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Abstract—In the narrowband case, the best least squares
approximation of a matrix by a unitary one is given by the
Procrustes problem. In this paper, we expand this idea to matrices
of analytic functions, and characterise a broadband equivalent
to the narrowband case: the polynomial Procrustes problem. Its
solution is based on an analytic singular value decomposition,
and for the case of spectrally majorised, distinct singular values,
we demonstrate the application of a suitable algorithm to three
problems — time delay estimation, paraunitary matrix comple-
tion, and general paraunitary approximations — in simulations.

I. INTRODUCTION

Matrices of transfer functions, dependent on the complex

variable z, occur in a number of applications, such as broad-

band MIMO systems in telecommunications [1], as polyphase

analysis and synthesis matrices when describing filter bank

systems in signal processing [2], [3], or reverberation filters

and scattering matrices in multichannel audio [4], [5]. A

special role amongst those matrices play so-called paraunitary

matrices Q(z) : C → C
M×M , such that with the parahermi-

tian operation QP(z) = {Q(1/z∗)}H we have

Q(z)QP(z) = QP(z)Q(z) = I . (1)

A paraunitary matrix describes a lossless system. If for a filter

bank, e.g. the polyphase analysis matrix H (z) satisfied the

paraunitary property, then perfect reconstruction is possible

with a system employing a polyphase synthesis matrix G(z) =
H−1(z) = H P(z).

To exploit the benefits of paraunitarity, in a number of cases

we would like to create a matrix that is paraunitary from one

that initially is not. This may be in order to obtain a simpler

system inverse as in the case of lossless filter banks, either for

signal analysis [3] or coding [6]. In a broadband generalised

sidelobe cancelling beamformer, the system design hinges on

the identification of the nullspace of a polynomial constraint

equation, which requires the completion of a paraunitary

matrix [7]. In audio effect processing, the estimation of a

lossless scattering matrix from measurements perturbs the

system to an extent such that the expected paraunitarity [4]

is denied.

The work of Stephan Weiss was supported by the Engineering and Physical
Sciences Research Council (EPSRC) Grant number EP/S000631/1 and the
MOD University Defence Research Collaboration in Signal Processing.

In the narrowband case, a unitary matrix closest to an

arbitrary matrix in the least-squares sense is given by the

Procrustes problem. Therefore, in this paper we want to

explore utilising polynomial matrix techniques in order to

create a paraunitary matrix that in the least squares sense is

closest to some given polynomial matrix, or more generally is

closest to a matrix of functions that are analytic in z ∈ C. We

term this the polynomial Procrustes problem.

In order to address the polynomial Procrustes problem,

Sec. II reviews the standard Procrustes approach, which in

Sec. III is extended to matrices of functions. Following its

implementation in Sec. IV, Sec. V will demonstrate the appli-

cation to time delay estimation, paraunitary matrix completion,

and general paraunitary approximations before Sec. VI draws

conclusions.

II. BEST APPROXIMATION IN THE NARROWBAND CASE

The Procrustes problem seeks a unitary operator Q∗ ∈
C

M×M to rotate a matrix A ∈ C
N×M to match another matrix

B ∈ C
N×M as best as possible in the least squares sense. This

can be formulated as [8]

Q∗ = argmin
Q

‖AQ−B‖
2
F , s.t. QQH = I , (2)

where ‖ · ‖F is the Frobenius norm. With the trace operator

tr{·}, for the cost term ξ = ‖AQ−B‖
2
F we have

ξ = tr
{

(QHAH −BH)(AQ−B)
}

(3)

= tr
{

AAH
}

+ tr
{

BBH
}

− 2Re
{

tr
{

QHAHB
}}

, (4)

where the rule tr{ABC} = tr{CAB} has been exploited.

The minimisation of ξ is equivalent to the maximisation

of Re
{

tr
{

QAHB
}}

, where we insert the singular value

decomposition AHB = UΣVH,

Re
{

tr
{

QHUΣVH
}}

= Re
{

tr
{

VHQHUΣ
}}

≤ tr{Σ} . (5)

This step is possible because the singular values are real and

non-negative. Equality in (5) is then accomplished by ensuring

that for the product of unitary matrices, we have VHQH
∗ U =

I. This is achieved by setting

Q∗ = UVH . (6)
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It is straightforward to show that (6) also solves the problem

Q∗ = argmin
Q

∥

∥Q−AHB
∥

∥

2

F
, s.t. QQH = I , (7)

i.e. the challenge of finding the best unitary approximation of

a matrix AHB in the least squares sense.

