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Abstract

This work is primarily concerned about the distributed control of networked linear time-
invariant (LTI) systems. In particular, we propose a truncated predictive control algorithm
based on κ-hop neighbourhoods of the agents of the networked system. We establish stability
and regret bounds for the proposed algorithm, which shows that the regret decays exponentially
when the temporal prediction horizon k and the spatial radius κ increases.

1 Introduction

The control of networked systems has retained great popularity for the past few decades because of

its myriad of applications [1–4]. A critical challenge in the control of networked is the distributed

nature of the decision making problem: the system is partitioned into nodes where each node may

only have access to local state information. Another difficulty is the time-varying and online nature

of many decision-making problems. Thus, research on efficiently controlling networked systems in

a distributed and online manner has become especially prevalent. One potential solution to both

problems that has had great traction over the years is distributed Predictive Control (PC) [5–7].

However, these methods mainly show asymptotic guarantees in the sense of stability and robustness

whereas performance guarantees, such as the regret and optimality of the algorithm, are lacking.

Recently, progress towards showing such performance guarantees has been made in the distributed

control and PC literatures in parallel.

Take the distributed control literature as an example: much progress has been made in the

synthesis of distributed controllers that are optimal relative to their distributed structure [8–11].

One such promising distributed control method for networked systems is the utilization of the spatial

decay property in the optimal centralized controller, i.e., the control gain between the control action

of agent i and the state of agent j decays based on the (graph) distance between the two agents.

The exact decay rate varies depending on the problem setting [12–16]. Particularly of interest is

the decay rate for the problem described in [15]: they show that the truncation of the centralized

solution to a finite-horizon linear quadratic cost (LQC) problem to a κ-hop distributed controller
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(i.e. a controller whose gains vanish between nodes that are greater than a distance κ away) has

near-optimal performance relative to the centralized solution.

On a different note, the PC literature is mature in its stability and robustness guarantees [17], [18]

and has recently developed online performance guarantees in both LTI and LTV (Linear Time-

Varying) settings [19–21]. An interesting property established in [21] is temporal decay between the

predictive states generated by PC controllers that have different initial conditions; they further

use this property to determine ISS (Input-to-State Stability) and regret properties of PC in the

LTV setting. Bolstered by the success of PC and spatial decay-based distributed control, a natural

question to ask is: how can we combine the two to attain efficient distributed and online control for

networked systems? Directly combining the works in [15] and [21] is nontrivial because [21]’s proof

of ISS and regret relies on its centralized setting: every node observes the global state and based

on that, can make fully-accurate predictions about the whole system. In the distributed setting

however, each node would only have access to its own state information and state information of

nodes nearby it, and thus, the node can no longer make fully-accurate predictions about the whole

system. In summary, the problem is: how can nodes make accurate predictions about the whole

system if they only have access to local information? Can we design a distributed PC algorithm that

adheres to this information constraint and has comparable performance guarantees to centralized

PC? We deem this problem the localized information-constrained predictive control problem (LICPC

Problem)

Contribution: In this paper, we develop a graph-truncated PC-style algorithm in which each

agent solves a PC problem with information limited to its κ-hop neighbourhood and deploys its

resulting immediate control input. In particular, we show that this algorithm attains Input to

State Stability (ISS) and exponentially decaying dynamic regret in the horizon variable k and

the decentralization factor κ, meaning that for sufficient choices of k and κ, we are able to attain

controllers in an online manner that enjoy similar stability and regret guarantees of centralized PC.

The key technical contribution underlying these guarantees is the spatial decay property exhibited by

the centralized PC controller. Thus, predictions that use local information lead to accurate enough

predictions of the whole system for large enough κ thereby solving the LICPC problem. Utilizing

these accurate enough predictions then leads us to the desired stability and regret guarantees.

Notation: We denote the cardinality of a set S by |S|. The set of positive integers is Z+, the set

of reals as R, and the set of m×n matrices as Rm×n. Furthermore, we denote by [T ] := {0, 1, ..., T}.
The operator norm of a matrix A is denoted as ∥A∥ and its minimum singular value as σmin(A). The

2-norm of a vector v is ∥v∥. We further denote A ≻ (⪰)0 to mean that A is a positive (semi)definite

matrix and for a matrix B, the notation A ≻ B means that A−B ≻ 0. The Moore-Penrose pseudo-

inverse of a matrix M is denoted M †. We define the notation v0:T for vt indexed by t ∈ [T ] as the

set: {v0, v1, ..., vT }. For a matrix A we denote the sub-block indexed by i, j ∈ V , where V is an index

set, as A[i, j]; hence, A can be written as a sequence of its sub-blocks: A = (A[i, j])i,j∈V (similar for

vectors). We use O(·), o(·), and Θ(·) as big-O, little-o, and big-theta notations respectively.



2 Preliminaries

2.1 Problem Setting

We consider a graph G := {V, E}, where |V| = N is the set of nodes/agents (we will use the terms

interchangeably) and E is the set of edges between them. We denote NG [i] := {i} ∪ {j ∈ V :

(i, j) ∈ E} as the neighbourhood of node i and dG(i, j) to be the shortest path distance between

nodes i and j based on the graph G. We also denote the κ-hop neighbourhood of a node i as

N κ
G [i] := {j ∈ V : dG(i, j) ≤ κ} and its boundary as ∂N κ

G [i] := {j ∈ V : dG(i, j) = κ}.
Given the graph G we can write the LTI dynamics with disturbance w of a node i as

xt+1[i] =
∑

j∈NG [i]

A[i, j]xt[j] +B[i, j]ut[j] + wt[i]. (1)

Here, we take xt[i] ∈ Rnxi , ut[i] ∈ Rnui , and wt[i] ∈ Rnxi to be the state, control action, and

disturbance at node i and time t ∈ Z+ respectively; furthermore, A[i, j] ∈ Rnxi×nxj and B[i, j] ∈
Rnxi×nuj . The total number of states and control inputs are then nx :=

∑
i∈V nxi and nu :=

∑
i∈V nui .

Naturally, we can rewrite (1) as a centralized system:

xt+1 = Axt +But + wt, (2)

where xt = (xt[i])i∈V , ut = (ut[i])i∈V , and wt = (wt[i])i∈V are the centralized state, control input,

and disturbance and similarly, A = (A[i, j])i,j∈V and B = (B[i, j])i,j∈V where these matrices are

networked in the sense that for any (i, j) ̸∈ NG [i], the submatrices A[i, j] and B[i, j] are 0.

Thus, we define the networked control problem:

min
x0:T ,u0:T−1

∑
i∈V

(
T∑
t=0

ft[i](xt[i]) +
T−1∑
t=0

ct+1[i](ut[i])

)
,

s.t. xt+1 = Axt +But + wt, ∀t ∈ [T − 1], (3)

x0 = x̄,

for which the time varying costs ft[i] and ct[i] are decentralized such that they only depend on the

state and control of node i at time t. We can thus aggregate the costs into centralized versions

of themselves via summation, i.e. ft(xt) :=
∑

i∈V ft[i](xt[i]) and similarly for ct(ut−1). Given the

dynamical system from before, we introduce two standard concepts:

Definition 1. The system (A,B) is (L, γ)-stabilizable if there exists a controller K such that for

L > 1, γ ∈ (0, 1), and ∥K∥ ≤ L, we have that ∥(A−BK)t∥ ≤ Lγt for all t ∈ Z+.

We also require the stronger concept of the controllability index of a system (A,B):

Definition 2. There exists a positive integer d ≤ n such that the reduced controllability matrix

Cd :=
[
B AB · · · Ad−1B

]
is full row rank.



