
HAL Id: lirmm-03143143
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03143143v1

Submitted on 16 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling and Analysis for Energy-Driven Computing
using Statistical Model-Checking

Abdoulaye Gamatié, Gilles Sassatelli, Marius Mikučionis

To cite this version:
Abdoulaye Gamatié, Gilles Sassatelli, Marius Mikučionis. Modeling and Analysis for Energy-
Driven Computing using Statistical Model-Checking. DATE 2021 - 24th Design, Automation and
Test in Europe Conference and Exhibition, Feb 2021, Grenoble (Virtual), France. pp.980-985,
�10.23919/DATE51398.2021.9474224�. �lirmm-03143143�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-03143143v1
https://hal.archives-ouvertes.fr

Modeling and Analysis for Energy-Driven
Computing using Statistical Model-Checking

Abdoulaye Gamatié, Gilles Sassatelli
LIRMM, Univ. Montpellier, CNRS, France

first.last@lirmm.fr

Marius Mikučionis
Dep. of Computer Science, Aalborg Univ., Denmark

first@cs.aau.dk

Abstract—Energy-driven computing is a recent paradigm that
promotes energy harvesting as an alternative solution to conven-
tional power supply systems. A crucial challenge in that context
lies in the dimensioning of system resources w.r.t. energy harvest-
ing conditions while meeting some given timing QoS requirements.
Existing simulation and debugging tools do not make it possible to
clearly address this issue. This paper defines a generic modeling
and analysis framework to support the design exploration for
energy-driven computing. It uses stochastic hybrid automata
and statistical model-checking. It advocates a distributed sys-
tem design, where heterogeneous nodes integrate computing and
harvesting components and support inter-node energy transfer.
Through a simple case-study, the paper shows how this framework
addresses the aforementioned design challenge in a flexible manner
and helps in reducing energy storage requirements.

Index Terms—Stochastic hybrid automata, energy-driven com-
puting, statistical model-checking, energy harvesting and buffering

I. INTRODUCTION

Energy consumption has emerged as a major issue in com-
puting systems in the last decade. The design of current high-
performance computing (HPC) systems is facing this energy-
efficiency issue, especially for Exascale computing. The high-
energy consumption of supercomputers [1] results in increas-
ingly prohibitive electricity bills of HPC infrastructures (several
$M/year). On the other hand, modern multiprocessor embedded
systems are also concerned by the demand for better energy-
efficiency. Various techniques have been applied at different
levels, e.g. microarchitecture level (voltage/frequency scal-
ing, clock/power gating, non-volatile memories, accelerators...),
and at system-level (heterogeneous architectures, OS runtime
scheduling...). Energy-efficiency is very crucial in the mobile
and wearable devices for IoT/edge computing. Energy harvest-
ing is therefore regarded as a potential solution in this respect.
This gave birth to the energy-driven computing paradigm [2].

Energy-driven computing promotes a design concept in
which energy harvesting is as fundamental as computing com-
ponents. Given the frequent intermittent nature of the energy
sources, e.g. wind and sun, the goal of the harvesting system
is to match the compute system power demand to the available
power. There are two complementary ways to reach this goal:
adapting the power consumption of the load according to
the available energy and introducing energy buffers between
power supply and consumption. The literature on energy-driven
computing distinguishes different classes of systems [2]. An
energy-neutral system always maintains the QoS requirements

of a load w.r.t. the dynamics of the harvested energy, using
energy buffers. Here, an important design goal is to reduce
as much as possible the cost of these buffers. A transient (or
intermittent) system executes its workload whenever enough
energy has been buffered and remains inactive otherwise. In that
case the system operates in best-effort mode and is therefore
unable to guarantee QoS constraints will be met.

