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ON POSITIVITY AND MAXIMUM-NORM
CONTRACTIVITY IN TIME STEPPING
METHODS FOR PARABOLIC EQUATIONS

A.H.SCHATZ', V.THOMEE?, AND L.B. WAHLBIN?

Abstract — In an earlier paper the last two authors studied spatially semidiscrete
piecewise linear finite element approximations of the heat equation and showed that,
in the case of the standard Galerkin method, the solution operator of the initial-value
problem is neither positive nor contractive in the maximum-norm for small time, but
that for the lumped mass method these properties hold, if the triangulations are es-
sentially of Delaunay type. In this paper we continue the study by considering fully
discrete analogues obtained by discretization also in time. The above properties then
carry over to the backward Euler time stepping method, but for other methods the
results are more restrictive. We discuss in particular the #-method and the (0,2) Padé
approximation in one space dimension.
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1. Introduction
We consider the initial boundary value problem
w—Au=0 inQ, wu=0 ondQ, fort>0, withu(0)=no, (1.1)

in a convex polygonal domain  C R% By the maximum principle the maximum and
minimum of a smooth solution are attained for ¢ = 0. This implies that the solution operator
defined by E(t)v = u(t) is a positive operator in the sense that

ifv>0 inQ, then E(t)v >0 in€Q, fort >0,
and also that F(t) is a (nonstrict) contraction in the maximum-norm, i.e.,

[E()v]loc = lu(t)]oo < [lv]loo, fort >0, where |[v]joc = sup|v(z)].
e
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The paper [8] considered the spatially semidiscrete finite element analogue of (1.1) in Sp,
the set of continuous piecewise linear functions on a triangulation 7y, to find uy(t) € S such
that, with (v,w) = [, vwdz, A(v,w) = (Vv, Vw),

(unt, x) + A(up, x) =0, for x € Sp, t >0, with uy(0) = v, = v. (1.2)

Defining the semidiscrete solution operator by Ej(t)v, = uy(t), it was shown that Ej(t) can
essentially neither be a positive operator nor a contraction in || - ||o for all ¢ > 0.
The lumped mass variant of (1.2) was also investigated, i.e., to find uy(t) € Sy such that

(TUnt, X)n + Altn, x) =0, for x € Sy, t >0, with a,(0) = vy, (1.3)

where (-, ), is a specific quadrature version of (-, -), namely

3
(an)h = Z QT,h(Uw)7 with QTh(f = —area Zf 7'] /fdx
7j=1

TETH

In this case it was shown that, for the solution operator defined by Ej,(t)v, = u(t), if
the triangulaton 7y, is essentially of Delaunay type, then Ej,(t) is a positive operator and a
contraction in || - ||o for ¢ > 0.

Our purpose in this paper is to study the corresponding problems of positivity and
maximum-norm contractivity for time discrete versions of the above problems. We begin
by studying time discretization in a more general Banach space framework, following Bolley
and Crouzeix [1] and Kovécs [5].

Let B be a Banach space with norm || - ||, and assume that —A generates a contraction
Cy semigroup E(t) = in B. The semigroup E(t) is then the solution operator of the
abstract initial value problem

v+ Au=0, fort>0, withu(0)=ouv, (1.4)
and the solution of this problem thus satisfies
[u(@)]| = [[E@)v]] < ||vl|, for ¢ > 0.

If B is an ordered Banach space we say that E(t) is positive, or E(t) > 0, if u(t) = E(t)v >0
for v > 0, where 0 is the zero element of B.

Let 7(z) be an A—stable rational function, i.e., with |r(z)| < 1 for Rez > 0, and assume
in addition consistency, i.e., that r(z) approximates the exponential e~* in the sense that
r(z) =1 —z+ O(2?) as z — 0; for brevity we shall call such a rational function A—-correct
below. For the time discretization of (1.4), let k be a time step and ¢,, = nk. An approximate
solution at ¢t = t,, is then

U" = Ev, where Ej, = r(kA), (1.5)

and we may ask if the time-stepping operator E} is contractive in B, and/or positive if B is
ordered.

We note that the time stepping operator E} is contractive for all n > 1 if and only if Ej, is
contractive, and positive if and only if E}, is. The most basic example is the backward Euler
method, with r(z) = 1/(1+ z). In this case the contraction property of Fj is immediate. In
fact we have

Ew=(I+kA) v = / e 'E(ktyvdt, for k>0, vebB, (1.6)
0
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and hence, if F(t) is a contraction,

Il < / e E (kD) dt < / =1,
0 0

If B is ordered, with a closed positive cone BT = {v € B, v > 0}, then E} is also positive as
follows at once from (1.6).

We want to ask if these properties carry over to more general rational functions r(z) in
the above framework, and in the concrete cases referred to above.

Consider first the case that B is a Hilbert space H and A is a selfadjoint positive definite,
not necessarily bounded, linear operator with a compact inverse. Then, if {)\j};?‘;l are the
eigenvalues of A and {¢; 521 a corresponding basis of orthonormal eigenfunctions, we have
for the solution operator of (1.4),

U—Ze "v,6,)0; and |[E@)] < supe ™ flo] =M o] < [lo]|

J

so that E(t) is a contraction in H. For the corresponding time stepping operator Ej in (1.5)
we have, if [r(A)| < 1 for A > 0, that

By =S r(\) (0,65 65 and || Byol = sup [r(oAp)[ o]l < o], for k >0,
— J

so that E} is a contraction for any £ > 0. In particular this holds in the Ly norm for the
concrete initial boundary value problem (1.1) and its spatial discretizations by the standard
Galerkin method (1.2) and the lumped mass method (1.3).

However, we shall see that when we consider contractivity in maximum-norm and the
related property of positivity, things are more complicated, and that, in general, these prop-
erties of Ey = r(kA) hold only in exceptional cases.

In Section 2 below we discuss some general results within the framework of the Banach
space B. We first show that if (z) is bounded for Re z > 0, then we may write

r(z) = /000 g(t)ye #dt +r(co), with ge Li(R,),

and we say that r(z) is of positive type if g(t) > 0 and r(oco) > 0. In this case Fy = r(kA) is
a contraction if r(0) = 1, and positive if B is ordered with Bt closed.

Unfortunately, for 7(z) to be of positive type is exceptional and can only happen for first
order approximations to e *. If ||E(t)|| — 0 as t — oo and |r(o0)| < 1, however, Ej is a
contraction for large k, even when r(z) is not of positive type.

In Section 3 we give some examples relating to positivity and contractivity in the Banach
space Co(R) of continuous functions on R which vanish at +oo, with norm || - ||«. For
A = D := d/dx we show that positivity and contractivity for all k& > 0 requires r(z) to be
of positive type. If A = —eD? 4+ D, with € > 0, then Ej, cannot be positive or contractive
for any k > 0, for arbitrarily small ¢, unless r(z) is of positive type. For A = —D? we
give a simple criterion on r(z) which excludes positivity and contractivity of Ej, but also
an example of an r(z) which is not of positive type but for which E} is both positive and
contractive, for all £ > 0.
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In Sections 4, 5, and 6 we then study the positivity and maximum-norm contractivity
of such time discretization operators, applied to the spatially continuous problem (1.1) and
to its spatially semidiscrete standard Galerkin and lumped mass analogues (1.2) and(1.3),
respectively. In each of these sections, as also earlier, we discuss in some detail the 6 —method
defined by
rolz) = 1-(1-6)z :1 I 1—9’

140z 01+06z 0

For the spatially continuous problem we show that, except for the backward Euler method
(0 =1), Ex, =rg(kA) cannot be positive for any k& > 0 and not maximum-norm contractive
for small k. The finite element versions were studied in Fujii [3], where sufficient conditions
for the maximum-principle were given in terms of properties of the triangulation 7. For the
standard Galerkin method it was shown that the maximum-principle holds when 7, is of
Delaunay type if k is bounded above and below in a specific way. Since neither positivity nor
contraction holds for the spatially semidiscrete problem, we show here that these properties
also cannot be satisfied for the corresponding time stepping methods, for k£ small. The
lumped mass method is more advantageous in that a maximum-principle holds for k£ small
when 7}, is of Delaunay type. We include versions of these results below.