2.2 Predictive Control

Predictive Control (PC) is an algorithm that can be used to solve the finite horizon problem

in (3) in an online fashion. In particular, we have that at time t, the controller observes k

(the prediction horizon) information tuples It:t+k−1 where each information tuple is defined as

It := (A,B,wt, ft, ct+1) and solves the following finite-horizon problem for each t < T − k:

Ψ̃k
t (x, ζ;F ) := argmin

y0:k,v0:k−1

k−1∑
τ=0

ft+τ (yτ ) +
k∑

τ=1

ct+τ (vτ−1) + F (yk), (4)

s.t. yτ+1 = Ayτ +Bvτ + ζτ , ∀τ ∈ [k − 1],

y0 = x,

where ζ ∈ (Rn)k is a sequence of k disturbances indexed from 0 to k − 1 and F : Rn 7→ R is a

terminal cost regularizing the final predictive state. At each predictive time step τ , the predictive

state and control are yτ ∈ Rn and vτ ∈ Rm respectively. Abusing notation, we will often write

Ψ̃p
t (x, ζ) for when the terminal cost can be either F (·) or fT and Ψ̃p

t (x; ·) = Ψ̃p
t (x, ζ; ·) when the

disturbances are unambiguous. Thus, the overall algorithm can be written as:

Algorithm 1 Centralized PC (PCk)

for t = 0, 1, ..., T − k − 1 do
Observe xt and information tuples It:t+k−1.
Solve Ψ̃k

t (xt, wt:t+k−1;F ) and apply ut = v0.

At t = T − k, observe xt and information tuple It:T−1.
Solve Ψ̃k

t (xt, wt:T−1; fT ) and apply ut:T−1 = v0:k−1.

In [21], they establish ISS and regret bounds for PCk. In particular, these bounds depend on

the temporal decay constant δT (established in their lipschitz result for the optimization problem

Ψ̃k
t (Theorem 3.3 in [21])): with large enough prediction horizon, k, the dynamic regret will decay

exponentially as O(δkT ).

Despite such nice properties, it is quite cumbersome to perform PCk in the networked setting

because every node would require access to the global state and information tuples at every time

step t. Hence, we would ideally like to design a similar predictive controller for each node that only

has access to limited information; this naturally leads to the aforementioned LICPC problem which

we address in the folllowing section.

3 Main Results

The main idea behind the algorithm we will design is that at each time step, every node solves a

“κ-hop” version of (4) such that they only have access to state information and future information

tuples of other nodes that are within a κ-hop distance of themselves.



3.1 Algorithm

Before explicitly describing the algorithm, we require a way to formalize the idea of some node i

having access to only local information. This idea is encapsulated in the following definition:

Definition 3. For a matrix M = (M [j, k])j,k∈V we can define its (i, κ)-truncation M (i,κ) such that

M (i,κ)[j, k] =

{
M [j, k], j ∈ N κ

G [i],

0, else,
(5)

Note that this definition can easily be extended to vectors (i.e. set the entries belonging to j

that are outside of N κ
G [i] equal to 0). Thus, we can define the distributed counterpart of (4):

ψ̃k
t (x, ζ,N κ

G [i];F ) := argmin
y0:k,v0:k−1

k−1∑
t=0

ft+τ (yτ ) +
k∑

τ=1

ct+τ (vτ−1) + F (yk), (6)

s.t. yτ+1 = A(i,κ)yτ +B(i,κ)vτ + ζ(i,κ)τ , τ ∈ [k − 1],

y0 = x(i,κ).

In (6), while we wrote ψ̃k
t as a function of x, ζ, it only uses local information in the sense that

only the (i, κ)-truncated version of A, B, ζ, and x are needed for solving (6). Further, for the

costs ft+τ (yτ ) =
∑

j ft+τ [j](yτ [j]), only the costs in the κ-hop neighbourhood N κ
G [i] are needed

since yτ [j] = 0 for j outside of it. Similarly, ct+τ (yτ ) =
∑

j ct+τ [j](vτ−1[j]) only requires costs

within the κ-hop neighbourhood N κ+1
G [i] since B(i,κ)[j, k] is nonzero for j ∈ N κ

G [i] and k ∈ NG [j]. In

other words, to solve (6), agent i only needs to observe x(i,κ) and have access to the localized info

tuples: Iκt:t+k−1 where each localized info tuple is Iκt := (A(i,κ), B(i,κ), w
(i,κ)
t , f

(i,κ)
t , c

(i,κ+1)
t+1 ) where

f
(i,κ)
t [j] = ft[j] for j ∈ N κ

G [i] and 0 for j outside of N κ
G [i] and c

(i,κ+1)
t+1 is defined similarly. The full

algorithm can be described as in Algorithm 2:

Algorithm 2 Distributed-Truncated PC (DTPCk)

for t = 0, 1, ..., T − 1 do
for i = 1, ..., N do

Agent i observes x
(i,κ)
t and info tuples Iκt:t+k−1

if t < T − k then
Solve ψ̃k

t (xt, wt:t+k−1,N κ
G [i];F )

else
Solve ψ̃T−t

t (xt, wt:t+k−1,N κ
G [i]; fT )

Collect v0[i] from the solution and set ut[i] = v0[i]

Apply ut to the system.

DTPCk answers the first question in the LICPC problem by representing the information

constraint via (i, κ)-truncated versions of the information tuples and state; each agent solves the

optimization problem in (6) in which they only have access to (i, κ)-truncated versions of A, B,



ζ, and x. DTPCk also solves the second question asked by the LICPC problem since the error

incurred from truncating the information at each node is negligible for large enough κ due to a

spatial decay property (cf. Theorem 2). This leads to ISS and regret guarantees, which we present

now.

3.2 Stability and Regret Guarantees

Before presenting our main result, we state our assumptions.

Assumption 1. The system matrices in (2) satisfy the following:

1. ∥A∥ ≤ L, ∥B∥ ≤ L, and ∥B†∥ ≤ L.

2. The reduced controllability matrix has minimum singular value σmin(Cd) ≥ σ for σ > 0.

3. There exists κ0 < diam(G) such that for all i ∈ V and κ ≥ κ0, the system (A(i,κ), B(i,κ)) is

(L, γ)-stabilizable.

Where diam(G) is the diameter of the graph G. Note that the second assumption guarantees

existence of an (L, γ)-stable K in the LTI setting. The final assumption essentially says that if we

isolate large enough κ-hop neighbourhoods of nodes from a distributed system, then we expect that

these isolated κ-hop subsystems to be stabilizable if the original distributed system was stabilizable.

We also make the following assumption on the costs:

Assumption 2. The costs are well-conditioned such that:

1. ft(·) and ct(·) are µ-strongly convex, L-smooth, and twice continuously differentiable for all t.

2. F (·) is a µ-strongly convex and L-smooth K-function (i.e., F (x) = β(∥x∥) where β(·) is strictly
increasing and β(0) = 0) and twice continuously differentiable

3. ft(·) and ct(·) are non-negative and ft(0) = ct(0) = 0 for all t = 1, ..., T . The same goes for

f0(·).

