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Abstract—Geographically locating an IP address is of interest
for many purposes. There are two major ways to obtain the
location of an IP address: querying commercial databases or
conducting latency measurements. For structural Internet nodes,
such as routers, commercial databases are limited by low accu-
racy, while current measurement-based approaches overwhelm
users with setup overhead and scalability issues.
In this work we present our system HLOC, aiming to combine the
ease of database use with the accuracy of latency measurements.
We evaluate HLOC on a comprehensive router data set of
1.4M IPv4 and 183k IPv6 routers. HLOC first extracts location
hints from rDNS names, and then conducts multi-tier latency
measurements. Configuration complexity is minimized by using
publicly available large-scale measurement frameworks such as
RIPE Atlas. Using this measurement, we can confirm or disprove
the location hints found in domain names. We publicly release
HLOC’s ready-to-use source code, enabling researchers to easily
increase geolocation accuracy with minimum overhead.

I. INTRODUCTION

Geographical location of IP addresses has many purposes
and users. Public service and businesses frequently focus on
locating persons through their end-user devices. These human-
centric use cases typically rely on easy-to-use commercial
databases, which provide ever-increasing accuracy for edge
nodes through feedback from users affected by wrong en-
tries. For academia, the location of structural Internet nodes
such as routers is elemental in studying and mapping the
Internet. Unfortunately, commercial databases often provide
low quality in this use case. State-of-the-art measurement-
based algorithms are often not ready to use, but require
implementation and setup of measurement infrastructure be-
fore use. For these reasons, structural Internet studies today
frequently use commercial databases, and try to alleviate errors
of these databases through laborious outlier analysis [9], [30],
[32]. To cope with these shortcomings, we present HLOC, a
framework combining the simplicity and scale of commercial
geolocation databases with the accuracy of measurement-based
approaches. The basic idea of HLOC is to leverage location
hints frequently observed in router DNS names [7], [18].
As these hints may be incorrect or ambiguous [35], [42],
HLOC interfaces with ready-to-use measurement frameworks
to confirm or invalidate those hints through latency measure-
ments. With the geographic coverage of frameworks such
as RIPE Atlas [29], it is usually possible to find a probe
very close to a location candidate and potentially confirm a
location hint within a 100km radius. While a 100km radius

would be considered city-level geolocation, HLOC may also
return a bigger radius of confidence, which may be considered
country-level geolocation. This radius of confidence can be
configured by the user to match specific use cases. For the
large scale of this work, which aims to locate all IPv4 and
IPv6 router addresses found in CAIDA’s traces, we precede
this measurement step by integrating high-volume ZMap [8],
[11] scans to (i) filter for responsive hosts and (ii) quickly
locate the hemisphere of an IP address. This pre-measurement
step can be skipped if only few IP addresses need to be
located. We release HLOC source code and data used in this
paper to the public. As RIPE Atlas automates data sharing
between different measurements, the repeated usage of HLOC
by multiple research teams will further improve its efficiency.
Our main contributions in this work are:

• Creating HLOC, a ready-to-use geolocation framework
leveraging DNS-based hint collection and distributed
active measurements

• In-depth evaluation of HLOC geolocation measurements
of 1.4M IPv4 and 183k IPv6 routers

• Comparison of HLOC geolocation results against com-
mercial databases and previous measurement-based ap-
proaches

We structure this paper as follows: We discuss related work
in Section II and present HLOC’s architecture in Section III.
We discuss measurement results in Section IV and evaluate
our results against other approaches in Section V. We discuss
limitations, trade-offs, future improvements and ethical con-
siderations in Section VI. Section VII concludes this work.

II. RELATED WORK

Related work on geolocation can be structured into
three groups: measurement-based approaches, DNS-based ap-
proaches, and investigations on accuracy limitations of geolo-
cation databases.

Measurement-based: There is a large body of
measurement-based approaches for IP address geolocation.
These approaches rely on latency, link level topology, time-
to-live and other data to triangulate hosts or co-locate hosts to
known landmarks [4], [14], [15], [17], [21], [23], [38]–[41].

DNS-based: In contrast to measurement-based approaches,
DNS-based approaches leverage DNS data to derive an IP
address’s location. RFC 1876 defines a DNS extension capable
of storing longitude/latitude data for IP addresses; however,
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this extensions is rarely used, and would likely suffer from
outdated information when IP addresses are being moved
without updated DNS entries.

Several previous works use DNS data to locate IP addresses.
Spring et al. [35] leverage DNS data to locate Internet routers
for a topology study. Böttger et al. [3] study Netflix’s infras-
tructure in depth by extracting information from DNS names
and confirming those by measurements. Zhang et al. [42] show
that misnamed router DNS names (e.g. due to re-assignment
of IP addresses without changing the DNS name) can signif-
icantly distort topological studies. They suggest various rules
to detect such misnaming, for example by disallowing location
loops along a traceroute’s path.

