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Abstract
We deal with a challenging scheduling problem on parallel-
machines with sequence-dependent setup times and release
dates from a real-world application of semiconductor work-
shop production. There, jobs can only be processed by
dedicated machines, thus few machines can determine the
makespan almost regardless of how jobs are scheduled on
the remaining ones. This causes problems when machines
fail and jobs need to be rescheduled. Instead of optimising
only the makespan, we put the individual machine spans in
non-ascending order and lexicographically minimise the re-
sulting tuples. This achieves that all machines complete as
early as possible and increases the robustness of the schedule.
We study the application of Answer-Set Programming (ASP)
to solve this problem. While ASP eases modelling, the com-
bination of timing constraints and the considered objective
function challenges current solving technology. The former
issue is addressed by using an extension of ASP by difference
logic. For the latter, we devise different algorithms that use
multi-shot solving. To tackle industrial-sized instances, we
study different approximations and heuristics. Our experimen-
tal results show that ASP is indeed a promising KRR paradigm
for this problem and is competitive with state-of-the-art CP
and MIP solvers.

1 Introduction
We consider a scheduling problem on unrelated parallel ma-
chines that arises in industrial semiconductor production at
Bosch. The problem is involved due to several aspects. We
have to deal with sequence-dependent setup-times and job
release dates on the one hand; on the other hand, setup-times,
release dates, and job durations are machine dependent, and
jobs can only be scheduled on dedicated machines. Our goal
is to maximise the throughput, which can be defined as the
number of jobs processed per time unit. In principle, min-
imising the makespan, i.e., the total length of the schedule,
accomplishes this. However, when dealing with machines
with high dedication, we often find that many jobs can be pro-
cessed only by few machines, thus few machines determine
the makespan almost regardless of how jobs are scheduled
on the remaining ones. This is not ideal when jobs need to

be rescheduled because of, e.g., machine failure, and domain
experts expressed the requirement that “all machines should
complete as early as possible” to give the scheduler freedom
for rearrangements.

Instead of optimising only the makespan, we lexicographi-
cally minimise the individual machine spans. In particular,
we define the lexicographical makespan of a schedule as the
tuple of all machine spans in non-ascending order. We pre-
fer a schedule with smaller lexicographical makespan over
one with a larger one, where we use lexicographical order
for comparison. A schedule with minimal lexicographical
makespan has therefore also a minimal makespan, but ties
are broken using machines that complete earlier.

This idea of lexicographical optimisation to produce sched-
ules that show to be robust when they need to be updated
has been investigated and confirmed in the context of job
scheduling on identical machines in recent work (Letsios,
Mistry, and Misener 2021). While these results further sup-
port our motivation to use this objective, the algorithms and
tool chains developed there cannot be used directly as our
problem is significantly more complex due to machine dedi-
cation, sequence-dependent setup times, and release dates.

We are specifically interested in using Answer-Set Pro-
gramming (ASP) (Brewka, Eiter, and Truszczyński 2011;
Gebser et al. 2012; Lifschitz 2019), a state-of-the-art logic-
based KRR paradigm, for our scheduling problem. ASP is
interesting for two reasons: first, its expressive modelling lan-
guage makes it easy to concisely model the problem including
the objective function. This allows one to quickly come up
with a first prototype that can be evaluated by domain experts
and can serve as a blueprint for more sophisticated solutions.
Second and more importantly, ASP makes it relatively easy
to develop solutions which can be conveniently adapted to
problem variations, a feature known as elaboration toler-
ance (McCarthy 1998). This is indeed needed as it is a goal
to use similar scheduling solutions for other work centers
with slightly different requirements.

While ASP makes modelling easy and provides enough
flexibility for future adaptations, the combination of timing
constraints and the considered objective function challenges
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current solving technology. The former issue is addressed by
using an extension of ASP with difference logic (Janhunen et
al. 2017). While this solves the issue of dealing with integer
domains without blowing up the size of the grounding, it
makes expressing optimisation more tricky as current tech-
nology does not support complex optimisation of integer
variables. We devise different algorithms that use multi-shot
solving (Gebser et al. 2019) to accomplish lexicographical
optimisation for our scheduling problem.

To tackle industrial-sized instances, we study different ap-
proximations and heuristics. In particular, we consider an
approximate algorithm where parts of a solution are fixed
after solver calls. This allows us to find near-optimal solu-
tions in a short time. Orthogonally to the ASP model, we
formulate different heuristic rules using a respective ASP
extension (Gebser et al. 2013). These rules do not alter the
solution space but guide the solver with variable assignments
and improve performance.

For an experimental evaluation of our algorithms, we use
random instances of various sizes that are generated based
on real-life scenarios. In addition, we provide an alterna-
tive solver-independent MiniZinc model that can be used
by various state-of-the-art MIP and CP solvers. The experi-
ments aim to explore the additional costs needed when using
the lexicographical makespan for optimisation instead of the
standard makespan and the trade-off between performance
and solution quality. Our experimental results show that the
lexicographical makespan optimisers produce schedules with
small makespans and thus ensure high throughput, while at
the same time accomplish our other objective of early comple-
tion times for all machines. The ASP-based algorithms scale
up to instances of realistic size and demonstrate that ASP is
indeed a viable KRR solving paradigm for lexicographical
makespan problems.