Finally, we make one last assumption on the τ -hop neighbourhoods of the graph

Assumption 3. There exists a subexponential function p(·) such that for some distance d, we have

that

|j ∈ V : dG(i, j) = d| ≤ p(d). (7)

Our main contribution is the following ISS and regret bound that mirrors those found in

centralized PC. The result is stated in the following theorem:

Theorem 1. Let the disturbance wt be uniformly bounded such that maxt∈[T−k]

∑k−1
τ=0∥wt+τ∥ ≤ Dk,

and let C := max(Ω,Γ) and δ := max(δS , δT ) where Ω and δT are as in Lemma 3 and Γ and δS are

as in Theorem 2. Under Assumptions 1, 2, and 3 with constants ξ = 1−
√
δ > 0 and L from the

first two Assumptions, we take k and κ such that

κ ≥ max

κ0, log (1−
√
δ)(1−δ)

2C2LN

log δ

 , k ≥
2 log δ5/2(1−δ)

4C3

log δ
,



which gives the following ISS bound for the system:

∥xt∥ ≤

{
C
ξ (1− ξ)max(0,t−k)∥x0∥+ W

ξ , t ≤ T − k,
C2

ξ2
(1− ξ)T−2kδt+k−T ∥x0∥+ 2CW

ξ2
, else,

(8)

where W := 10C3LN
(1−δ)2

Dk. Further, we have the regret bound:

cost(DTPCk)− cost(OPT ) =

O

(((
Dk +

∥x0∥+Dk

ξ2

)2

δκ +

(
Dk +

δk(∥x0∥+Dk)

ξ

)2

δk
)
T + η∥x0∥2

)
(9)

where η = Θ(max(δk, δκ)).

Theorem 1 says that the regret is exponentially decaying in κ and k, meaning that if we pick κ

and k equal to Θ(log T ), we can attain o(1) dynamic regret. This result parallels that of [21] with

differences. One difference is that in contrast to a single decay constant in [21], our bound involves

two decay constants δS and δT , which correspond to the spatial and temporal decay constants

respectively. The spatial decay constant δS depends on the graph and networked structure of the

dynamics in (1). The temporal decay constant δT is attributed to lipschitz property of (4) and its

costs’ conditioning. Aside from differences in the constants, the ISS result attains an extra factor of

ξ in the last k time steps due to having to explicitly solve (6) at every time step. Furthermore, the

regret bound incurs extra error (the κ term) from the truncation as expected.

4 Proof

We begin the proof of Theorem 1 with a roadmap,

Step 1: Prove exponential decay between the solution to the centralized problem in (4) versus

the solution to (6). The main idea is that we can express the KKT conditions of both (4) and (6) as

the matrix equation H(z)z = b for which we can directly apply the exponential decay of the inverse

of H from [14] and [15] to show exponential decay.

Step 2: Show the ISS bound on DTPCk. Here, we will utilize the exponential decay from Step

1 to establish a bound on the difference between the next state produced by DTPCk and the state

that would have been produced by PCk. Then, since PCk is already ISS, we expect DTPCk also

to be ISS.

Step 3: We finally prove the regret bound of DTPCk. In order to prove the regret, we will use

assumption 2 and relate the difference between the trajectory from DTPCk and the offline optimal

trajectory Ψ̃T
0 (x0, w0:T−1; fT ) via the ISS bound.

We note that due to space limit, the proofs for some auxiliary results are omitted, and its explicit

proof can be found in the Appendix of [22].

4.1 Proof of Step 1

The main goal of Step 1 is to prove the following result:



Theorem 2. Let qc be the solution vector containing the primal and dual variables for the centralized

problem in (4) and let qd be that of the distributed problem in (6) for some i ∈ V. Let the prediction

horizon be ℓ ≤ k and the truncation factor be κ ≥ κ0 as in Assumption 1. Under the Assumptions

1, 2, and 3, we have the following decay result:

∥qc[i]− qd[i]∥ ≤ Γ(∥x∥+Dℓ)δ
κ
S (10)

where the closed brackets [·] will henceforth denote the spatial indexing of some vector or matrix by

the network graph G underlying the dynamics, i.e. qc[i] means all the entries in qc corresponding

to node i (including all time steps); Dℓ := maxt∈[T−1]

∑ℓ−1
τ=0∥wt+τ∥. The constants Γ and δS are

defined as

δS :=
ρ+ 1

2
, Γ :=

4α2δSL

(1− δS)2

(
sup
d∈Z+

(ρ/δS)
d
p(d)

)2

p(1),

where the function p(·) is from Assumption 3 and constant L is from Assumptions 1 and 2. The

constants ρ and α are as in Theorem 2.

Before proving the result above, we first revisit the KKT conditions of the optimization problems

in (4) and (6) and then we introduce two key auxiliary results to proving Theorem 2.

Let t ∈ [T ] be arbitrary and ℓ ≤ k be the horizon variable. Then we define the total cost as

f̂(z) :=
ℓ−1∑
τ=0

ft+τ (yτ ) +
ℓ∑

τ=1

ct+τ (vτ−1) + g(yℓ), (11)

where g(·) is either F (·) or fT (·) and z := (y0.v0, ..., yℓ−1, vℓ−1, yℓ) is the trajectory.

Let J be the constraint jacobian

J(A,B) :=


I

−A −B I
. . .

−A −B I

 , (12)

which has ℓ+ 1 rows. Let, λ be the dual variables. The KKT conditions of (6) are then

[
∇f̂(zd) + (Jd)⊤λd

Jdzd

]
=

 0[
x(i,κ)

ζ(i,κ)

] , (13)

where Jd := J(A(i,κ), B(i,κ)) and (zd, λd) is primal-dual solution of ψ̃ℓ
t . Further, we have the following

lemma:

Lemma 1 (Lemma 1 in [23]). For µ-strongly convex, L-smooth, and twice continuously-differentiable

f̂ , For each z and z′ there exists symmetric G(z, z′) such that µI ⪯ G(z) ⪯ LI and ∇f̂(z)−∇f̂(z′) =
G(z, z′)(z − z′).



Using Lemma 1, we can write (13) as H̃dqd = bd where

H̃d :=

[
G(zd, 0) (Jd)⊤

Jd

]
, bd :=

 0[
x(i,κ)

ζ(i,κ)

] , (14)

and qd is short hand notation for (zd, λd). Furthermore, when taking the difference of the KKT

conditions for equations (4) and (6), we get,

[
∇f̂(zc)−∇f̂(zd) + (Jc)⊤λc − (Jd)⊤λd

Jczc − Jdzd

]
=

 0[
x⊥

ζ⊥

] ,
where the notation zc and Jc := J(A,B) denote the solution and constraint jacobian of Ψ̃ℓ

t

respectively and the vectors on the RHS are x⊥ := x− x(i,κ) and ζ⊥ := ζ − ζ(i,κ). Applying Lemma

1 to ∇f̂(zc)−∇f̂(zd), we get

[
G(zc, zd) (Jc)⊤

Jc

]
︸ ︷︷ ︸

:=Hc

qc −
[
G(zc, zd) (Jd)⊤

Jd

]
︸ ︷︷ ︸

:=Hd

qd =

 0[
x⊥

ζ⊥

]
︸ ︷︷ ︸

:=b⊥

, (15)

where qc is short hand for (zc, λc)).

The purpose of rewriting the KKT conditions using the H matrices defined above is because we

have the following result from [14] and [15] on such H matrices:

Lemma 2 (Theorem 3.6 in [14] and Theorems A.3 and A.4 in [15]). Consider the following matrix

H

H =

[
G J(A,B)⊤

J(A,B) 0

]
,

such that G is a block diagonal matrix with singular values µI ⪯ G ⪯ LI, and the system (A,B) is

(L, γ)-stabilizable. Further, let G = {V, E} be any graph whose set of nodes partitions H such that

for any i, j ∈ V, if dG(i, j) > 1, then H[i, j] = 0. Then, the KKT matrix H has singular values

bounded as µH ≤ σ(H) ≤ LH and its inverse H−1 is spatially exponentially decaying with respect to

the graph G
∥H−1[i, j]∥ ≤ αρdG(i,j), (16)

where the constants are defined as:

µJ :=
(1− γ)2

L2(1− L2)
, LH := 2L+ 1

µH :=

(
1

µ
+

(
1 +

2LH

µ
+
L2
H

µ2

)
LH

µJ

)−1

,

ρ :=

(
L2
H − µ2

H

L2
H + µ2

H

) 1
2

, α :=
LH

µ2
Hρ

.