Considered problem and solution. We are interested in the
following two important design questions: i) how to design
energy-driven computing systems while guaranteeing the timing
QoS requirements of the executed applications w.r.t. uncertain
and fluctuating energy availability? ii) how to properly size
energy buffers so as to minimize both their size and cost
(energy storage is a key design component in terms of physical
dimensions, product lifetime and therefore cost) under the QoS
constraints? Answering the above questions will help us find
the suitable energy-neutrality conditions of the studied systems.
Existing simulation and debugging tools dedicated to energy-
driven computing do not make it possible to easily answer the
above questions [2]. We therefore need a suitable modeling and
analysis framework to address this unsolved challenge.

node #2

node #3 node #4
energy

data

Fig. 1: 4-nodes system

We advocate a modular design
framework where an energy-driven
computing system is defined by dis-
tributed nodes interacting with each
other (see Fig. 1). A node is a
heterogeneous component that can
integrate processing elements, an
energy harvester (e.g. solar panel),
an energy buffer (e.g. battery), and
a local controller managing the node w.r.t. its environment.
We consider solar energy as it is reasonably predictable using
existing weather forecast databases [3]. While such distributed
systems usually support data migration between different nodes,
a salient feature of our envisioned system is inter-node energy
transfer. This is made possible by an unprecedented power
crossbar we recently defined [4]. Thanks to this feature, when a
node is running out of energy, it can fetch energy from remote
nodes to continue processing locally, instead of offloading its
computations onto distant nodes. Indeed, a fixed-length period
of data migration is an order of magnitude more energy-
demanding than a similar period of local computation [5].

We adopt stochastic hybrid automata and statistical model-
checking (SMC) [6] to implement our framework. Such au-

tomata generalize timed automata by using continuous variables
in place of clocks. In addition, clocks can have various rates,
specified by either constants or expressions on variables in the
form of ordinary differential equations. In SMC, properties are
verified on randomly generated and monitored simulation runs
of a system. Then, statistical analysis is applied to compute
an estimate of the probability for a model to satisfy some
properties, up to a certain confidence degree. While traditional
symbolic model-checking enables to verify properties with
100% confidence, this is usually very expensive (even unfea-
sible) for huge systems. SMC overcomes this scalability issue
by bounding the probability of making an error in verification
via the number of simulation runs.

Our contribution. We define the main components of
energy-driven computing systems in the well-known Uppaal
tool: applications, execution platforms, energy harvesting, and
buffering. The components are described by automata that can
be easily instantiated and extended. They are analyzable with
Uppaal SMC. Through a simple yet relevant case-study, we
address the energy storage minimization in a distributed system
that executes a real-time application under deadline constraints.
Then, we show how energy migration in such a system helps
sizing the energy buffers for reducing their overall cost.

II. RELATED WORK

Albeit the high demand for simulation and debugging frame-
works in energy-driven computing, only a few candidate studies
exist [2]. In [7] [8] authors focus on micro-scale systems (RF
and wireless sensor nodes) and address the erratic dynamics
of harvesting sources. They leverage current-voltage traces,
generated from real energy harvesters, to reproduce and pre-
dict realistic harvesting conditions for testing in the lab. The
Ekho emulator [7] fulfills this demand and favors repeatable
experiments. The energy-neutrality of a system is achieved by
applying workload management techniques [8]. None of the
two approaches provides fine-grain introspection capabilities of
system behaviors, which matters much for performing a proper
sizing of the energy subsystems (harvester, energy buffers etc.).

In [9], a system prototyping flow based on a simulator of
non-volatile processor is proposed for IoT. It takes as input
the power traces of the harvester and the execution platform
characteristics to analyze the temporal and energy behavior of
a system. The authors studied the impact of different capacitor
sizes. While their approach is relevant, there is no attempt to
model a realistic energy harvester which also has an important
impact on the proposed analysis flow. The CleanCut approach
[10] adopts a software-oriented design for preventing program
state corruption in energy harvesting devices. Energy harvesters
are not explicitly addressed here, contrarily to energy storage.