The rest of this paper is organised as follows. After some
background on ASP in the next section, we formally de-
fine our scheduling problem including the lexicographical
makespan objective in Section 3. We then present exact ASP
approaches for lexicographical makespan minimisation in
Section 4, and discuss approximation approaches in Section 5.
Experiments are discussed in Section 6. We review relevant
literature in Section 7, before we conclude in Section 8.

2 Background on ASP
Answer-Set Programming (ASP) (Brewka, Eiter, and
Truszczyński 2011; Gebser et al. 2012; Lifschitz 2019) pro-
vides a declarative modelling language that allows one to suc-
cinctly represent search and optimisation problems, for which
solutions can be computed using dedicated ASP solvers.12

ASP is a compact relational, in essence propositional, for-
malism where variables in the input language are replaced by
constant symbols in a preprocessing step called grounding.
An ASP program is a set of rules of the form

p1 | . . . | pk :- q1, . . . , qm, not r1, . . . , not rn.

where all pi, qj , and rl are atoms. The head are all atoms
before the implication symbol :-, and the body are all the

1potassco.org.
2www.dlvsystem.com.

atoms and negated atoms afterwards. The intuitive meaning
of this rule is that if all atoms q1, . . . , qm can be derived, and
there is no evidence for any of the atoms r1, . . . , rn (i.e., the
rule fires) then at least one of p1, . . . , pk has to be derived.
An interpretation I is a set of atoms. It is an answer-set
of a program, if all its rules are satisfied in a minimal and
consistent way (Gelfond and Lifschitz 1991); intuitively, I
must be a ⊆-minimal model of all rules that fire.

A rule with an empty body is called a fact, with :- usually
omitted. Facts are used to express knowledge that is uncon-
ditionally true. A rule with empty head is a constraint. The
body of a constraint cannot be satisfied by any answer set
and is used to prune away unwanted solution candidates.

A common syntactic extension are choice rules of the form

i {p1, . . . , pk} j :- q1, . . . , qm, not r1, . . . , not rn.

The meaning is that if the rule fires, then some subset S of
p1, . . . , pk with i ≤ |S| ≤ j has to be true as well.

We use the hybrid system clingo-dl (Janhunen et al.
2017)3 that extends the ASP solver clingo by difference
logic to deal with timing constraints. A difference constraint
is an expression of the form u−v ≤ d, where u and v are inte-
ger variables and d is an integer constant. In contrast to unre-
stricted integer constraints, systems of difference constraints
are solvable in polynomial time. The latter are expressed in
clingo-dl using theory atoms (Gebser et al. 2016). That
job j starts after its release time, say 10, can be expressed
as &diff{ 0 - start(j) } <= -10. Here, 0 and
start(j) are integer variables, where 0 has a fixed value
of 0; thus start(j) must be at least 10.

We will also use an extension for heuristic-driven solv-
ing (Gebser et al. 2013) that allows to incorporate domain
heuristics into ASP. These heuristics do not change the an-
swer sets of a program but modify internal solver heuristics
to bias search. The general form of a heuristic directive is

#heuristic A : B. [w@p,m]

where A is an atom, B is a rule body, and w, p, m are terms.
In particular, w is a weight, @p is an optional priority, and m
is a modifier like true or false. We will provide further
details when we introduce specific heuristic rules later on.

Further features of the input language, like aggregation
and optimisation statements, will be explained as we go.

3 Problem Statement
We study the following scheduling problem. Given m ma-
chines and n jobs, every job needs to be processed by a single
machine, and every machine can process at most one job at
a time; preemption is not allowed. Some machines can only
handle certain jobs, such that from the view of the latter,
cap(j) is the set of machines that can process job j.

We assume that a release date rj,k is specified for every
job j and machine k as a non-negative integer. Release dates
are machine dependent because transportation time for jobs
to the machines depends on the transport system and their
location. No job can start before its release date.

3https://github.com/potassco/clingo-dl.
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(a) (b) (c)

Figure 1: Different schedules involving three machines and six jobs.

A specified amount of time may be required to change
from one job to the next one. Specifically, we assume that
si,j,k is the time needed to set up job j directly after job i
on machine k. Consequently, these times are referred to as
sequence-dependent setup times. Every job j has a positive
duration dj,k that depends on the machine k it is assigned to.

A schedule S for a problem instance is defined by:

1. an assignment a that maps each job j to a machine k ∈
cap(j) capable of processing it;

2. for each machine k, a total order �k on the set J of jobs
assigned to the machine via a. Relation �k determines the
sequence in which the jobs in J are processed on k.

If each job can be processed by some machine, then some
schedule for the problem instance exists.

Assume that j1, . . . , jl is the processing sequence of the
jobs assigned to machine k in a given schedule. The pro-
cessing time pji of a job ji is its duration plus the setup
time for its predecessor (if one exists); i.e., pj1 = dj1,k and
pji = sji−1,ji,k + dji,k, for i > 1. The start time stji of job
ji is rji,k if i = 1, and max (rji,k, stji−1

+ pji−1
) for i > 1.

The completion time cji of job ji is stji + pji .
The machine span of k, span(k), is the completion time

of the last job jl on k. A common optimisation criterion is
to search for a schedule with a small makespan, which is the
largest machine span of the schedule.