With the results above, we are ready to prove Theorem 2.

Proof of Theorem 2. By (15), we have,

b⊥ = Hcqc −Hdqd = Hc(qc − qd)− (Hd −Hc)qd

=⇒ qc − qd = (Hc)−1
(
b⊥ −H⊥qd

)
where H⊥ = Hc −Hd. Then we obtain the upper bound:

∥qc[i]− qd[i]∥ =

∥∥∥∥∑
j∈V

(Hc)−1[i, j](b⊥[j]−
∑
k∈V

H⊥[j, k]qd[k])

∥∥∥∥
≤ α

∑
j∈V\Nκ

G [i]

ρdG(i,j)

(
∥b⊥∥+

∑
k∈∂Nκ

G [i]∩NG [j]

∑
m∈Nκ

G [i]

∥H⊥[j, k]∥∥(H̃d)−1[k,m]∥∥bd[m]∥
)

≤ α
∑

j∈V\Nκ
G [i]

ρdG(i,j)

(
∥b⊥∥+ 2αL

∑
k∈∂Nκ

G [i]∩NG [j]

∑
m∈Nκ

G [i]

ρdG(k,m)∥bd∥
)

≤ α

∞∑
d=κ+1

(ρ/δS)
dp(d)δdS

(
∥b⊥∥+ 2αLp(1)

2κ∑
s=0

(ρ/δS)
sp(s)δsS∥bd∥

)

≤ 2α2δSLp(1)

(1− δS)2

(
sup
d∈Z+

(
ρ

δS

)d

p(d)

)2

(∥b⊥∥+ ∥bd∥)δκS

In the first inequality, we have used (i) Lemma 2 applied to Hc; (ii) for j ∈ N κ
G [i], the j’th

entry/row of b⊥ and H⊥ are zero (hence the outer sum is over j ∈ V \ N κ
G [i]); (iii) H

⊥[j, k] is

nonzero only when k ∈ NG [j] since H
⊥ consists of networked matrices, and qd[k] is only nonzero

in N κ
G [i] (hence the inner sum is over k ∈ ∂N κ

G [i] ∩NG [j]); (iv) H̃
dqd = bd. The second inequality

uses Lemma 2 applied to H̃d and the fact that ∥H⊥[j, k]∥ ≤ 2L. The third inequality follows from

Assumption 3. Finally, the inequality in (10) follows from ∥b∥ ≤ ∥x∥+
∑ℓ−1

τ=0∥ζτ∥ for either b⊥ or

bd.

4.2 Proof of Step 2 (ISS)

To show ISS, we first show a recursive upper bound on the states generated by DTPCk, denoted as

x0:T .

Theorem 3. Let C := max(Γ,Ω) and we denote δ := max(δS , δT ) where Γ and δS are as in

Theorem 2 and Ω and δT are from Lemma 3. Under the Assumptions of Theorem 1, we have the

following upper bounds on the states generated by DTPCk. For 1 ≤ t+ 1 ≤ k:

∥xt+1∥ ≤ C

t∑
m=0

(LNδ
κ+m + 2C2δ2k−m−3)∥xt−m∥+ C∥x0∥+W, (17)

for k ≤ t+ 1 ≤ T − k:

∥xt+1∥ ≤ C
k−1∑
m=0

(LNδ
κ+m + 2C2δ2k−m−3)∥xt−m∥+W, (18)



and finally for t+ 1 > T − k:

∥xt+1∥ ≤
t+k−T∑
m=0

2CLN∥xt−m∥δκ+m + Cδt+k−T+1∥xT−k∥+W. (19)

where LN := CLN and W is as in Theorem 1.

Theorem 3 directly leads to the ISS in (8) by induction.

Proof of (8). First, it is easy to verify that the ISS bound holds for t = 0. For the induction step,

we show the case 2k ≤ t ≤ T − k − 1, and the other cases are similar. In other words, we assume

the ISS bound holds for all t0 ≤ t for some t ∈ [2k, T − k − 1], and now show the ISS bound also

holds for t+ 1. Since k < t+ 1 ≤ T − k, we have from Theorem 3 that

∥xt+1∥ ≤ C
k∑

m=1

(LNδ
κ+m−1 + 2C2δ2k−m−2)∥xt−m+1∥+W. (20)

By the induction hypothesis, the upper bound in (20) becomes,

C

k∑
m=1

:=Λm︷ ︸︸ ︷
(LNδ

κ+m−1 + 2C2δ2k−m−2)

(
C

ξ
(1− ξ)t−m−k+1∥x0∥+

W

ξ

)
+W, (21)

where the max disappears since t ≥ 2k−1. Then, note the choice of k and κ in Theorem 1 guarantees

that C
∑

m Λm ≤ 1− ξ, which allows us to upper bound (21) as

(
C

ξ
(1− ξ)t−k+1∥x0∥

)
C

k∑
m=1

Λm(1− ξ)−m +
W

ξ
. (22)

Finally, the selection of 1− ξ =
√
δ, k, and κ in Theorem 1 further guarantees that C

∑
m Λm(1−

ξ)−m ≤ 1, which obtains the desired bound in (8) and concludes the induction.

The remainder of this subsection will be devoted to proving Theorem 3. We first require a

couple definitions and supplementary results. First, we define the following terminal state predictive

control problem similar to (4):

Ψk
t (x, ζ, x̄) := argmin

y0:k,v0:k−1

k∑
τ=0

ft+τ (yτ ) +

k∑
τ=1

ct+τ (vτ−1), (23)

s.t. yτ+1 = Ayτ +Bvτ + ζτ , ∀τ ∈ [k − 1],

y0 = x, yk = x̄,

By [21], the following lipschitz property of Ψk
t holds.



Lemma 3. (Theorem 3.3 in [21]) Under assumptions 1 and 2 and for horizon length k ≥ d, the

controllability index, given any (x, ζ, x̄) and (x′, ζ ′, x̄′),

∥Ψk
t (x, ζ, x̄)ym −Ψk

t (x
′, ζ ′, x̄′)ym∥ ≤ Ω

(
δmT ∥x− x′∥+ δk−m

T ∥x̄− x̄′∥+
k−1∑
l=0

δ
|m−l|
T ∥ζl − ζ ′l∥

)
(24)

where D := supt∈[T−k]∥wt∥ and the constants Ω and δT are defined in Theorem 3.3 in [21]

Furthermore, as a Corollary of Lemma 2, we have the following lipschitz result on Ψ̃ℓ
t

Corollary 1. Let ℓ ∈ [T ] and q denote the optimal vector of primal and dual variables to

Ψ̃ℓ
t(x, ζ; g(·)) and q′ be that of Ψ̃ℓ

t(x
′, ζ ′; g(·)). We partition q and q′ by the the temporal graph

Gℓ := {{[ℓ]}, {(0, 1), ..., (ℓ − 1, ℓ)}} such that we can denote qm and q′m indexed by m ∈ [ℓ]. The

lipschitz property then follows from Lemma 2:

∥qm − q′m∥ ≤ α

(
ρm∥x− x′∥+

ℓ−1∑
l=0

ρ|m−l|∥ζl − ζ ′l∥

)
(25)

≤ α

(
ρm∥x− x′∥+ 2Dk

1− ρ

)
, (26)

Utilizing the above two results, we attain the following:

