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Abstract— Safe control for inherently unstable systems such
as quadrotors is crucial. Imposing multiple dynamic constraints
simultaneously on the states for safety regulation can be a
challenging problem. In this paper, we propose a quadratic
programming (QP) based approach on a cascaded control
architecture for quadrotors to enforce safety. Safety regions are
constructed using control barrier functions (CBF) while explic-
itly considering the nonlinear underactuated dynamics of the
quadrotor. The safety regions constructed using CBFs establish
a non-conservative forward invariant safe region for quadrotor
navigation. Barriers imposed across the cascaded architecture
allow independent safety regulation in the quadrotor’s altitude
and lateral domains. Despite barriers appearing in a cascaded
fashion, we show preservation of safety for quadrotor motion
in SE(3). We demonstrate the feasibility of our method on a
quadrotor in simulation with static and dynamic constraints
enforced on the position and velocity spaces simultaneously.

I. INTRODUCTION

Safety is a critical component for today’s autonomous
aerial systems [1], [2], [3]. Of particular interest are quadro-
tors due to their application in surveillance, agriculture, and
acrobatic performances, see [4], [5], [6]. Thus accentuating
the need for safety as an imperative requirement during flight
operation. Control Barrier Functions (CBFs) have proven to
be an effective strategy for guaranteeing safety in several ap-
plications [7],[8], including quadrotors [9]. The focus of this
paper is to rectify the quadrotor’s nominal trajectory using
a cascaded controller to ensure safety in 3D position and
velocity spaces. We achieve this by independently imposing
barriers across the cascaded hierarchy.

The underactuated and intrinsically unstable nature of
quadrotor makes it challenging to generate safe trajectories
[10]. CBFs, first implemented in adaptive cruise control
[7] formed as an online quadratic program (QP), permit
dynamically feasible constraints and ensure forward invari-
ance. CBFs were used in collision avoidance for swarms
of mobile ground robots [9] and quadrotors [11]. They
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restricted their safety constraints to the position space only.
CBFs were also used to learn quadrotor dynamics in the
presence of wind disturbances [12]. This work uses a dif-
ferential flatness model and a single CBF in its controller
scheme with a focus on learning unmodeled dynamics. The
works in [13] and [14] use sequential QP based methods
augmenting the CBF with a Control Lyapunov Function
(CLF) for obstacle avoidance resulting in a CLF-CBF-QP
controller. They propose a sequential optimization scheme
where virtual thrust is first computed using position level
QP satisfying a CLF constraint, while CBF constraints are
incorporated in the lower level QP to generate the control
inputs. Their controller, therefore, results in a sequential
CLF-CBF-QP formulation. The work in [13] and [14] impose
safety explicitly in SE(2) and SE(3) respectively. In order
to find a feasible solution for QP, input bounds are not
considered in [14] (although quadrotors have input bounds,
e.g. no reverse thrust).

Key contributions: In constrast to prior research, our
contributions in this paper are threefold:
• Prior work has not merged the forward invariance

of CBFs at every level of the hierarchy in cascaded
controller to ensure safety for quadrotors. The cascaded
control scheme is a popular architecture and imposing
safety on such a controller is yet to be formulated. We
present derivations for enforcing constraints across the
hierarchy by considering the complete 3D quadrotor
dynamics evolving in tangent bundle to SE(3).

• CBFs are employed in a nonlinear cascaded controller
with constraints explicitly imposed on the position and
velocity spaces. For safety-critical tracking of complex
trajectories, imposing safety on velocity along with
position is critical. We have also empirically verified in
simulation that our QP formulation with actuator bounds
found feasible solution. To the best of our knowledge,
this is the first time constraints on position and velocity
spaces are explicitly formulated for safe 3D quadrotor
control along with actuator bounds.

• Safety constraints are handled in the altitude and lateral
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domains of the quadrotor independently. We place sep-
arate CBF constraints on the outer loop and inner loop
of the controller. This has two advantages: (i) decou-
pling the safety constraint results in a richer superlevel
safe set and (ii) this allows independent regulation of
quadrotor flight in altitude and lateral domains.

