference [22] shows the existence of a dynamic program-

ming equation in an MDP with CPT-based measures, and

the optimal policy that comes from the dynamic program-

ming equation is a memoryless randomized policy. Dynamic

programming equations can be solved as a nonlinear pro-

gramming problem. Specifically, the objective is a nonlinear

function and the objective is minimized or maximized over

randomized policies for a given state and time. However,

solving optimization problems with a nonlinear objective

function is generally impractical [22].

To come up with a scalable procedure, we approximate

the weighting function by a function that is the difference of

two convex functions, which will reformulate the nonlinear

programming problem to a difference of convex problem.

Methods such as branch and bound methods [20] or cutting

plane methods [3] can find the globally optimal solution for a

difference of convex problem, but these methods can be slow

in practice. Instead of seeking a global solution, a locally

optimal (approximate) solution can be found by utilizing the

techniques of general nonlinear optimization [26].

Definition 7 (Difference of convex problem): Difference

of convex (DC) problems have the following form

minimize f0(x)− g0(x)

subject to fi(x)− gi(x) ≤ 0, i = 1, 2, ...,m,

where x ∈ R
n is the variable vector, and the functions fi, gi :

R
n → R for i = 0, 1, ...,m are convex.

The convex-concave procedure (CCP) [23], [33] is a

heuristic algorithm for finding a locally optimal solution to

a DC problem. As a first step, we replace concave functions

with a convex upper bound. We then solve the approximate

convex problem, and the optimal value of the approximate

problem will be an upper bound of the original problem at

each iteration. The CCP algorithm to solve DC problems is

described in Algorithm 1.

Given an initial feasible point for a DC problem, (e.g.

any policy from Distr(Act)), all of the successive iterates

in Algorithm 1 will be feasible. The procedure given by

Algorithm 1 is a descent algorithm, i.e, the objective will

monotonically decrease over the iterations for a minimization

problem or it will increase for a maximization problem, and

it will converge to a local optimum [23]. Therefore, the above

algorithm can be used to compute locally optimal solutions

by solving a sequence of convex optimization problems,

which is efficiently solvable by well-studied methods [11].

Algorithm 1: CCP algorithm

given an initial feasible point x0 and convex functions

fi, gi.
k=0

repeat

1. Convexify. ĝi(x) = gi(xk) +∇gi(xk)
T (x− xk)

for i=0,1,...,m

2. Solve. Set the value of xk+1 to the solution of

the convex problem

minimize f0(x)− ĝ0(x)
subject to fi(x)− ĝi(x) ≤ 0, for i=1,2,...,m.

3. Update iteration. k = k + 1,

until stopping criterion is satisfied.

A. Approximating the weighting function with a DC function

In general, CPT weighting functions are nonlinear func-

tions, and we can not use the weighting functions directly

in convex-concave programming. Therefore, we approximate

the weighting functions by a DC function to utilize convex-

concave programming. A possible way to approximate the

weighting function is least-squares polynomial approxima-

tion [9] or Chebyshev polynomial approximation [25], but

these methods can be inaccurate, as the CPT weighting

functions that are frequently used in the literature are not

Lipschitz continuous around zero probability. See Figure 1

for an example where the Chebyshev approximation method

fails to approximate a weighting function.
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Fig. 1: An example of a CPT weighting function (red) and

approximation of the CPT weighting function (blue) by a

25th degree Chebyshev polynomial with error tolerance ǫ =
10−4. As the CPT weighting function is not Lipschitz, the

approximation with a Chebyshev basis diverges with smaller

ǫ with larger values of p.

Since the Chebyshev and least-squares polynomial meth-

ods perform poorly, we modify the least-squares polynomial

approximation method by extending the polynomial basis

functions with monomial basis functions to accurately ap-

proximate the CPT weighting function. For example, we

approximate the function exp(−0.5(− ln(k))0.9), which is

used in [22], by a posynomial function, 0.00231k0.05 +
0.00128k0.1+0.19578k0.35+0.59897k0.4+0.15968k0.95+
0.03318k3 + 0.00847k23. Figure 2 shows the posynomial

function and the CPT weighting function.
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Fig. 2: Top: An example of a CPT weighting function (blue)

versus a regular transition function (green) and approxima-

tion of the CPT weighting function (red) by a DC posynomial

function. Note that curve of the approximation is not visible,

which shows that the approximation is accurate. Bottom: The

error of the approximation of the CPT weighting function by

a DC posynomial function.