Versions of this problem have been extensively studied
in the literature (Allahverdi 2015). The problem presented
here abstracts the actual problem statement at Bosch to its
most essential elements. We left out some details due to
confidentiality. Other elements, like due dates or manual
labor costs have been omitted as they are not relevant for the
objective function studied in this paper.

3.1 The Lexicographical Makespan Objective
Recall that we are interested in computing schedules that
maximise the throughput, but high machine dedication and
rescheduling due to sudden machine failure render minimal
makespan as a single objective function suboptimal.

Figure 1 (a) illustrates this: assume all jobs scheduled to
machine m1 cannot be processed by any other machine. Thus,
m1 will always determine the makespan and the remaining
jobs can be put almost arbitrarily on the remaining machines.
This can lead to unnecessary workload on these machines.
A more severe problem is when machines suddenly fail and

their jobs need to be rescheduled. To cope with events like
machine failure, the domain experts formulated the require-
ment that “all machines should complete as early as possible”
with the intention to give the scheduler maximal freedom in
rearranging jobs with minimal decrease in throughput.

We next define the lexicographical makespan for lexico-
graphical optimisation of machine spans to obtain robust
schedules (Letsios, Mistry, and Misener 2021).

Definition 1. Given a schedule S involving m machines, the
lexicographical makespan, or lex-makespan for short, of S is
the tuple ms(S) = (c1, . . . , cm) of all the machine spans of
S in non-ascending order.

In this definition, c1 is a maximal machine span and hence
corresponds to the makespan.

For schedules S and S′ involving m machines each, S
has a smaller lex-makespan than S′ if ms(S) is smaller than
ms(S′) under lexicographical order, i.e., on the least index
i where ms(S) = (c1, . . . , cm) and ms(S′) = (c′1, . . . , c

′
m)

disagree, we have ci < c′i. For a set S of schedules, S ∈ S is
then optimal if ms(S) is minimal over all schedules in S .

Consider Fig. 1 for illustration. We would prefer schedule
(b) over (c) under the lex-makespan objective. For both
schedules, the lex-makespan is given by the machine spans
of m1, m2, and m3 in that order. Both schedules have the
same makespan, but schedule (b) has a smaller machine span
for m2. If machine m1 fails and most of the jobs can only
be rescheduled to machine m2, schedule (b) would indeed
be advantageous. It happens also earlier for schedule (b)
that machines m2 and m3 complete all their jobs and are
therefore free if new jobs need to be scheduled.

To describe the dynamics of a schedule, we define, for
a time point t and schedule S, M(S, t) as the number of
machines that complete at or before t. We then obtain:

Proposition 1. Let S and S′ be two schedules for some
problem instance. Then, ms(S) < ms(S′) iff there is a time
point t such that M(S, t) > M(S′, t), and, for every t′ > t,
M(S, t′) ≥M(S′, t′).

For problems involving many machines, hierarchically
minimizing all the machine spans can be excessive if the
overall makespan is dominated by few machines only. How-
ever, comparing lex-makespans allows for a rather natural
parametrisation, namely an integer l that defines the number
of components to consider in the comparison.
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Definition 2. Given schedules S and S′ involving m ma-
chines each and an integer l, 1 ≤ l ≤ m, we say ms(S) =
(c1, . . . , cm) is smaller than ms(S′) = (c′1, . . . , c

′
m) under

parametrised lexicographical order, in symbols ms(S) ≤l

ms(S′), if under lexicographical order (c1, . . . , cl) ≤
(c′1, . . . , c

′
l).

Note that for a schedule with m machines, we obtain the
makespan if l = 1 and the full lex-makespan if l = m.

4 An Exact ASP Model with Difference Logic
A problem instance is described by ASP facts using some
fixed predicate names. We illustrate this by an example with
one machine m1 and two jobs j1, j2. The machine is capable
of processing all jobs and all release dates are 0. The setup
time is 4 when changing from job j1 to j2 and 2 vice versa.
Both jobs have duration 5. The according facts are

machine(m1). cap(m1,j1). cap(m1,j2).
job(j1). duration(j1,m1,5). release(j1,m1,0).
job(j2). duration(j2,m1,5). release(j2,m1,0).
setup(j1,j2,m1,4). setup(j2,j1,m1,2).

Any problem instance can be described using this format.
Next, we present the ASP encoding for computing minimal

schedules. The entire program is given in Fig. 2.

Proposition 2. For every problem instance I , the schedules
of I with minimal lex-makespan are in one-to-one correspon-
dence with the optimal answer sets of the rules in Fig. 2
augmented with the fact representation of I .

The encoding consists of three parts: Lines 1–10 qualita-
tively model feasible sequences of jobs on machines, while
the quantitative model for completion times is realised in
Lines 12-19 with difference logic; we avoid by this doing in-
teger arithmetic in the Boolean ASP constraints, which would
blow up the size of the grounding. Finally, the optimisation
is accomplished by Lines 21-23.

The first line of Fig. 2 expresses that each job is as-
signed to a machine capable of processing it. The notation
asg(J,M):cap(M,J) means that in the grounding step
for each value j of the global variable J (as it occurs in the
body), asg(J,M) is replaced by all atoms asg(j,m) for
which cap(j,m) can be derived.