The rest of the paper is organized as follows. Section II
introduces preliminaries on barrier functions and quadrotor
dynamics. Cascaded controller with augmented QP design
is discussed in Section III while safety barrier formulations
across the hierarchy are derived in Section IV. Simulation
results are provided in Section V, followed by conclusions
in Section VI.

II. PRELIMINARIES: BARRIER FUNCTIONS AND

QUADROTOR DYNAMICS

This section introduces CBFs along with its extension
called Exponential CBFs (ECBFs) and dynamics of a quadro-
tor in 3D. These topics are well studied, hence for a more
detailed discussion on CBFs, ECBFs, and quadrotor dynam-
ics, we refer the reader to [7], [15], and [16] respectively.

A. Control Barrier Functions

Consider a general control affine dynamical system,

ẋ = f(x) + g(x)u, x(t0) = x0, (1)

where x ∈ X ⊆ Rn is the state and u ∈ U ⊆ Rm is the
control input of the system. Both the drift and control vector
fields, f : Rn → Rn and g : Rn → Rm respectively, are
assumed to be Lipschitz continuous. Let the safe state space
of the system be encoded as the superlevel set S of a smooth
function h : X → R as follows,

S = {x ∈ Rn | h(x) ≥ 0}. (2)

Definition 1 [7]: The function h(x) : X → R is defined as

a control barrier function (CBF), if ∃ an extended class-κ

function (κ(0) = 0 and strictly increasing) such that ∀x ∈ S,

sup
u∈U

{
Lfh(x) + Lgh(x)u+ κ(h(x))

}
≥ 0, (3)

where, Lfh(x) and Lgh(x) stand for the Lie derivative of
h(x) along the vector fields f(x) and g(x) respectively.

Theorem [7]: Given a system defined by (1), with safe set

S ⊂ Rn defined by (2), and smooth CBF h(x) : S → R
defined by (3), ∀ Lipschitz continuous u ∈ U that satisfies,

Ū = {u ∈ U | Lfh(x)+Lgh(x)u+κ(h(x)) ≥ 0}, ∀x ∈ X ,

then the safe set S is forward invariant for the system.

CBFs are limited in their nature to systems with relative
degree one, i.e., δ = 1, where δ ∈ W [15]. Depending on
how one enforces barriers around state(s), relative degree
can go above 1. Thus, CBFs cannot be directly applied for
such barrier constraints. For δ > 1, an extension of the
CBF, called Exponential CBF (ECBF), is used to guarantee
forward invariance property of S [15].

Definition 2 [15]: The smooth function h(x) : X → R, with

relative degree δ, is defined as an exponential control barrier

function (ECBF), if ∃ K ∈ Rδ such that ∀x ∈ S,

sup
u∈U

{
Lδfh(x) + LgL

δ−1
f h(x)u+K>H

}
≥ 0, (4)

where H = [h(x), Lfh(x), L2
fh(x), ..., L

(δ−1)
f h(x)]> is the

vector of Lie derivatives for h(x), and K = [k0, k1, ..., kδ−1]

is the vector of coefficient gains for H. The coeffient gain
vector K can be determined using pole placement technique
on the closed-loop matrix (F − GK) determined from
h(x) ≥ CeF−GKH(x0) ≥ 0, when C = [1, 0, 0, ..., 0]> ∈
Rδ , h(x0) ≥ 0 [15]. Forward invariance is also satisfied for
ECBFs and we refer the reader to [15] for detailed proofs.

B. Dynamics of 3D Quadrotor

3D Quadrotor is a dynamical system whose motion
evolves in the Lie Group SE(3). Hence, it is described with
six degrees of freedom: translational position, r = [x, y, z]>,
in the inertial frame and attitude represented by Euler angles,
η = [φ, θ, ψ]>, in the body-fixed frame (see Figure 1).
Quadrotor dynamics is well studied in the literature [16],[17],
hence we only present equations governing dynamics.