Unlike the above studies, we here advocate a high-level
design-time approach for holistic modeling and evaluation of
energy-driven multiprocessor systems. The resulting framework
is flexible enough to model all features of the target systems.
Thanks to SMC, one can explore various system properties
with an acceptable level of confidence. A previous work [11]
already applied Uppaal SMC to battery-aware task scheduling
in satellite systems. The authors modeled a kinetic battery as a

stochastic hybrid system and study its performance. The present
work differs from [11] by proposing a system-level approach
for designing distributed systems supporting energy transfer.

III. FRAMEWORK FOR ENERGY-NEUTRAL SYSTEMS

Our framework consists of parameterized automata templates
associated with the system components. An automaton consists
of states and transitions. A state can be associated with invariant
properties and user-defined rates (exponential probability dis-
tributions). Transitions between states can be associated with
Boolean conditions, synchronizations via a channel c (using
the primitives c? and c!), and updates of variables and clocks.
For the obvious sake of concision here we will merely illustrate
these notions through the subsequent system modeling.

A. Computing components

Our computing system modeling is inspired by the schedul-
ing framework demo example provided in Uppaal [12]. We
borrow three concepts from this framework: task, resource (i.e.
processing element) and scheduling policy. However, we extend
the former two concepts to reason on energy, beyond temporal
properties. The static parameters tid and rid are respectively
used to distinguish different task and resource instances.

The considered task model is shown in Fig. 2, with one such
an automaton instance per task. It originally captures periodic,
sporadic or aperiodic task execution and takes into account
inter-task dependencies. These can be set via the task graph
attributes in the Uppaal model [12]. We extend this model to
manage a task when its executing resource is running out of
energy. In this case, the task is suspended and enters a Frozen
state (see Fig. 2) until energy becomes available which then
resumes task execution. In case its deadline is missed, the task
goes to an Error state. Note the use of a stopwatch in Uppaal
modeling, via the invariant expression x’==0 to temporarily
freeze the execution time of the task. When the task returns to
the Ready state (i.e. this state of the automata denotes either a
task is being ready for execution or the task is running), the time
progress is resumed via the invariant x’==isRunning(). The
Ready state has a rate of exponential of 106, which determines
the probability of leaving the state in SMC (the higher the rate,
the sooner the state is left whenever possible).

Beyond the task model, we also extend the resource model
(Fig. 3), to account for its dissipated power during task execu-
tion. From the initial state Idle, a ready task is either inserted
in a waiting queue when the resource is already occupied
by other tasks (denoted by !empty()), or directly executed.
On completion, the resource executes the remaining tasks if
any, or returns to Idle state. In this paper, we introduce a
cost variable dissipated_power[rid], characterized by the
resource identifier rid. Power dissipation occurs when the
resource automaton is in the InUse state, meaning a task is
being executed (among those assigned to this resource). For
the sake of simplicity, we consider a cost formula consisting of
the product of three terms. The term pow_coeff[rid] charac-
terizes the microarchitecture complexity of the resource, which
has a direct impact on both dynamic and static power. Typically,
an application-class processor will dissipate more power than

Fig. 2: Task template

Fig. 3: Execution resource template

Fig. 4: FIFO (left) and Fixed-Priority (right) scheduling policies

a microcontroller since its microarchitecture is more complex,
e.g. in terms of pipeline depth, branch prediction. Both homo-
geneous and heterogeneous multiprocessor platforms can be
modeled via different values for pow_coeff[rid]. The term
load[front()] denotes the workload intensity of the running
task. The identifier of this task is obtained via the front()
function defined locally in the resource template. The term
energyAvailable[rid] is equal to 1 when enough energy is
available for processing, 0 otherwise.

Finally, we use the task scheduling policies modeled in [12].
They are invoked on the transition between the states st1 and
st2 (see in Fig. 3). In Fig. 4, the left-hand side policy inserts
tasks in waiting queues according to the First-In-First-Out order
while the other one exploits task priorities. Here, buffer[..]
is used as a task waiting queue of each resource.