We further require that the jobs assigned to a machine are
totally ordered. That is, for any two distinct such jobs j1
and j2, either j1 ≺ j2 or j2 ≺ j1 holds. This is achieved by
the rule in Line 3. In Lines 5–6, the predicates first/2
and last/2, representing the first and last job on each ma-
chine, respectively, are defined. Constraints in Lines 9-10
ensure that this selection is compatible with the order given
by before/3. Furthermore, each job except the last (resp.
first) has a unique successor (resp. predecessor); this is cap-
tured by next/3 in Lines 7-8.

We use difference logic to express that jobs are put on the
machines in the order defined by next/3. The rules in Lines
12–16 closely follow respective definitions from Section 3.
Line 17 defines cmax as an upper bound of any completion
time. In any answer-set, cmax will be the actual makespan
since the solver will always instantiate integer variables with

Algorithm 1: Lex-Makespan Optimisation
Input: model M involving m machines and

parameter l with 1 ≤ l ≤ m
Output: schedule R for M with parametrised

lex-makespan (c1, . . . , cl)

solve(M) . . . returns a solution for M or ∅ if none is
found within fixed resource limits

bound(i ◦ b), ◦ ∈ {<,≤} . . . constraints enforcing
that ci ◦ b for the lex-makespan (c1, . . . , cm)

1 (c1, . . . , cl)← (0, . . . , 0)
2 R← solve(M)
3 for i← 1 to l do
4 S ← R
5 while S 6= ∅ do
6 R← S
7 ci ← ith element of the lex-makespan of S
8 S ← solve(M ∪ bound(i < ci))

9 M ←M ∪ bound(i ≤ ci)

10 return R with lex-makespan (c1, . . . , cl)

the smallest value possible. The redundant rule in Line 19
helps the solver to further prune the search space.

For optimisation, we “guess” a span for each machine in
Line 21. Here int/1 is assumed to provide a bounded range
of integers. In Line 22, we enforce that machines complete
not later than the guessed spans. The actual objective function
is defined by the last line of Fig. 2 notably concise: any
machine contributes its span c to a cost function at priority
level c. The cost function accumulates contributing values
and the solver minimises answer sets by lexicographically
comparing cost tuples ordered by priority.

4.1 Direct Multi-shot Optimisation
The performance bottleneck for the ASP approach from the
previous section is grounding. In particular, the definition of
the machine spans must be grounded over the entire relevant
integer range. We can define machine spans in difference
logic as bounds on completion times similar to the makespan:
&diff { 0 - span(M) } <= 0 :- machine(M).
&diff { c(J) - span(M) } <= 0 :- asg(J,M).

However, multi-objective optimisation for integer variables
with priorities is unfortunately not supported in the current
version (1.1.1) of clingo-dl. Schedules with minimal
lex-makespan are still computable using multiple solver calls
and incrementally adding constraints.

To this end, we present Alg. 1 for lex-makespan minimisa-
tion by using multiple solver calls.

Alg. 1 is a standard way for multi-objective minimisation
by doing a (highest priority first) hierarchical descent. Due
to symmetries, showing a lack of solutions is usually more
costly for this problem than finding one; this makes alterna-
tive strategies with fewer expected solver calls like binary
search or exponentially increasing search steps less attractive.

We use clingo-dl and the encoding from Fig. 2 with-
out the optimisation statement in Lines 21–23 to implement
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1 1 { asg(J,M) : cap(M,J) } 1 :- job(J).
2

3 before(J1,J2,M) | before(J2,J1,M) :- asg(J1,M), asg(J2,M), J1 < J2.
4

5 1 { first(J,M) : asg(J,M) } 1 :- asg(_,M).
6 1 { last(J,M) : asg(J,M) } 1 :- asg(_,M).
7 1 { next(J1,J2,M) : before(J1,J2,M) } 1 :- asg(J2,M), not first(J2,M).
8 1 { next(J2,J1,M) : before(J2,J1,M) } 1 :- asg(J2,M), not last(J2,M).
9 :- first(J1,M), before(J2,J1,M).

10 :- last(J1,M), before(J1,J2,M).
11

12 &diff{ 0 - c(J1)} <= -(T+D+S) :- asg(J1,M), next(J3,J1,M),
13 setup(J3,J1,M,S), duration(J1,M,D), release(J1,M,T).
14 &diff{ c(J2) - c(J1) } <= -(P+S) :- before(J2,J1,M), next(J3,J1,M),
15 setup(J3,J1,M,S), duration(J1,M,P).
16 &diff{ 0 - c(J1) } <= -(T+D) :- asg(J1,M), duration(J1,M,D), release(J1,M,T).
17 &diff{ c(J) - cmax } <= 0 :- job(J).
18

19 &diff{ c(J2) - c(J1) } <= -P :- before(J2,J1,M), duration(J1,M,P).
20

21 1 { span(M,T) : int(T) } 1 :- machine(M).
22 &diff{ c(J) - 0 } <= S :- asg(J,M), span(M,S).
23 #minimize{ T@T,M : span(M,T) }.

Figure 2: ASP encoding with difference logic for lex-makespan optimisation.

solve(M) in Alg. 1. A handy feature is that clingo-dl
supports multi-shot solving (Gebser et al. 2019) where parts
of the solver state are kept throughout multiple runs, thereby
saving computational resources. Notably solve(M) in Alg. 1
does not limit us to use ASP solver. We can in principle use
any exact method that is capable of producing solutions for a
model M in the input language of the respective system.