As an example of an A—correct rational function, which is of higher order than first, we
also consider the (0,2) Padé approximation of e=* defined by

0<O<1. (1.7)

1

= — 1.8
142+ 322 (18)

r(2) = roa(z)

We study the corresponding time discrete operator rga(kA), restricting ourselves to one
space dimension, and using uniform meshes in the spatially discrete cases. We shall see
that, even under these restrictive assumptions, the corresponding operator Ej = rg2(kA)
is neither positive nor maximum-norm contractive for small k, in any of the three concrete
cases considered, but that these properties hold for larger k.

2. Some results on time stepping in a Banach space framework

We first discuss a representation of a rational function, bounded in the right half-plane of
C, of the infinitesimal generator of a Cy semigroup in a Banach space.

Lemma 2.1. Let 7(z) be a rational function, bounded for Rez > 0, and let —A be the
infinitesimal generator of a bounded Cy semigroup E(t) = e~ on the Banach space B. Then
Ey :=r(kA) is well defined for k > 0 and we may write

Ep = r(kA) = / o(t) E(kt) dt + r(00) I, for k> 0. (2.1)
0
If {¢; Yy with multiplicities {m;}7_, are the poles of r(z), then g(t) has the form
J
g(t) = Pi(t)er, (2.2)
j=1

where P; is a polynomial of degree mj — 1.
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Proof. Noting that

1 <1 ng-
m:/o ﬁt beStdt, for Re(z — () >0,

we find by partial fraction decomposition of r(z) that, with g(¢) as in (2.2),

r(z) = / e *g(t)dt +r(x), for Rez > 0. (2.3)

0
The representation (2.1) then follows by replacing z by kA, and thus e=* by E(kt), see, e.g.,
6], p. 20. 0
For the backward Euler method we have r(z) = / ( ), and (2.3) holds with g(t) =
e !, r(o0) = 0, and for ry(z) defined in (1.7), (t) t and r(o0) = —071(1 — 6). For

ro2(2) as in (1.8), we have g(t) = 2e *sint, r(c0) = llows from

roa(z) = 2 ,:z'< Lo ) (2.4)

(z+1+i)(z+1-0) \zt+ldi z+1-d
_ z/ (67(z+1+i)t _ ef(erlfi)t) dt = 2/ e e tsintdt.
0 0

We recall that r(z) is said to be of positive type if g(t) > 0, r(oco) > 0. We remark, cf.
[1], that by a well-known theorem of Bernstein this holds if and only if r(z) is completely
monotone on R, or if (=1)"r™(z) >0 foralln >0, v € R,.

We now give an upper bound for || Ej||, which shows that if F(t) is a contraction, then
E} is a contraction if r(z) is of positive type and r(0) = 1, cf. [1], [5].

Theorem 2.1. Let the rational function r(z) satisfy (2.3), and let E(t) be a contraction.
Then we have, for Ey = r(kA),

IEd| < / lg0)ldt + Ir(o0)],  fort > 0. (2.5)

If r(2) is of positive type and r(0) = 1, then Ey is a contraction.

Proof. The inequality (2.5) follows at once from (2.1). If r(z) is of positive type and
r(0) = 1, then (2.3) with z = 0 shows that the right hand side of (2.5) equals 1, and thus
FE). is a contraction. O

Following [1] and [5], we also have the following immediate consequence of Lemma 2.1.

Theorem 2.2. Let B be ordered, with its positive cone BT closed. If E(t) is positive and
r(z) is of positive type, then Ej, = r(kA) is also positive.

Unfortunately, for r(z) to be of positive type is exceptional. For example, for the
6—method, E; = ry(kA), we have r(oo) = —071(1 —0) < 0 for § < 1, so that ry(2) is
not of positive type, and (2.5) only shows

| Ex|l < / 02 0dt+6071(1—6)=20"" —
0
For the Crank-Nicolson method we have 6 = £, r(0c0) = —1, and (2.5) only shows || E|| < 3
Neither is rg(z) of positive type since the sign of g(¢) = 2e ' sint varies.

It was shown in [1] that 7(2) cannot be of positive type for approximations of order higher
than first. For the convenience of the reader we include a proof.
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Theorem 2.3. Assume that r(z) is A—correct and of positive type. Then r(z) cannot
approximate e~ * to second order.

Proof. If r(z) approximates e~* to second order, we have r(z) = e+ O(2%) =1 — 2 +
122+ 0(2%) as z — 0, so that r¥)(0) = (—1)7, j =0, 1,2, where, by (2.3),

r@(0) = /Ooo(—t)jg(t)dt + 7(00)do;-

Since ¢(t) > 0, the Cauchy-Schwarz inequality yields

1=7(0)2 = </Oootg(t) dt>2 < /OOO g(t) dt /OOO £2 g(t) dt < r(0)r"(0) = 1.

Here equality requires g(t) and t?g(t) to be proportional, which is impossible. O

It follows that the only A—stable Padé approximation of e™* of positive type is the
backward Euler method. This does not exclude that a time discretization operator E, =
r(kA) of higher order than first could be a contraction in special cases, such as the Hilbert
space situation discussed in Section 1, in which any A—stable rational function corresponds
to a contraction.

We note that the bound in (2.5) can be relatively small, even when Ej, is not a contraction.
For instance, for Ey = rg2(kA) we have, in any Banach space,

o 1 —TT
| Ex|| = [|ro2(KA)|| < 2/ e !|sint|dt = . e 1.0903, for k& > 0. (2.6)
0

—T

This is a special case of the following lemma which will also be used later.

Lemma 2.2. We have
2/00 e M sint|dt = 1+—6:W7’02(7 —1), fory>1.
0 1—em
Proof. By (2.4) with z =~ — 1 € R, we find
2 /00 e Msintdt = ro(y — 1).
0
Hence, setting s =t — 7 in the second integral below,
X = 2/Tf e sintdt = rop(y —1) — 2/00 e Vsintdt
0 ™
=7rp(y—1)+e 72 /00 e Psinsds = (14+e M)rge(y — 1).
0
By the same change of variable as above,
Y = 2/00 e V|sint|dt = X + 2/00 e |sint|dt = X +e 7Y,
0 ™

from which the result follows. O
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We next show that Ej = r(kA) could be a contraction for some positive k, even when
this does not hold for all such k.

Theorem 2.4. Assume ||E(t)|| — 0 as t — oo and that r(z) is an A—correct rational
function with |r(co)| < 1. Then there is a kg > 0 such that Ey = r(kA) is a contraction for
k = k.