Lemma 4. Let ym+1 := Ψ̃k
t−m(xt−m)ym+1 and y′m+1 := Ψ̃k

t−m−1(xt−m−1)ym+2, then we have the
following upper bound on the norm of their difference:

∥ym+1 − y′m+1∥ ≤ CLN (∥xt−m−1∥+Dk)δ
κ+m+1 + C2δk−m−2

(
δk−1(∥xt−m∥+ Cδ∥xt−m−1∥) +

6C

1− δ
Dk

)
,

(27)

The proof is in Appendix-B of [22], from which we acquire a few auxiliary results. First, by the

principle of optimality, we have

Ψ̃k
t−m−1(xt−m−1)ym+2 = Ψ̃k−1

t−m(xct−m)ym+1 , (28)

where xct−m := Ψ̃k
t−m−1(xt−m−1)y1 . Next, we also have

∥xt−m − xct−m∥ ≤ LN (∥xt−m−1∥+Dk)δ
κ, (29)

which follows directly from rewriting the norm as

∥xt−m − xct−m∥ = ∥B(ut−m−1 − Ψ̃k
t−m−1(xt−m−1)v0)∥, (30)

where ut−m−1 := (ψ̃k
t−m−1(xt−m−1,N κ

G [i])v0[i])i∈V , and then applying Theorem 2 to get the upper

bound in (29). Now we may prove Theorem 3.

Proof of Theorem 3. We only prove the case for k ≤ t ≤ T − k− 1, and the proofs for t ≤ k− 1 and
t ≥ T + k are similar. We start by comparing the norm of ∥xt+1∥ as

∥xt+1∥ =
∥∥∥Ψ̃k

t (xt)y1 − (xct+1 − xt+1)
∥∥∥



≤
k−2∑
m=0

∥Ψ̃k
t−m(xt−m)ym+1 − Ψ̃k

t−m−1(xt−m−1)ym+2∥+ ∥Ψ̃k
t−k+1(xt−k+1)yk

∥+ LN (∥xt∥+Dk)δ
κ

≤
k−2∑
m=0

(
CLN (∥xt−m−1∥+Dk)δ

κ+m+1 + C2δk−m−2

(
δk−1

(
∥xt−m∥+ Cδ∥xt−m−1∥

)
+

6C

1− δ
Dk

))
+ Cδk∥xt−k+1∥+

2C

1− δ
Dk + LN (∥xt∥+Dk)δ

κ

≤ C

k−1∑
m=0

(
LNδ

κ+m + 2C2δ2k−m−3
)
∥xt−m∥+W.

The first equality uses the definition xct+1 = Ψ̃k
t (xt)y1 . In the first inequality, we telescope Ψ̃k

t (xt)y1
and apply (29). In the second inequality, we apply Lemma 4 and Corollary 1 with x′ = 0 and ζ ′ = 0.

In the final inequality, we combine terms and upper bound by the geometric sum to attain the

desired bound.

4.3 Proof of Step 3 (Regret)

To prove the regret result in Theorem 1 we first prove the following critical result which bounds the

difference between DTPCk’s trajectory and the optimal offline trajectory:

Theorem 4. Let x0:T be the trajectory generated by DTPCk and x∗0:T is the optimal offline trajectory.
For t+ 1 ≤ T − k, we have that

∥xt+1 − x∗t+1∥ ≤ Cδk
(
2CδT ∥x0∥+

4C

1− δ
Dk

)
+

t∑
m=0

4C2LN

δ(1− δ)2
δm
((
δκ + δ2k

)
∥xt−m∥+ (δκ + δk)Dk

)
,

(31)

and for t+ 1 ≥ T − k + 1, we have that

∥xt+1 − x∗t+1∥ ≤
t∑

m=0

CLN (∥xt−m∥+Dk)δ
κ+m +

T−k∑
m=1

4C3

δ(1− δ)2
δt+k−T+m

(
δ2k∥xT−k−m∥+ δkDk

)
, (32)

Proof. For t+ 1 ≤ T − k: Let x̂0:T denote the state trajectory of Ψ̃T
0 (x0;F ). Then we can upper

bound the norm of the difference as

∥xt+1 − x∗t+1∥ ≤ ∥xt+1 − x̂t+1∥+ ∥x̂t+1 − x∗t+1∥.

By Lemma 3 and Corollary 1 and for t+ 1 ≤ T − k, we have the upper bound from equation (21)

in [21]

∥x̂t+1 − x∗t+1∥ ≤ Cδk
(
2CδT ∥x0∥+

4C

1− δ
Dk

)
. (33)

Then we make the observation that

Ψ̃T−t+m+1
t−m−1 (xt−m−1)ym+2 = Ψ̃T−t+m

t−m (xc
′
t−m)ym+1 , (34)



where xc
′
t−m := Ψ̃T−t+m+1

t−m−1 (xt−m−1)y1 . Thus we have,

∥xt+1 − x̂t+1∥ = ∥xt+1 − Ψ̃T
0 (x0;F )yt+1∥

≤ ∥xt+1 − Ψ̃T−t
t (xt)y1∥+

t−1∑
m=0

∥Ψ̃T−t+m
t−m (xt−m)ym+1 − Ψ̃T−t+m+1

t−m−1 (xt−m−1)ym+2∥

≤ ∥xt+1 − xc
′
t+1∥+

t−1∑
m=0

Cδm+1∥xt−m − xc
′
t−m∥

≤ ∥xt+1 − xct+1∥+ ∥xct+1 − xc
′
t+1∥+

t−1∑
m=0

Cδm+1
(
∥xt−m − xct−m∥+ ∥xct−m − xc

′
t−m∥

)
,

where we’ve applied the observation from above (34) and Corollary 1 in the second inequality. We

then apply the bound in (29) and the bound

∥Ψ̃k
t (xt)y1 − Ψ̃T−t

t (xt)y1∥ ≤ 4C2

δ(1− δ)2
(δ2k∥xt∥+ δkDk), (35)

(Equation 19 in [21]) which holds for t+ 1 ≤ T − k. This completes the proof for t+ 1 ≤ T − k.

The case for t+ 1 ≥ T − k + 1 is similar so its proof is omitted here.

Before finishing the proof of Theorem 1, we require the following two Lemmas. First, we have

from [21]:

Lemma 5 (Lemma F.2 in [21]). Suppose h : Rn 7→ R+ is a convex and L-smooth continuously

differentiable function. Then for x, x′ ∈ Rn and η > 0, we have that

h(x)− (1 + η)h(x′) ≤ L

2

(
1 +

1

η

)
∥x− x′∥2.

The above Lemma 5 will be applied to both ft and ct.

In addition, we require the following bound on the one step terminal state problem (k = 1) in

(23), the proof is in Appendix-C of [22]

Lemma 6. Let v and v′ be the two “one-step” terminal state problems: Ψ1
t (xt, xt+1)v0 and

Ψ1
t (x

′
t, x

′
t+1)v0. Under Assumptions 1 and 2, we have that

∥v − v′∥2 ≤ C2
(
∥xt − x′t∥2 + ∥xt+1 − x′t+1∥2

)
, (36)

where C is as in Theorem 3.

We are now ready to prove the regret in Theorem 1.