The constraints for bound(i ≤ b) are quite easy to ex-
press in ASP: that the i-th component of the lex-makespan
is smaller than or equal to b is equivalent to enforcing that at
least m− i+ 1 machines have a span of at most b. We can
encode the latter by non-deterministically selecting m− i+1
machines and enforcing that they complete not later than b:

(m-i+1) { sel(M) : machine(M) }.
&diff { span(M) - 0 } <= b :- sel(M).

While Alg. 1 is guaranteed to return a schedule with min-
imal lex-makespan when resources for solve(M) are not
limited, we will in practice restrict the time spent for search
in solve(M) by a suitable time limit.

4.2 Domain-specific Heuristics
We use two domain heuristics to improve performance by
guiding search more directly to promising areas of the search
space. Both heuristic directives use the modifier true:
Whenever an atom needs to be assigned a truth value, the
solver will pick the one with the highest weight among the
ones with highest priority and assigns it to true at first.

Recall that job durations depend on the machines. The
first heuristic expresses the idea to assign jobs to machines if
their duration is low on that machine.
#heuristic asg(J,M) : duration(J,M,D),

maxDuration(J,F), W=F-D. [W@2,true]
maxDuration(J,M) :- job(J),

M = #max{ D : duration(J,_,D) }.

Here, maxDuration/2 defines the longest duration of
a given job over all machines. Then, the heuristic directive
gives a high weight to an atom asg(j,m) if the duration of
j is low relative to its maximal duration. The priority level
of this rule is 2; this means that the solver will try to assign
jobs to machines before deciding on other atoms.

The second heuristic directive affects how jobs are put on
machines. We want to avoid large setup times and follow an
analogous strategy as for the first heuristic:

#heuristic next(J,K,M) : setup(J,K,M,S),
maxSetup(K,M,T),
cap(J,M), cap(K,M), W=T-S. [W@1,true]

maxSetup(J,M,S) :- job(J), machine(M),
S = #max{ T : setup(_,J,M,T) }.

Atom next(j,k,m) gets a high weight if putting job j
before k results in a relatively small setup time. We also need
to make sure that machine m is actually capable of processing
both jobs. The order of the jobs has a lower priority than the
machine assignment.

5 ASP-based Approximation
While the exact methods from the previous section have the
advantage that we can run a solver until we find a guaranteed
optimal solution, this works only for very small problem
instances. Finding good solutions within a time limit is in
practice more important than showing optimality. This is
what the ASP-based approximation method we discuss next
are designed to accomplish.

There is a simple way to turn the exact encoding from
Fig. 2 into an approximation that scales better to larger in-
stances. It has been introduced for clingo-dl optimisation
in the context of train scheduling (Abels et al. 2019), and
we apply it for our machine scheduling application. Recall
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Algorithm 2: Lex-Makespan Approximation
Input: model M involving m machines and

parameter l with 1 ≤ l ≤ m
Output: schedule S for M with parametrised

lex-makespan (c1, . . . , cl)

opt(M) . . . returns best solution for M found within
fixed resource limits

1 (c1, . . . , cl)← (0, . . . , 0)
2 S ← ∅
3 for i← 1 to l do
4 S ← opt(M)
5 ci ← makespan of S
6 remove some machine k that completes at ci and

all jobs assigned to k from M

7 return S

that we use int/1 to define a range [0, 1, . . . , n] of inte-
gers from which potential bounds for individual machine
spans are taken from. We can instead consider integers from
[0, 1 ·g, . . . , i ·g] where g is the granularity of the approxima-
tion, and i is chosen such that n ≤ i · g; i can be significantly
smaller than n, depending on g, and thus reduce the search
space and the size of the grounding. A larger g makes the
approximation more coarse, a smaller g makes it closer to
the exact encoding. We will compare the exact encoding and
this approximation in Section 6.

5.1 Multi-shot Approximation
We next present a variant of Alg. 1 for approximation, where
we assume that we have an exact optimiser opt(·) which
is good at finding schedules with small makespans. This
optimiser can then be employed to compute schedules with
small lex-makespans. The specifics are presented as Alg. 2

Algorithm 2 uses opt(·) to recompute and improve parts of
a solution by fixing the jobs on the machine with highest span
after each solver call. Similar to Alg. 1, we require multiple
solver calls but with a profound difference: the number of
solver calls to the makespan optimiser is bounded by the
number of machines, and after each solver call, the problem
instance is significantly simplified and thus easier to solve.

As clingo-dl allows to directly minimise a single in-
teger variable, we can implement the makespan optimiser
opt(·) directly using our difference logic encoding and min-
imise cmax. However, we opted for using multi-shot solving
again to reuse heuristic values and learned clauses from pre-
vious solver runs.

6 Experimental Evaluation
We now provide an experimental evaluation of the approaches
for lex-makespan optimisation from above. Notably, any ap-
proach that produces schedules with small makespan will
also produce small lex-makespans. Our primary goal is to
investigate the difference in schedule quality when spending
all resources for makespan optimisation versus distributing
them for lex-makespan optimisation to different priorities.