The translational acceleration of the quadrotor is [16],

r̈ = gzw −Rzw
f(t)

m
, (5)

where zw = [0, 0, 1]>, m is its mass, g is gravity, and f(t) ∈
R is the total thrust. R ∈ SO(3) is the rotation matrix of
body-fixed frame B and its evolution is given by [16],

Ṙ(t) = R(t)[Ω(t)]×, (6)

where [·]× is the overloaded operator for skew-symmetric
representation of the angular velocity Ω = [p, q, r]>. In the
body-fixed frame B, the angular acceleration is given by[16],

IΩ̇ = τ − Ω× IΩ, (7)

where τ = [τx, τy, τz]
> are the moments along each principal

axis and I is the inertia matrix of the quadrotor. The
quadrotor system is control affine with its full state as
x = [r, η, ṙ,Ω]> and control input u = [f, τx, τy, τz]

>.



Fig. 1. World frame W (black) and body frame B (red) are shown along
with euler angles. The quadrotor’s position vector in W is also marked
(blue dashed). DJI Tello Drone is used as base model for illustration.

III. NONLINEAR QP CASCADED ARCHITECTURE

We first discuss nonlinear cascaded controller for quadro-
tors [16] and present its design. We then discuss details for
the barrier-enforced QP modification to the controller. Solv-
ing QP online is fast and has been implemented successfully
on cruise control [7], bipeds [8], and quadrotors [9]-[12].

A. Motivation

The cascaded controller is a popular control architecture
with practical feasibility and satisfactory performance [6],
[10], [16], [17]. The design is intuitive and is commonly
used by students, developers, and/or hobbyists. In prior
work, CBFs have been successfully deployed on several
controllers such as differential flatness and CLF-CBF-QP
[14],[18],[12]. However, augmentation of CBFs to enforce
safety in a cascaded control framework, to the best of our
knowledge, has not been investigated. By enforcing CBFs
in this framework, we aim to provide safety-critical control
using a cascaded online QP controller.

B. Controller Design

The cascaded terminology is due to the hierarchical ap-
proach taken while designing the controllers (see Figure 2).
At the highest level is the position controller, which is further
decomposed into altitude and lateral controllers. The next
level controls the quadrotor’s attitude. We make the following
assumptions as inputs for our controller design:

• A smooth reference is given: rd(t) = [xd, yd, zd]
>.

• A yaw reference trajectory is given: ψd(t).
• Observability of states: x(t) = [r, η, ṙ,Ω]>.

Our controller framework is modeled after [17]. The position
controller’s commanded accelerations are computed as a
second-order system: r̈cmd(t) = r̈d(t) +Kper(t) +Kdėr(t),
where er(t) = r(t)− rd(t), Kp and Kd are positive definite
proportional and derivative gain matrices. Using (5) and
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Fig. 2. The cascaded controller has a position loop (blue boxed) and
attitude loop (yellow boxed). Reference inputs (grey solid) are provided
to position and yaw controllers. The altitude controller generates desired
thrust. The attitude loop orients roll-pitch and, separately, yaw with the
body-rate controller generating desired torques. State measurements (green
dotted) to controllers and control inputs (black solid) to quadrotor are shown.

altitude commanded acceleration z̈cmd, we get the thrust,

f(t) =
m

R33
(g − z̈cmd), (8)

where R33 is an entry of R. The attitude controller
computes commanded angular velocities using R and (6),[

pcmd

qcmd

]
=

1

R33

[
R21 −R11

R22 −R12

][
Ṙ13
cmd

Ṙ23
cmd

]
(9)

The yaw controller computes rcmd separately since rotations
around the quadrotor’s zB axis do not affect the dynamics
of roll and pitch. A proportional regulator is used for
determining rcmd along zB : rcmd(t) = kpψ(ψ(t)− ψd(t)).

Finally, the body-rate controller in the attitude loop com-
putes ṗcmd(t), q̇cmd(t), ṙcmd(t) using proportional regula-
tors. The moments, τx, τy, τz , are then computed using (7).