B. Computing locally optimal policies

When the weighting functions are given as w+(x) =
w−(x) = x and similarly for utility functions u+(x) =
u−(x) = x, the dynamic programming equation to find

the policy that maximizes the probability of satisfying the

reachability property is

pt(s) = max
α∈Act

∑

s′∈S

P(s, α, s′) · pt+1(s
′),

pT (s) = 1, ∀s ∈ Q, t = 1, ..., T, (5)

where pt(s) denotes the probability of satisfying the reach-

ability property at state s and time t. Equivalently, we can

write the dynamic programming equation in following for a

given state s and time t:

maximize
σ(s,a),a∈Act

∑

α∈Act(s)

∑

s′∈S

σ(s, α) · P(s, α, s′) · pt+1(s
′)

subject to
∑

α∈Act(s)

σ(s, α) = 1, ∀α ∈ Act(s), σ(s, α) ≥ 0. (6)

The optimization problem in (6) maximizes the expected

value of the probability for satisfying the reachability prop-

erty, therefore it is a risk-neutral solution. Note that we

can compute the expected value by solving the following

problem:

maximize
σ(s,a),a∈Act

s′|S(s)|∈S(s)
∑

s′q=1∈S(s)

(

Φq ·
(

pt+1(s
′
q)− pt+1(s

′
q−1)

)

)

subject to
∑

α∈Act(s)

σ(s, α) = 1, ∀α ∈ Act(s), σ(s, α) ≥ 0,

Φq =
∑

α∈Act(s)

s′|S(s)|∈S(s)
∑

s′m=q∈S(s)

σ(s, α) · P(s, α, s′m), (7)

where q = 1, 2, . . . , |S(s)| gives the index of the state in S(s)
after it is sorted with increasing probability of satisfying the

property at time t + 1, i.e, they are sorted with the values

pt+1(s
′
q), and pt+1(s

′
0) = 0.

The sum of the objective in (7) is over the successor states.

The first sum in Φq is over the actions, and the second sum

in Φq computes the probability of transitioning the successor

state with at least probability pt+1(s
′
q−1) as a function the

policy.
The problem in (7) can be viewed as maximizing the

Riemann integral of the expected value, and the problem in

(6) maximizes the Lebesgue integral. See the Figure 3 as an

example from the MDP in Figure 4 with σ(1, a) = 0.3 and

σ(1, a) = 0.7. Both problems will maximize the expected

value, i.e, the area under the curve in Figure 3.

Note that the probability of satisfying the specification up

to 0.2 probability is 1, regardless of the policy we choose,

as 0.2 is the lowest probability of the successor states. Then,

the probability of transitioning a state with at least 0.5
probability of satisfying the property can be obtained by the

sum of the probabilities of transitioning the state 3 and state

4, which is given by σ(s, a) + 0.4 · σ(s, b) in the MDP in

Example 1. Similarly, the probability of transitioning to state

4 is 0.4 ·σ(s, b), which gives the probability of satisfying the

specification with 0.9 probability.
When w+(x) = w−(x) = x and u+(x) = u−(x) = x,

both problems in (6) and (7) can be used to maximize the

expected value of satisfying the property. However, with

general weighting and utility functions, we cannot use the

formulation in (6), as w(x + y) 6= w(x) + w(y) in general.

Therefore, with a CPT weighting and utility function, we use

a modified version of (7), because we can approximate the

weighting function accurately.
Example 1: Consider the MDP in Figure 4 with 4 states

at time t with pt+1(2) = 0.2, pt+1(3) = 0.5, pt+1(4) = 0.9.

The linear program that computes the maximum probability

of satisfying the specification is:

maximize
σ(s,a),σ(s,b)

(

(

σ(s, a) + σ(s, b)
)

·
(

0.2
)

+

(

σ(s, a) + 0.4 · σ(s, b)
)

·
(

0.5− 0.2
)

+
(

0.4 · σ(s, b)
)

·
(

0.9− 0.5
)

)

subject to σ(s, a) + σ(s, b) = 1, σ(s, a) ≥ 0, σ(s, b) ≥ 0.
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Fig. 3: The graph of the random variable with respect to the

probability of satisfying the property versus probability of

obtaining that value in Example 1.
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b : 0.6

b : 0.4

Fig. 4: An MDP with 4 states. The label a : γ on the transi-

tions represents that the transition happens with probability

γ, when the a action is taken.

For general CPT weighting and utility functions, we

approximate the CPT weighting function by a posynomial.