M3 M5 M10 M15 M20
m 3 5 10 15 20
n 5–50 10–50 50–200 100-200 150–200

Table 1: Machines (m) and jobs (n) per instance class.

As we cannot disclose real instances from the semi-conductor
production application, we use random instances of realistic
size and structure instead. In addition to experiments with
ASP-based solvers, to compare with other solving paradigms,
we provide a solver-independent model in MiniZinc (Nether-
cote et al. 2007). This model can be solved by many CP
and MIP solvers. However, for a direct comparison, we also
model our problem directly in cplex and cpoptimizer.

6.1 Problem Instances
We generated 500 benchmark instances of different sizes ran-
domly. The random instance generator is designed however
to reflect relevant properties of the real instances. The gen-
erator is based on previous work in the literature (Vallada
and Ruiz 2011a), but also produces instances with high ma-
chine dedication and amends older benchmarks, which were
designed for different objective, with random release dates.
The 500 instances can be grouped into five classes, shown
in Table 1, of 100 instances each. The instance generator as
well as all the encoding and algorithms are online available.4

The machine capabilities were assigned uniformly at ran-
dom for half of the instances in every class: for each job, a
random number of machines were assigned as capable. For
the other half, we assigned the capabilities such that 80% of
the jobs can only be performed by 20% of the machines. We
refer to the latter setting as high-dedication and the former as
low-dedication.

For each job j and any machine k, the duration dj,k, setup
time sj,i,k for any other job i, and release date rj,k were
drawn uniformly at random from [10, 500], [0, 100], and
[0, rmax ], respectively, where

rmax =
1

m

∑
1≤j≤n

1

|cap(j)|
( ∑
k∈cap(j)

dj,k+
∑

1≤j′≤n,k∈cap(j′)

sj′,j,k
)
.

6.2 A Solver-Independent MiniZinc Model
As an alternative to ASP, we implemented a solver-
independent model for schedule optimisation in the well-
known high-level modelling language MiniZinc for con-
straint satisfaction and optimization problems. MiniZinc
models, after being compiled into FlatZinc, can be used by a
wide range of solvers. As this paper focuses on ASP solving,
we provide only one direct MiniZinc model that serves as a
baseline. Our model of the problem statement from Section 3
and the objective function are as follows.

For each job i ∈ {1, . . . , n}, we use the following decision
variables: ai ∈ {1, . . . ,m} for its assigned machine, pi ∈
{0, . . . , n} representing its predecessor or 0 if it has none,
and ci ∈ {0, . . . , h} denoting its completion time where h is

4https://owncloud.tuwien.ac.at/index.php/s/
UmD0lIh2B7B4A9g.
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the scheduling horizon. For each machine j ∈ {1, . . . ,m},
we use sj ∈ {1, . . . , h} denoting its span, and its level in the
ordering of spans lj ∈ {1, . . . ,m}.

The constraints enforcing a valid solution can be formu-
lated in the following way.

alldifferent except 0(p1≤i≤n) (1)∑n
i=1(pi = 0) ≤ nvalue(a1≤i≤m) (2)

ai ∈ cap(i) 1 ≤ i ≤ n (3)
pi 6= 0→ ai = api 1 ≤ i ≤ n (4)
pi 6= i 1 ≤ i ≤ n (5)
ci ≥ (max (cj , ri,ai

) 1 ≤ i, j ≤ n,

+ sj,i,ai + di,ai) · (pi = j) i 6= j (6)
ci ≥ ri,ai

+ di,ai
1 ≤ i ≤ n (7)

The global constraint (1) ensures that no two jobs have the
same predecessor, while (2) enforces that the number of first
jobs is less or equal to the number of assigned machines. The
latter is determined through a global nvalue constraint re-
turning the number of different values in a1≤i≤m. Constraint
(3) ensures that every job is assigned a capable machine,
and constraint (4) ensures that a job’s predecessor is on the
same machine. Constraint (5) expresses that no job is its own
predecessor, while (6) ensures that each job starts after its
predecessor and the corresponding setup time. Finally, (7)
enforces that every first job starts after its release date.

Defining an objective function for lex-makespan minimi-
sation is more intricate. For this, we add some constraints:

sk = max 1≤i≤n(ci · (ai = k)) 1 ≤ k ≤ m (8)
alldifferent(l1≤i≤m) (9)
li > lj → si ≥ sj 1 ≤ i, j ≤ m (10)

Here (8) defines the span for each machine to be the latest
completion time of any job scheduled on it, while (9-10)
ensure that each machine is assigned a different level and the
levels order the machines with respect to their spans.

The objective function for minimizing the lex-makespan
can then be expressed as

min
∑m

i=1 h
li−1 · si.

Intuitively, the levels represent the priorities for optimization.
By assigning the span of machine i the weight hli−1, it is
more important than all spans of machines on lower levels.

Note that restricting the model to constraints (1–7) and us-
ing the objective min max 1≤i≤n(ci) expresses the schedul-
ing problem with the standard makespan objective.

6.3 Systems
We use clingo-dl version (1.1.1) for solve(·) and opt(·)
in Algs. 1 and 2, respectively. For both algorithms, the time
limit for optimising any level of the lex-makespan can be set
to a geometric sequence with ratio 0.5. Thus half of the total
time limit is spent on optimising the highest priority level, a
quarter on the next level etc.