III. POLYNOMIAL PROCRUSTES PROBLEM

A. Formulation

For the case of N×M matrices A(z),B(z) that are analytic

functions in z ∈ C, the aim is to find a paraunitary matrix

Q(z) : C → C
M×M that extends the classic Procrustes

problem to the broadband case. To formulate a least squares

fit in the polynomial domain, analogously to [7] we can write

Q∗(z) = argmin
Q(z)

∮

|z|=1

‖A(z)Q(z)−B(z)‖
2
F

dz

z
(8)

s.t. Q(z)QP(z) = I . (9)

Since we are also looking for a paraunitary matrix Q(z)
that is analytic in z, we are dealing exclusively with analytic

functions and can restrict our investigation below to the unit

circle, i.e. to z = ejΩ, where Ω is the normalised angular

frequency parameter.

Following (3), for the term ξ(Ω) =
∥

∥A(ejΩ)Q(ejΩ)−B(ejΩ)
∥

∥

2

F
we have

ξ(Ω) = tr
{

A(ejΩ)AH(ejΩ)
}

+ tr
{

B(ejΩ)BH(ejΩ)
}

− 2Re
{

tr
{

QH(ejΩ)AH(ejΩ)B(ejΩ)
}

}

. (10)

Therefore, minimising (8) is equivalent to maximising

ξ =
1

2π

∫ 2π

0

Re
{

tr
{

QH(ejΩ)AH(ejΩ)B(ejΩ)
}

}

dΩ . (11)

To solve this optimisation problem analogously to the nar-

rowband case with (5), we require the SVD of the term

AH(ejΩ)B(ejΩ). This is addressed by the analytic version

of the SVD, which is capable of providing a frequency-

dependent decomposition. To be valid beyond the unit circle,

we are seeking a decomposition with analytic factors, which

we discuss next.

B. Analytic Singular Value Decomposition

Given a matrix R(z) : C → C
M×M that is analytic in z,

then unless R(z) is connected to a multiplexing operation or

afflicted by a condition described below, there exists a singular

value decomposition

R(z) = U (z)Σ(z)V P(z) (12)

with analytic factors [9], [10]. The matrices U (z) : C →
C

M×M and V (z) : C → C
M×M are paraunitary, and Σ(z) :

C → C
M×M is diagonal and real on the unit circle, such that

Σ(ejΩ) ∈ R.

Within Σ(z) = diag{σ1(z), . . . , σM (z)}, the singular val-

ues σm(z), m = 1, . . . ,M are unique up to an ordering. Note

that different to the ordinary SVD, where the singular values

typically appear sorted in descending order, analytic singular

values may intersect such that the same majorisation is not

necessarily meaningful. As a major difference to the ordinary

SVD, it can be necessary to let singular values σm(ejΩ)
become negative in order for σm(z) to be analytic [10]–[12].

The zero-crossings that are responsible for such a sign change

may, if of odd order, also necessitate an oversampling by a

factor of two, such that an analytic SVD can be found for

R(z2) while it does not exist for R(z) [10].

The M left- and right-singular vectors in U (z) and V (z)
of (12) are unique up to arbitrary allpass functions, but there

is a coupling of this ambiguity across the two matrices [10]: if

U (z) and V (z) contain valid left- and right-singular vectors,

then so do U (z)Ψ(z) and V (z)Ψ(z), where Ψ(z) =
diag{ψ1(z), . . . , ψM (z)} with ψm(z), m = 1, . . . ,M , rep-

resenting arbitrary allpass functions.

C. Best Paraunitary Approximation

We now exploit the analytic SVD in (12) to solve the

polynomial Procrustes problem, i.e. the maximisation of (11)

subject to (9). For this, with analytic AP(z)B(z), we obtain

the SVD

AP(z)B(z) = U (z)Σ(z)V P(z) , (13)

where U (z) and V (z) are M ×M paraunitary matrices, and

Σ(z) = diag{σ1(z), . . . , σM (z)} is an M ×M diagonal ma-

trix that is real-valued on the unit circle, such that Σ(ejΩ) ∈ R.

