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Abstract—Polar codes are the first class of forward error
correction (FEC) codes with a provably capacity-achieving ca-
pability. Using list successive cancellation decoding (LSCD) with
a large list size, the error correction performance of polar codes
exceeds other well-known FEC codes. However, the hardware
complexity of LSCD rapidly increases with the list size, which
incurs high usage of the resources on the field programmable gate
array (FPGA) and significantly impedes the practical deployment
of polar codes. To alleviate the high complexity, in this paper,
two low-complexity decoding schemes and the corresponding
architectures for LSCD targeting FPGA implementation are
proposed. The architecture is implemented in an Altera Stratix
V FPGA. Measurement results show that, even with a list size
of 32, the architecture is able to decode a codeword of 4096-bit
polar code within 150 µs, achieving a throughput of 27Mbps.

Index Terms—polar codes, list successive cancellation decoding,
FPGA implementation, low-complexity design.

I. INTRODUCTION

As an emerging class of forward error correction (FEC)

codes with a provably capacity-achieving capability, polar

codes [1] attract a lot of research interests recently. To decode

the polar codes, list successive cancellation decoding (LSCD)

[2], [3] was proposed, which outputs L (called list size)

decoding paths by using L parallel successive cancellation

decodings (SCDs) [4], [5]. By concatenating the polar codes

with cyclic redundancy check (CRC) codes [3], [6] and using

the checksums to choose the most reliable path from the list,

LSCD with a large list size (L ≥ 16) achieves a similar or even

better performance than other well-known FEC codes [3], such

as low-density parity-check codes and turbo codes. However,

this comes at a high hardware cost as the complexity scales

with the list size L. Thus, a low-complexity implementation

of the corresponding LSCD is very desirable.

The existing LSCD architectures [7], [8], which were de-

signed for a small or medium list size (L ≤ 8), are not suitable

for a large list size due to their high complexity that is mainly

due to two computational blocks. Firstly, several crossbars are

required for executing the list management (LM) operation

[7] and they have complexity of O(L2). Secondly, a sorter

with 2L inputs is needed to compare and select the L best

out of 2L decoding paths to keep the list size to L during

the decoding process. To reduce the logic delay, usually, a

parallel sorter is used [7]. However, this parallel sorter has

O(L2) comparators and hence dictates the clock frequency

and incurs high hardware complexity.

Recently, two field programmable gate array (FPGA) imple-

mentations of LSCD architectures were presented in [9], [10],

which can be used as the emulation platforms for evaluating

the performance of polar codes. Due to the high complexity

of LSCD, these platforms cannot support an LSCD of L > 4.

Moreover, to the best of our knowledge, hardware implemen-

tation for LSCD with L = 32 has not been investigated in

the literatures yet. In this work, we first propose two low-

complexity decoding schemes for the LSCD with a large list

size based on the analysis of the design constraints. Then,

an LSCD architecture using these schemes is developed and

implemented in an Altera FPGA. Measurement results show

that our LSCD of L = 32 decodes a 4096-bit polar code within

150 µs to achieve a 27Mbps throughput.

II. PRELIMINARIES

A. Code Construction

Considering a polar code with length N = 2n. Its generator

matrix, F⊗n, is the nth Kronecker power of F =

[

1 0
1 1

]

.

Source word u and code word x are two N -bit binary

vectors related by x = u · F⊗n. The bits in u have different

reliabilities. The indices of the K most reliable bits compose

the information set A while its complement Ac is called the

frozen set. Accordingly, uis (i ∈ A) are called information

bits and are used to deliver message; while the rest are called

frozen bits and fixed to 0. The code rate is thus defined as

R = K/N . When an r-bit CRC code is concatenated, the last

r information bits are used to deliver the CRC checksums of

the other K − r information bits.

B. List Successive Cancellation Decoding

As shown in Figure 1(a), the LSCD is made up of L copies

of SCD operations (each described by the full binary tree) and

the LM operations (represented by the squares).

The SCD operation is a depth-first traversal of the full

binary tree with n+ 1 stages which is also called a schedul-

ing tree. The channel log-likelihood ratios (LLRs), Li =
log(Pr(y|0)) − log(Pr(y|1)), i ∈ [0, N − 1], are the inputs at

the root node of the scheduling tree, where y is the channel

http://arxiv.org/abs/1805.03000v1
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Figure 1: (a) scheduling tree of polar codes of N = 4 and

(b) the corresponding state transfer diagram.