We use a FlatZinc linearisation of the MiniZinc model
to compare with four MIP/CP solvers (cplex 12.105,

5https://www.ibm.com/analytics/cplex-optimizer.

cpoptimizer 20.16, gecode 6.3.07 and or-tools
7.88) against the hybrid ASP approach. All solvers could
be used for makespan minimization. Regarding the lex-
makespan, gecode could not produce any solutions due
to numerical issues and both cplex and cpoptimizer
wrongly reported optimality for some solutions. This is
a technical issue that is probably due to the translation of
MiniZinc model to FlatZinc or too high values for the lex-
makespan objective function. Due to this, we also encoded
the problem and both objectives in the native modelling lan-
guages of cplex and cpoptimizer.9 Those direct ap-
proaches had no problems with wrongly reported optimal
solutions and their results are included below. In difference,
or-tools had no issues with the MiniZinc model and was
thus run using this model.

6.4 Experimental Results and Discussion
All experiments were conducted on a cluster with 13 nodes,
where each node has two Intel Xeon CPUs E5-2650 v4
(max. 2.90GHz, 12 physical cores, no hyperthreading), and
256GB RAM. For each run, we set a memory limit of 20GB
and all solvers only used one solving thread. The application
at the production site requires schedule computation within
300 seconds, which we adopted as time limit. We also did
experiments with run times of up to 15 minutes, the outcome
is however very similar and results are left out.

Figure 3 gives an overview of the performance of solvers
on the entire set of instances, where we compare the ap-
proaches for makespan optimisation and for lex-makespan.
For each solver, we report the number of instances where
some solution was found (feasible), a minimal solution
among all approaches was found (best), and a globally mini-
mal solution was found (optimal).

The makespan comparisons provide an important baseline
as every approach that aims at improving lex-makespan nec-
essarily involves makespan minimisation, and any good lex-
makespan optimisers also needs to produce small makespans.
The clingo-dl approach finds solutions for most of the
instances and shows very good performance for the num-
ber of best and optimal solutions compared to cplex,
cpoptimizer, or-tools and gecode. At least when
using our MiniZinc model, or-tools and gecode have
difficulties to find solutions for a large proportion of the in-
stances. The performance of cplex and cpoptimizer is
better, but it is still behind clingo-dl. In should be noted
that we did not investigate further improvements for those
solvers and cpoptimizer finds more best solutions than
clingo-dl with the longer 15 minute timeout. However,
the results show that ASP is indeed a promising approach for
this problem.

For the lex-makespan comparisons, we use or-tools,
cplex, cpoptimizer as well as clingo-dl, the
clingo-dl approximation described in Section 5 with

6https://www.ibm.com/analytics/cplex-optimizer.
7https://www.gecode.org.
8https://developers.google.com/optimization.
9The encodings are available online at https://owncloud.tuwien.

ac.at/index.php/s/UmD0lIh2B7B4A9g.
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Figure 3: Different systems on all instances for makespan (left) and lex-makespan (right).

granularity g = 10, and Algs. 1 and 2. While or-tools,
cplex and clingo-dl struggle now to find feasible solu-
tions, our multi-shot approaches shine in comparison with
cpoptimizer trailing closely behind. The clingo-dl
approximation does find more feasible solutions than normal
clingo-dl. However, it finds the least number of best
solution when compared to the others. While the approxima-
tion does indeed improve performance of clingo-dl on
bigger instances, it performs worse on small instances and
the results for the bigger instances are dwarfed by the other
approaches. If Alg. 1 is used without geometric timeouts,
it reports optimal solutions for quite a number of instances
and finds the most best solutions. This, when comparing
with Algs. 1 and 2 with geometric timeouts, is not surprising
as more time, for many instances all the time, is spent on
minimising the first component of the lex-makespan.

Figure 3 does not tell us much about the quality differences
of the schedules produced by the different algorithms. As
our informal objective is that machines complete as early as
possible, we show in Fig. 4 graphs for the ratio of machines
that completed as a function of schedule time, i.e., f(t) =
M(S, t)/m. This allows us to compare different approaches
on the same instance classes, where the x-axis is schedule
time in seconds and the y-axis is the average of M(S, t)/m
over the instances. The curves for different algorithms can
be interpreted as follows: the earlier a curve reaches 1 (all
machines completed), the smaller is the average makespan of
the instances. The shape of the curve reveals details about the
quality of the schedule prior to this point. For our informal
objective, a steep incline of this curve is desired—the earlier
it gets ahead and stays ahead, the better.

We only consider Algs. 1 and 2 with geometric timeouts
against plain makespan optimisation with clingo-dl in
Fig. 4. We show instance classes of increasing size from
left to right and compare instances of type “low dedication”
in the upper row and “high dedication” in the lower row.
All approaches produce small makespans and thus schedules
with a high throughput. This is worth emphasising since only
half of the time limit is used here for makespan optimisation
by Algs. 1 and 2. However, when comparing the shape of the
curves, the lex-makespan optmisers show their strengths for

meeting our informal objective; the difference to makespan
is subtle for Alg. 1 but more pronounced for Alg. 2. While
Alg. 2 finds fewer minimal solutions than Alg. 1 according to
Fig. 3, it tends to get ahead the earliest in terms of completed
machines when considering the execution of the schedules,
especially for high dedication instances. We can quantify this
by looking at the average ratio of machines finished at each
point in time. On average, Alg 1. improves this metric by
6.3% whereas Alg. 2 shows an improvement of 9.53%.