C. Barrier-enforced QP Cascaded Controller

Given the nominal controller û = [f, τx, τy, τz]
> devel-

oped above, safety barriers are enforced across the cascaded
architecture. This “modifies” the nominal control ensuring
the system is always safe. Inspired by cascaded design,
we deploy two separate QPs subjected to their own safety
constraints, thus achieving independent safety regulation in
the altitude and lateral domains.

The high-level QP responsible for altitude domain is:

High-level QP: Thrust modification

F ∗ = arg min
F∈R

1

2
||F − û1||2 (10)

s.t.
{
Lδfh(x) + LgL

δ−1
f h(x)F +K>H

}
≥ 0 (11)

0 ≤ F ≤ Fmax,

where û1 = f is the nominal thrust computed using (8), F ∗



is the computed thrust from QP. Hence, the modified control
F ∗ follows the nominal control û1 as closely as possible
subject to ensuring safety requirements, thereby, relaxing
strict tracking if needed to meet safety requirements.

For ensuring safe control in lateral domain, a low-level
QP is designed subject to another set of safety constraints:

Low-level QP: Torque modification

M∗ = arg min
M∈R2

1

2
||M − û2||2 (12)

s.t.
{
Lδfh(x) + LgL

δ−1
f h(x)M +K>H

}
≥ 0 (13)

|M | ≤Mmax,

where û2 = [τx, τy]> are the nominal torques computed and
M∗ is the resultant torque vector from QP. Construction of
Lie derivatives Lδfh(x) and LgLδ−1f h(x) for high-level and
low-level are discussed below in IV-B and IV-C respectively.

The formulation is thus a cascaded online QP controller
that is decoupled in its safety objectives. One layer enforces
safety at the high level for altitude domain modifying input
f inside the altitude controller. The second layer enforces
safety at the lower level for lateral domain modifying control
inputs [τx, τy] inside the body-rate controller (Figure 2).

Unlike [13], [14] which employ a sequential QP based de-
sign, and imposing barriers only at the lower level, we place
separate barrier constraints at both levels of the cascaded
scheme. Moreover, [14] does not consider input bounds while
solving for F and M to find feasible solutions for their
QP. We have empirically verified in simulation that our QP
formulation with actuator bounds found feasible solution.
Quadrotors already employed with cascaded controllers, with
very minimal modification, can incorporate safety through
our method.

IV. FORMULATION OF SAFETY BARRIERS

To ensure quadrotor’s safety, we impose limits on posi-
tion and velocity states using rectellipsoidal safety regions.
Inclusion of velocity based constraints explicitly alongside
position is imperative as it prevents aggresive braking.

A. Rectellipsoidal Safety Barrier Regions

The forward invariance property and ellipsoidal model of a
safety region is illustrated in Figure 3. Inside the safe region,
the system’s states are allowed to evolve and approach
the boundary. Outside the safe region, the control barrier
function ensures the system asymptotically approaches the

∩

∩

Fig. 3. Safety barrier regions at altitude and lateral domains ensure forward
invariance of states using CBFs. The curves represent state evolution and
diamonds represent initial states. Due to imposing separate barriers across
the cascaded hierarchy, the intersected volume of safe region C1∩C2 results
in a richer superlevel set.

safe region due to CBF constraints (see [7] for proof). In
our work, the safety barrier region is modeled as,

h(xi, ..., xn) = 1−
[xi − ci

pi

]r
+ ...+

[xn − cn
pn

]r
≥ 0,

(14)

where r is the curve of the ellipse, xi is the state of interest,
ci is the ellipse’s center, and pi is the limit enforced on the
state. We choose r = 4, which is called rectellipse, resulting
in a richer superlevel set and hence granting greater freedom
for determining the safe region (Figure 3). Inspired by the
work in [12], where ellipsoidal safe regions (r = 2) were used
to learn quadrotor dynamics using CBFs in the presence of
wind disturbances, we also use a similar safety region for
ensuring safety of the quadrotor’s state space.