Table I: Crossbar complexity for 4096-bit polar codes on

Altera 5SGXEA7N2F45C2 (available ALMs: 234,720)
List size 2 4 8 16 32

Req. ALMs 10,240 15,360 87,040 414,720 1,479,680

output on x. The left and right children of a node are called

F- and G-node whose functions are1

LF (La, Lb) = (sgn(La)⊕ sgn(Lb)) · min(|La|, |Lb|), (1)

LG(ŝ, La, Lb) = (−1)ŝLa + Lb, (2)

respectively, where La and Lb are the inputs of the both

functions from the previous stage. ŝ in (2) is a binary input

called partial-sum, which is calculated from the bits already

decoded up to the corresponding G-node. In the LSCD, all the

L copies of SCDs are executed in parallel.

An LM is executed after a leaf node is reached by the

SCDs. Assuming that after ûi−1 is decoded, the list is full

of L paths and each path has a different decoded sub-

vector [û0, ..., ûi−1] ∈ {0, 1}i. A path metric (PM), γl
i−1, is

associated with each path to represent its reliability. When ûi

is decoded, the LM of ûi is executed in two steps. First, each

path is expanded into two with ûi instantiated to 0 and 1,

respectively. For a path l, its path metric update (PMU) is1

{

γ2l
i = γl

i−1,

γ2l+1

i = γl
i−1 +

∣

∣Λl
i

∣

∣ ,

if ûi = Θ
(

Λl
i

)

,

if ûi = 1−Θ
(

Λl
i

)

,
(3)

where γ2l
i and γ2l+1

i are the PMs of the two expanded paths

and Λl
i is the output LLR of the ith leaf node. The hard

decision is made by Θ(x)=(x < 0). If the number of paths

exceeds L after the path expansion, the list pruning operation

(LPO) is executed to find the L smallest PMs and keep them

as the survival paths. Note that if i ∈ Ac, only one of the

equations is executed and the LPO is not needed.

C. Problems in the Existing LSCD Architectures

Based on the algorithms presented above, several LSCD

architectures were proposed [7]–[11]. One common feature of

them is that some L×L crossbars are needed to align the data

in the L blocks of SCD hardware according to the LM results.

Table I shows the synthesis results of the crossbars used in the

architecture of [11]. Here, an 8-bit quantization is used for the

LLRs. It can be seen the complexity scales far beyond O(L)

1The exact forms of these functions are non-linear. To have an efficient
hardware implementation, approximate forms, (1) and (3), are used [4], [7].
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Figure 2: The structure of parallel-F serial-G computation.

for a given polar code and the required resources far exceed the

logic resources, i.e. adaptive logic modules (ALMs), available

in the FPGA for the LSCD with large list sizes.

Another issue is the implementation of the sorter which is

required for finding the smallest L PMs after each path expan-

sion. According to [7], the delay and complexity of radix-2L
sorter are significantly increased with L. The complexity of

this sorter is further increased if a low-latency LM scheme,

such as multi-bit decoding (MBD) [8], is used.

From the above discussion, implementing the architecture

of LSCD with a large list size on hardware, especially in a

resource-limited device such as an FPGA, is a very challenging

task. In the following sections, we will present some schemes

to reduce the complexity of LSCD.

III. LOW-COMPLEXITY DECODING SCHEMES FOR LSCD

A. Parallel-F Serial-G Computation

From Section II-C, it is beneficial to avoid using crossbars

in the architecture of LSCD with a large list size. A straightfor-

ward method is to integrate L blocks of LLR memories into a

single memory and evaluating the SCD functions of each path

serially. By doing so, the required operands are obtained by

accessing the memory in the right locations. However, since

the L SCDs are executed serially, the decoding latency is L
times that of the traditional SCD. To reduce this latency, the

following proposition related to the LSCD is used.

Proposition 1. When the F-nodes are computed, the memories

and PE arrays are one to one corresponding and the crossbars

do not need to permute any data; only when the G-nodes are

visited, crossbars need to permute the data from the memories.

Proof. This can be easily proved from the state transfer

diagram, as shown in Figure 1(b), which shows the execution

order of the F-nodes, G-nodes and LMs.

Based on Proposition 1, a parallel-F serial-G (PFSG) com-

putation scheme is proposed. All the F-functions are calculated

in parallel for all the paths as the crossbar is not needed in this

situation and a direct connection between the corresponding

memory and PE array can already support the calculations. In

contrast, the G-functions of each path are serially evaluated

to avoid using crossbars. As the latency for evaluating these

two kinds of functions are the same in the SCD operation, the

latency of LSCD using PFSG computation is L+1

2
times that

of the traditional SCD, which is reduced by almost one half

comparing with that of straightforward mapping for large L.