B. Harvesting system components
A solar panel model is shown in Fig. 5. It outputs power ac-

cording to a local function defining daily irradiance conditions,
invoked on the self-loop transition, as follows:
double solar_panel(double gTime) {

const double PI=3.14159265; double totalPow, result;
double timeOfTheDay = fmod(gTime,DAY);
irrad = HEIGHT * ((1/(SIGMA * sqrt(2.0*PI))) *

exp(-((timeOfTheDay + OFFSET - MU) *
(timeOfTheDay + OFFSET - MU)) / (2*SIGMA*SIGMA)));

return irrad * panel_area * conv_eff * loss_coeff;
}

The variable timeOfTheDay indicates the time in minutes
during a day, hence the fmod modulo function applied to the

input parameter gTime, a global increasing clock. The value of
the constant DAY is 1440, i.e. number of minutes in a full day.
Then, we express the daily solar irradiance, irrad, by using
the probability density function of the Gaussian distribution (the
constants MU and SIGMA are the mean and standard deviation of
the distribution), multiplied by the constant HEIGHT to upscale
the peak value of the curve above [0,1]. To capture different
sunrise scenarios, we introduced the OFFSET constant. Then,
the solar panel output is given by the product of irrad,
panel_area, the panel conversion efficiency conv_eff, and a
loss coefficient loss_coeff related to the power transfer from
the panel to energy storage.

The energy storage mechanism is modeled via a rechargeable
battery manager shown in Fig. 6. The static parameter bid

identifies each manager instance. Each battery is initially
assumed to be full. In the corresponding state, we use an array
of hybrid clocks battery_energy indicating the current energy
budget. The invariant battery_energy[id]’==0 freezes the
evolution of each clock in Full and Empty states. To estimate
the amount of time during which a battery has been empty, we
use a Stopwatch via the clock array depleted. Only the in-
variant of the Empty state allows such clocks to progress, noted
depleted[id]’==1. When the energy of a battery decreases,
it goes to the Nominal state. The associated invariant for
battery_energy[id] is a derivative equation which therefore
integrates power (solar panel power minus dissipated power)
over time for keeping track of battery level. When the energy
in the battery is depleted, the automaton switches to the Empty

Fig. 5: Solar Panel

Fig. 6: Battery manager

Fig. 7: Energy-driven system controller

state. It will return in Nominal above a user-defined power
threshold for recharging.

To orchestrate the interaction between the computing and
harvesting components, we devise a bridge called the energy-
driven system controller in Fig. 7. It is associated with each sys-
tem node and characterized by the static parameter id. When-
ever a battery becomes empty (denoted by the empty_batt[
id] channel emitted by its manager), the associated execution
resource and task are suspended. This is expressed via the
suspend[id] channel sent to the task and resource automata.
Whenever the battery manager emits a synchronization re-
quest on the replenished_batt[id] channel, the controller
resumes the task execution on its assigned resource, modeled
via the resume[id] channel.

IV. APPLICATION OF THE FRAMEWORK

A. A first design evaluation
We address the problem of minimizing the energy storage

required for sustaining energy-neutral execution under deadline
constraints. We illustrate the modeling on an application graph
inspired by the Rosace case-study [13]. While this real-time
application originally operates in a few seconds, we deliberately
modified its time scale to the range of minutes (see Tab. I). This
enables to analyze relevant execution scenarios spread over a
whole day, under different irradiance conditions.

TABLE I: Rosace application (bcet, wcet and prio respectively
denote the best/worst-case execution times and task priority).

tasks init
offset

min/max
periods,
deadline

offset bcet,
wcet resource prio load

T0 0 120 0 5 0 1 6
T1 0 120 0 5 1 1 6
T2 0 120 0 10 1 1 13
T3 0 240 0 5 0 1 6
T4 0 240 0 5 1 1 6
T5 0 240 0 5 2 1 6
T6 0 240 0 5 3 1 6
T7 0 240 0 5 4 1 6
T8 0 480 0 5 0 1 10
T9 0 480 0 5 1 1 10
T10 0 480 0 5 4 1 10

We instantiate five nodes, each comprising an execution
resource, a solar panel, a battery manager and an energy-
driven controller, resulting in as many automata instances in

the system. Each execution resource features an Odroid-XU
compute board [14], with a maximum power dissipation of
13W. We consider a solar panel area of 4 dm2 with a conversion
efficiency of 0.23. In each energy transfer transaction, a loss
of 5% is applied. As for harvesting conditions, we consider
clear-sky daily irradiances in the mediterranean city Girona in
Spain, during June and December, with a maximum peak values
of 973 and 423 W/m2 respectively. They are obtained from a
public database [3], developed by the European Commission’s
science and knowledge service for open research.