Then, for a given state s and horizon t and the approximation

function f(p) with K monomials, we compute a locally

optimal policy by solving the following problem:

maximize
σ(s,a),a∈Act

s′|S(s)|∈S(s)
∑

s′q=1∈S(s)

(

Φ′
q ·
(

u+(pt+1(s
′
q))− u+(pt+1(s

′
q−1))

)

)

subject to
∑

α∈Act(s)

σ(s, α) = 1, ∀α ∈ Act(s), σ(s, α) ≥ 0,

Φ′
q =

K
∑

k=1

ck ·
(

∑

α∈Act(s)

s′|S(s)|∈S(s)
∑

s′m=q∈S(s)

σ(s, α) · P(s, α, s′m)
)ak

.

(8)

We highlight the differences between the optimization

problems in (7) and (8). First difference is, we replace Φq

in (7) to Φ′
q in (8). Φq computes the expected value of the

probability of transitioning to another state with he successor

state with at least probability pt+1(s
′
q−1) as a function the

policy, and it is used in the risk-neutral measure. On the other

hand, Φ′
q approximately computes the expected value of the

probability with respect to the CPT weighting function in

a CPT-based measure by approximating the CPT weighting

function with f(p).
The second difference is, u+(x) = x in the problem (7).

Therefore, we replace pt+1(s
′
q) to u+(pt+1(s

′
q)). Note that

the probability of satisfying the property is always between

0 and 1, therefore we use u+ in the objective in problem (8).

Let β ∈ R
+ and g : R+ → R

+. The function g(y) = yβ

is concave for 0 ≤ β ≤ 1, and convex for β ≥ 1 [11].

Therefore the problem in (8) is a DC problem, and Algorithm

1 computes a locally optimal policy.

Remark 3: For rational p, the function yp can be repre-

sented by linear matrix inequalities (LMIs) [1]. For instance,

the constraints y3 ≤ x and y ≥ 0 are equivalent to

[

z y
y 1

]

≥ 0 and

[

x z
z y

]

≥ 0. (9)

In [1], it is shown that for p = pn/pd > 1, we have

k(pn, pd) ≤ log2 pn+α(pn), where k(pn, pd) is the number

of LMI constraints that are generated to represent x3 ≤ y,

and α(pn) is a term that grows slowly compared to log2
term. Therefore, it is beneficial to use as few basis functions

as possible to efficiently compute the solutions of the DC

problems because we need extra variables and constraints

to represent the functions yp. Therefore, Chebyshev poly-

nomials become a rather inefficient choice, as they tend to

be dense polynomials with high degrees, which is required

for accurate approximation. Recall that, Figure 1 shows the

Chebyshev approximation diverges, when the error tolerance

is set to be small.

Example 2: Consider the MDP in Figure 4. The DC prob-

lem that computes the maximum probability of satisfying the

specification, given a posynomial with K basis functions,

maximize
σ(s,a),σ(s,b)

K
∑

k=1

(

ck ·

(

(

σ(s, a) + σ(s, b)
)ak

·
(

u+(0.2)
)

+
(

σ(s, a) + 0.4 · σ(s, b)
)ak

·
(

u+(0.5)− u+(0.2)
)

+

(

0.4 · σ(s, b)
)ak

·
(

u+(0.9)− u+(0.5)
)

)

)

subject to σ(s, a) + σ(s, b) = 1, σ(s, a) ≥ 0, σ(s, b) ≥ 0.

We note that the objective in the above problem is a sum

of DC functions and the functions in the constraints are

affine functions, the above problem is a DC optimization

problem and a locally optimal solution of the problem can

be computed using Algorithm 1.

So far, we considered formal quantitative verification of

the systems, and these problems do not include cost or reward

function. If we want to include cost or reward functions

in a MDP to minimize the expected cost or maximize the

expected reward with CPT-based measures, then objective

of the optimization problem in (7) will be replaced by the

following:



maximize
σ(s,a),a∈Act

s′|S(s)|∈S(s)
∑

s′q=1∈S(s)

(

Φ′
q ·
(

u+(γs + vt+1(s
′
q))

− u+(γs + pt+1(v
′
q−1))

)

)

γs =
K
∑

k=1

ck ·
(

∑

α∈Act(s)

σ(s, α)ak ·Rt(s, α)
)