In 2014, Huffaker et al. [18] (“DRoP”) investigate router
DNS names and compare them against various ground truth
domains and databases. They also use CAIDA’s Internet meas-
urement infrastructure to derive location rules for domains
through latency and time-to-live analysis. While showing good
results on few ground truth domains, DRoP does not provide
a ready-to-use solution as its source code is not public, it
leverages private measurement frameworks, and its general-
ization potential is unclear. In this work, we reappraise DRoP
using our geolocation framework HLOC by (i) including more
hint sources; (ii) using a more flexible search algorithm; (iii)
leveraging public measurement frameworks; (iv) adding IPv6
capabilities and (v) publishing ready-to-use code and data.

Database Accuracy: Gueye et al. [13] in 2007 criticize
the concept of geolocation databases to aggregate IP addresses
into larger blocks. They show that some of these blocks can
span 1,000km and more. Poese et al. [26] in 2011 investigate
the accuracy of five different geolocation databases against
ground truth data for one large Internet Service Provider.
They find the databases to be partially incorrect on a city
level, and heavily biased on a country level. They argue that
this inconsistency is likely increased by block aggregation as
criticized by Gueye et al. [13]. We strive to remediate accuracy
problems of geolocation databases with HLOC by providing
a ready-to-use geolocation framework with higher accuracy.

III. ARCHITECTURE OF HLOC

We design HLOC as a modular, flexible and extensible
framework. This allows us to scale efficiently and accommo-
date changing requirements.

A. HLOC’s Building Blocks

HLOC comprises of five building blocks: (i) parse codes, (ii)
preprocess domains (iii) search codes in domains (iv) measure
latency to hints, and (v) validate hints. Figure 1 shows these
building blocks and their interfaces, which we describe in the
following paragraphs.

Parse Codes: We gather several types of location codes,
and map all possible codes of one location to a single
location entry, amended by the location’s coordinates and
population data. We use four kinds of location codes: Air-
port codes [10] (example Houston, TX: IATA HOU, ICAO
KHOU, FAA n/a), UN/Locode codes [37] (Houston: US HOU,
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Fig. 1: The building blocks of HLOC.

transformed to USHOU for search), CLLI codes [36] (Houston:
HSTNTXMOCG0, we use the first six characters HSTNTX as in
[18]), and GeoNames city names (Houston: Hiustonas) [12].
The combination of those four kinds of locations codes results
in 448k raw location codes. These codes do not necessarily
provide the same GPS coordinates for a location, especially
for cities with rather distant airports. We hence merge location
codes in a radius of 100km around city centers to form one
location. We use the number of inhabitants of a location to
define a deterministic merge order, i.e., smaller locations will
be merged to bigger locations. This results in 5474 locations.

Preprocess Domains: HLOC’s input is a list of target IP
addresses with corresponding DNS names. We use a reverse
DNS file from Project Sonar [27] and filter it for routers using
CAIDA’s IPv4 ITDK [5] traces and IPv6 router names [6]
datasets. We filter out ≈1% of invalid domains, for example
containing characters not allowed in domains according to
RFC 952 or top-level domains not existent according to IANA
[19], for example, .local. For the remaining domains, we split
DNS names into individual labels along “.” boundaries and
remove first and second level domain labels (cf. Section III-B).

Search Codes in Domains: With 448k location codes and
millions of domain names in preliminary runs, an efficient
data structure and search algorithm is key to our research.
We find that organizing location codes in a prefix tree and
then matching domains against this tree provides excellent
performance, with about 10 minutes search time for our 1.6M
domains (using 8 parallel processes). Figure 2 shows an
excerpt of our location code prefix tree, with relevant codes
for Munich. Matching a domain component munich against our
location code prefix tree would result in intermediate and leaf
node matches for mun, munic, munich. As we also match the
subcomponents unich, nich, ich, the matches uni, nic and nich
are also generated. Those matches of domain labels against the
prefix tree of location codes are then named location hints.

Measure Latency to Hints: HLOC is designed to flexibly
use multiple measurement frameworks. For our work, we
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Fig. 2: Prefix tree excerpt with relevant codes for search term
munich. Hierarchical layout for efficient search.

implement interfaces to three servers running ZMap and to
the RIPE Atlas [29] measurement framework. Extensions to
use, e.g., PlanetLab [25] (currently missing IPv6 support) or
ProbeAPI [34], can be flexibly added. Queries and results are
formed and processed in a unified format, which can easily
be translated into framework-specific commands. Per domain
name, we start measurements against one location hint and
then call the validate hints block.

Validate Hints: The validate hints block is repeatedly
called until all location hints for a domain were falsified, i.e.,
excluded based on speed-of-light constraints, or one location
hint was verified, i.e., confirmed based on latency heuristics.