The corresponding PFSG structure is shown in Figure 2.

Each block of RAM is implemented with a dual-port RAM

with a 2PQ-bit read port and a PQ-bit write port, where

Q is the number of quantization bits for the LLRs. L + 1
groups of P processing elements are used in this structure.

One group is for the G-nodes, whose inputs are selected by

an L-to-1 multiplexer. The others are for the F-nodes, which

can calculate the F-functions for L paths simultaneously.

It is noted when L is large, the utilization of RAMs is

temporarily low as only the data from one of the L blocks of

RAMs are valid in each cycle. So, in the real implementation,

the number of blocks of RAMs can be reduced from L to Lβ ,

which is a power of 2, and each block of RAM stores the

LLRs of L/Lβ paths. By choosing a proper Lβ , the balance

between the complexity and the latency can be achieved.

B. Low-Complexity List Management

In this section, a simplified LM operation of LSCD is

proposed to reduce the computational complexity. To avoid the

long latency brought by the G-nodes in the PFSG computation,

the proposed method is based on the MBD. Specifically, the

MBD simultaneously decodes all the M bits of a sub-tree

rooted at stage m, where M = 2m. Let γin be the PM of

one survival path and γMBD
out be the PM of one of its expanded

paths, then the PMU of MBD is

γMBD
out = γin +

∑M−1

i=0
(vi ⊕Θ(Li)) · |Li|, (4)

where [L0, ..., LM−1] are the output LLRs at the root node of

the sub-tree and [v0, ..., vM−1] = [û0, ..., ûM−1] ·F
⊗m. There

are at most 2M combinations of vis and hence at most 2M

paths are expanded from each survival path, which incurs a

high complexity to the LPO even when M is small.

To reduce the complexity, we combine one of our previously

proposed algorithms, selective expansion (SE) [11], with the

MBD. The SE efficiently reduces the number of the expanded

paths by partitioning the information set A into an unreliable

set Au and a reliable set Ar based on the reliability of each

information bit. The path expansions corresponding to the bits

belonging to Ar do not need to be executed. We call the

combined method low-complexity list management (LCLM).

Supposing there are Mu unreliable bits and Mr reliable bits

in a M -bit sub-tree. For a given set of values of the unreliable

bits, the PMU of one of the expanded paths is calculated as

γLCLM
out = minuj∈{0,1}, j∈Ar

(γMBD
out ), (5)

where γMBD
out s are obtained from (4). The minimum in (5) is

selected over the 2Mr γMBD
out s. To expand each survival path,

(5) needs to be calculated 2Mu times as 2Mu paths will be

generated from the path expansion. Finally, LPO is used to

select the L best paths from the 2Mu · L expanded paths.

The LCLM expands fewer paths and hence achieves a lower

complexity than the MBD. Also, Proposition 2 guarantees the

decoding performance of LCLM is not worse than that of SE.

Proposition 2. For a given γin and uis (i ∈ Au) in an M -bit

tree, the updated PMs of LCLM and SE satisfy γLCLM
out ≤ γSE

out.
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Figure 3: The proposed LSCD architecture.

Proof. For the given uis (i ∈ Au), the corresponding γSE
out

equals to one of the γMBD
out s calculated by (4). So (5) ensures

the validity of Proposition 2.

An LSCD tries to find the best L paths with the locally

smallest PMs. Proposition 2 ensures that the paths generated

by the LCLM is not worse than those by the SE. Hence, the

error performance of LCLM is at least as good as that of SE.

IV. IMPLEMENTATION RESULTS

A. The Implementation of the Proposed LSCD Architecture

The implementation of the proposed LSCD architecture is

shown in Figure 3, which mainly includes seven blocks.

The SCD module is used to compute the F- and G-nodes to

obtain the LLR outputs of the stages higher than stage m− 1.

We further divide these stages into high stages (higher than

a pre-determined stage ǫ) and low stages (the rest). The high

stages are calculated with the PFSG structure. The low stages

are calculated in a parallel fashion as the PFSG brings a large

latency overhead for these stages. Specifically, one memory

is used to store the LLRs of all the paths and only one SCD

hardware for the low stages is connected with it. Such structure

is duplicated L times and the computations of all the paths can

be executed simultaneously without a crossbar. The LCLM

module receives the LLR outputs at stage m from the SCD

module. Here, a radix-2L parallel sorter is used. If Mu > 1
in a sub-tree, the 2L-to-L sorting is executed multiple times

in serial to find the best L paths. The LCLM greatly reduces

the number of expanded paths, so the latency for sorting is

moderate. The outputs of the LCLM module include, for each

path, M decoded bits and a tag, indicating which survival path

the expanded path is extended from.