To address the problem of interest, we first model a conven-
tional system setup where energy is always available (i.e. grid-
connected system). This is obtained by initializing all elements
of the array energyAvailable to 1, and by composing the
instances of the automata shown in Figs. 2 – 4. Then, we
determine application mappings and schedules on the multi-
processor platform, which violate no deadline. Tab. I shows a
task/resource mapping that meets this requirement.

Now, let us consider the same system, but connected to
a calibrated harvesting system, i.e. augmented with instances
of the components models shown in Fig. 5 – 7. The energy
availability of the system depends on the irradiance conditions.

We apply Uppaal-SMC to empirically explore candidate
battery sizes for a 2-days execution of the system. In practice
we instantiate the system with different battery sizes, and we
repeatedly check the following query of the model-checker:
Pr[<= 2*DAY] (<> exists(i:t_id) Task(i).Error)

This query estimates the probability that any task goes to an
Error state, i.e. deadline violation. It enables us to quickly
identify admissible battery sizes with a first confidence interval,
through about 29 simulation runs, in less than 2 minutes (on a
desktop computer including an Intel i7-8700 CPU at 3.20GHz
with 31.2GB memory).

Once a reduced set of candidate battery sizes is identified,
we confirm the statistical relevance of each size value. We
then check the model again for a very high number of random
simulation runs. For this purpose, we use the following query:
simulate [<=2*DAY; 1000] {...} : 1 : exists(i:t_id)

Task(i).Error

It checks whether any Task instance goes into an Error state,
for 1000 random simulation runs over two full days. The
dots appearing between the brace brackets can be filled with

some variables of the system model to monitor their evolution
towards a state satisfying the checking query. This is useful for
the model debugging. The evaluation time of each new query
instance takes about one hour. This justifies the exploration
space reduction using the first query. Tab. II summarizes the
minimum battery sizes in Watt-hours (Wh) obtained for 5
system nodes, which guarantee energy-neutrality and real-time
constraints in June and December. The total battery size in case
of homogeneous battery system is also given in the last column,
i.e. system with identical batteries of 23.4Wh for each node.

TABLE II: Min. battery size (Wh) to meet deadline constraints

B0 B1 B2 B3 B4 Total Total homogen.
June 4.7 16.8 1 1 1.7 25.2 84

December 6.7 23.4 1.7 1.7 3.3 36.8 117

Fig. 8 illustrates a 2-days system execution trace in De-
cember (Girona-D) with the corresponding battery sizing (time
scale is in minutes). Batteries’ evolution (i.e. the curves)
is shown together with the periodic power dissipation from
the resources/processors executing tasks. We observe that all
batteries can temporarily be empty in the night between the
two days, while still sustaining the system energy-neutrality.

(a) Power dissipated by periodic load (in Watt)

solar irradiation (W/m2)

(b) Battery energy evolution (in Watt-minutes)

Fig. 8: 2-days execution scenario (Girona-D)

B. Alternative design: integration of energy transfer

We explore a new system design aiming at reducing the
cost of the batteries under energy-neutrality and real-time
constraints. We extend the previous framework with energy
transfer capability between interconnected nodes, such that we
turn the battery array into a distributed energy pool: energy
stored in these batteries is mutualized across the whole system.
Another expected advantage is the system resilience improve-
ment through the integration of redundant nodes equipped with
batteries. Typically, a node with battery failure could remain
operational by fetching energy from remote batteries.

