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Aircraft flutter suppression: from a parametric model to robust control

Alex dos Reis de Souza1,†, Charles Poussot-Vassal1, Pierre Vuillemin1, and Jesus Toledo Zucco1

Abstract— This paper deals with the suppression of flutter
– a type of dynamic instability provoked by the interaction of
aerodynamic, inertial, and flexible forces acting over a flexible
structure immersed in a fluid – through robust control methods.
Since this problem is heavily dependent on flight conditions
(such as altitude, speed, etc), an accurate controller synthesis
requires a representative model. The Loewner framework offers
tools for the generalized realization problem, allowing the
construction of such a model using sampled frequency data
responses and simple algebraic machinery. This tool helps build
a parametric model of an aeroelastic system used then to
synthesize a scheduled, dynamic output-feedback robust control
law that damps the flexible mode responsible for the appearance
of flutter.

I. INTRODUCTION

Flutter is a potentially destructive phenomenon occurring
in flexible structured, such as bridges, buildings, or aeronau-
tical structures, when immersed in a fluid flow field. Indeed,
it is a self-excited type of instability, characterized by the
interaction of inertial, elastic and aerodynamic forces acting
in a structure [1].

Focusing on aeronautics, Active Flutter Suppression (AFS)
– a topic among many regarding active control technology
for aircraft – has been an active field of research over the
last decades [2]. AFS algorithms look for controllers that, by
actuating over the available control surfaces (such as flaps,
ailerons, and elevators), damp the system and avoid flutter
of happening in the flight envelope.

In the current literature, this problem is tackled by con-
sidering either a 2D airfoil model, or complex models
usually obtained through high-fidelity simulators (employing,
for instance, finite-element methods). In the first scenario,
[3] reviews several adaptive and robust control techniques.
Zhang et al. [4] propose an aeroelastic vibration control
showing robustness to external gust perturbations, while in
[5] a similar result by considering an adaptive, partial state-
feedback controller is proposed. Iannelli et al. [6] use the
linear robust control framework to analyze the effect of
uncertainties on the analysis of flutter.

The second scenario is closer to industrial needs, but
imposes several challenges since the models are more com-
plex and often highly dimensional. Nevertheless, interesting
results have been obtained notably using robust control. For
instance, [7] derive a robust controller through µ-synthesis
using an uncertain LTI system, while [8] seeks to amelio-
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rate this controller by constructing a worst-case uncertainty
scenario through a multi-frequency gain maximization.

From the perspective of Automatic Control, AFS can be
seen as a parametric problem: this phenomenon is dependent
on multiple factors, such as the aircraft velocity or its
flight altitude (both being linked for a given Mach number).
Furthermore, a candidate solution should consist of (i) a
controller that guarantees stability over the whole flight
envelope without disrupting control laws applied to other
subsystems of the aircraft (e.g., load alleviation or flight
mechanics) and (ii) a mechanism coping with the change
of flight conditions.

Therefore, it is clear that (parametric) modeling plays a
pivotal role in this problem. The Loewner framework (LF)
– introduced in [9] – constitutes a data-driven framework
for model reduction and identification by interpolation. This
technique creates a surrogate model through Lagrange ratio-
nal interpolation of the available sampled frequency response
data. An advantage is that this interpolant can be constructed
directly from the data set through special matrices: the
Loewner and shifted Loewner matrices. In the context of
parametric modeling, a very similar LF is employed in this
paper, making use of similar Loewner matrix structures [10],
[11], [12].

Contribution statement: The contribution of this
application-oriented paper is twofold: (i) to obtain a
parametric reduced-order aeroelastic model prone to flutter
through very recent Loewner interpolatory methods, based
on aero-servoelastic aircraft data, and (ii) using this
model, synthesize a robust dynamic controller that aims
at preventing the loss of damping of the aircraft. The
model, as well as the controller, are parameterized by the
flight altitude. By exploiting this parametric dependence, a
robust controller verifying all objectives and constraints –
typically industrial or certification requirements – can be
obtained through state-of-the-art linear control techniques.
Furthermore, the used data points follow a format that is
standard to aeroelastic engineers, rendering the approach
proposed in this paper an end-to-end framework for flutter
modeling, analysis and control design.