The partial-sum memory and the path memory are used to

store and update the partial-sums and the decoded vectors of

the L paths, respectively. These memories are only activated

when a G-node is calculated. Therefore the crossbars originally

required in these two blocks in the existing architectures are

not needed as the PFSG computation is used. A two-staged

memory structure similar to the folded partial-sum network in

[5] is used. The other parts, including the pointer memory, the

CRC unit and the control logic, are similar to their counterparts

in the existing architectures [7], [11].



Table II: The LSCD parameters for FPGA implementation.
N K ra CRC generator polynomial L

4096 2048 24 0x864cfb 32

Lβ P Q QPM η@SNR=2dBb m ǫ

4 128 8 9 0.3 2 3

a The effective code rate is R =
K−r
N

= 0.494.

b Following the method and notation of [11], η determines Au for SE.

Table III: Hardware usage of the LSCD architecture in FPGA.
ALMs Registers RAM blocks

LSCD usage 67,211 31,247 1,122

FPGA capacity 234,720 939,000 2,560

Utilization 28.63% 3.33% 43.82%

B. Implementation and Measurement Results in the FPGA

To demonstrate the performance of the FPGA implemen-

tation of the above LSCD architecture, we implement it

in an Altera Stratix V 5SGXEA7N2F45C2 FPGA. Table II

summarizes the parameters of the target polar codes and the

implemented decoder. The LSCD architecture is mapped on

the FPGA with a clock frequency of 107MHz. The decoding

latency of the LSCD is 16019 cycles for one codeword, trans-

lating into 149.71 µs under the target clock frequency. The

hardware usage of our LSCD under the specified constraint

is shown in Table III. Among all the resources, the RAM

blocks (each with 20 kbits) have the highest usage, 22.44

Mbits, which is much higher than the theoretical value of about

2 Mbits. This is because the port width of one RAM block

is limited. To guarantee the calculation parallelism, relatively

wide port widths are used and multiple RAM blocks are then

needed, leading to the high usage of RAM blocks.

Table IV compares our LSCD with other FPGA-based

LSCD architectures in the literatures [9], [10]. Our architecture

can support a longer code length and a much larger list size

with even lower utilization of logic resources. The memory

resources used per path are less than those of [9]. Though the

memory usage of the architecture in [10] is lower, without

any reported timing results, it is not easy to determine which

architecture makes a better tradeoff between the complexity

and the latency. The comparison results indicate the proposed

low-complexity schemes are very efficient. At the same time,

though the latency of our LSCD is supposed to scale linearly

with the list size, the throughput degradation is less than linear.

Also, for the other two architectures, it is not feasible to use

them to implement LSCD with a large list size in an FPGA.

Finally, the measured block error rate (BLER) of the im-

plemented LSCD is shown in Figure 4. For this measurement,

an encoder and an additive white Gaussian noise channel are

also implemented on-chip. As reference, the simulated BLER

of the traditional LSCD with floating-point is also shown. It

can be seen that our LSCD functions well and the performance

degradation is less than 0.05dB at a BLER of 10−3, which is

the target BLER of a typical cellular communication system.

Also, comparing with the testing results presented in [9], a

performance gain of about 0.8dB is achieved at this BLER.

V. CONCLUSION

In this work, two low-complexity decoding schemes,

namely PFSG and LCLM schemes, are proposed for the

Table IV: Comparison of the implementation results of

several FPGA-based LSCD architectures.
Proposed [9] [10]

FPGA Devicec Altera Xilinx Altera
Stratix V Kintex 7 Stratix V

(N,L) (4096,32) (1024,4) (1024,4)

ALMs(A)/LUTs(X)d 67,211 142,961 101,160

Registers 31,247 19,795 13,544

RAM (Mbits) 22.440 4.404 0

Clock rates (MHz) 107 42.66 N/A

Throughput (Mbps) 27.35 115 N/A

c All the FPGAs are manufactured on 28nm process technology.
d An ALM on Altera FPGA can be used as a 6-input LUT.

1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

E
b
/N

0

B
LE

R
 

 

Traditional (floating sim.)
Measurement (impl.)
[9], (N,L,R)=(1024,4,0.5)
[10], (N,L,R)=(1024,4,0.5)

Figure 4: The BLERs of different LSCDs.

LSCD with a large list size, and the corresponding architecture

for FPGA is developed and implemented. The measurement

results show that the proposed LSCD (L=32) has low hardware

usage with negligible error performance degradation.
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