Proof of Theorem 1. First, denote ūt := Ψ1
t (xt, xt+1)v0 . Then consider the difference of the costs

ct+1 which can be written as:

ct+1(ut)− (1 + η)ct+1(ūt) + (1 + η) (ct+1(ūt)− (1 + η)ct+1(u
∗
t ))



≤ L

2

(
1 +

1

η

)(
∥ut − ūt∥2 + (1 + η)∥ūt − u∗t )∥2

)
≤ C3

(
1 +

1

η

)(
L2
N (∥xt∥+Dk)

2δ2κ + ∥xt+1 − xct+1∥2 + (1 + η)
(
∥xt − x∗t ∥2 + ∥xt+1 − x∗t+1∥2

))
≤ 2C3L2

N

(
1 +

1

η

)(
(∥xt∥+Dk)

2δ2κ + (1 + η)(∥xt − x∗t ∥2 + ∥xt+1 − x∗t+1∥2)
)
. (37)

Where in the first inequality, we have applied Lemma 5. To obtain the second inequality, by the

parallelogram identity, we have the upper bound

∥ut − ūt∥2 ≤ 2
(
∥ut − Ψ̃k′

t (xt)v0∥2 + ∥Ψ̃k′
t (xt)v0 − ūt∥2

)
, (38)

where k′ := min(k, T − t). Applying Theorem 2 to ∥ut− Ψ̃k′
t (xt)v0∥ and Lemma 6 to ∥Ψ̃k′

t (xt)v0 − ūt∥
gives us the following upper bound of (38):

2
(
L2
N (∥xt∥+Dk)

2δ2κ + C2(∥xt+1 − xct+1∥2)
)
. (39)

Observe that

∥ūt − u∗t ∥ = ∥Ψ1
t (xt, xt+1)v0 −Ψ1

t (x
∗
t , x

∗
t+1)v0∥,

for which we can apply Lemma 6. This, together with (39) gives us the second inequality in (37).
Finally, we attain the last inequality by applying (29) again. We take η = Θ(max(δk, δκ)). Denoting
1 + η′ = (1 + η)2, we have

cost(DTPCk)− (1 + η′)cost(OPT ) =

T∑
t=1

(ft(xt)− (1 + η′)ft(x
∗
t )) + (ct(ut−1)− (1 + η′)ct(u

∗
t−1))

≤ 2C3L2
N

(
1 +

1

η

) T−1∑
t=0

(
∥xt+1 − x∗t+1∥2 + (∥xt∥+Dk)

2δ2κ + (1 + η)
(
∥xt − x∗t ∥2 + ∥xt+1 − x∗t+1∥2

))

≤ 6C3L2
N

(
1 +

1

η

)
(1 + η)

T∑
t=0

((∥xt∥+Dk)
2δ2κ + ∥xt − x∗t ∥2)

=
1

η
O

([(
Dk +

∥x0∥+Dk

ξ2

)2

δ2κ +

(
Dk +

δk(∥x0∥+Dk)

ξ

)2

δ2k
]
T

)
. (40)

Where in the first inequality we apply (37), Lemma 5, and that η ≤ η′. In the second inequality,

we merge all of the norms of differences. In the final line, we apply the ISS bound and Theorem 4

to attain the final expression in (40).

Since η′ = 2η + η2, and hence, η′ = Θ
(
max(δk, δκ)

)
, we simply add η′cost(OPT ) to the RHS of

(40) to achieve the bound in (9). This finishes the proof of Theorem 1.

5 Simulations

We consider the temperature control of a building with HVAC network graph that is a 5× 5 mesh

grid with diameter 8 and each of its 25 nodes corresponding to a different zone in the building.

The states are the temperatures of each zone and their respective temperature integrators and the



Figure 1: DTPCk versus the OPT for fixed κ (left) and fixed k (right).

Figure 2: DTPCk versus PCk for k = 11 and varying κ.

control variable at zone i is its manipulated heat generation/absorption. Further details about the

system and setup are in Appendix-D in [22]

The results are shown in Figure 1 where we chose a time horizon of T = 30. Observe that

DTPCk exhibits the decaying regret behavior as in (9) as κ and k increase. Note that in Figure 1

(right), the regret stops decreasing because the prediction horizon k becomes the bottleneck after κ

reaches 2. Figure 2 demonstrates our result in Theorem 2: when κ increases under fixed k, DTPCk

becomes exponentially close to PCk.

6 Conclusion

In this work we have shown that our algorithm DTPCk produces trajectories that are similar to

those produced by centralized predictive control PCk. Furthermore, we have shown stability and

regret bounds for DTPCk which guarantee near-optimal performance. As for future work, we would

like to extend this analysis to the LTV dynamics case.
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7 Appendix

7.1 Proofs of intermediary results in Step 1

7.1.1 Proof of Lemma 2

We note that the proof is a combination of Theorem 3.6 in [14] and Theorems A.3 and A.4 in [15].

For completeness, we provide a proof below with a focus on the differences from the proofs of those

Theorems; the steps that are identical are omitted.

The proof for the exponential decay result in equation (16) is available in [14] (Theorem 3.6)

which requires upper and lower bounds on the singular values of theH matrix: i.e., µH ≤ σ(H) ≤ LH .

So we will prove the bounds on the singular values similar to Theorems A.3 and A.4 in [15].

Let Z be an orthonormal null-space basis matrix for J , i.e. Col(Z) = Null(J), then, we shall

prove the following uniform regularity conditions:

H ⪯ LHI, Z⊤GZ ⪰ µI, JJ⊤ ⪰ µJI, (41)

https://ex19087.github.io/Distributed_Truncated_Predictive_Control/ACC_Truncated_Predictive_Control_full.pdf
https://ex19087.github.io/Distributed_Truncated_Predictive_Control/ACC_Truncated_Predictive_Control_full.pdf
https://ex19087.github.io/Distributed_Truncated_Predictive_Control/ACC_Truncated_Predictive_Control_full.pdf


Proof of H ⪯ LHI: Let Hτ,τ ′ denote the submatrix of H such that the rows correspond to

(yτ , vτ , λτ ) and the columns correspond to (yτ ′ , vτ ′ , λτ ′), then we have that

Hτ,τ ′ =



Gyτ I

Gvτ

I

 , τ = τ ′ ̸= ℓ,

 0

0

−A −B

 , τ = τ ′ + 1 ̸= ℓ

[
Gyℓ I

I

]
, τ = τ ′ = ℓ[

0

−A −B

]
, τ = τ ′ + 1 = ℓ

0, τ − τ ′ > 1

, (42)

where each G(·) comes from defining the block diagonal matrices of G such that

G :=


Gy0

Gv0
. . .

Gvℓ−1

Gyℓ


where each Gyτ and Gvτ corresponds to the predictive state and control yτ and vτ respectively. The

upper bound ∥H∥ ≤ 2L+ 1 follows from the following result (Lemma 5.11 from [14]):

∥M∥ ≤

max
i∈V

∑
j∈V

∥Mij∥

1/2(
max
j∈V

∑
i∈V

∥Mij∥

)1/2

. (43)

Proof of Z⊤GZ ≻ µI: The bound is immediate from Z being full rank and G ≻ µI.

Proof of JJ⊤ ≻ µJI: The proof is the exact same as in Theorem A.4 of [15] so it is omitted

here.

Finally, we can use the conditions in (41) to prove the lower bound of H. First we can rewrite

the inverse of H by its schur complement

H−1 =

[
G J⊤

J

]−1

=

[
G−1 −G−1J⊤(GJ)

−1JG−1 G−1J⊤(GJ)
−1

(GJ)
−1JG−1 −(GJ)

−1

]
, (44)

where GJ := JG−1J⊤. So we may upper bound the norm of H−1 as the sum of the norms of its

sub-blocks as such:

∥H−1∥ ≤ ∥G−1∥+ (1 + 2∥JG−1∥+ ∥JG−1∥2)∥G−1
J ∥, (45)



where ∥G−1∥ ≤ 1
µ , ∥JG

−1∥ ≤ LH
µ , and we can obtain the upper bound on G−1

J as

∥(JG−1J⊤)−1∥ = ∥(JG−1/2G−1/2J⊤)−1∥ = ∥(G−1/2(J⊤J)1/2(J⊤J)1/2G−1/2)−1∥

= ∥G1/2(J⊤J)−1G1/2∥ ≤ ∥G∥∥(J⊤J)−1∥ ≤ LH

µJ
. (46)

Applying the upper bounds to (45), we obtain

∥H−1∥ ≤ 1

µ
+

(
1 +

2LH

µ
+
LH

µ2

)
LH

µJ
,

as desired. This completes the proof of Lemma 2.