B. High-level Altitude Domain Safety Objective

We now look at the high-level safety objective. The
overall thrust for the quadrotor is generated by the altitude
controller, thereby affecting the quadrotor’s altitude position
and velocity. In order to enforce limits on the altitude state(s),
the following safety barrier region is used,

h(z) = 1−
[z − cz

pz

]4
≥ 0. (15)

We then compute its Lie derivatives until the control input
u1 = f(t) appears resulting in a relative degree δ = 2. The
Lie derivatives are given by,

� Lfh(z) =
−4(z − c)3

p4z
ż

� LgLfh(z) =
4(z − c)3R33

p4zm

L2
fh(z) =

−4(z − c)3g
p4z

− 12(z − c)2

p4z
ż,

where (5) is substituted for z̈. Since relative degree δ = 2,
ECBFs are used. The Lie derivatives derived serve as the
constraints in (10). A single safety region is constructed to



handle both position and velocity spaces in altitude domain,
with results discussed in Section V. The barrier function is,

� h(z, ż) = 1−
[z − cz

pz

]4
−
[ ż
vz

]4
(16)

Note that for (16), δ = 1, hence CBFs are used as opposed
to ECBFs for (15). We only present the Lie derivatives for
the position space since it has a higher relative degree than
the velocity space and the derivation is similar.

C. Low-level Lateral Domain Safety Objective

The lower-level safety objective allows enforcing safety
limits for movement in the lateral space. The safety limits
enforced on lateral positional states x and y are given by,

h(x, y) = 1−
[x− cx

px

]4
−
[y − cy

py

]4
≥ 0. (17)

Unlike the altitude domain, where the control input f(t)

appears directly by computing Lie derivatives, the motion in
the lateral plane is affected through the moments τx and τy .
This involves the effect of roll and pitch to induce this lateral
motion. We present the derivation of the dynamic constraints
for the low-level QP based controller.

Derivation: Recall (9), where angular velocities p and q are
related to rotational rates,[

p

q

]
=

1

R33

[
R21 −R11

R22 −R12

][
Ṙ13

Ṙ23

]
=

1

R33
W

[
Ṙ13

Ṙ23

]
For convenience, we define W as the 2 × 2 matrix of
rotational entries and A , [p q]>. Rewriting in terms of
angular velocities gives,[

Ṙ13

Ṙ23

]
= R33W

−1A = R33V A , W−1 , V (18)

Now, computing the time derivative for (18) results in,[
R̈13

R̈23

]
= Ṙ33V A+R33V̇ A+R33V Ȧ (19)

Since angular accelerations ṗ and q̇ are related to inputs τx
and τy given in (7), substituting back in (19) gives,[

R̈13

R̈23

]
= Ṙ33V A+R33V̇ A+R33V

[
Iy−Iz
Ix

qr + τx
Ix

Iz−Ix
Iy

pr +
τy
Iy

]

= Ṙ33V A+R33V̇ A+R33V

[
Iy−Iz
Ix

qr
Iz−Ix
Iy

pr

]
︸ ︷︷ ︸

J

+R33V

[
I−1x 0

0 I−1y

]
︸ ︷︷ ︸

L

[
τx

τy

]

= J + L

[
τx

τy

]
, (20)

where J and L are used for simplifying expressions. Since
ẍ and ÿ are related to rotational entries R13 and R23 through
(5), we need the fourth time derivative of x and y in order
to obtain R̈13 and R̈23, thus finally relating with τx and τy .[

ẍ

ÿ

]
= − f

m

[
R13

R23

]
[using (5)] (21)[...

x
...
y

]
= − f

m
R33V A [using (18)] (22)[....

x
....
y

]
= − f

m
J − f

m
L

[
τx

τy

]
[using (20)] (23)

�

Thus, time derivatives of x and y relate to control inputs
τx and τy with relative degree δ = 4. We next compute the
Lie derivatives for lateral safety barrier region (17),

� Lfh(x, y) = −4η>3

[
ẋ

ẏ

]

� L2
fh(x, y) = −4η>3

[
ẍ

ÿ

]
− 12η>2

[
ẋ2

ẏ2

]

� L3
fh(x, y) = −4η>3

[...
x
...
y

]
− 36η>2

[
ẋ 0

0 ẏ

][
ẍ

ÿ

]