Notations: The set of real and complex numbers of
dimension n are denoted, respectively, by Rn and Cn. We
denote the complex variable ı =

√
−1. The identity matrix

and the null matrix of dimension p read, respectively, Ip and
0p, while diag(·) represents a (block) diagonal matrix. The
Linear Fractional Transformation (LFT) of blocks M and N
are represented by Fl,r(M,N), where the indexes l and r
indicate, respectively, a lower or an upper LFT. The Laplace
variable is represented by s ∈ C and the parameter vector is



denoted θ ∈ Rnp .
Paper organisation: The paper is organised as follows:

Section II presents the considered aircraft flutter problem,
justifying the use a data-driven methods for the construction
of a parametric reduced-order model (pROM), which is
carried out through the LF, as detailed in Section III. Then,
Section IV uses the pROM to synthesize a flutter controller
tackling the performance objectives and constraints. Conclu-
sions and perspectives are given in Section V.

II. THE FLUTTER PROBLEM

A. Parametric aeroelastic flutter model description

The aero-servoelastic (ASE) aircraft model concerned
here can be described by the following components: (i)
the structural part, characterized by the generalized inertia
M(θ), stiffness K(θ), and damping D(θ) matrices, (ii) an
aerodynamic model (representing, for instance, generalized
aerodynamic forces) described on the frequency-domain by
Q(s,θ), (iii) the sensor locations defined by C and (iv) the
actuator transfer driven by B(s,θ).

The (parametric) aeroelastic model coupling the structural
and aerodynamic parts is given by:

(s2M(θ)+ sD(θ)+K(θ))x = Q(s,θ)x+B(s,θ)u,

y =Cx,
(1)

where θ ∈Rnp is the parameter representing the flight point
(e.g., altitude, Mach number, mass), x ∈ Cnx is the internal
state vector, u ∈Cnu is the input control signal and y ∈Cny is
the available measurement vector. Then, the matrices M(θ),
D(θ), K(θ)∈Rnx×nx , Q(s, p)∈Cnx×nx , B(s,θ)∈Cnx×nu and
C ∈ Rny×nx . The term B(s,θ) corresponds to the actuator
matrix which, in this work, encompasses the inner and outer
ailerons and the elevators (all controlled symmetrically). The
term matrix C relates to the measurements, being indepen-
dent of the flight parameter θ . One important objective of
model (1) is to encompass (i) the input-output behaviours
from actuators to the measurements and (ii) to reproduce the
stability properties according to the θ parameter value. With
this in mind, let us define the flight envelope free of flutter
as Θ f = [θ f ,θ f ]⊂ Θ, where θ f < θ f ∈Rnp and Θ is the set
containing all the considered flight points.

B. Flutter problem at a glance and considered data

Flutter objective: Considering (1) and the description
above, the active flutter control (AFC) problem consists
in designing a feedback control law K (not necessarily
static) that extends the flutter free domain, i.e., the domain
Θ f = [θ f ,θ f ] (without control) is smaller than a domain

[θ
(K)
f ,θ

(K)
f ] (in closed-loop), and is obtained based on a –

parametric – dynamical model (see details in Sections III
and IV).

Available data and considered set-up: In the set-up con-
sidered here, (1) has the following characteristics: nx = 89
internal variables, nu = 3 inputs (the inner and outer ailerons,
and elevator) and ny = 1 output (which is the result of an
output blending, a procedure that optimizes a weighted sum

of three measured quantities – in this work, the pitch rate
and two load factors measured on the fuselage – aiming at
highlighting the appearance of flutter). Then, the altitude is
assumed as the single ”moving” parameter (see Remark 1),
while other parameters are frozen (Mach is set at 0.86 and
the mass is set to the half tank configuration).

In addition, the aerodynamic components Q(s,θ) and
B(s,θ) are known only at few sampled frequency and
parameter points, i.e., Q(ıωn,θm) and B(ıωn,θm), where
n = 1, . . . ,N = 100 and m = 1, . . . ,M = 21. Note that these
values are obtained through dedicated high-fidelity numerical
solvers. Similarly, the matrices relating to the structural
part – M(θ), D(θ), K(θ) – are also known at frozen
parameters values θm only, i.e., one has only access to
M(θm),D(θm),K(θm).

Grounded in these considerations, the flutter dynamical
model allows obtaining data in the frequency-domain. Then,
one is able to evaluate (1) at (limited) frozen complex and
parametric values sn = ıωn ∈ C and θm ∈ R, leading to
responses Φnm ∈ Cny×nu . Therefore, the following triplet

{sn,θm,Φnm}N,M
n,m=1 (2)

constitutes our database and is henceforth simply referred as
data.