Proof. Since g € C(R) U Li(R,), we have, by (2.1) and Lebesgue’s theorem,
[ E]] < / lg@OIIEEL)| dt + [r(co)| — |r(o0)| <1, as k — oo,
0

which shows the assertion. O]

Since r(o0) > 0 is not necessary for contractivity, in general, the following theorem now
shows that positivity and contractivity are not equivalent properties.

Theorem 2.5. Let B be ordered, with BY closed, and assume ||E(t)|] — 0 as t — oo
and that r(z) is an A—-correct rational function. Then r(co) = 0 is a necessary condition
for B, = r(kA) to be positive for large k.

Proof. Again, since g € C(R) U L;(R,), we have, by Lebesgue’s theorem, for x € R,
Eyv(z) = / g(t) E(kt)v(z)dt + r(oo)v(z) — r(co)v(z), ask — oo,
0

which shows the claim. O

3. Some examples in C;(R) using Fourier transformation

In this section we shall illustrate the above concepts and results concerning positivity and
contractivity with some examples in the Banach space Cy(R) of continuous functions on R
which vanish at £oo, normed with the maximum-norm || - ||. We note that this Banach
space is ordered, with a closed positive cone BT.

We first give an example where positivity of Ej = r(kA) requires r(z) to be of positive
type. The example is provided by a convection diffusion equation with small or no diffusion.
In particular, the operator Ej cannot be positive for any k& > 0, for all E(t) corresponding
to parabolic equations, unless r(z) is of positive type.

Theorem 3.1. Let B = Cy(R) and let E.(t) be the semigroup generated in B by —A.,
where A, = —ed?/dx*+d/dx, withe > 0. Let further r(z) be an A—correct rational function.
Then, in order for Eyy = r(kAg) to be positive for some k > 0, it is necessary that r(z)
be of positive type. Also, unless r(z) is of positive type, E.y has to be non-positive for e
sufficiently small.

Proof. We express F.(t) in terms of Fourier transforms as

E.(t)o(z) = F (e "€+O7) (2),  where 0(€) = Fu(€) = /Re_m&v(x) dx. (3.1)
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We begin by considering the hyperbolic case, ¢ = 0. Then the semigroup is the translation
semigroup Ey(t)v(z) = v(xz +t) on R, and, by Lemma 2.1,

Eypv(x) = /Ooog(t)v(:c + kt) dt + r(co)v(x), for k> 0. (3.2)

Let k£ > 0 be fixed, and assume Ey; > 0. If g(t) < 0 on some interval (a,b) C R, then,
with v > 0 such that v(kt) has support in (a,b), we have Ey,v(0) < 0, in contradiction to
our assumption. Similarly, r(oc0) < 0 is impossible.

If € > 0 we note that E.(t) > 0 by the maximum-principle for parabolic equations.
Further, for sufficiently smooth v € B, and z € R, t > 0, we have E.(t)v(z) — Ey(t)v(z) as
e — 0. In fact, since [e 7€ — 1| < Cte€?, (3.1) shows

1(Ee(t) — Eo(1)v]lo < Ct€/ &10(¢)] dg = Ctel[v”| 1, (3.3)
Hence, if g(t) < 0 in (a,b) and v is as above, we have, by Lebesgue’s theorem,
E.v(0) = / gt)E.(kt)vdt 4+ r(oco)v(0) — Egxv(0), ase — 0,
0

and thus E. ;v(0) < 0 for small ¢, so that E. j, is then not positive. O

Staying in the situation of Theorem 3.1 we now turn to contractivity. For this we show
that the bound in (2.5) is attained in the case ¢ = 0, and is approached in the limit as ¢ — 0,
for ¢ > 0. In particular, this shows that Fj cannot be a contraction in Cy(R) for all E(t)
corresponding to parabolic equations unless 7(z) is of positive type.

Theorem 3.2. Under the assumptions of Theorem 3.1 we have, for any k > 0,
IBeslloc = [1Boall = [ lo(®]dt+ [r(o0), as= =0, (3.4
0

If r(z) is A—correct, and if Eoy is a contraction for some k > 0, then r(z) is of positive
type. Also, if E.y is a contraction for some k > 0 and arbitrarily small € > 0, then r(z) is
of positive type.

Proof. We first show the equality in (3.4). For k& > 0 fixed, taking v = v, € B in (3.2)
such that |lv,(k-) — sgn(g)||z,@®,) = 0 as n = oo and ||v,[lec = 1, v,(0) = sgn(r(oco0)), we
find, using (3.2) with 2 = 0, as n — oo,

[Eoklloe = | E0k0nlloc/[[Unlloc = [Eoxvn(0)] —>/0 lg(@)| dt + |r(c0)].

Thus the opposite inequality to (2.5) holds, which shows equality. In particular, ||Eog|/c = 1
if and only if r(z) is of positive type, since otherwise the right side of (2.5) is greater than
r(0) = 1.

For the last statement of the theorem, assume r(z) is not of positive type. Then we
may fix v € B, sufficiently smooth, with ||v||.c = 1 such that ||Eopv|l« > 1, and therefore
| E- xv||oo > 1 for € sufficiently small, since, by (3.3),

1Bk = Eox)vlleo < / 9O (Ee(t) — Eo(t))vl[cc dt — 0 as e — 0.
0

Hence E.j, cannot be a contraction, O
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We now consider time stepping methods Ejy = r(kA) for the standard heat equation,
i.e., with A = —d?/dz?, using A—correct rational functions r(z). If r(oco) = 0, then since
F(r(kA)v) = r(k&?)v and r(k&?) € Li(R) we have, for v € L1 (R) N B,

Epo = F ' (r(k€?)0) = frxv, where fi = F '(r(k&?)). (3:5)

Setting f(x) = fi(x) = F~1(r(€?)), we have fi(z) = k=2 f(k=1/%2).

In the case of the backward Euler method we then have f(z) = F1((14£2)7) = Le I,
and since f > 0, the positivity of Ej, follows at once from (3.5). Further, ||Ex|lco = || fxllz, =
| f|lz, = 1, showing again that Ej is a contraction.

For the 6—method we correspondingly find

Ew=fypxv—0"1—-0)v, with f(z)= fi(z) = 167 te 2/?,

2
We next show that Ej cannot be positive or contractive for 6 < 1.

Theorem 3.3. Let B = Co(R) and A = —d?/dz®. Then Ej, = ro(kA), with 0 < 0 < 1,

can neither be positive nor contractive, for any k > 0.

Proof. Let v € B with v > 0, v(0) = 1, and with compact support, and set v.(z) =
v(z/e), Then ||fi * vel]|loo — 0 as e — 0 so that Epv.(0) — —071(1 — #) < 0, which shows
that Ej cannot be positive.

Choosing instead v, € B with ||v.]lee = 1, v.(0) = —1, and v.(z) = 1 for ¢ < |z| < &7},
we obtain Eyv.(0) — || felle, +607(1 —0) = 67! > 1, which shows that Ej, cannot be
contractive. ]

We note that the last statement is not in conflict with Theorem 2.4, since ||E(t)|lc =1
for t > 0.