− 24η>1

[
ẋ3

ẏ3

]

� LgL3
fh(x, y) =

4f

m
η>3 L

L4
fh(x, y) =

4f

m
η>3 J − 48η>2

[
ẋ 0

0 ẏ

][...
x
...
y

]

− 36η>2

[
ẍ2

ÿ2

]
− 144η>1

[
ẋ 0

0 ẏ

][
ẍ

ÿ

]
− 24η>0

[
ẋ4

ẏ4

]
,

where ηi = [ (x−cx)i/p4x , (y−cy)i/p4y ]>, i ∈ {0, 1, 2, 3}
and (20) is substituted for [

....
x ,

....
y ]>. Due to the relative

degree being four, ECBFs are once again employed to satisfy
the QP constraints in (12). For the velocity space of the
lateral motion, the following barrier function is used,

h(ẋ, ẏ) = 1−
[ ẋ
vx

]4
−

[ ẏ
vy

]4
≥ 0. (24)

Note that, although, higher time derivatives of x and y

are present in the Lie derivatives, they are functions of the
state ([r, η, ṙ,Ω]>). Numerical differentiation is not required

for computing these higher derivatives. Hence, the issue of
having noisy and non-smooth signals that may arise due to
differentiation, especially higher order derivatives, is averted.



V. SIMULATION RESULTS

We present our simulation results using cascaded QP
controller from III-C and barrier regions constructed at
both levels in IV-B and IV-C. The simulation was done in
MATLAB 2018b with parameters as tabulated in I to model
the quadrotor. References are generated using sinusoidal
curves, rd(t) = [ax sin(ωxt), ay sin(ωyt), az sin(ωzt)]

> and
ψd(t) = atan2(yd, xd). The QP is solved online using
MATLAB’s built-in QUADPROG solver.

A. High-Level Altitude Domain Safety Behavior

We impose safety constraints only at the high-level and
demonstrate our controller’s efficacy in altitude domain.
Through the safety barrier regions developed for high-level
altitude domain in Section IV-B, we enforce constraints on
altitude position (z) and altitude velocity (ż). With barrier
limits of ±2m for position and ±0.75m/s for velocity, as
shown in Figure 4, trajectory tracking is performed as long as
the reference is within the barrier limits. Tracking is relaxed
if the reference violates the safety limits.

Note that we subject the quadrotor’s altitude reference
velocity żd initially to be outside the safe region. The high-
level safety objective ensures the quadrotor is first brought
into the safe region and contained therein.

B. Low-Level Lateral Domain Safety Behavior

Now, we only impose constraints at the low-level QP
responsible for lateral domain. Our cascaded formulation
allows easy regulation of quadrotor motion in the lateral
domain independent of the high-level constraint objectives
since constraints are imposed only at the low-level QP now.

We test our method on both the lateral position (x, y) and
velocity spaces (ẋ, ẏ) and illustrate the results in Figures

Variables Definition Value

g Gravitational acceleration 9.81 kg m/s2

m Mass of quadrotor 0.45 kg
L Distance between two rotors 0.24 m
Ix, Iy Inertia about xB-, yB-axis 0.091 kg m2

Iz Inertia about zB-axis 0.182 kg m2

kf Motor’s thrust constant 0.88 m
kw Motor’s torque constant 1.00 m
fmin Minimum rotor thrust 0.00 kg m/s2

fmax Maximum rotor thrust 36.00 kg m/s2

τxmin, τymin Min. moment about xB , yB-axis -20.0 Nm
τxmax, τymax Max. moment about xB , yB-axis 20.0 Nm

TABLE I

PARAMETERS FOR MODELING THE DYNAMICS OF THE QUADROTOR.

5 and 6. As seen from the two figures, the quadrotor
relaxes trajectory tracking when faced with the obligation
of upholding safety. This demonstrates that safety barriers
are the top priority in regulating the control action.