7.2 Proofs of intermediary results in Step 2

7.2.1 Complete proof of ISS in Theorem 1

For the case of t ≤ k − 1, the induction step from (17) is

∥xt+1∥ ≤ C
t∑

m=0

Λm

(
C

ξ
∥x0∥+

W

ξ

)
+ C∥x0∥+W,

for which the choice of k and κ in Theorem 1 guarantees that C
∑t−1

m=0 Λm ≤ (1− ξ) and so

∥xt+1∥ ≤ C

ξ
∥x0∥+

W

ξ
, (47)

as desired.
For the case of k ≤ t < 2k − 1, let (t −m − k + 1)+ denote max(0, t −m − k + 1), then by

Theorem 3,

∥xt+1∥ ≤ C

k∑
m=1

(LNδ
κ+m−1 + 2C2δ2k−m−2)∥xt−m+1∥+W.

And thus, by the induction hypothesis and the condition that C
∑

m Λm ≤ 1− ξ,

∥xt+1∥ ≤ C
k∑

m=1

Λm

(
C

ξ
(1− ξ)(t−m−k+1)+∥x0∥

)
+
W

ξ
, (48)

for which we can split the sum up as(
C

ξ
(1− ξ)t−k+1∥x0∥

)
C

( t−k∑
m=1

(
Λm(1− ξ)−m

)
+

k∑
m=t−k+1

Λm(1− ξ)−(t−k+1)

)
+
W

ξ
. (49)

Equation (49) is clearly upperbounded by(
C

ξ
(1− ξ)t−k+1∥x0∥

)
C

k∑
m=1

Λm(1− ξ)−m +
W

ξ
, (50)



which is the same as in equation (22), thus, by the same logic, the desired bound in (8) is obtained

for this case.

For the case of t > T − k, we have from (19) that

∥xt+1∥ ≤
t+k−T∑
m=0

2CLN∥xt−m∥δκ+m + Cδt+k−T+1∥xT−k∥+W

≤
(
C

ξ
δt+k−T+1∥xT−k∥+

W

ξ

)(t+k−T∑
m=0

2CLNδ
κ+m + ξ

)
≤ C

ξ
δt+k−T+1∥xT−k∥+

W

ξ

≤ C

ξ2
δt+k−T+1

(
C(1− ξ)T−2k∥x0∥+W

)
+
W

ξ

where the second inequality is obtained through the following fact for t−m ≥ T − k

∥xt−m∥ ≤ C

ξ
δt+k−T+1∥xT−k∥+

W

ξ
,

which can be easily proved by induction, similar to the previous induction argument for t ≤ k− 1, cf.

eq. (47); the third line comes from applying the condition
∑

m 2CLNδ
κ+m ≤ (1− ξ) (guaranteed

by the choice of κ in Theorem 1). The final inequality is obtained by applying the ISS bound for

t = T − k in (8). This completes the proof of (8)

7.2.2 Proof of Corollary 1

As shown in Equation (42), Ht,t′ = 0 for |t − t′| > 1 meaning that H satisfies the conditions of

Lemma 2 for the graph Gℓ. Thus, we have that

∥qm − q′m∥ =

∥∥∥∥∥∥
∑
l∈[ℓ]

H−1
m,l(bl − b′l)

∥∥∥∥∥∥ ≤ α

(
ρm∥x− x′∥+

ℓ∑
l=0

ρ|m−l|∥ζl − ζ ′l∥

)
, (51)

where we denote

bl :=



[
0

x

]
, l = 0,[

0

ζl

]
, else,

and similarly for b′l. The inequality is obtained through application of Lemma 2.

7.2.3 Proof of Lemma 4

First, observe that

y′m+1 = Ψ̃k
t−m−1(xt−m−1)ym+2 = Ψ̃k−1

t−m(xct−m)ym+1 , (52)

where xct−m := Ψ̃k
t−m−1(xt−m−1)y1 . Then, denote

ȳ := Ψ̃k
t−m(xt−m)yk−1

, ȳ′ := Ψ̃k−1
t−m(xct−m)yk−1

,



so now we may proceed to prove the Lemma as:

∥ym+1 − y′m+1∥ = ∥Ψk−1
t−m(xt−m, ȳ)ym+1 −Ψk−1

t−m(xct−m, ȳ
′)ym+1∥

≤ C
(
δm+1∥xt−m − xct−m∥+ δk−m−2∥ȳ − ȳ′∥

)
≤ CLN (∥xt−m−1∥+Dk)δ

κ+m+1 + C2δk−m−2

(
δk−1

(
∥xt−m∥+ ∥xct−m∥

)
+

4Dk

1− δ

)
≤ CLN (∥xt−m−1∥+Dk)δ

κ+m+1 + C2δk−m−2

(
δk−1 (∥xt−m∥+ Cδ∥xt−m−1∥) +

6CDk

1− δ

)
(53)

where in the first equality, we apply the principle of optimality. In the first inequality we apply

Lemma 3. In the second inequality, we apply the result in (29) along with the upper bounds

∥ȳ∥ ≤ C

(
δk−1∥xt−m∥+ 2Dk

1− δ

)
,

and

∥ȳ′∥ ≤ C

(
δk−1∥xct−m∥+ 2Dk

1− δ

)
,

which both come from the Lipschitz bound in Corollary 1. The last inequality then comes from

applying Corollary 1 to xct−m and combining the Dk terms.

7.2.4 Full proof of Theorem 3

For the case t ≤ k − 1, we have that

∥xt+1∥ = ∥Ψ̃k
t (xt)y1 − (xct+1 − xt+1)∥

≤
t−1∑
m=0

∥Ψ̃k
t−m(xt−m)ym+1 − Ψ̃k

t−m−1(xt−m−1)ym+2∥+ ∥Ψ̃k
0(x0)yt+1∥+ LN (∥xt∥+Dk)δ

κ

≤
t−1∑
m=0

(
CLNδ

κ+m+1(∥xt−m−1∥+Dk) + C2δk−m−2

(
δk−1 (∥xt−m∥+ Cδ∥xt−m−1∥) +

6C

1− δ
Dk

))
+ Cδt+1∥x0∥+

2C

1− δ
Dk + LN (∥xt∥+Dk)δ

κ

≤
t∑

m=0

(CLNδ
κ+m + 2C3δ2k−m−3)∥xt−m∥+ C∥x0∥+W. (54)

where we use the definition of Ψ̃k
t (xt)y1 in the first equality. We telescope Ψ̃k

t (xt)y−1 and the result

in (29) in the second line. In the second inequality, we apply Lemma 4 and Corollary 1 with x′ = 0

and ζ ′ = 0. Then in the last inequality we combine like terms.
For t ≥ T − k: We continue similarly,