We now show that for the standard heat equation, for a certain class of rational functions,
E}. is neither positive nor contractive. By numerical calculation, we found that this class
includes the A—correct subdiagonal Padé approximations ry,_;n.(z), m =2,...,5, j =1,2.
We shall assume that r(2) has poles at z; = pjeiej, 7=0,1,...,J, with %ﬂ' < 0; < 7. Incase
of nonreal poles, 0; < 7, Z; is also a pole. We further assume that the pole 2 is distinguished
in the sense that

zo 1s nonreal and simple, and /posin(360) < \/pjsin(36;), j=1,...,J. (3.6)

Theorem 3.4. Let B = Cy(R) and A = —d?/dz*. Let r(z) be an A—correct rational
function with r(co) = 0, and assume that the poles of r(2) satisfy (3.6). Then Ey = r(kA)
can neither be positive nor contractive, for any k > 0.

Proof. In this case we may write

f(x) ! /00 r(€2) e d¢ = ZZ Res(r({?) e""%), for x >0, (3.7)

:% .

where the summation is over the poles of r(£?) with Im¢&; > 0. We shall show that f(x)
changes sign, so that, in particular, by (3.5), Fjx cannot be positive. Further, since || Ex|/. =
| fell, = [If|lz,, independently of k, and since [*° f(z)dz = Ff(0) = r(0) = 1, we may
then also infer that || f||z, > 1 so that Ej cannot be a contraction.
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By partial fraction decomposition,

a a ~
r(z) = z—zo+z—20+r(z)’

where 2z or Z, are not poles of 7(z). The corresponding poles of 7(£?) with Im¢; > 0 are

1
51:\/%:\/5061290:(14—2’5, =7 =/py € (300+7) _ —a + 3.

Note that 8 = /posin(36p). Since e = e *?(cosazx + isinax) for [ = 1,2, we see that,
for x > 0, f(x) takes the form

e B

flx) = —m(a Im(ae'**) + BRe(ae’™) + g1(z)) = e P (bsin(az + ¢) + ga(x)),
where b is real, and, by (3.6), g2(x) = o(1) as © — +00. Obviously, f(x) thus has to change

sign. [

We remark that the above argument also shows that Ej, = r(kA) cannot be positive
in the ordered Banach space B = Ly(R) unless r(z) is of positive type. However, if r(z)
is A—correct, then Ej is a contraction in Ls(R, ), which provides another example that
positivity and contractivity are not equivalent properties.

Together with (2.4), Theorem 3.4 shows, in particular, that E; = 7p2(kA) is not a
contraction in Co(R). However, we shall now see that in this case, a considerably sharper

bound than (2.6) holds.

Theorem 3.5. With B and A as in Theorem 3.4, and Ey, = rog(kA), we have ||Eg|lo &~
1.0014.

Proof. In this case we find from (3.7)

cosx£
/ €4+2£2+2 d¢, for x >0,

and we shall use the formula ([4], p. 411, 3.733 #1)

+ 2022 cos 27 + b* 203 sin 27

/°° cos € d€ T abeoss SIN(T + xbsin T)
=—¢
Iz

to obtain
f(z) =b"te ST gin (1 + absin7), with b= 24 7=7/8.

We now use the transformation of variables y = 7 + x b sin 7, to find

> \/5 TcotT > —ycotT| .:
HfHL1=2/ o) de = Y / eI sin g d.
0 T

sin T
By Lemma 2.2 we have, using rop(cot 7 — 1) = 2sin® 7,

1 —mcot T 2
PR i_ meotr roz(cot T — 1) = sin? 7'(1 R —— 1),

er cot T

o
/ e VT siny| dy = 5
0
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and, by a simple calculation, since siny > 0 in (0, 7),
/ e YO siny| dy = / e VT siny dy = sin® 7(1 — 2cosTe ).
0 0

Hence, using also the fact that 2sin 7 cos T = sin(7/4) = 1/v/2,

V2 int [ i 24/2sin 7 e7 ot T
|Eklloo = Ifll, = ——€™°* (/ —/ ) =1+ ~ 1.0014.
SINT 0 0

eﬂ'COtT _ 1

]

We close this section by giving an example of an A—correct rational function r(z) which
is not of positive type but for which Ey = r(kA), with B and A as in Theorem 3.4, is both
positive and contractive. This shows that a rational function does not have to be of positive
type for these properties to hold.

Theorem 3.6. Let B and A be as in Theorem 3.4. Then there exists an A—correct
rational function r(z) with r(co) = 0, which is not of positive type, such that Ey = r(kA) is
positive and contractive.

Proof. We consider a convex combination of the backward Euler rational function and
ro2(kA), corresponding to

r(z)=v/(14+z)+ (1 —v)re(z), withv e (0,1).
Here, g(t) =ve™ + (1 —v)2sinte " and r(c0) = 0, and, in the above notation,
fla)=F () (z)=vie*+ (1 —v)b e ™" sin(r + xbsint), forz > 0.

We want to choose v so that f(z) > 0, in which case Ej is positive and contractive as above,
but such that ¢g(t) does not have constant sign, and thus r(z) is not of positive type. But the
latter requirement is satisfied if 2 (1 —v) > v, i.e., if v < 2/3, and, since bcos T ~ 1.0987 > 1,
the first requirement holds if (1 — v)/b < v/2, or v > 2/(2 +b) ~ 0.6271. Thus, for
v € (0.63,0.66), r(z) has the desired properties. O

4. The spatially continuous problem

We now consider the initial-boundary value problem (1.1), or (1.4) with A = —A, in the
Banach space B = Co(Q) of continuous functions in 2, vanishing on 92, with norm || - ||,
where € is a convex polygonal domain in R?, and recall that the solution operator E(t) is
both positive and a contraction for ¢ > 0. As we have seen in Section 1 this implies that the
backward Euler method Ej, = (I + kA)~! inherits these properties, for all k > 0. Also, we
note that

1

i 1 1 1
IE®)vlloe < CIAE@)[IZ, [E@)0]lZ, < Ct2v]lz, < CF72|v]lo, (4.1)
so that, in particular, ||E(t)|l.c — 0 as t — oo. (This convergence is, in fact, exponential,

but we shall not have reason to go into the details.) Thus, by Theorem 2.4, Ej, = r(kA) is
a contraction for large k& when r(z) is an A—correct rational function with |r(co0)| < 1.

We next turn to the —method defined by Ej = r9(kA) with r4(2) as in (1.7). We shall
see that even though the backward Euler operator (§ = 1) is positive and contractive for
any k > 0, this is not the case for # < 1. Note that ry(z) is A—stable for 1/2 <0 < 1.
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Theorem 4.1. When 1/2 < 0 < 1 the time stepping operator Ey = ro(kA) for (1.1)
cannot be positive for any k > 0.

Proof. Let k> 0 and 6 with 1/2 < 6 < 1 be fixed. By (1.7) we may write
Ewv =rg(kA)v = 071 (I + kOA) v — 671 (1 — 0)w. (4.2)

By (1.6) and (4.1) we find
(I + 6kA) ]| < / e | B(0kt)]| dt (4.3)
0

< C(ok)} / tbetdt o]l = C(OK) [[o] 1o

0

Now choose zy € ©Q and v = wv. such that 0 < v. < 1, v.(z9) = 1, and supp(v.) C
{z; |xr — xo| < e}. Then |ve]|r, < Ce, and hence, with v = v, the first term in (4.2) then
tends to zero at zg as € — 0. Hence Eyv.(z9) = —(1 —6)/0 < 0, so that Exv.(zo) <0 for €
small and thus E, nonpositive. O

Theorem 4.2. Let 1/2 < 0 < 1, let Ay be the smallest eigenvalue of A = —A, and let
ko be so small that

L 1
ot 4.4
01+ kb 0 (44)

Then Ey = ro(kA) cannot be a contraction for k < ko.