We also change the velocity barriers mid-way during the
flight as shown in Figure 6. For both ẋ and ẏ, initially
the barriers were non-conservative values of ±4m/s and
±2m/s respectively. As seen in Figure 6, there is perfect
velocity trajectory tracking. The barriers are then restricted
to ±1.25m/s and ±0.9m/s for ẋ and ẏ respectively. The
quadrotor reduces its lateral velocities mid-flight in order to
respect the barrier constraints.

Fig. 4. (Left) Position barrier is enforced on state z with a limit of
±2m. (Right) Velocity barrier is placed on ż with ±0.75m/s. The rectified
trajectory (blue) relaxes tracking the reference trajectory (red) to uphold
safety limits (black dashed).

Fig. 5. Position barriers are placed on states x (top) and y (bottom)
with limits ±2.0 and ±2.0m respectively. The actual trajectory (blue)
compromises the reference trajectory (red) to uphold safety limits (dashed).

Fig. 6. Velocity barriers are enforced on states ẋ (top) and ẏ (bottom) with
initial non-conservative limits of±4m/s and±2m/s. Barrier limits change
mid-flight to more conservative values modifying the controller inputs to
respect safety constraints.



Fig. 7. Position barriers are placed on (x, y, z) (top) while velocity barriers are placed on (ẋ, ẏ, ż) (bottom). The actual trajectory (blue) is the modified
flight behavior and the reference trajectory (red) tracking is compromised for respecting safe flight operation given by the barrier limits (black dashed).

Position Flight Path

Fig. 8. The altitude (yellow) and lateral (gray) safety barrier functions
jointly form the unified superellipsoid (cyan). The reference trajectory
(dashed red) often violates the safety volume and goes outside. The
cascaded QP controller regulating safety at both altitude and lateral domains
constrains the quadrotor trajectory (dashed blue) inside the unified region.

C. Unified Safety Behavior

In this section, we demonstrate that by applying barriers
across the hierarchy, the cascaded QP formulation does not
compromise safety in SE(3) and its tangent bundle. Safety
is respected in a unified fashion for the quadrotor with
each level meeting their safety objectives. The quadrotor is
subjected to barrier constraints at both the high-level and
low-level domains with safety barrier regions encoded in (16)
and (17). By enforcing barriers at both levels, we regulate and
ensure safety for the quadrotor’s motion in SE(3) domain.

The quadrotor is enforced with different limits for both
position (x, y, z) and velocity (ẋ, ẏ, ż) states. Moreover, for
testing the robustness of meeting the safety objectives at
two different levels, quadrotor’s initial ẋ and ż velocities
are outside their respective safety regions. The trajectory
rectification for the different states is illustrated in Figure
7. As seen in the figure, for each barrier-enforced state, the
safety objectives are respected. Even if a particular state is
outside the safety region, the constraints ensure the quadrotor
asymptotically enter the safety region.

The flight path of the quadrotor is depicted in Figure 8.
The safe set is the intersection of the two safe sets, namely,



altitude safety set and lateral safety set. The intersection of
these two safe sets results in a richer superlevel safe set,
unified safety set. The quadrotor’s trajectory is constrained
inside the unified safe set despite the reference trajectory
going outside.

VI. CONCLUDING REMARKS

In this paper, we demonstrate the augmentation of (ex-
ponential) control barrier functions on a nonlinear cascaded
control architecture for a quadrotor. We provide separate QP
formulations in a cascaded architecture with the high-level
safety objective regulating the altitude domain while the low-
level safety objective regulating the lateral domain. Despite
decoupling the objectives, safety is still preserved in a unified
manner for the quadrotor navigation. We demonstrate the
effectiveness of our strategy on position and velocity spaces
for the quadrotor with both static and dynamic barrier limits.

Despite the effectiveness of our approach, we would
like to add some closing remarks on the drawbacks we
experienced. Depending on the nature of the barrier region
and saturation constraints placed on thrust and moments,
there is a possibility for infeasible solutions, thus rendering
the QP-based cascaded controller ineffective. We have not
found a way to counteract this issue yet. We believe this
will be an interesting research direction to investigate further.
In the future, we would also like to extend the notion by
composing several safety barrier regions encapsulating an
overall safe volume of space for the quadrotor to navigate.
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