To support energy transfer, we only extend two components:
the battery manager and the energy-driven system controller.
In Fig. 9, the battery manager features energy fetching from
remote batteries when a local battery is empty, expressed via
a new channel fetched_energy[id]. In addition, when the
local battery gets empty upon an energy transfer towards remote
nodes, it is notified via the new channel notify[id]. In Fig.
10, the energy transfer is addressed by the bottom part of
the extended controller. It relies on a simple strategy here:
when a the local battery of a node contains more than 50%
of its total capacity, a remote node requesting energy transfer
(through its system controller) may fetch 50% of the local
battery; otherwise, all of the energy in the local battery is
transferred. The node providing remote nodes with energy is
randomly selected. A loss coefficient is applied to each transfer.

We configure and evaluate new designs including more
than 5 energy-sharing nodes. These are equipped with smaller
batteries such that their global capacity does not exceed the
setup found previously in Tab. II. The mapping of application
tasks is unchanged, i.e. 5 nodes are used for task execution.
The other nodes therefore only act as energy harvesters/storage
units making their energy available to the first 5 nodes.

Considering the same exploration process as for the initial
design, we focus on the battery size minimization problem.
After exploring different battery configurations for 2-days
execution in December in Girona, the selected solutions are
reported in Tab. III and include 2 heterogeneous and one
homogeneous configurations. For both heterogeneous configu-
rations we observe that the total energy required is marginally
higher than previously (due to energy transfer losses). Note
however the third homogeneous configuration which requires
over 65% less energy than previously (see Table II). This
shows a straightforward homogeneous design with one single
conventional 18650 battery (7Wh) would here prove enough.

TABLE III: Min. battery size (Wh) for 6 & 8 nodes in Girona-D

Nodes B0 B1 B2 B3 B4 B5 B6 B7 Total.
6 (het.) 5.8 10 5.8 5.8 6.8 4.2 – – 38.4
8 (het.) 5 6.8 4.2 4.2 5.5 4.2 4.2 4.3 38.4

8 (hom.) 5 5 5 5 5 5 5 5 40

Fig. 11 illustrates a valid 2-days execution trace of 8-nodes
system, with energy transfer. We can observe the multiple
energy migrations that occur between the mutualized batteries.

Beyond the cost consideration regarding the batteries, it
is interesting to check whether they highly differ w.r.t. their
emptiness duration for a 2-days execution. We use the following
Uppaal-SMC query to estimate the maximum time during
which the energy is depleted in each battery:
E[<=2*DAY; 1000] (max: depleted[...])

It estimates the maximum value of each clock component of
the array depleted (used in the battery manager model), across
1000 random simulation runs over 2-days. The computed delays
in minutes for the Girona-D scenario are reported in Tab. IV.
In both configurations, the batteries are empty between 4% and
9% of the time corresponding to the 2-days execution.

Fig. 9: Battery manager for energy sharing
Fig. 10: Energy-driven system controller for energy sharing

examples
of energy
transfer

situations

Fig. 11: Battery state (with transfer) over 2 days for Girona-D

TABLE IV: Percent. of time with empty batteries for Girona-D

Nodes B0 B1 B2 B3 B4 B5 B6 B7
6 (het.) 10.3 6.1 9 8.9 8.6 10.9 – –
8 (het.) 9.7 6.2 10.4 10.2 10.3 9.7 9.6 9.7

V. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a high-level modeling and analysis
framework devoted to energy-driven computing systems. We
used stochastic hybrid automata and SMC, which makes it
possible to quickly assess the energy-neutrality property of
candidate system configurations and therefore helps for hard-
ware component sizing. The case-study chosen for this paper
entails advanced features such as the innovative distributed
energy pooling technique with local decision making which
could be properly modeled and assessed with this framework.
The automata templates defined in the framework of this work
are made available in the Uppaal Model Repository [15].