Proof. Let Wy be the first eigenfunction of A, normalized so that, with zy € Q, ||V =
Uy (x9) = 1. Let ¥y . be a modification of ¥y in {z; |z—zo| < e} with ||V ||cc = 1, ¥y (20) =
—1. Then we have, by (4.3),
(1 + k0A) ™ (W = U)o < C(RO) V201 = Wy, =0, ase—0.

Since (I + kOA)™'Wy(xg) = (1 + kOA;)~! we conclude, by (4.2) and (4.4),
1

1-40
Eklpl,s(xO) = 5 (1 + keA)il\Iflys(.Z'o) — —0 \Ill,€<x0)
1 1 1-6
_>51+k‘0)\1+ 7 >1, ase—0, fork <k

Thus E; cannot be a contraction for k < k. O

Note that for the Crank-Nicolson method (6 = 1/2), (4.4) holds for any ky > 0. Thus Ej
then cannot be a contraction for any £ > 0. However, we have the following consequence of
Theorem 2.4.

Theorem 4.3. Let 1/2 < 6 < 1. Then there is a k1 > 0 such that E, = ro(kA) is a
contraction for k > k.

We shall now discuss the (0,2) Padé method, in one space dimension. Here B =
Co(R), Q=(0,1), A= —d?/dz? and (1.4) reduces to

Up = Uy 0, wu(x,t)=0 forx=0,1, fort>0, wu(-0)=o0. (4.5)
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Clearly the solution operator E(t) is still both positive and a contraction for ¢ > 0, and
analogously for the backward Euler operator, for £ > 0. Further we have

1

2 1 1
IE()v]lee < IE@IZ, IVE@)V]IZ, < Ct4v]lL,,  for t>0. (4.6)

We first show that Ej = ro(kA) is neither positive nor a contraction in Cy(£2) for all
k > 0, by reducing this to the case {2 = R, already covered by Theorem 3.4.

Theorem 4.4. The operator Ey, = ro2(kA) associated with (4.5) is neither positive nor
contractive in Co(2) for all k > 0.

Proof. Assume Ej is positive for all £ > 0. Then by a transformation of variables this
holds also when the interval 2 = (0,1) is replaced by €, = (—w,w), for any w > 0. We
denote the solution operator on Q,, by E@)(t) and the corresponding time stepping operator

by E, ) But with E(¢ (t) and Ek the corresponding operators for the problem on all of R,

Bo(z) — E¥v(z) =2 /0 Tt sint(E(t) - E(“’)(t))v(x) dt. (4.7)

We claim that B )( Yo(z) — ( Jo(z) as w — oo for each x € R, t > 0. In fact, the
function w,(z,t) = E(t)v(x) — @) (¢t)v(z) satisfies the heat equation on €, x R, has initial
values 0, and |w,(z,t)| = |E(t ) ()] < ||v||eo for = +w, t > 0. Hence, by the maximum-
principle, |w,(z,t)| is bounded by the solution of the heat equation in the finite domain,
with initial values 0, and boundary values ||[v|| for x = fw. It is then easily seen that for
fixed (z,t) € R x Ry, wy(z,t) — 0 as w — oco. Hence, using Lebesgue’s theorem in (4.7),
we conclude that E*v(z) — Ew(z) as w — oo for each z € R, k > 0. Since Ev > 0
for v > 0 and each w > 0, we must have Ekv(x) > 0 for v > 0, which is in contradiction to
Theorem 3.4. "

In the same way, if Ej, is a contraction for all £ > 0, this also holds for £, and hence

for Ek, again in contradiction to Theorem 3.4. [

By the same argument, the corresponding result holds for any rational function satisfying
the conditions of Theorem 3.4.

We now show some positive results, for larger k. We first note that contractivity follows
at once from Theorem 2.4 and (4.6):

Theorem 4.5. For (4.5) there is a ki1 > 0 such that Ey, = roa(kA) is a contraction for
k> k.

We next exhibit positivity of Ej = ro2(kA) for large k.
Theorem 4.6. For (4.5) there is a k1 > 0 such that Ey = roao(kA) = 0, for k > ky

Proof. We first show that if v > 0, then the solution u(x,t) = E(t)v(x) of (4.5) is
decreasing for ¢t > 0.1, for all x € Q). Recalling that the eigenfunctions and -values of A are
¢i(x) = /2sin(rlz) and N\, = 72[% for [ = 1,2, ..., we have

/ G(z,y,t)v(y) dy, where G(z,y,t) = 226 m sin(wl:v) sin(m ly).

=1
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By termwise differentiation we find, for =,y € 2,

5 . ' _22_q, Sin(wlz) sin(wly)
9 92 2t (4 2~ .
atG([L‘ y,t) = =27 sin(7z) sin(my) e ( —{—;l sin(7z) sin(ﬂy))

Denoting the sum by S(z,y,t), we have, since |sin(rlz)/sin(rz)| < I for z € €,

|S(x y,t Zl4 “mE=DE for 2,y € Q.

Here S(t) is decreasing in t, and we find that S(0.096) = 0.974. Hence |S(xz,y,t)| < 1 for
t > 0.096, and thus G(x,y,t) is decreasing for ¢t > 0.096, for all x,y € Q. Therefore E(t)v(z)
is decreasing for ¢ > 0.096, = € Q. Now fix 7 € (0,7) and let k7 > 0.096. Then

2m(l+1)

Eyv(x) = roz(kA)v( ZI“ where [; := 2/ e 'sint E(kt)v(x) dt.

27l

Since E(kt)v(zx) is decreasing for t > 7 € (0, 7), and thus in each [; with [ > 1, we find easily
that I; > 0 for [ > 1, and, if we choose 7 = 2.34,

™ 2w
Iy > 2(/ —/ )e’t] sint| dt E(km)v(z) = (e 7(cosT +sinT) — e ") E(km)v > 0.

Hence Exv(z) > 0if k > ky = 0.096/7 = 0.0416. O

5. The standard Galerkin finite element method

We now consider the two-dimensional spatially semidiscrete standard Galerkin problem (1.2).
Defining the discrete Laplacian Ay : S, — S), by

_(Ah¢7X) = (V¢7VX)7 V?/),X € Shv (51)
this may also be expressed as
upt — Apup, =0, fort >0, with us(0) = vy, (5.2)

and we write E},(t) = e for the solution operator of this problem.

In this and the following section we shall use as our Banach space B = S, with norm
| - lco- We know from [8] that Ej(t) is neither a positive operator nor a contraction in
B for small . More precisely, we have the following two theorems, shown under technical
assumptions satisfied by normal triangulations.

Theorem 5.1. Assume that Ty, is such that there exists a strictly interior node, Py say,
such that any neighbor of Pi has an interior neighbor which is not a neighbor of Py. Then
En(t) cannot be a positive operator for small t.

Theorem 5.2. Assume that Ty, is such that each near-boundary node has a strictly in-
terior neighbor. Then Ey(t) cannot be a contraction in || - || for small t.
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We now show that, for a fixed triangulation 7, Ej(t) is both positive and contractive
for large t. Here and below, we denote by {P;}Y, the nodes of T, in the interior of 2, and
let {®;}Y, C S), be the standard basis of pyramid functions, defined by ®;(P;) = d;;.