Remark 1: (On pLTI and LPV models): In this work,
we consider parametric linear time-invariant (pLTI) models
instead of linear parameter-varying (LPV) ones. Indeed,
model (1) is only defined in the frequency-domain and for
discrete {θm}M

m=1 values, as explained in (2). As a matter of
fact, no information can be retrieved on the dynamics of θ ,
thus it is mathematically tricky to define such a model as
LPV. Therefore, we assume that this parameter is a slowly
varying one.

III. PARAMETRIC REDUCED ORDER MODELING

A. Identification in the Loewner framework

The LF offers tools for the reduction, approximation, and
identification of dynamical systems based on interpolation.
It was initially proposed for the non-parametric case in [9],
and then extended in the parametric one in [11] (restricted to
SISO, SIMO, and MISO systems). Latter, extensions to the
(square) MIMO parametric were proposed by [13] and more
recently by [12] for general rectangular MIMO systems. In
[9], the two-sided LF was introduced, while its one-sided
version is preferred in [11], [13], [12] (this point is briefly
discussed in this section). A recent overview of the LF is
presented by Gosea et al. in [14].

Here, the objective is to use LF tools to build a pROM
of an ASE model prone flutter model through the available
data (2), obtained from the empirical and partially known
model (1). The envisaged pROM must, ideally, match these
data and preserve stability (obviously, for configurations that
are initially stable). Indeed, the final objective is to use this
pROM on the synthesis of a controller that damps the ASE
system and suppress flutter.



B. One-sided Loewner: two-variables case

The one-sided two-variables LF version may be employed
to construct the pROM based on data (2). From this data, let
us consider distinct data subsets λi,µk ∈ C and π j,νl ∈ R
organised as (where entries of Φ are given by [Φ]nm, n,m =
1, . . . ,N,M):

[s1, . . . ,sN ] = [λ1, . . . ,λn]∪ [µ1, . . . ,µn],
[θ1, . . . ,θM] = [π1, . . . ,πm]∪ [ν1, . . . ,νm],

Φ =

[
wi j Φ12
Φ21 vkl

]
,

(3)

for which one seeks H(s,θ) =C(θ)(sE−A(θ))−1B(θ) such
that

H(λi,π j) = wi j i = 1 . . .n and j = 1, . . . ,m,
H(µk,νl) = vkl k = 1 . . .n and l = 1, . . . ,m.

(4)

Remark 2 (Data partitioning): Throughout this section,
let n−1 and m−1 define the order of rational approximation
of the model H(s,θ) along s and θ , respectively. Interested
reader may refer to [11], [12] and to the recent overview
[14] for further details.

To construct a realization Σ(θ) of the transfer H(s,θ)
that ensures (4), one constructs the one-sided, two-variables
Loewner matrix given by

L̂2 =
[
L⊤

2 L⊤
λ

L⊤
π

]⊤
, (5)

where

[L2]
k,l
i, j =

vkl −wi j

(µk −λi)(νl −π j)
,

Lλ = diag(Lλ1 , . . . ,Lλn),
Lπ =

[
diag

(
Lπ1(:,1), . . . ,Lπm(:,1)

)
, . . . ,

diag
(
Lπ1(:,n

)
, . . . ,Lπm(:,n)

)]
,

(6)

where [Lλi ] is the one variable Loewner of the i-th row of
Φ, interpolating at nodes (λi,νd) (for d = 1, . . . ,m):

[Lλi ] =


Φi,m+1−wi,1

ν1−π1
. . .

Φi,m+1−wi,m
ν1−πm

...
. . .

...
Φi,M−wi,1

νm−π1
. . .

Φi,M−wi,m
νm−πm

 (7)

and where [Lπ j ] is the one variable Loewner of the j-th
column of Φ, interpolating at nodes (µt ,π j) (for t = 1, . . . ,n):

[Lπ j ] =


Φn+1, j−w1, j

µ1−λ1
. . .

Φn+1, j−wn, j
µ1−λn

...
. . .

...
ΦN, j−w1, j

µn−λ1
. . .