For the maximisation of (11), with the insertion of (13), we

obtain

ξ =
1

2π

∫ 2π

0

Re
{

tr
{

QH(ejΩ)U (ejΩ)Σ(ejΩ)V H(ejΩ)
}

}

dΩ

=
1

2π

∫ 2π

0

Re
{

tr
{

V H(ejΩ)QH(ejΩ)U (ejΩ)Σ(ejΩ)
}

}

dΩ

=
1

2π

∫ 2π

0

tr
{

Re
{

P(ejΩ)
}

Σ(ejΩ)
}

dΩ , (14)

where P(z) = V P(z)QP(z)U (z) is paraunitary. As long as

the singular values are non-negative, i.e. Σ(ejΩ) is positive

semidefinite for all values of Ω, (14) is maximised for P(z) =
I, such that the optimal paraunitary matrix

Q∗(z) = U (z)V P(z) (15)

is obtained from the analytic left- and right-singular vectors

of the matrix product AP(z)B(z).
In case Σ(ejΩ) is not positive semidefinite, the optimi-

sation of (14) requires some additional consideration. We

focus on the contribution of some singular value σm(ejΩ);
assume that for reasons of analyticity, σm(ejΩ) is negative for

Ω ∈ [Ω1,Ω2]. It is possible to create a non-negative singular

value

σ′
m(ejΩ) =

{

σm(ejΩ), Ω ∈ [0; 2π]/[Ω1,Ω2]
−σm(ejΩ), Ω ∈ [Ω1,Ω2] ,

(16)

which however is only piecewise analytic and non-

differentiable in the points Ω1 and Ω2. The sign change must
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also be absorbed into either the corresponding left- or right-

singular vector. Let us assume that this sign change is applied

to the left-sigular vector, such that

u ′
m(ejΩ) =

{

um(ejΩ), Ω ∈ [0; 2π]/[Ω1,Ω2]
−um(ejΩ), Ω ∈ [Ω1,Ω2] .

(17)

Again, u ′
m(ejΩ) is only piecewise analytic, but due to

‖u ′
m(ejΩ)‖2 = 1 ∀Ω will now include discontinuities at the

frequency points Ω1 and Ω2.

Since functions with non-differentiabilities or discontinu-

ities are difficult to approximate, we here focus on maintaining

analyticity for the SVD factors. Generally, for the type of ap-

proximation problems, we assume that the differences between

A(z) and B(z) may be small, such that the probability of a

sign change in the singular values of AP(z)B(z) is negligible.

Alternatively, we can, under the constraint of analyticity,

demand that a frequency-independent sign-change γm ∈ {±1}
be applied to the singular values, such that

∫ 2π

0

γmσm(ejΩ)dΩ ≥ 0 (18)

is satisfied for m = 1, . . . ,M . This frequency-independent

sign change γm must also be absorbed into either the

corresponding left- or right-singular vector. The frequency-

independence of these sign changes guarantees that analyticity

is maintained, and (15) can be amended as

Q∗(z) = U (z)diag{γ1, . . . , γM}V P(z) (19)

to provide the solution to the polynomial Procrustes problem.

IV. PROCRUSTES ALGORITHM IMPLEMENTATION

A. Assumptions

We assume wanting to find a paraunitary approximation for

a square M×M polynomial matrix R(z), and assume that the

analytic SVD R(z) = U (z)Σ(z)V P(z) exists. For Σ(z) =
diag{σ1(z), . . . , σM (z)}, we further assume that the singular

values are distinct, such that on the unit circle, σm(ejΩ) =
σµ(e

jΩ) ∀Ω holds only if m = µ, with m,µ = 1, . . . ,M , and

spectrally majorised, such that

σ1(e
jΩ) ≥ σ2(e

jΩ) ≥ . . . ≥ σM (ejΩ) , ∀Ω . (20)

This is a realistic assumption in case R(z) is estimated, as its

singular values will not intersect with probability one [13].

B. Analytic SVD in the DFT Domain

For a sufficiently large DFT size K, we determine the SVD

in every frequency bin Ωk of R(ejΩk), such that

R(ejΩk) = UkΣkV
H
k , (21)

where Σk = diag{σ1,k, . . . σM,k} contains the M majorised

singular values. Due to this spectral majorisation and the

uniqueness of the distinct singular values [10], we know that

Σk = Σ(ejΩk). Therefore, both the singular values as well

as their corresponding left- and right-singular vectors in (21)

are correctly ordered across DFT bins. This avoids having to

work out bin-dependent permutations such that left- and right-

singular vectors are correctly associated in order to re-establish

the spectral coherence that is otherwise denied to a frequency-

bin approach [14].

In contrast to the uniqueness of the analytic singular values,

their corresponding left- and right-singular vectors possess an

ambiguity w.r.t. arbitrary allpass filters, which however are

coupled [10]. Thus, with given Q(z) and V (z), U (z)Φ(z)
and V (z)Φ(z) with Φ(z) = diag{ϕ1(z), . . . , ϕM (z)} com-

prising of arbitrary allpass filters ϕm(z), m = 1, . . . ,M ,

also contain valid left- and right-singular vectors. Due to

the coupling of the ambiguity across both vectors, in the

product U (z)V P(z) the allpass filters cancel out, and the

analytic SVD thus presents a unique solution to the polynomial

Procrustes problem.