Theorem 5.3. For T, given, Ey(t) = 0 for t sufficiently large. Also, ||Ex(t)||cc — 0 as
t — oo. In particular, E,(t) is a contraction for t large.

Proof. With {(bh , and {)\h} ., the eigenfunctions and -values of the positive definite
operator A = —A, in Sh, we have for v, € Sy such that v, > 0, v, Z 0,

Uh - Ze Uha ¢h th =€ )\?t((viw ¢?)¢]11 + 0(1))7 as t — 0o,

where we have used that A\ > Af. Tt is known by the Perron-Frobenius theorem that
#"(P) > 0 for all mesh-points P, and it follows that (v, ")¢%(P;) > 0 and hence that
Eyn(t)vn(P;) > 0, for t large, ¢ = 1,...,N. In particular, this holds for each of the basis
functions ®;, and, since these are finitely many, there is a ¢ty > 0 such that Ej(t)®; > 0 for
l=1,...,N and t > ty. This shows the first part of the theorem.

Since || Ex(t)]|p, < Ce ' < Ce ™, the second part of the theorem follows at once from
the equivalence of different norms on a finite-dimensional space. O

We next show that under a mild assumption on the family {7}, we have, independently
of h, the maximal diameter of the triangles 7 € 7}, that ||Ey(t)|l« — 0 as ¢ — oco. Thus, in
particular, Fj(t) is a contraction for large ¢, uniformly in h. Our assumption is the following:

{7} is shape regular and Ay, = ch”, for some ¢ > 0, v > 1. (5.3)

Such conditions occur, e.g., in systematic mesh refinements.

Theorem 5.4. Assume that {T,} satisfies (5.3). Then we have, with C' independent of
h,
1 En () vnllee < CtH|vnlloo,  fort >0, vy, € Sy

Proof. We write, with I, : Co(€2) — S}, the standard interpolation operator,
[En(t)vnllco < (En(t) = InE(E))vnlloc + [[TnE(t)vnlloc = T+ 11.
By Sobolev’s inequality and a standard smoothing estimate for E(t),
I < |E@)vplloo < ClE@)vn]lze < CtHopllr, < CtHvplloo,  for t > 0.
Further, under our assumptions on {7}, we note that by [7], Lemma 6.4,
X100 < C'K,ll/zHVXHLQ, Vx € Sp, where £, = max(1,log(1/h)).
and, by [2], Theorem 2.1, we have the nonsmooth data error estimate
IV (EL(t) Py — E)v||z, < Cht Y|, fort>0, ifve Ly, v, = Py, (5.4)

where P, is the Ly—projection onto Sj,. Thus, using also a standard error estimate for the
interpolant, we find

1< 06 (IV(E() = B@)vnllze + V(I — DE(t)vnl]1.)
<Ot [onll, + R E@)valla2) < CEonll, < CE onlloes
which completes the proof. ]
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In order to study time-discretizations of the semidiscrete problem (1.2), or (5.2), it will
be convenient to express it in matrix form. For this purpose, we identify a function y =
Z;.V:l x;®; € S, with the vector X = (x1,...,xn)7. Letting M = (m;;) and S = (s;5),
with m;; = (®;, ®,) and s;; = A(P;, ®;), be the mass and stiffness matrices, respectively, the
application of the operator —A}, corresponds to multiplication by the matrix K = M™1S.
In fact, if ¢ = ). ;®;, —Apyp =), 3iP;, then (5.1) may be written Mp - x = Sa - X for
all Y € RN, or 8 = Ka. Note that —A}, is positive definite with respect to (v,w)r, and K
with respect to Ma - (5.

The initial value problem (1.2) then takes the form, with a;(t) = uy(P;, t),

d -
./\/ld—(Z +Sa=0, fort>0, with a(0)="2, = (va(P)),...,v(Pn))T,
and we introduce the solution operator matrix &,(t) = e~ where K = M~'S. The solu-
tion operator Ej(t) of (5.2) is then positive if and only if &,(t) is positive (or &,(t) = 0,
elementwise), and a contraction in || - ||« if and only if &,(t) is a contraction in | - |, where
IX|oo = max; |xi| = [|X]|eo is the vector maximum-norm, since || Ex(t)||oco = |En(t)]oo-

We now consider, with (z) an A—correct rational function, a single step time discretiza-
tion Eph vy, of (5.2), where Ep, = r(—kAy), or, in matrix formulation,

" =&ra’ forn >0, witha =7, where &y =r(kK). (5.5)

We observe that the negative results of Theorems 5.1 and 5.2 immediately imply that the
time stepping operator Ej;. cannot be positive or contractive for small k.

Theorem 5.5. Let r(z) be A—correct, and let En, = r(—kAy). If Ty, satisfies the as-
sumption of Theorem 5.1, then Ey, cannot be positive for small k. If T, satisfies the as-
sumption of Theorem 5.2, then Ey, cannot be a contraction for small k.

Proof. Using the matrix representation (5.5), both results follow from
t2
2

t
lim &7, = lim (I+ —K+0(—

n—oo

)) = =),

since positivity or contractivity of &, for small k, would imply the corresponding property
for &£,(t), and thus of Ej(t), for t > 0, in contradiction to Theorems 5.1 and 5.2. O

This does not exclude that these properties could hold for larger k. For instance, the
following is an immediate consequence of Theorems 2.4, 2.5, and 5.4.

Theorem 5.6. Assume that (5.3) holds, and let r(z) be A—-correct with |r(co)| < 1.
Then the operator En, = r(—kAy) is contractive for large k, uniformly in h. Further,
r(00) = 0 is a necessary condition for Epy to be positive for k large.

We now turn to a discussion of the #—method, corresponding to the rational function
ro(2) in (1.7). In this case the time stepping operator Epr = ro(—kA}) is defined, in matrix
form, by

M@ — ™)k + S + (1 —0)a™) =0, forn >0, with o’ =7, (5.6)



Positivity and maximum-norm contractivity 437

or by
Enp = 1g(kMTIS) = M +0kS) ' (M — (1 -0k S).

We first demonstrate that &, and thus Ejy;, is positive and contractive when 7}, is essentially
of Delaunay type, and the time step k is bounded above and below in a specific way, cf. [3].
Recall that 7, is of Delaunay type if the sum of the angles opposite each edge of T}, is at
most 7, and that for an interior edge F;P; this is equivalent to s;; < 0.

Theorem 5.7. Let the matrices M and S be such that s;; <0 for j # 1, and
(]_ — 6’)]{78” < my;, v i, and 6k3|SU| 2 mgj, fO?"j 7& 1. (57)

Then Enp = ro(—kAy) is positive. If, in addition, Z#i |sij| < sis, for all i, then Eyy is also
a contraction.