∥xt+1∥ = ∥Ψ̃T−t
t (xt)y1 − (xc

′

t+1 − xt+1)∥

≤
t+k−T−1∑

m=0

∥Ψ̃T−t+m
t−m (xt−m)ym+1

− Ψ̃T−t+m+1
t−m−1 (xt−m−1)ym+2

∥+ ∥Ψ̃k
T−k(xT−k)yt+k−T+1

∥+ LN (∥xt∥+Dk)δ
κ



=

t+k−T−1∑
m=0

∥Ψ̃T−t+m
t−m (xt−m)ym+1 − Ψ̃T−t+m

t−m (xc
′

t−m)ym+1∥+ ∥Ψ̃k
T−k(xT−k)yt+k−T+1

∥+ LN (∥xt∥+Dk)δ
κ

≤
t+k−T−1∑

m=0

Cδm+1∥xt−m − xc
′

t−m∥+ Cδt+k−T+1∥xT−k∥+
2C

1− δ
Dk + LN (∥xt∥+Dk)δ

κ

≤
t+k−T∑
m=0

2CLN∥xt−m∥δκ+m + Cδt+k−T+1∥xT−k∥+
4CLN

1− δ
Dk, (55)

where xc
′
t−m := Ψ̃T−t+m+1

t−m−1 (xt−m−1)y1 . The first inequality is obtained via telescoping Ψ̃T−t
t (xt)y1

and applying the following upper bound for t−m− 1 ≥ T − k,

∥xc′t−m − xt−m∥ =
∥∥∥B (Ψ̃T−t+m+1

t−m−1 (xt−m−1)v0 − ut−m−1)
)∥∥∥ ≤ LN (∥xt−m−1∥+Dk)δ

κ (56)

where ut−m−1 :=
(
ψ̃T−t+m+1
t−m−1 (xt−m−1,N κ

G [i])v0[i]

)
i∈V

and we’ve applied Theorem 2 to obtain the

inequality (56) which resembles the result in (29). The second inequality is obtained through

applying Corollary 1 twice; the final inequality is then obtained by applying the result in (56) and

combining terms. This completes the proof of Theorem 3

7.3 Proofs of intermediary results in Step 3

7.3.1 Complete Proof of Theorem 4

For the case t ≥ T − k, we have that

∥xt+1 − x∗t+1∥ = ∥xt+1 − Ψ̃T
0 (x0)yt+1∥

≤ ∥xt+1 − Ψ̃T−t
t (xt)y1∥+

t−1∑
m=0

∥Ψ̃T−t+m
t−m (xt−m)ym+1 − Ψ̃T−t+m+1

t−m−1 (xt−m−1)ym+2∥

≤ LN (∥xt∥+Dk)δ
κ +

t−1∑
m=0

Cδm+1∥xt−m − xc
′
t−m∥

≤ LN (∥xt∥+Dk)δ
κ +

t−1∑
m=0

Cδm+1

(
∥xt−m − xc̃t−m∥+ ∥xc̃t−m − xc

′
t−m∥

)

≤
t∑

m=0

CLN (∥xt−m∥+Dk)δ
κ+m +

t−1∑
m=t+k−T

4C3

δ(1− δ)2
δm+1

(
δ2k∥xt−m−1∥+ δkDk)

)
(57)

where in the first inequality we telescope Ψ̃T
0 (x0)yt+1 . In the second inequality, we apply the result

in (56) and Corollary 1 on the terms in the sum, denoting xc
′
t−m := Ψ̃T−t+m+1

t−m−1 (xt−m−1)y1 . In the

third inequality, we apply the triangle inequality and denote xc̃t−m := Ψ̃
min(k,T−t+m+1)
t−m−1 (xt−m−1)y1 .

Finally, in the last inequality, we apply (29) and (56) to the terms ∥xt−m − xc̄t−m∥, and the result in

(35) to the terms ∥xc̄t−m − xc
′
t−m∥. This completes the proof of Theorem 4.



7.3.2 Proof of Lemma 6

Consider the following optimization problem:

argmin
v

ct+1(v)

s.t. xt+1 = Axt +Bv + wt. (58)

Clearly, the v produced from (58) is the same as the one produced from the ”one-step” terminal

state problem Ψ1
t (xt, xt+1)v0 . We can then split v such that v = vy + vz where vy ∈ Col(B⊤) and

vz ∈ Null(B). In particular, vy must be uniquely determined as

vy = B†(xt+1 −Axt − wt), (59)

since xt+1 −Axt − wt is in the image of B and for any v ∈ Rm,

∥Bv − xt+1 +Axt + wt∥ ≥ ∥(BB† − I)(xt+1 −Axt − wt)∥ = 0,

that is, B†(xt+1 −Axt − wt) is the least-squares solution. Thus, denote vz = Bzω where Bz is the

orthonormal basis matrix for Null(B) and ω ∈ Rm−rank(B). Thus, the optimization problem in (58)

becomes the following unconstrained optimization problem

min
ω
ct+1(vy +Bzω) (60)

which achieves its optima at ω such that B⊤
z ∇ct+1(vy + Bzω) = 0. Denote v′ = v′y + Bzω

′ to be

Ψ1
t (x

′
t, x

′
t+1)v0 , then comparing the optimality conditions gives us

B⊤
z (∇ct+1(vy +Bzω)−∇ct+1(v

′
y +Bzω

′)) = B⊤
z Gc(vy − v′y +Bz(ω − ω′)) = 0

⇐⇒ B⊤
z GcBz(ω − ω′) = −B⊤

z Gc(vy − v′y), (61)

where we’ve applied Lemma 1 in the first equality. Since Bz is full rank and orthonormal, we have

that

∥ω − ω′∥ ≤ L

µ
∥vy − v′y∥ (62)

by L-smoothness and µ-strong convexity of ct+1(·). Finally, we have that

∥v − v′∥2 = ∥vy − v′y∥2 + ∥Bz(ω − ω′)∥2 ≤ 2L2

µ2
∥vy − v′y∥2

≤ 4L6

µ2
(
∥xt − x′t∥2 + ∥xt+1 − x′t+1∥2

)
, (63)

where the first inequality comes from Bz being orthonormal and (62). Then the second inequality

comes from the bound

∥vy − v′y∥ = ∥B†(xt+1 − x′t+1 −A(xt − x′t))∥ ≤ L2(∥xt − x′t∥+ ∥xt+1 − x′t+1∥) (64)



and then applying the parallelogram identity. Γ2 from Theorem 2 is of the same magnitude as 4L6

µ2 ,

so we can take C2 ≈ 4L6

µ2 which finishes the proof.

7.4 Simulation Details and Setup

Let Tt be the vector containing the temperature of each zone at time t and Ut the respective

integrators. Let ut be the vector containing the manipulated heat generation/absorption of each

zone at time t, and let wt be the disturbances at time t. then the Euler-discretized dynamics of the

system for a sampling time ts = 1 (seconds) are[
Ut+1

Tt+1

]
=

[
I tsI

0 I − tsL

] [
Ut

Tt

]
+

[
0

0.5tsI

]
ut + wt, (65)

where L[i, j] = kij = 0.05 for i, j ∈ V is the weighted graph Laplacian and each kij corresponds

to the degree of heat exchange between zones i and j. The disturbances are normally distributed

as wt ∼ N (0, 25I), a multivariate Gaussian random variable with mean 0 and covariance matrix

25I. As for the costs, we set ft(xt) :=
1
2x

⊤
t Qxt for constant Q = I and all t, F (xt) =

1
2x

⊤
t QFxt for

constant QF = 10I and finally we have ct+1(ut) =
1
2u

⊤
t Rtut for time varying Rt = diag(5|Z|) + I

where the diag(·) operator creates a diagonal matrix whose entries correspond to its input vector’s,

and Z is the standard multivariate Gaussian with mean 0 and covariance matrix I. The system

assumptions of (A,B) in Assumption 1 are further detailed in Section 5 of [15].
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