With the phase ambiguity to the left- and right-singular

vectors removed, it is therefore possible to determine the

solution to (19) in each frequency bin, such that with (21),

we have Qk = UkV
H
k , k = 0, . . . , (K − 1). Provided that

the DFT length K suffices, we can obtain the coefficients of

Q(z) via an inverse DFT of Qk.

C. Procrustes and Order Trimming

Even if the matrix R(z) is of finite order, the analytic SVD

in (12) can have factors of infinite length [10], [15]. Thus,

despite the cancellation of the allpass-ambiguity of the singular

vectors, the product U (z)V P(z) can potentially have infinite

support. Since the product shares the analyticity of its factors,

the coefficients of Q∗(z) are absolutely convergent, and the

best approximation by a polynomial in the least squares sense

is achieved by truncation. Hence trimming any small outer

coefficients of Q∗(z) that fall below a given threshold can

help to obtain a finite order solution Q̂∗(z) that arbitrarily

closely approximates the ground truth.

V. APPLICATION EXAMPLES AND SIMULATIONS

To demonstrate the polynomial Procrustes problem, we first

consider a simple 1-d example related to time delay estimation,

followed by a 2-d case of paraunitary matrix completion and

higher-dimensional simulations over an ensemble of matrices

with known ground truth.

A. Time-Delay Estimation

Estimating a potentially fractional delay between two sig-

nals x[n] and y[n] has been a challenge addressed over

decades, see e.g. [16]–[19], that is confounded if the signals

possess a strong lowpass auto-correlation. Typically a time

delay, particularly in the presence of noise, can be determined

from the cross-correlation ryx[τ ] = E{y[n]x∗[n− τ ]}, which

is equivalent to matched filtering [20]. The delay can then be

determined by a maximum search over ryx[τ ]. As an example,

Fig. 1 shows both the auto-correlation rxx[τ ] of x[n], and

the cross-correlation with y[n] delayed by 7.3 samples with

respect to x[n] [21]. Due to the lowpass nature of x[n], the

maximum search for ryx[τ ] is difficult due to the ill-defined

peak of the function, as seen in the inset of Fig. 1.
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Fig. 1. Auto-correlation of x[n], and cross-correlation between y[n] and x[n].

Fig. 2. (a) angle of q∗(ejΩ), and (b) extraction of delay by differentiation.

For finite-length sequences, we set a[n] = x[n] and b[n] =
y[n]. With the respective z-transforms a(z) and b(z), we want

to determine the time delay by minimising
∮

|z|=1
|a(z)q(z)−

b(z)|22
dz
z

. Thus determining the fractional delay filter q(z) is

equivalent to an M = 1-d Procrustes problem, where we need

to obtain the analytic SVD of

r(z) = aP(z)b(z) = u(z)σ(z)vP(z) , (22)

with r(z) being a cross-correlation estimate. In (22), σ(z) is

real on the unit circle, such that σ(ejΩ) ∈ R, and u(z) and v(z)
are allpass functions. Without loss of generality, we set v(z) =
1 and assume that the entire allpass functionality is provided

by u(z). Thus, we have q∗(z) = γu(z). The parameter γ
applies a sign change if necessitated by (18).

For the above example, Fig. 2(a) shows the phase response

of the identified fractional delay filter q∗(z), from which by

differentiation, a group delay-type response is extracted in

Fig. 2(b). The delay of 7.3 samples can be extracted fairly

precisely from this group delay by integrating over the lowpass

band where the signal is active. Inspecting the group delay is

known from time delay estimation [16], but places it in the

context of the polynomial Procrustes problem.

B. Paraunitary Matrix Completion

As an example for paraunitary matrix completion, we as-

sume that for a matrix R(z) : C → C
2×2, the first column is

given by the lowpass filter of a Daubechies-2 wavelet [22]; the

unknown second column is set to zero. Using the approach in

Sec. IV, we want to obtain a near-paraunitary matrix Q̂∗(z),
whereby the reconstruction error

er =

∮

|z|=1

‖Q̂∗(z)Q̂
P
∗(z)− I‖2F

dz

z
, (23)

0 1 2 3 4 5 6 7 8 9 10

-1

0

1

Fig. 3. Paraunitary matrix completion problem with (a) impulse responses
and (b) magnitude responses of the two extracted filters; for comparison, D2
marks the highpass filter of the Daubechies-2 filter bank.

measures the precision with which the constraint in the Pro-

crustes problem in (9) is satisfied.