Proof. The inequality on the right in (5.7) means that m;; 4+ 0ks;; < 0 for all j # i, so
that M +0kS is a Stieltjes matrix, i.e., a positive definite symmetric matrix with nonpositive
off-diagonal elements, and thus has a nonnegative inverse. Further, the inequality on the left

n (5.7) shows that M — (1 — 0)kS is nonnegative. Together these facts show that & > 0,
and thus also Ep, > 0.
With 8 = o™, a =a", (5.6) can be written

M+0ES)B=(M-(1-0)kS)a. (5.8)
To show that & is a contraction, or |Exkle < 1, it suffices to show that this implies
Bl < 0] co- (5.9)
Let P; be an arbitrary interior node. Then the ith equation in (5.8) is
(my; + O0ksy;) B = Z(mm + 0ks;;) P, + Z mi; — (1 — 0)ksi;)a;
J#i J

From this it follows that

(M + Oksi)|Bi] < Z‘mw + Oksij| ’6|oo+2‘mm — 0)ksij| oo
J#i

Then, if P; is chosen so that |5;| = ||, we have, using (5.7), that

(mzz+9k3u |5|oo 9k2|52]| _me |5|oo
J#i J#i

+ ((ma — (1= 0)ksii) + Y (g + (1= 0)klsi;])) |erloc
J#i

Using the diagonal dominance of § it follows that > my; |8l < >_;mij |@|oo, and hence
that (5.9) holds. Thus FEj is a contraction. O

Recall that for P; strictly interior, i.e., if P; has no neighbor on 052, and if s;; < 0 for j # 1,
then., since .Zj Sij = Zj A(D;, @) = A(P;,1) =0, we .h‘ave Z#i |sij| = Siiy 80 thaF diagogal
dominance is automatic at such nodes. Thus the condition ) i |sij| < 4 is associated with
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the behavior of the triangulation near 092, cf., e.g., [8], Examples 3.1 and 3.2, which show
that s;; < 0, for j # 4, and diagonal dominance of S are independent properties.

For the backward Euler method, (5.7) reduces to k > max;.;(m;;/|si;|). We note that
this condition requires s;; = A(®;, ®;) < 0 for P, and P; neighbors, i.e., that 7}, is strictly
Delaunay, in the sense that the sum of the angles opposite F;P; is strictly less than 7. In
particular, this cannot hold for the standard triangulation 7, of a square €2 obtained by first
subdividing €2 into smaller square and then dividing these by their diagonals, because then
there will be neighbors for which s;; = 0. As a positive example, if €2 is an equilateral triangle,
and 7T, consists of equilateral triangles, thus with all angles = /3, then one may show that,
if P, and P; are neighbors, then s;; = 2v/3, s;; = —v/3/3 and my; = h%V/3/4, my; = h?\/3/24.
The above condition (5.7) is then

and this can only be satisfied if § > 1/2. For the backward Euler case, the condition reduces
to the one-sided condition k > h?/8, and for Crank-Nicolson, we must have k = h?/4. We
remark that ry(oco) = —(1 —6)/0 < 0 for 6 < 1 so that by Theorem 5.6 an upper bound for
k is required for positivity of Epg.

We now turn to the (0,2) Padé method, and we restrict ourselves again to the one-
dimensional case, with S;, based on uniform partitions, using z; = jh, j =1,...,N, h =
1/(N +1). The solution operator for the semidiscrete version of (4.5) is then Ej(t) = e®#!
where Ay, is defined by the one-dimensional analogue of (5.1). For the corresponding solution
operator matrix we have &,(t) = e ® with K = M~LS, where now, with [J the tridiagonal
matrix with elements 1 on the two bidiagonals and other elements 0,

M= (my)=Lh(4T+J) and S=(s;;)=h"'2T-J). (5.10)

We note that in this case, cf. (4.6), since ||V E,(t)vn|lz, < CtY2||lvpl L,

1 1 1 1
1En (@) vnlloo < IER@)onllZ, IVEL(E)vnlZ, < Ct 3 |vnllL, < Ct]|vp oo (5.11)

In particular, E,(t) is a contraction for large ¢, uniformly in h.

As in the two-dimensional case treated above, Fj(t) is neither positive nor a contraction
for k small, and as in Theorem 5.5 this also holds for Enr = ro2(—kAy). However, this
operator is both positive and contractive for larger k. The contractivity follows at once by
Theorem 2.4 and (5.11):

Theorem 5.8. For our spatially one-dimensional problem there is ky > 0, independent
of h, such that En, = roo(—kAy) is a contraction for k > k.

Direct calculation of the matrix norm |Eu|s indicates that for h = 1/10, 1/20, 1/30,
and 1/40, we may choose ky = 0.011, 0.010, 0.010, and 0.010, respectively.

We now show positivity for large k.

Theorem 5.9. For our spatially one-dimensional problem, for h < 0.1, Epp = roa(—kAy)
15 positive for k = ky = 0.5.
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Proof. In this one-dimensional situation the eigenvectors and -values of IC are

6 1 — cos(mlh)

h h _ —
{0 (z;) Y =1 =1V hsm(lﬁxj)}J . and X\ = 23T cos(mlh)’ | 1,..., N,
By eigenvector expansion we may write
N N
Exnvn(z;) = Z Hﬂcvh(xn), where Hjh: =2h Z roa(kAl) sin(wlx;) sin(wl,),
n=1 =1
and we want to show H Jhk 0 for 1 < < N. We write
HI' = 2hsin(ra;) sin(ra,)roo (kAF) (1 + SBF)
where v
ik _ Z ro2 (kAN sin(wlx;) sin(rwlz,)
— 702( (kXYY sin(ma;) sin(mz,)’
and it now suffices to show |Shk| 1 for 1 < < N. As in the proof of Theorem 4.6,
using A\ > \; = %% and |sm(l$)/sm x| <1, we ﬁnd, with rj = Ao /72,
|Shh| < Shb = ZQHIM 3 (X1 Z ~ 0.635k2, ask — oo
mis Tt b+ L2 R ’

Here x;, < 1/(1 — 72h?/6), and hence, for the limit to be less than 1, we need to have at

least 2 interior mesh-points. Clearly S™ is increasing in h and decreasing in k and we find
S0-1.05 — (09351 < 1. Hence for k > 0.5 and h < 0.1 we have H]h: >0for1<j,n<N. O

The above value of k; appears pessimistic. Direct calculation to determine k; such that
Enk 1s positive for k > ky, for h = 1/10, 1/20, 1/30, and 1/40, give k; = 0.018, 0.017,0.017,
and 0.015, respectively.

6. The lumped mass finite element method

Consider now the lumped mass spatially semidiscrete parabolic problem (1.3), and let
Eh(t) = %1t be its solution operator. where A, : S, — S is the discrete Laplacian
defined by

_<Ah¢7x>h = (VIp?VX)? VMX € Sh' (61)

Thus the problem (1.3) is of the form (1.4) with A = —A,, in B = S}, with norm || - ||s.
In matrix form, the problem (1.3) may be written
da .

d——i—Sa-O fort >0, with a(0) = v,

where D = (d;;) is the diagonal matrix with elements d;; = (®;, ®;), and S is the stiffness
matrix. The solution operator matrix is then &,(t) = e where H = D~1S, and, as for
En(t) in Section 5, Ej(t) is positive or contractive if and only if this holds for &,(¢). We
know from [8] that Ej,(t) is both a positive operator and contraction in maximum-norm for
t > 0, provided the triangulation is essentially of Delaunay type, or more precisely, we have
the following theorem.
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Theorem 6.1. The solution operator matriz Ey(t) of (1.3) is positive for all t > 0 if
and only if s;; < 0 for j #i. It is a contraction for all t > 0 if and only if S is diagonally
dominant.

By the argument of the proof of Theorem 5.4 we find, even without diagonal dominance,
and under a mild assumption on {7}, that ||E,(t)]|lc — 0 as t — oo, and hence, in
particular, that Ej,(¢) is a contraction for large ¢, independently of h. In this case, we use
the analogue of (5.4) for E(t) from [2], Theorem 4.4.