, (10)

where vt(s
′
q) denotes the value of a state with index q at

time t.
Note that, the term u+(γs+vt+1(s

′
q)) is a composition two

convex or concave functions, which is not convex or concave

in general, also that term is multiplied with a DC function

Φq . To the best of our knowledge, no general method exists

to solve problems with this type of objective. But for two

special cases, we can efficiently compute locally optimal

solutions using CCP. If the cost or reward function is a

function of state instead of state and action, then we can

modify the objective function in (8) as:

maximize
σ(s,a),a∈Act

s′|S(s)|∈S(s)
∑

s′q=1∈S(s)

(

Φ′
q ·

(

u+

(

C(s) + vt+1(s
′
q)
)

− u+

(

C(s) + vt+1(s
′
q−1)

)

)

)

. (11)

As the cost is a constant, the objective in (11) is a sum of

DC functions, therefore we can compute the locally optimal

solution for the case when the cost or reward function is

function of a state.

The second special case we consider is when the utility

functions are u−(x) = u+(x) = x. Then, adding γs to

the objective term in (8) will result in a formulation that

computes the optimal policy for this special case.

V. NUMERICAL RESULTS

We demonstrate the proposed approach on three domains:

(1) A robot in a gridworld, (2) a consensus protocol, and (3)

a ride sharing example. The simulations were performed on

a computer with an Intel Core i5-7200u 2.50 GHz processor

and 8 GB of RAM with MOSEK [2] as solver and using the

CVX [15] interface.

A. Grid world

Consider a grid world, where states are defined as grid

points on a map. An agent starts in an initial state and

the objective of the agent is to reach to a given state with

minimial cost. The agent can move in four directions by se-

lecting actions (north, south, east, and west). The probability

of arriving at the intended cell is δ, and with probability

1 − δ, the agent moves to a random neighboring state. The

cost in each move until reaching the destination is 1 for each

state. The grid world has a number of static obstacles and

the agent has to avoid these obstacles as hitting an obstacle

has a high cost of M = 50. Therefore, the objective is to

compute a safe (i.e., not hitting to obstacles) path that is

cost efficient. In our experiments, we choose a 50 × 50 grid-

world, and the gridworld MDP has 2,500 states with horizon

T = 100, δ = 0.2 and 300 states consisting of obstacles

that the agent tries to evade. We use the weighting function

exp(−0.5(− ln(p))0.9) and the utility function x0.88.

After obtaining the policies using Algorithm 1, we eval-

uate the policies on 500 simulation runs. The risk-neutral

policy finds a shorter route (with average cost equal to 38.137

on successful runs), yet it crashes into obstacles in 41 runs.

In contrast, the risk-averse policy chooses longer routes (with

average cost equal to 57.638 on successful runs), but it

crashes into obstacles only in 6 runs.

B. Consensus Protocol

This case study deals with modeling and verifying the

shared coin protocol of the randomized consensus algorithm

of Aspnes and Herlihy [4]. The shared coin protocol returns

a preference 1 or 2, with a certain probability, whenever

requested by a process at some point in the execution of

the consensus algorithm. It implements a collective random

walk parameterized by the number of processes N and the

constant K > 1 (independent of N ).

The first property that we want to compute is the minimal

probability of finishing the process and all processes being

1, which can be expressed as maximizing the probability

states, where the execution is finished, and all coins will have

the value 1, after the process. For each benchmark instance,

Figure 5 gives the number of states (#states), the computation

time for CPT-based measures, the minimum probability of

satisfying the specification with CPT-based measure (CPT

P) and the actual minimum probability of satisfying the

specification P in the model. We use the same weighting

and utility function as in the previous example.

Parameters #states Time (s) CPT P P

K = 2 272 34.49 0.615 0.383
K = 16 2064 384.93 0.722 0.484
K = 64 8208 1961.34 0.673 0.498

Fig. 5: Results for consensus benchmark with the property

of all coins having the same value.

We considered the verification of another property, where

we want to compute the maximum probability of finishing

the process and all coins not having the same value. Figure

6 shows the results for each instance.

Parameters #states Time (s) CPT P P

K = 2 272 41.68 0.315 0.108
K = 16 2064 472.19 0.212 0.016
K = 64 8208 2953.75 0.163 0.002

Fig. 6: Results for consensus benchmark the property of all

coins not having the same value.



Both examples in consensus protocol shows, the CPT-

based measure tends to inflate the probability of satisfying

the properties. The weighting function overestimates the

small probabilities of the transition probabilities in MDPs

and the utility function that we choose inflates the reachabil-

ity probabilities.