Beyond the obvious refinement of the many physical models
(e.g. weather models, idle node power consumption, battery
wear), future work will rely on elaborating and assessing
smarter energy migration strategies. The guarantee of energy-
neutrality and QoS requirements could also rely on the co-
optimization of both the computing and energy subsystems.

REFERENCES

[1] Wiki., “Supercomp.” 2020, https://en.wikipedia.org/wiki/Supercomputer.
[2] S. T. Sliper, O. Cetinkaya, A. Weddell, B. Al-Hashimi, and G. Merrett,

“Energy-driven computing,” Philosophical Transactions of the Royal
Society A: Mathematica, Physical and Engineering Sciences, vol. 378,
no. 2164, pp. 1–4, Feb 2020.

[3] European Commission’s science and knowledge service for open research,
“PVGIS Tools,” 2020, https://ec.europa.eu/jrc/en/pvgis.

[4] F. Di Gregorio, G. Sassatelli, A. Gamatié, and A. Castelltort, “A
Flexible Power Crossbar-based Architecture for Software-Defined Power
Domains,” in 22nd European Conference on Power Electronics and
Applications (EPE’20 ECCE Europe), Lyon, France, Sep. 2020.

[5] B. Lucia, V. Balaji, A. Colin, K. Maeng, and E. Ruppel, “Intermittent
Computing: Challenges and Opportunities,” in 2nd Summit on Advances
in Programming Languages (SNAPL 2017), ser. Leibniz Int’l Proc. in
Informatics (LIPIcs), vol. 71, Dagstuhl, Germany, 2017, pp. 8:1–8:14.

[6] A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen,
“Uppaal SMC tutorial,” Int. J. Softw. Tools Technol. Transf., vol. 17, no. 4,
pp. 397–415, 2015.

[7] J. D. Hester, T. Scott, and J. Sorber, “Ekho: realistic and repeatable
experimentation for tiny energy-harvesting sensors,” in 12th ACM Conf.
on Embedded Network Sensor Systems, SenSys’14, Memphis, Tennessee,
USA, Á. Lédeczi, P. Dutta, and C. Lu, Eds., 2014, pp. 330–331.

[8] A. Savanth, A. Weddell, J. Myers, D. Flynn, and B. Al-Hashimi,
“Photovoltaic cells for micro-scale wireless sensor nodes: measurement
and modeling to assist system design,” in 3rd Int’l Workshop on Energy
Neutral Sensing Systems (ENSsys 2015), September 2015.

[9] Y. Wu, Y. Sun, Z. Jia, L. Zhang, Y. Liu, and J. Hu, “Prototyping energy
harvesting powered systems with nonvolatile processor (invited paper),”
in 2018 Int’l Symp. on Rapid System Prototyping (RSP), 2018, pp. 49–55.

[10] A. Colin and B. Lucia, “Termination checking and task decomposition
for task-based intermittent programs,” in 27th International Conference
on Compiler Construction, CC 2018, Vienna, Austria, 2018, pp. 116–127.

[11] Erik R. Wognsen, Rene R. Hansen, and Kim G. Larsen, “Battery-aware
scheduling of mixed criticality systems,” in Int’l Symp. On Leveraging
Applications of Formal Methods, Verification and Validation (ISoLA’14.
Springer, 2014, p. 208–222.

[12] Uppaal team, “Demo example - SchedulingFramework.xml,” 2020, http:
//www.uppaal.org.

[13] F. Boniol, Y. Bouchebaba, J. Brunel, K. Delmas, T. Loquen, A. Mas-
carenas Gonzalez, C. Pagetti, T. Polacsek, and N. Sensfelder, “PHYLOG
certification methodology: a sane way to embed multi-core processors,”
in Cong. on Emb. Real-Time Soft. and Sys. (ERTS), Toulouse, Fr., 2020.

[14] Hardkernel, “Odroid-XU big.LITTLE board,” 2020, https://www.
hardkernel.com/shop/odroid-xu/.

[15] Uppaal team, “Uppaal Model Repository,” 2020, https://deis-tools.github.
io/uppaal-models/CaseStudies/EnergyNeutrality.