Theorem 6.2. Assume that the family {7} satisfies (5.3). Then we have

||Eh(t)vh||00 < Ot_IHUhHOOa fOT’ > Oa Up € Sh'

Theorem 6.1 easily carries over to the backward Euler method:

Theorem 6.3. The backward Euler operator Ey, = (I —kA,)™ is positive for all k > 0
if and only if s;; < 0 for j #i. It is a contraction for all k > 0 if and only if S is diagonally
dominant.

Proof. For positivity the sufficiency of the condition follows from Theorem 6.1 and the
representation formula (1.6), or, in matrix form,

ghk = (I + k?H)_l = / et 5h(kt) dt. (62)
0
On the other hand, if & is positive for small k, then &,(¢) is positive since
t,\—n . &
Gt)y=e™=1lm (T+-H) "= lim Eheym, fort >0. (6.3)

Hence Ej,(t) > 0, and thus s;; < 0 for j # i by Theorem 6.1.
By Theorem 6.1, Ej(t), and thus &,(¢), is a contraction for ¢ > 0 if S is diagonally

dominant, and by (QQ) this implies that &,y is also a contraction, for k > 0. Also, if &y, is
a contraction, so is &,(t) by (6.3), and hence S is diagonally dominant by Theorem 6.1. [

We next consider more general A—correct rational functions, and single step time dis-
cretization operators Epp = r(—kAp), or in matrix form, with D and S as above,

Enr = 1(kH), where H =D 'S.
As in Theorems 5.5 and 6.3 we have the following necessary conditions.

Theorem 6.4. If the time stepping operator Ep, = r(—kAy) is positive for k small, then
5i; < 0 for g #i. If Epy is a contraction for k small, then S s diagonally dominant.

We have the following immediate consequence of Theorems 2.4 and 6.2.

Theorem 6.5. Assume that (5.3) holds. Then the operator Ep, = roo(—kAy) is con-
tractive for large k, unformly in h. Also, if r(z) is A—correct, then r(c0) > 0 is a necessary
condition for Eyy to be positive for k large.
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We now turn to the #/—method defined by
Enh=D+0kS) ™ (D—-(1-0)kS)=ry(kH), H=D'S, 0<0<1, (6.4)

The following sufficient conditions are essentially contained in [3]. Note that, except for
the backward Euler method (# = 1), k is required to be bounded above.

Theorem 6.6. Assume that s;; < 0 for j # ¢, and that
(1 —=0)ks; <dy, foralli, with0<6<1. (6.5)

Then Ey, = rg(—kAh) > 0. If. in addition, S is diagonally dominant, then Ey is also a
contraction.

Proof. By (6 5), D — (1 — 9)]{38 0. Further, D + 0kS is a Stieltjes matrix, so that
For the proof of contractlwty, we write 3 = Eppa as

(D+0kS)B=(D—(1-0)kS)a.
The equation in this system corresponding to the vertex P; is

j#i J#

With ¢ such that |5;| = |5]s, (6.5) and the diagonal dominance of S imply that

(dii + 0k 53)Bloc <Ok D I5ijl|Bloc + (dis — (1 = 0)k s33)] 0t

J#
+ (1 — 9)/{:2 |555] |at]oo < OK 534]Bloc + dis] ]
J#
and hence |fo < |@t]oo. Thus Epy is a contraction in | - |so, and Epy in || - [oo. -

We close with some results for the (0, 2) Padé approximation, again restricted to one space
dimension and uniform mesh. The spatially discrete solution operator is now Ej(t) = et
where A, is defined by the one-dimensional version of (6.1), with (v, w), = h Zjvzl v(z;) w(z;).
The corresponding solution operator matrix is then &,(t) = e~ "', where H = D~1S, with
D=hZand S =h"1(2Z — J), cf. (5.10). We now know that Ej(¢) = 0 and || E},(t )||oo <1
for ¢t > 0, and also that, as in (5.11), that ||E}(t)|/e < Ct~'/4. To study Epnp = rea(—kAy),
we write

Eni = roa(kH) = ro2(ANH),  where A\ = k/h*, H=hmH=2T—-7J.
We show the following.

Theorem 6.7. The operator Ey;, = TOQ(_kAh) cannot be positive for small X if N > 4
nor can it be a contraction for small X if N > 9.
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Proof. Since |H|., = 4 we have, by expansion of &y, = roo(AH), for small \,
Ene = E°+O(N°), where ° =T — MNH + INVH> — It

By the form of H, the elements of the fourth bidiagonal of H* equal 1 (provided N > 4),
and thus the corrresponding elements of &, equal —}1)\4 < 0. Hence &, cannot be a positive
operator for A small.

Turning now to contractivity, we note that if 5 < i < N —4 (requiring N > 9), then the
ith row sums of H, H* and H* equal zero, so that ) <5hk)zy = 1. Further, (Ehk)mﬂ = —I24
and hence |Ef o = 35, [(ER)is] = 14 A%, for such an 4. Hence [Eploe = 14 5A* for A small.
This completes the proof. O

Since |&,(t)]oo — 0 as t — oo, it follows by Theorem 2.4 that & is also contractive for
sufficiently large k.

Theorem 6.8. There is a kg > 0, independent of h, such that Ey, = ro2(—kAy) is a
contraction for k > k.

Direct calculation of the matrix norm [Exx|eo, for h = 1/10, 1/20, 1/30, and 1/40, shows
that we may choose ko = 0.007, 0.009, 0.010, and 0.010, respectively.
We now show that FEj,; is positive for k large.

Theorem 6.9. There is a ki > 0, independent of h, such that En, = ro2(—kA) is
positive if k > ky.

Proof. The proof is modelled after that of Theorem 4.6. We first show that, if v, > 0 in
(2, then, for any j, Ej(t)vs(z;) is decreasing for ¢ > 0.31. We may write

N
t)op(z;) Z Hop(z,), 7=1,...,N,
—1
where, since the eigenvectors of —Ay, are {¢]'(z;)}, = {V2hsin(lrz;)}HY,, we have

2(1 — cos(mlh))
h? '

N
C_}?n(t) = QhZ et sin(lmx;)sin(lrx,), with A =
=1

By differentiation we obtain

%Gh = —2h Z e~ gin (Irx;) sin(lmx,)

= —2h)\?e i "sin(ra;) sin(ra,) (14 g;‘n(t)),
and, again using |sin(lz)/sinz| < I, we find
N

< Z /\? 126 (Ar=XIye

301 = | 30 2% o snllnsy) snline,)

b sin(rz;) sin(mz,)

We note that since (2/m)%¢? < 2(1 — cos&) < &2 for € € (0,7), we have

412 <N < 7?2, forl=1,...,N.
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Hence, since pe " is decreasing and p~'e*! increasing in p, for ¢t > 1/u,

~ 4 &
ShO] < =5 Y e W <1 for ¢ > 0.31.
T
i=2

The remaining part of the proof follows that of Theorem 4.6, again with 7 = 2.34, giving
the result stated with k; = 0.31/2.34 ~ 0.133. O

As in an earlier case, the k; above is pessimistic. Direct calculation to determine k;
such that &, is positive for k& > ki, for h = 1/10, 1/20, 1/30, and 1/40, gives k; =
0.014, 0.016, 0.017, and 0.017, respectively.
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