Specifically, HLOC’s validate hints block processes the
set of responsive IP addresses by repeatedly (i) excluding
locations by latency constraints and (ii) verifying remaining
hints using RIPE Atlas pin-point measurements.
Validation through pin-point measurements requires (a) finding
a probe p nearby the location hint h (cf. Equation 1)and (b)
latency constraints (cf. Equation 2) holding true.

d(p, h) < x (1)

RTT (p, h) < a+
2 · d(p, h)

c · c0
(2)

Equation 1 limits the maximum distance of a probe p to
a location hint h. For our study, we set x to 1,000km,
and highlight that HLOC will still choose the closest probe
possible, but remote locations with sparse coverage benefit
from a larger x. We discuss the impact of x in Section IV-B.

In Equation 2, RTT (p, h) is the measured round trip time
between probe p and hint location h, a is a latency buffer,
d(p, h) is the geographical distance between probe and hint,
c0 the speed of light in vacuum, and c the inverse refractive
index for fiber. We use c=2/3 [33].

We argue that the latency buffer a is necessary to accommo-
date for time a packet can spend in buffers or scheduling on
shared measurement platforms. Based on initial measurement
results and our measurement targets, we consider a=9ms as
a good starting value. Studies requiring higher precision can
adjust this parameter. We conduct a sensitivity analysis and
discussion of this parameter choice in Section IV-B.

These settings result in a maximum possible error in our
studies of 2x+ akm =∼2,900km, with akm = a·c·c0 · 1/2.

B. Balancing Efficiency and Accuracy

We resolve various challenges through iterative improve-
ments, usually trading magnitudes of efficiency gain for minor
potential losses in accuracy:

Challenge 1 - Abundance of Matches: Initial runs returned
on average >20 matches per DNS name, resulting in an in-
feasible amount of matches. We contribute several approaches
to reduce matches while not significantly reducing accuracy.

First, we focus on larger locations by removing locations
below a certain inhabitant threshold. For this work, we choose
a threshold of 100,000 inhabitants. Again, other studies can
easily chose a different threshold, and we conduct sensitivity
analysis and discussion for this threshold in Section VI-E.
This reduces the average number of matches per IP address
from >20 to ≈7. It is possible to white-list important smaller
locations (such as fiber landing points).

Second, we apply various blacklisting techniques to remove
dominant false matches:

• 26 codes such as tel (part of telecom) or cpe (customer
premises equipment)

• 425 words not to be searched for location hints, e.g.,
Internet, Linux or static

• 35 code-location mappings considered wrong. For exam-
ple, lin is the IATA code for Milan, but also matches
Illinois, Carolina and Dublin. In this example, the code-
location blacklist will forbid lin to match Illinois, Car-
olina and Dublin.

We create these blacklists through iteratively assessing the top
matches, thus focusing on high-impact false matches. This
manual step may seem inefficient, but its one-off character
and high-impact focus make it well feasible. By filtering the
486 aforementioned values, we reduce the number of matches
from ≈7 to ≈4.4. We thoroughly document our blacklist with
examples to enable community review and contribution.

Third, we remove matches for top- and second-level do-
mains. These matches typically represent the headquarters’
location (e.g., .fr) or the company name (e.g., vivendi.fr), not
specific router locations. This brings the number of matches
per IP address further down from ≈4.4 to ≈3.9.

Another option is to remove rDNS names that embed the IP
address. These are typically automatically generated without
specific location hints. We support a variety of IPv4 and IPv6
embedding schemes. In this work, we separately investigate
DNS names with and without embedded IP addresses.

Through these measures we reduce the average number of
matches per DNS name from >20 to ≈3.9. Please note that
this effect is amplified by fully removing IP addresses with no
matches left, leading to a similar reduction of total matches.

Challenge 2 - Validation Runtime: Measurement frame-
works such as RIPE Atlas allow a certain number of mea-
surements per time interval, limiting the number of queries
we can conduct. Therefore, reducing the number of required
measurements is our main lever to reduce validation runtime:
First, we precede the wide-spread measurements by conduct-
ing ZMap measurements from servers in Dallas, Frankfurt and



Singapore, which allows speedy filtering of unresponsive IP
addresses. Also, the three geographically spread out servers
can often locate the hemisphere of an IP address’s location,
excluding further matches. This step brings the number of
possible matches down from ≈3.9 to ≈1.3, and at the same
time excludes unresponsive IP addresses.

IV. MEASUREMENT RESULTS

In this section we present the results of our measurements
in terms of verified and falsified geolocation hints, differences
between IP-encoding and not IP-encoding domain names, and
contribution of each of our four location code types.