Solving the polynomial Procrustes problem, we measure

a reconstruction error 10 log10 er = −308 dB, which is

close to machine accuracy. Interpreting Q̂∗(z) as a polyphase

matrix, we can extract two filters hm[n], m = 1, 2, from its

columns; their impulse and magnitude responses are shown in

Fig. 3. While the filter h1[n] matches the lowpass filter of the

Daubechies-2 wavelet, h2[n] does not satisfy the Daubechies-

2 solution in Fig. 3(a), which is a quadrature mirror filter to

the lowpass system. In Fig. 3(b) we see that the magnitude

response of h2[n] matches the Daubechies-2 solution. Because

the second column of R(z) was set to zero, h2[n] needs to

satisfy orthogonality, but is permitted to differ by an arbitrary

allpass from other valid solutions including Daubechies-2. In

this case, all such solutions have the same distance from R(z).

C. Paraunitary Matrix Recovery

In this section, we investigate a wider and more complex

range of paraunitary approximations. In order to assess the

solution in each case, we need to know the ground truth

solution to the polynomial Procrustes problem. For this, we

construct an ensemble of randomised ground truth paraunitary

matrices Q∗(z) = Q1(z)Q2(z), with Q i(z), i = 1, 2,

assembled from random elementary paraunitary operations [3],

Q i(z) =

N
∏

ℓ=1

(

(I− ei,ℓe
H
i,ℓ) + ei,ℓe

H
i,ℓz

−1
)

, (24)

where ei,ℓ ∈ C
M , ℓ = 1, . . . , N , i = 1, 2, are unit norm vec-

tors such that ‖ei,ℓ‖2 = 1 with complex Gaussian distributed

entries. The matrix Q∗(z) is perturbed by randomised matrices

Σ(z) with symmetric and spectrally majorised entries, which

can be controlled via a source model [20], [23]. Thus, the

matrix R(z) = Q1(z)Σ (z)QP
2(z) possesses the matrix Q∗(z)

as its closest paraunitary approximation.

For an ensemble simulation, the spatial dimension is varied

over the parameters M ∈ {2, 4, 8, 16, 32}. The orders of
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Fig. 4. Ensemble results for mismatch between the obtained solution and the
ground truth, dependent on the order O{Q

∗
(z)} of the ground truth and the

spatial dimension M .

Q i(z), i = 1, 2, are set to {2, 4, 8, 16, 32, 64}, which deter-

mines the order O{Q∗(z)} of the ground truth paraunitary

matrix. For each value of M and the orders of Q i(z), i = 1, 2,

we generate 100 random instances of {R(z),Q∗(z)}.

To characterise the mismatch em between the ideal ground

truth paraunitary matrix Q∗(z) and the matrix Q̂∗(z) recov-

ered by the polynomial Procrustes problem, we measure

em =

∮

|z|=1

‖Q∗(z)− Q̂∗(z)‖
2
F

dz

z
. (25)

As with (23), the metric in (25) can be evaluated in the

time domain using Parseval’s theorem. Since according to

Sec. IV-C, small trailing values in Q̂∗(z) falling below a

threshold of 10−10 are truncated [24], a shift-alignment is

necessary. Note however, that after a similar truncation of

trailing values below 10−10 was applied to Q∗(z), both the

truncated ground truth and the Procrustes solution exhibited

the same orders across the entire ensemble.

Over the untrimmed order O{Q∗(z)} of the ground truth,

Fig. 4 shows the mismatch em for different values of M .

This metric is close to machine precision for small values

of O{Q∗(z)}. For larger values of O{Q∗(z)} ≥ 16, the

construction of Q̂∗(z) leads to the truncation of small trailing

values, which causes a loss in precision in the results around

the truncation value of 10−10. Nonetheless, the size of the

mismatch error em highlights that the correct paraunitary

ground truth matrix is recovered.

VI. CONCLUSIONS

We have investigated the challenge of finding the best

least-squares fit of a paraunitary matrix to a given matrix

of analytic functions. For this purpose, we have extended

the narrowband Procrustes problem, which is based on the

factorisation afforded by an analytic SVD. The restriction here

has been to square matrices with spectrally majorised, distinct

singular values. We have shown that a unique solution to

the polynomial Procrustes problem exists, for which we have

presented an algorithmic implementation.

In simulations, we have demonstrated the approach in the

domains of time delay estimation, filter bank completion, and

paraunitary matrix recovery. Given a sufficient DFT size, the

achievable precision can be close to machine accuracy, or to

the level of truncation if trimming is applied to control the

polynomial order of the matrices.

For further investigation, there remains the case of multiple

identical, in particular zero singular values, the case of general

rectangular matrices where singular vectors may be arbitrary

within some subspace, and the application to problems where

benchmark techniques exist for comparison.
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