C. Ride Sharing

We consider a ride sharing example, inspired by [31]. This

case study concerns modeling the behavior of a passenger

in a sequential decision-making scenario. Many ride-sharing

companies set prices on their rides based on both supply of

drivers and demand of passengers. Therefore, the price of

a ride may fluctuate. The passengers account for the price

fluctuation, which influences their behavior.

We model the ride-sharing MDP with S = {0, 1, 2, 3, 4},

where states 0, ..., 3 denote the cases where the passenger

did not take a ride and state 4 represents the case when the

passenger takes a ride. The price multipliers for states 0, 1, 2
and 3 are 1.0, 1.4, 1.8 and 2.2 respectively. Act = {0, 1}
where action 0 is waiting, and action 1 is taking a ride. We

consider a horizon length T = 5, and the transition matrix

for action 0 is

P =









0.876 0.099 0.017 0.008
0.347 0.412 0.167 0.074
0.106 0.353 0.259 0.282
0.086 0.219 0.143 0.552









.

If action 1 is taken, the passenger transitions to state 4
with probability 1, which implies that a ride has been taken.

We define the reward function as

R(st, at) =

{

R̂ at = 0,

St − xt(pbase + pmileD + pminT ) at = 1,

where R̂ is a constant, D is the distance in miles, T is time

in minutes, St is a constant that decreases linearly in time,

xt is the price multiplier, and pbase, pmile, and pmin are the

base, per mile, and per min prices, respectively. We choose

the prices based on Uber’s Washington, DC operation1, and

we use the same weighting function as in the previous

examples and utility function u+(x) = x. Table 1 shows

the probabilities of taking a ride at a price multiplier and

time. We note that our passenger model is relatively risk-

TABLE I: Probabilities of taking a ride with respect to the

price multiplier and time.

Price multiplier
1 1.4 1.8 2.2

Time
1 0.88 0.25 0.17 0.13
2 0.94 0.89 0.56 0.45
3 0.97 0.83 0.82 0.78
4 0.99 0.95 0.95 0.86
5 0.99 0.99 0.98 0.98

1http://uberestimate.com/prices/Washington-DC/

averse, i.e, the probability of taking a ride is very high when

the price multiplier is 1, and the probability decreases with

increasing price multipliers. The passengers tend to take a

ride with increasing time to avoid taking any further risks in

case of an increase in price multiplier in the future.

VI. CONCLUSIONS

We proposed a computational method for verification of

temporal logic specifications in Markov decision processes

(MDPs) with measures from cumulative prospect theory

(CPT). CPT-based measures are empirically known to faith-

fully capture the asymmetry in the risk-averseness and risk-

taking behavior of humans in decision-making. Computation

of optimal policies is impractical with CPT-based measures

due to the nonlinear weighting and utility functions. The pro-

posed method approximates the nonlinear weighting function

with a difference of convex (DC) function, then computes

a locally optimal policy by solving a DC problem. On the

other hand, computing a policy with a CPT-based measure

takes more time than computing a policy with expected-value

measure, as we need to represent the DC functions as a series

of linear matrix inequalities. We demonstrate the practical

applicability of our approach on several scenarios. For future

work, we are interested in establishing error bounds between

the globally optimal CPT-value and the CPT-value that is

obtained from our method in MDPs.
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[32] A. Ruszczyński. Risk-averse dynamic programming for Markov

decision processes. Mathematical Programming, 125(2):235–261,
2010.

[33] X. Shen, S. Diamond, Y. Gu, and S. Boyd. Disciplined convex-concave
programming. In Conference on Decision and Control (CDC), pages
1009–1014. IEEE, 2016.

[34] A. Tamar, Y. Glassner, and S. Mannor. Optimizing the CVaR via
sampling. In Twenty-Ninth AAAI Conference on Artificial Intelligence,
2015.

[35] A. Tversky and D. Kahneman. Advances in prospect theory: Cumu-
lative representation of uncertainty. Journal of Risk and Uncertainty,
5(4):297–323, 1992.



This figure "cheb.PNG" is available in "PNG"
 format from:

http://arxiv.org/ps/1803.00091v2

http://arxiv.org/ps/1803.00091v2

	I Introduction
	II Preliminaries
	III Cumulative Prospect Theory (CPT)
	IV MDPs with CPT-based measures
	IV-A Approximating the weighting function with a DC function
	IV-B Computing locally optimal policies

	V Numerical Results
	V-A Grid world
	V-B Consensus Protocol
	V-C Ride Sharing

	VI Conclusions
	References