A. Measurement Statistics
For our large-scale evaluation, we source IPv4 and IPv6

router IP addresses from CAIDA’s May 2016 ITDK/DNS
names datasets [5], [6]. From these, we filter out ≈1% of
invalid domains (see Section III-A). The remaining domain
names are then matched against the location hints in our prefix
tree. 41% (IPv4) and 4% (IPv6) of IP addresses do not produce
any location matches and are hence not further processed.
Some examples for such DNS names without matches are:
rf-rtr01.ew.net.nz, host.3.static.cardbankph.com, rt230bb131-
145-61.routit.net and internet-gw.customer.alter.net. Table I
summarizes statistics for the aforementioned steps. The set
of IP addresses with matches (58%/96%) is then processed in
the next steps of our algorithm.
We now describe the location measurement phase, with its
statistics displayed in Table II. We first filter 2% of IP
addresses from either our blacklist (curated from previous
studies) or not announced to our BGP border router.

Next, we conduct ZMap ICMP echo request latency mea-
surements and filter out unresponsive IP addresses. These
high-volume measurements eliminate 28% of IPv4 addresses
and 78% of IPv6 addresses. The value for IPv4 is in the
expected range, given that our dataset also includes access
and home routers. The 78% of non-responsive IPv6 addresses
are surprising, however we find the total number of 29k
responsive IPv6 routers roughly in line with previous stud-
ies (35k in [2], 43k in [11]). Closer analysis reveals that
a very large part (75%) of our IPv6 dataset consists of
dynamically generated IPv6 DNS names of the form node-
1w7jr9y4otrxqsxabcdek4c1.ipv6.telus.net. This subset offers
a response rate of only 0.4%, which is not surprising as
the addresses typically contained the SLAAC-characteristic
ff:fe middle bytes. These are therefore most likely home
routers which could block ICMP requests. Please note that
the non-IP-encoded IPv6 subset offers a significantly higher
ICMP response rate of 73%.

Before discussing the breakdown of measured and respon-
sive IP addresses into the three categories of verified hint, no
verified hint, and all hints falsified, we conduct a sensitivity
analysis parameters of our algorithm.

B. Sensitivity Analysis and Error Margins
We consider a location hint as verified if it satisfies Equa-

tions 1 and 2. These equations contain margins for probe
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distance and latency. These margins are required, as finding
a probe with zero distance to a location hint is as unlikely
as a latency measurement equal to the direct distance. Margin
calibration strikes a balance between false positive and false
negative rates. Before discussing the results of our algorithm,
we investigate the sensitivity of our results to these margins.

Figure 3 investigates probe distance and maximum error for
verified location hints. We see that probe distance is typically
very small, with 80% below 25km. We also see that the latency
buffer used, which we set to a maximum of 9ms, is rising
linearly (i.e., the underlying distribution is uniform in that
interval). The maximum error, as a function of both, also raises
linearly to a point of 93% of IP addresses at 900km. We
find the 7% of high-error outliers to be typically caused by
high probe distances. One such example is Summer Beaver,
a remote airport in Canada, with the next RIPE Atlas probe
being 927km and a minimum of 16ms away.

We next analyze the influence that our parameter choice has
on not verified hints: Figure 4 analyzes the excessive latency of
not verified hints, i.e., how much a certain latency did exceed
our thresholds for confirmation of a hint. We see the excessive
latency to continue the linear rise see in Figure 3 up to a point
of ∼50ms, with slightly better values for IPv6.

We conclude that, as the latency buffer used rises linearly
until and beyond (cf. Figure 4) 9ms, our selected margin of
9ms offers linear sensitivity to the number of verified hints and
may easily be adapted by other studies to smaller or larger
values. For probe distance, permitting a maximum distance
of 100km will permit to obtain 93% of results without error
margins rising beyond linear. However, this would come at the
cost of not being able to verify remote locations at all.

We next analyze the numbers of verified and unverified hints
that result from applying our algorithm.



TABLE I: Statistics for Location Hints Matching.

# IP addresses IPv4 IPv6

Processing Step Total IP encoded IP not encoded Total IP encoded IP not encoded

Routers 2.5M (100%) 1.4M (100%) 1.0M (100%) 190k (100%) 146k (100%) 44k (100%)
Invalid Domains -14k (0.6%) breakdown n/a -0.3k (0.1%) breakdown n/a
No Match -1.0M (41.3%) -821k (58.2%) -192k (18.6%) -7.2k (3.8%) -2.7k (1.8%) -4.5k (10.1%)

Remaining 1.4M (58.2%) 590k (41.6%) 836k (81.6%) 183k (96.0% 143k (98.2%) 39k (89.6%)

TABLE II: Statistics for measurement algorithm: ZMap pre-scan effective for detection of unresponsive hosts, DNS names
with no encoded IP addresses offer better results.