ΦN, j−wn, j
µn−λn

 (8)

According to [11], [12], by choosing r+1= n and q+1=
m, (5) satisfies rank(L̂2) = rank(L2) = nm− (n−N)(m−
M). Then, solving L̂2c = 0 for c ̸= 0 leads to the Barycentric
rational interpolating function

H(s,θ) =
∑

r+1
i=1 ∑

q+1
j=1

ci jwi j

(s−λi)(θ −π j)

∑
r+1
i=1 ∑

q+1
j=1

ci j

(s−λi)(θ −π j)

, (9)

satisfying (4). From (9) and using the Lagrangian basis
presented in [10], one may construct a representation of
H(s,θ) given by a parametric state-space realization of
dimension r+min(nu,ny),

Σ(θ) :
(

E,A+∑
q
k=1 Aiθ

q,B+∑
q
i=1 Biθ

q,C,0
)
. (10)

Remark 3: (About q and r): Orders q and r are defined
by the designer. In practice, one may apply the single-valued
Loewner rank revealing factorization for each Loewner Lλi
and Lπ j matrices and chose the maximum order along Lλi
for q and Lπ j for r (see [11]).

Remark 4: (About the one-sided single-variable LF): In
the non-parametric case (or single-variable case) θm is a
singleton, i.e., M = 1 in (2). In this case, one constructs the
one-sided Loewner matrix L1 as

[L1]ik =
vk −wi

µk −λi
∈ Cny×nu . (11)

Solving L1c = 0 for non-trivial c leads to (the non-minimal)
rational function H(s), which may be expressed in the
Lagrangian basis as (r+1 = n)

H(s) =
∑

r+1
i=1

ciwi

(s−λi)

∑
r+1
i=1

ci

(s−λi)

. (12)

In this case, the rth order rational function H(s), equipped
with a realisation of order r +min(nu,ny), interpolates the
available data. The interested reader may refer to [10], [13]
for more details.

Remark 5: (About the two-sided single-variable (tangen-
tial) LF): In the two-sided single-variable case, the main
difference is the apparition of a Loewner (as in L1) together
with a shifted Loewner matrix denoted M1. Both L1,M1
constitute the Loewner pencil. Without loss of generality and
referring to [9], we show that H(s) = W(−sL1 +M1)

−1V
(tangentially) interpolates the data (W and V being given
by the data partitioning wi and vk). In addition, if the data
have been generated by a linear model, the rational order
r = rank(sL1 −M1) = rank([L1,M1]) = rank([LH

1 ,MH
1 ]

H)
recovers the one of the generating system, as well as its
McMillan degree ν is given by ν = rank(L1). It is as-
sumed that enough data is available. In conclusion, the two-
sided LF allows the approximation and identification based
on frequency reponses, while also encoding fundamental
realisation-oriented properties, e.g., the McMillan degree and
the minimal realisation order [14], [15]. However, this is not
true for the parametric case, where this point stands as an
open problem.

C. Application on the flutter use-case
Applying the LF tools described above to the problem

stated in Section II, one obtains a pROM describing system
(1) with a rational order r = 30 and with a (rational)
parameter dimension q= 1. The parameter θ ∈Rq represents
the flight altitude. The state-space realization, which has an
order nx = 31, reads

Σ(θ) : (E,A+A1θ ,B+B1θ ,C,0). (13)



Fig. 1. Frequency sigma plot for varying altitudes. Original data (2) (grey
dots) and interpolated model H(s,θ) of order k = 30,q = 1 (orange lines).

Fig. 2. Eigenvalues for varying altitudes of the interpolated model H(s,θ )
of order k = 30, q= 1 (orange dots). The flutter dynamic is mainly governed
by the right triangle eigenvalues.

The data along sn are logarithmically spaced between ı10 and
ı100, with N = 100. For the parameter θ , which is enclosed
in the interval θ ∈ Θ = [2.82, 3.12]× 104 ft, the available
data is linearly spaced in such an interval with M = 21.

Instability, caused by the loss of damping, can be observed
for all θ ≤ θ f = 2.95×104 ft. Fig. 1 depicts the evolution of
the singular values of H(s,θ), also highlighting the appear-
ance of a resonant peak in a frequency range ω ∈ [23,25]
rad/s.

In complement, Fig. 2 shows the eigenvalues of the pROM
as a function of the parameter θ . One notices that the
crossing of the imaginary axis happens in the same frequency
range, evidencing that such a peak represents the frontier
between unstable/stable eigenvalues. This point plays an
important role in the control design, as it will be discussed
in the next section.