7 Related Work
Many variants of Parallel Machine Scheduling Problem, e.g.,
(Allahverdi et al. 2008; Allahverdi 2015), have been stud-
ied extensively in the literature. Previous publications have
considered eligibility of machines, e.g., (Afzalirad and Reza-
eian 2016; Perez-Gonzalez et al. 2019; Bektur and Saraç
2019), machine dependent processing time, e.g., (Vallada and
Ruiz 2011b; Avalos-Rosales, Alvarez, and Ángel-Bello 2013;
Allahverdi 2015), and sequence dependent setup times,
e.g., (Vallada and Ruiz 2011b; Perez-Gonzalez et al. 2019;
Fanjul-Peyro, Ruiz, and Perea 2019; Gedik et al. 2018).

The idea to use lexicographical makespan optimisation
to obtain robust schedules for identical parallel machines
comes from Letsios, Mistry, and Misener (2021) but has
not been used, to the best of our knowledge, when setup
times are present. The general idea of optimising not only
the element that causes the highest costs but also the second
one and so on to obtain robustness, fairness, or balancedness
is studied under the notion of min-max optimisation for a
various combinatorial problems (Burkard and Rendl 1991;
Ogryczak and Śliwiński 2006).

There are several related objective functions that can
be used to achieve similar effects as minimising the lex-
makespan. Load balancing can be used to obtain bal-
anced resource utilisation by equalising the workload on
machines (Rajakumar, Arunachalam, and Selladurai 2004;
Yildirim et al. 2007; Sabuncu and Simsek 2020). One mea-
sure for this is to minimise the relative percentage of imbal-
ance in workload (Rajakumar, Arunachalam, and Selladurai
2004) which is determined based on the difference between
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Figure 4: Machine completion rate over time for makespan and lex-makespan.

a machine span and the makespan. Other approaches try to
minimise the difference between the largest and the smallest
machine span (Ouazene et al. 2014). Note that the machines
m2 and m3 in Fig. 1 (a) are balanced under this notion, but
this does not ensure that the machines finish as early as they
could. Sabuncu and Simsek (2020) provide a novel formula-
tion of a machine scheduling problem in ASP. Their approach
bears some similarity to ours, but their objective is to balance
the workload of the given machines. In general, load balanc-
ing can lead to schedules where, e.g., longer than necessary
setup times are used to artificially prolong machine spans for
reducing imbalances. Another idea is to minimise workload
instead of balancing it. While this achieves short processing
times, it does not ensure that all machines finish as early as
possible either. Similar to the workload, minimising the sum
of machine spans does not prevent that jobs are scheduled
in an unbalanced way; Figs. 1 (b) and (c) serve as an ex-
ample of two schedules with the same total machine span.
Minimising a non-linear sum of machine spans like their
squares comes close to our informal objective but is different
from the lex-makespan as it does not guarantee a minimal
makespan (Walter 2017). Another way to obtain compact
schedules is it to minimise the total completion times (Weng,
Lu, and Ren 2001). This however can pull short jobs to the
front of the schedule, which can adversely interfere with
avoiding large setup times.

Extending ASP with difference logic is just one way to
blend integer constraints and ASP and there are several other
approaches (Lierler 2014; Gebser, Ostrowski, and Schaub
2009). We evaluated ASP with full integer constraints with
clingcon, but performance on our problem was poor. The
fast propagation enabled by the lower computational com-
plexity of difference logic seems a big advantage here. The
clingo-dl system has indeed been used for the related
problem of job-shop scheduling and makespan optimisa-

tion (Janhunen et al. 2017; El-Kholany and Gebser 2020).
Train scheduling for the Swiss Federal Railways is another
application of clingo-dl that involves routing, schedul-
ing, and complex optimisation (Abels et al. 2019). However,
we are solving a different problem with a more complex ob-
jective function and also compare to other solving paradigms.

8 Conclusion
We studied the application of hybrid ASP with difference
logic to solve a challenging parallel machine scheduling prob-
lem with setup-times in industrial semi-conductor production
at Bosch. As objective function, we used the lex-makespan
which generalises the canonical makespan to a tuple of ma-
chine spans and aims at accomplishing short completion
times for all machines. Semi-conductor production involves
not only one but several connected work centers that solve
similar problems. Having a flexible ASP solution for one
that can easily be adapted to others is highly desirable. To
make ASP perform up to par, we appropriated advanced tech-
niques like difference constraints, multi-shot solving, domain
heuristics, and approximations for our application.

For the experimental evaluation, we considered random
instances of realistic size and structure. We further imple-
mented a solver-independent MiniZinc model as well as di-
rect encodings that we used for comparisons with MIP and
CP solvers. The results show that the objective of short com-
pletion times for machines is well achieved. Performance is
improved by using approximations without significant dete-
rioration of the schedules produced. It is encouraging that
the ASP approaches turn out to be competitive with commer-
cial MIP and CP solvers which are, at least to some extend,
engineered for industrial scheduling problems.

We plan to study meta-heuristics for lex-makespan optimi-
sation in combination with ASP and methods to combine the
lex-makespan with other common objective functions.
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