Processing Step IPv4 IPv6

Total IP encoded IP not encoded Total IP encoded IP not encoded

Input IP addresses 1,426k (100%) 590k (100%) 836k (100%) 183k (100%) 143k (100%) 39k (100%)
- Filtered IP addresses1 -34k (2.4%) -7k (1.2%) -27k (3.3%) -2k (1.3%) -.2k (0.2%) -2k (5.2%)
- ZMap/censys timeouts -391k (27.5%) -217k (36.8%) -174k (20.8%) -143k (78.4%) -139k (97.1%) -4k (10.1%)
- RIPE timeout -40k (2.8%) -22k (3.7%) -18k (2.1%) -8k (4.3%) -3k (2.3%) -5k (11.8%)
Responsive 961k (67.4%) 344k (58.3%) 617k (73.8%) 29k (16.0%) 1k (0.4%) 29k (73.0%)

Responsive 961k (100%) 344k (100%) 617k (100%) 29k (100%) 1k (100%) 29k (100%)
All hints falsified2 417k (43.4%) 132k (38.3%) 285k (46.2%) 7k (22.9%) .3k (47.3%) 6k (22.4%)
Hint verified 45k (4.7%) 10k (2.8%) 35k (5.7%) 5k (17.6%) 8 (1.3%) 5k (18.0%)
No hint verified 500k (52.0%) 203k (59.0%) 297k (48.1%) 17k (59.5%) .3k (51.4%) 17k (59.7%)

Without probe 17k (1.8%) 5k (1.5%) 12k (2.0%) 1k (4.2%) .1k (12.2%) 1k (4.4%)
Latency too high 482k (50.1%) 197k (57.4%) 284k (46.1%) 16k (54.9%) .2k (39.3%) 16k (55.2%)

1: Blacklisted or not announced IP addresses 2: About 1% falsified by ZMap/censys.
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C. Verified Hints

We can verify a location hint for 4.7% of responsive
IPv4 (corresponds to 45k addresses) and 17.6% of responsive
IPv6 addresses (5k addresses). While 4.7% and 17.6% are
rather small portions of all initial IP addresses, we argue that
45k (IPv4) and 5k (IPv6) of successfully located router IP
addresses prove that the concept of extracting DNS hints and
validating them through RIPE Atlas works for a significant
number of routers. We also find that the routers with a
validated location play a central role in the Internet’s topology:
Validated IP addresses were on average present in 12,585 of

CAIDA’s May 2016 path measurements compared to 3,567
traces for not validated IP addresses. We argue that this more
central role likely comes with higher uptime and response rates
and lower latency, hence allowing for higher validation rates.
We discuss avenues to further raise the number of validated
IP addresses in Section VI.

D. No Verified Hint

We consider a domain as no verified hint if we can neither
verify any hint nor falsify all hints for a domain. At about
55%, the majority of responsive IP addresses falls into this
category of no verified hint. One small root cause for this is the
lack of a nearby probe, which amounts to 2% (IPv4) and 4%
(IPv6). This number of location hints without a nearby probe
might be reduced through the adaption of further measurement
frameworks and increased geographic coverage of RIPE Atlas.
The majority of unverified IP addresses is due to high latency.
We discuss mitigation strategies for this in Section VI.

E. All Hints Falsified

If all location hints for a DNS name were falsified based on
speed-of-light constraints, we label that DNS name with the
results all hints falsified. With 43% (IPv4) and 23% (IPv6) of
responsive IP addresses, this category has a surprisingly high
share of all responsive IP addresses. We manually investigate
a sample of this group and find it to usually be caused by
matches created on strings such as company names, which do
not necessarily express an individual IP addresses location.



F. IP-Encoding Domain Names

This section compares the group of IP-encoding DNS
names with that of not IP-encoding DNS names. A common
hypothesis is that IP-encoding DNS names are automatically
generated, implying fewer or less accurate geographic hints.

Tables I and II split out this subgroup for comparison.
We find DNS names with encoded IP addresses to represent
a significant share of IPv4 (41%) and IPv6 (78%) router
IP addresses. Those DNS names that encode IP addresses
generate fewer location matches, respond less likely to ICMP
echo requests and less likely have their location hints validated.

However, 10k IPv4 addresses from the IP-encoding provide
verified location hints. We further analyze this verified sub-
group IP-encoding DNS names, and commonly find city or
regional names in labels above the IP-encoded label. Table III
displays examples of this behavior.

TABLE III: Examples of verified IP-encoding DNS names.