IV. OUTPUT-FEEDBACK ROBUST CONTROLLER

This section aims at designing a robust controller exploit-
ing the pROM obtained in the previous section. The control
problem will be tackled considering the block scheme shown
in Fig. 3. Although seemingly unusual, this configuration
takes δu as the pilot command to the control surfaces –
command which is taken into account together with the

Fig. 3. Illustration of the implemented control block scheme. Here, G and
Mk are nominal systems, while ∆(θ)) and ∆(θ) represent their uncertainty
blocks. The signals y∆ and z∆ are internal and relate to the link the nominal
and the uncertain blocks.

(internal) stabilizing signal computed by controller K. This
controller must endow the closed-loop system with the
following features:
(C1) It must extend the stability envelope defined by P(θ),

without deteriorating stability of the points that are
already stable;

(C2) It must not change the low-frequency behaviour of
the aircraft (since it relates to its flight mechanics and
maneuverability);

(C3) It must be stable and have roll-off characteristics (to
avoid the excitation of high-frequency modes).

Since a controller with a fixed structure is envisaged, this
section will use the structured H∞ synthesis proposed by
[16], implemented in Matlab as the routine hinfstruct,
whereas the computation of the structured singular values is
carried out using the SMART library of the SMAC toolbox
[17].

A. Robust controller design

Considering the scheme shown in Fig. 3, let

P(θ) : Wo(s)H(s,θ)Wi(s)

denote the generalized plant containing the uncertain plant
(i.e., the pROM) plus input/output performance weighting
functions Wo(s) and Wi(s).

According to the objective of attenuating the resonating
peak, Wo(s) is a performance filter relating to the H∞ norm
(or, equivalently, the peak shown in Fig. 1), i.e., Wo(s) =
∥Tyu∥−1

∞ , whereas Wi(s) relates to the dynamic behavior of
the controller. Notably, in order to respect the requirements
(C2) and (C3), this performance filter should have roll-off
and a low-frequency gains.

The controller proposed in this paper is a parametric,
dynamic, output-feedback one, being described by the fol-
lowing matrices:

K(θ) :

{
ẋc = Ac(θ)xc +Bc(θ)y
u =Cc(θ)xc

(14)

where Ac(θ) ∈ Rnc×nc , Bc(θ) ∈ Rnc×ny , and Cc(θ) ∈ Rnu×nc

are the matrices to be determined. This controller – which is

40 

30 

20 

-20 

-30 

-40 
10' 102 2.8 

Pulsation [rad/s] 

90~-------- ~~-
80 ·::-:; •. ,.::.:::·····œttë-------•~ _.l 
70 .........••• :•···::::----------i ···... 1 

~:: ······........... - 1 
]40r-,,,::----__: 0 

:0 ....... · .............. _ ... :::: .... :: ..... --:::;.,-=:-__ _.) 

-1 

X 104 

Altitude [ft] 

Ôu 

: i : 
+ ' 

' ' 
: 1 1 

: 1 

' 1 
1 



scheduled regarding the altitude, i.e., parameter θ – can be
obtained through the solution of the following optimization
problem:

K(θ) = arg min
K ∈ K
θ ∈ Θ

γ, (15)

where

γ = ∥Fl(P(θ),K(θ))∥∞. (16)

The set K ⊆H2 represents the set of all controllers with
the desired structured given by (14). Under this constraint,
K will be restricted to such a structure, while automatically
fulfilling the stability requirement imposed by (C3).

Remark 6: Note that one can further structure controller
(14) by defining the parameter-dependent matrices as affine
(e.g., Ac(θ) = Ac,0 +Ac,1θ ). In this form, the controller can
be easily rewritten as an LFT, as initially depicted in Fig. 3.

Design through a multi-model approach: An option for
robust synthesis is the multi-model approach, which consists
in concatenating several constraints into a single transfer
matrix when solving (15). Each constraint might relate, for
instance, to different requirements or even different plants
sampled w.r.t. θ , i.e., (16) becomes

H = diag(H1, . . . ,Hn)

where each Hi can be rewritten on the form Fl(P(θi),K(θi)).
Note that, in such a scenario, different performance filters
might be used. The solution of (15) will represent the worst-
case H∞ norm over all these generalized constraints.