DNS Name Location Code RTT

1-2-3-4.lightspeed.hstntx.sbcglobal.net Houston, TX CLLI 3.5ms
1-2-3-4.lightspeed.miamfl.sbcglobal.net. Miami, FL CLLI 4.2ms
ip-1-2-3-4.mel.xi.com.au. Melbourne (AU) IATA 6.0ms
rrcs-1-2-3-4.nyc.biz.rr.co. NYC, NY IATA 3.7ms

G. Contributions per Location Hint Source

We next evaluate the contribution of various location
sources to the number of generated and verified location hints.
Table IV shows location hint sources along their numbers
of codes, generated hints, and verified hints. Over 99% of
verified matches stem from IATA, Geonames and CLLI codes,
while ICAO, FAA and UN/LOCODE codes provide very few
verified hints. GeoNames and CLLI matches are very efficient
when comparing number of hints to number of verified hints.
As CLLI and GeoNames codes are longer than, e.g., IATA’s 3-
letter codes, they are less prone to matching strings by chance.
We discuss in Section VI how these insights can potentially
improve HLOC by weighting location hint sources.

TABLE IV: IATA, GeoNames and CLLI codes provide 99%
of verified hints.

Category IATA ICAO FAA UN/LO GeoNames CLLI

# Codes 8k 13k 20k 77k 32k 31k

Hints (100%) 4.5M 209k 472k 59k 215k 167k
Verified 32k 122 413 120 13k 5k
Verified (%) .7% < .0% .1% < .0% 5.9% 2.8%

V. EVALUATION

In this section we compare the locations obtained from our
HLOC geolocation framework to (i) commercial geolocation
databases and (ii) to Huffaker et al.’s results obtained by using
their DRoP system [18]. Table V details this comparison.

A. Comparison to commercial databases

We compare our results against MaxMind’s [22] and
ip2location’s city-level geolocation databases [20]. We report
findings in three possible categories: Based on HLOC’s hints
and measurements, a database entry may either be the same,
i.e., HLOC could verify a location hint and the database
reports the same location, possible, i.e., the database location
is different from HLOC, but possible based on HLOC’s
latency measurements, or wrong, i.e., the location reported
by a database has been falsified based on HLOC’s latency
measurements and speed-of-light constraints.
HLOC Verified IPv4: We first look at IPv4 locations that have
been verified by HLOC. Looking at the verified (IPv4) row
in Table V, we see that, based on our measurements, 44% of
locations reported by GeoLite are wrong, i.e., falsified through
measurement, compared to about 12% from ip2location. This
confirms that commercial databases, when applied to router
datasets, contain a non-negligible number of incorrect entries.
In addition, we can compare the percentage of cases where
a verified HLOC location is the same as the city reported
by a database. We highlight that as neither the databases nor
HLOC form a definitive ground truth, the same category is
rather indicative. However, the difference of 77% agreement
for ip2location and 40% for GeoLite is noteworthy. HLOC
Unverified IPv4: For location hints that HLOC can not verify,
HLOC’s latency measurements still disprove a small number
of locations returned by commercial databases.

IPv6: Table V displays IPv6 results where they significantly
differ from IPv4 results. GeoLite does not support IPv6, and
ip2location IPv6 matches are significantly more often wrong
than IPv4 matches (64% IPv6; 12% IPv4). This is likely linked
to the large IPv6 address space, pressuring database providers
to aggressively group IP addresses into the blocks mentioned
in Section II. This highlights the need of contrasting database
information with latency-based measurements for IPv6.

B. Comparison to DRoP’s ruleset

DRoP does not provide a geolocation for 84% of IPv4 router
addresses. This is caused by DRoP’s operating mechanism
based on specific regular expression rules for a set of specific
domains. However, for those IP addresses where DRoP does
deliver an answer, the answer interestingly is typically verified
or falsified, and only very rarely in the “possible” range.
We highlight that although the DRoP rules are very narrow,
specifying a specific kind of code (for example, IATA) at
a specific location in a specific domain, its answers are
still frequently falsified through latency measurements. This
confirms the work of Zhang et al. [42] stating that DNS
names are often outdated or wrong. It also confirms that DNS-
based location approaches should be combined with latency
measurements to minimize the influence of wrongly named
IP addresses. Interestingly, the DRoP results are much better
for IPv6 - this might be due to less pressure to re-use and
re-locate addresses in the vast IPv6 address space.



TABLE V: Evaluation of location decisions by databases and DRoP against HLOC measurements: ip2location more accurate
than GeoLite, DRoP frequently with “no data”. All information-based approaches with a significant number of wrong decisions.

HLOC GeoLite ip2location DRoP

Location Dec. n Same Possible Wrong Same Poss. Wrong Same Poss. Wrong No data

IP
v4

Verified 45k 40.4% 15.6% 44.0% 76.6% 11.3% 12.1% 7.8% 0.1% 8.4% 83.7%
All falsified 417k n/a1 100% 0% n/a 100% 0% n/a n/a 2.2% 97.8%
No verified 499k n/a 96.1% 3.9% n/a 98.8% 1.2% n/a 10.5% 4.1% 85.4%
Timeout 465k n/a 100% n/a2 n/a 100% n/a n/a 26.4% n/a 73.6%

IP
v6 Verified 5k — 25.7% 10.6% 63.6% 33.7% 1.0% 1.8% 63.5%

No verified 17k — n/a 74.2% 23.9% n/a 25.5% 3.3% 71.2%
1: With no verified HLOC match, other approaches can not have the same match. 2: With HLOC timeout, it is not possible to evaluate other approaches.

TABLE VI: For DRoP’s ground truth domains, we show performance for (a) DRoP’s reported performance, (b) our reproduction
of DRoP and its validation against latency measurements, and (c) HLOC-generated hints and their latency validation.

Domain DRoP 2014 [18] DRoP 2016 Reproduction HLOC

n Type Match TP1 n Match TP1 Ver.2 Fals.2 Match TP1 Ver.2 Fals.2

belwue.de 161 City 52% 86% 53 64% 65% 22 1 94% 64% 32 5
cogentco.com 13,129 IATA 90% 99% 9,475 95% 26% 2,381 628 99% 23% 2,144 295
digitalwest.net 111 IATA 49% 100% 47 49% 26% 6 0 100% 15% 7 2
ntt.net 2,584 CLLI 96% 100% 3,125 54% 37% 622 5 99% 30% 937 148
peak10.net 115 IATA 100% 100% 199 99% 9% 18 0 100% 9% 18 0
1: % of matches that are true positives 2: Total count of verified or falsified matches. “possible” and “time out” results not displayed.

C. Comparison to DRoP ground truth domains
In this section, we compare the accuracy of HLOC and

DRoP against the set of 5 ground truth domains from DRoP.
For those domains, the authors of DRoP had confirmed the
accuracy of their rule set.
Table VI first shows the original results of Huffaker et al.
[18]. As they do not provide their dataset, we reproduce their
results for a host-by-host comparison, which we show next.
Please note the different number of hosts n, as we filter for all
routers in a domain (according to CAIDA traces), while DRoP
authors likely picked the subset of hosts that they obtained a
ground truth for. Also, we limit this comparison to IPv4 as
original DRoP numbers do not include IPv6. We reproduce
DRoP results by applying their published matching rules and
run HLOC’s measurement algorithm to verify or falsify their
results. We also give the results for matches generated and
measured by HLOC. Our reproduction, though working on
a different numeric base, typically achieves similar match
rates. The difference between the original DRoP result and our
reproduction of ntt.net is likely caused by NTT’s creation of
international CLLI codes, which are not part of the standard
and are hence missing in our dataset. The DRoP team had
likely created these easily decipherable codes such as londen,
taiptw, newthk and amstnl by hand. Using HLOC, we can
typically verify a large part of the DRoP reproduction matches,
but for cogentco.com can also falsify over 600 matches. The
last aggregate column are the results of HLOC.

The application of HLOC’s full matching tree generates
more matches than the DRoP rules, with the count of verified
matches frequently equaling or surpassing the number of
verified matches from DRoP’s rules. We investigate those
cases where HLOC can verify matches that the DRoP rules
can not find. We find no systematic pattern, but incidences

of (i) manually named DNS records not in accordance with
DRoP rules and (ii) finding (and verifying) matches in DNS
names that seem not to intend to give a location hint. Based
on our reproduction of DRoP, we argue that HLOC’s generic
matching equals or surpasses DRoP’s specific domain patterns
just two years after their creation. We also highlight that
even specific DRoP rules can be falsified for a significant
number of hosts. This confirms the unavoidable existence of
outdated and misnamed DNS names, requiring latency based
verification/falsification as done by HLOC.

VI. DISCUSSION AND LIMITATIONS

We discuss our work, its current limitations, and ways to
tackle these in this section.

Throughout this work, we have confirmed that for router
datasets, geolocation database results have a significant num-
ber of wrong entries and should be contrasted by latency
measurements, an issue even worse with IPv6. We show that
leveraging ready-to-use public measurement frameworks in
HLOC works well, and that a significant number of location
hints can be confirmed with singular latency measurements.
Using few and simple measurements is an important scale
factor when leveraging public frameworks that often charge
by amount and complexity of measurements. We find the
error margin to increase linearly for a very large fraction
of measurements, easily enabling users of HLOC to set an
individually acceptable error margin.

We now discuss HLOC’s current design choices and plans
for improved future versions.

A. Measurement Scope and Nature

Since Internet-wide geolocation measurements from hun-
dreds of distributed probes are infeasible, we limit HLOC’s



scope to geolocating routers. This also ensures that we adhere
to RIPE Atlas API thresholds, since HLOC is measurement-
bound and not computationally-bound. In the future we want
to perform multiple measurements for one router over time to
avoid temporary congestion and queuing situations.