However, due to this sampling over θ , no robust stabil-
ity certificate can be directly obtained from this synthesis.
Nevertheless, an interesting way out is to use µ-analysis a
posteriori to analyze the robust performance of the obtained
closed-loop, i.e., to infer how robust it is regarding possible
variations of considered the uncertainty.

B. Synthesis and evaluation of the controller

Following the discussion presented in the previous sub-
section, we select nc = 4 and the performance filter for the
control signal as

Wi(s) = Gl p(s)Gpb(s),

Gl p = kl p

(
kl p/ω0s+1
1/ω0s+1

)2

, Gpb =
s2/k2 + k3ωc +ω2

c

s2 + k3ωcs+ω2
c

Note that Gl p and Gpb are, respectively, a high-pass and
band-pass filter. Their parameters are chosen as kl p = 50,
ω0 = 10 rad/s, ωc = 25 rad/s, k2 = 0.025, and k3 = 4. With
this filter, one penalizes the influence of the controller in
frequencies below 10 rad/s, while enhancing its influence
around 25 rad/s.

We sample 6 linearly spaced values of θ ≤ θ f (i.e., among
the unstable flight points) in order to build the generalized
constraints. The solution of (15) with hinfstruct returns
γ = 0.418, taking approximately 1 hour of execution. The
controller obtained is depicted (in terms of its singular
values) in Fig. 4, along with the inverse of the performance

Fig. 4. Controller template (Wk) used for the synthesis (blue), singular
values of the obtained controller for different θ (orange).

filter Wi weighted by γ . Conclusively, one has that, for
any realization of θ , (i) the worst-case transfer respects the
imposed template, and (ii) the controller is stable.

Performing the µ-analysis on the resulting closed-loop,
one obtains µ ∈ [0.5699, 0.9390]. According to [17], since
the structured singular values are below one, this loop is
robustly stable w.r.t the structured uncertainties considered.
This means that the ASE remains stable for any θ ∈ Θ,
representing an extension of the flight envelope (regarding
the altitude and for the fixed Mach number) by around
1.51×103 ft.

The effectiveness of the flutter-suppressing controller can
also be evaluated through Figs. 5 and 6. Fig. 5 shows that the
resonant peak is attenuated by roughly 30dB, while keeping
the lower frequency transfers untouched. Fig. 6 illustrates
the increasing of the (minimum and flutter-related) damping
ratio in both open- and closed-loop configurations.

Finally, Fig. 7 illustrates the pole-zero map for both
configurations. As it can be seen, the controller enhances
the damping of the poles related to flutter, moving them
away from the imaginary axis. It is worth noticing that the
controller does not touch the poles in lower frequencies, as
imposed by requirement (C1).

V. CONCLUSIONS & PERSPECTIVES

In this paper, we have presented a complete end-to-end
methodology for the construction of a parametric aeroelastic
model, which is then used for the design of a robust
controller aiming at flutter suppression. The methodology is
illustrated using data from a case study of an aeronautical
industry. Since this data has a standard format as used by
aeroelastic engineers, the proposed methodology is readily
applicable to real-life applications.

The parametric model was constructed through the
Loewner framework, a data-driven and computationally in-
expensive tool for reduction and identification. The robust
controller – synthesized through a multi-model H∞ approach
– is scheduled w.r.t flight altitude and helps to damp the

0 

~ -10 

2- -20 

"' gj -30 

~ -40 

~ -50 

~ 
b.O -60 
i::: 

Controller channel 

00 -70 ~ 
-80 ~ 

101 102 

Frequency (rad/s) 



Fig. 5. Open- and closed-loop transfers Tuy : δu 7→ y, for all realizations
of θ . The zooming box highlights the frequency range which should not be
touched by the controller.
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Fig. 6. Evolution of the damping w.r.t. the altitude.
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Fig. 7. Pole locations in open- and closed-loop. The poles the migrate to
the right half-plane are the ones relating to the flutter.

system for lower altitudes (and, therefore, avoiding flutter
and extending the flight envelope), while also avoiding any
detrimental effect on lower frequencies. Robust stability is
assessed by means of a µ-analysis of the closed-loop.

Future directions of research include (i) study a realization
containing the Mach number as a parameter (allowing the
controller synthesis to comprehend several iso-Mach lines),
and (ii) enhancing the synthesis with better constraints and
considering further uncertainties (such as measurement noise
and delay). A study on control saturation is also envisaged.
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