B. Probe Selection

The current version of HLOC randomly selects a RIPE
Atlas probe close to a location hint. This offers various ways
for improvement: First, RIPE Atlas probes with high first- or
second-hop latencies could be removed. As each RIPE Atlas
probe continuously measures first- and second-hop latency,
probes behind high-latency links can be excluded from our
measurements. Second, selection of probes within the same
Autonomous System as the target IP address can avoid high
latencies due to geographically sparse inter-AS connections.
Third, we could select several suitable probes, aiming to
increase the probability of hitting a low-latency measure-
ment caused by an empty link or a low probe workload.
Holterbach et al. [16] show that measurement interference can
significantly bias RIPE Atlas latency measurements. This step
increases the measurement cost and might not be feasible for
some studies. Fourth, consensus-based blacklisting can remove
probes with wrong locations. Fifth, the integration of further
frameworks can aid probe sparsity and probe diversity.

C. Probe Distance, Latency Buffer, and Error Margin

As discussed in Section IV-B, our parameters for probe
distance and latency buffer offer largely linear sensitivity and
can easily be adjusted to suit different requirements. A smart
way to combine both parameters will be for the user to set
a maximum acceptable error margin, towards which HLOC
will optimize by dispatching more measurements for extreme
cases. Future versions may also show possible location areas
of an IP address, however these will be of complex shape.

D. Location Codes Ordinance and Search

Currently, HLOC probes matches for a domain in the order
in which they are found in our code prefix tree. Future versions
should leverage smart sorting to reduce the average number of
measurements needed to come to a conclusion for a domain.
Supported by our results from Section IV-G, this could include
sorting by match length (putting higher weight on longer
matches), by confirmation count (i.e., measuring frequently
correct hints first), or by the location of a match within a
label (e.g., prioritizing isolated matches over matches within a
word). Reinforcement learning to determine typical code types
and locations per domain [18] may also help.

E. Location Size Threshold

The current version of HLOC uses a location size threshold
of 100k inhabitants: Only locations above this threshold will
be able to generate matches. This threshold is mainly applied
to reduce the abundance of matches generated per domain. As
discussed in Section III, this threshold can both be changed
for its absolute value as well as for individual exceptions.

We conduct a sensitivity analysis on this threshold value,
evaluating the average number of matches per domain after
exclusion of locations based on ZMap latency measurements.

Using a threshold of 100k inhabitants yields 7.7 average
matches per domain (cf. Section III). For a threshold of 50k,
this rises to 11.34, and for a threshold of 1k, this number rises
to even 20.44. As our measurements already exceed many of
RIPE Atlas’s limitations for a threshold of 100k, we conclude
that 100k was the correct threshold to choose for our large-
scale measurements. Typical path analysis use cases [30], [32],
only locate thousands instead of millions of IP addresses and
could easily use a lower threshold. Also, the steps discussed
in Section VI-D could likely reduce the number of required
measurements for domains with many matches.

F. Measuring IP Anycast Addresses

IP anycast routes packets for one IP address to one of several
distinct nodes, usually in separate geographical locations, used
for example by DNS root servers [28]. When performing
latency measurements, HLOC selects a probe geographically
close to each hint. As HLOC, in its current version, stops
after having validated a first hint, it would disprove other valid
locations for multicast IP addresses. This has a small impact on
our results, as (i) IP anycast addresses typically do not encode
locations in their DNS name; and (ii) we are not aware of IP
anycast being used for Internet routers to a significant extent.

G. Ethical Considerations

We follow an internal multi-party approval process, among
others based on Partridge and Allman [24], before any meas-
urement activities are carried out. We conclude that our icmp
echo request measurements consisting of a few packets per
week per targeted router, and the resulting data, can not
harm individuals, but may result in investigative effort for
system administrators. We aim to minimize this effort by
deploying scanning best-practice efforts of (i) using dedicated
scan machines with explanatory websites, (ii) maintaining a
blacklist, (iii) replying to every abuse e-mail (none received
in this experiment), and (iv) minimizing impact on RIPE Atlas
in coordination with the RIPE Atlas team.

VII. CONCLUSION

We present HLOC, a framework that derives geolocation
hints from DNS names and uses publicly available measure-
ment frameworks to validate or falsify theses hints through
latency measurements. We evaluate its performance on IPv4
and IPv6 router datasets and verify 45k IPv4 addresses and
5k IPv6 addresses. We compare our results to those from ge-
olocation databases and DRoP and find that we can frequently
disprove those base on latency constraints. We provide HLOC
as ready-to-use tool for other research groups.
Data and Code Release: In [31], we outline our aim for
repeatable, replicable and reproducible research as defined
by ACM [1], and publish HLOC code and data on GitHub:

https://github.com/tumi8/hloc
This repository will also be used for future development.

https://github.com/tumi8/hloc
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