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Abstract. We evaluate the state of the art of solvers for hard argumentation
problems—the enumeration of preferred and stable extensions—to envisage future
trends based on evidence collected as part of an extensive empirical evaluation. In
the last international competition on computational models of argumentation a gen-
eral impression was that reduction-based systems (either SAT-based or ASP-based)
are the most efficient.

Our investigation shows that this impression is not true in full generality and sug-
gests the areas where the relatively under-developed non reduction-based systems
should focus more to improve their performance. Moreover, it also highlights that
the state-of-the-art solvers are very complementary and can be successfully com-
bined in portfolios: our best per-instance portfolio is 51% (resp. 53%) faster than
the best single solver for enumerating preferred (resp. stable) extensions.
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1. Introduction

An abstract argumentation framework (AF) consists of a set of arguments and a binary
attack relation between them. In [9] four semantics were introduced, namely grounded,
preferred, complete, and stable semantics: each of them lead to a single or to multiple
extensions (or no extensions in the case of stable semantics) where an extension is intu-
itively a set of arguments which can “survive the conflict together.” We refer the reader
to [2] for a detailed analysis. Moreover, for each semantics, several decision and enu-
meration problems have been identified. In this paper we focus on the enumeration of
preferred and stable extensions because: (i) the solution to the problem of enumerat-
ing extensions implies the answer to other problems; (ii) the problems of enumerating
preferred and stable extensions are among the hardest in abstract argumentation.

Research around argumentation-based technology is fast growing: for instance, three
of the most cited papers (top-25) published on Artificial Intelligence Journal since 2011
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according to Scopus2 are in this field, and the last International Competition on Compu-
tational Models of Argumentation (ICCMA-15) received more submissions than the last
ASP competition.

The results of ICCMA-153 [17] suggest that (i) reduction-based systems (either
SAT-based or ASP-based) are more efficient than non reduction-based: indeed the best
solvers for enumerating stable and preferred extensions are either SAT-based or ASP-
based; and (ii) a mixture of approaches can be fruitful: CoQuiAas—that scored first
among all for each semantics considered in ICCMA-15—uses a variety of approaches.

Here, we test how general such conclusions are with a large empirical investigation
focused on enumeration of stable and preferred extensions using the solvers submitted to
ICCMA-15. By adopting different metrics, we identified avenues for improvement that
we hope will be valuable for solvers’ authors and for the argumentation community.

Solvers indeed proved to be very complementary (i.e. a mixture of approaches can
be fruitful), and we then exploit portfolio approaches in order to highlight (relative)
strengths and weaknesses of solvers. As testified by experiences in other research areas
in artificial intelligence, such as planning [19], SAT [21], and ASP [12], portfolios and
algorithm selection techniques [14] are very useful tools for understanding the impor-
tance of solvers, evaluate the improvements, and effectively combine solvers for increas-
ing overall performance. Existing works [6,5] either focus on algorithm selection for
enumerating preferred extensions, with a very small number of solvers and of instances;
or on theoretical complementariness of algorithms.

Our findings reshape one of the take-away messages from ICCMA-15, namely that
reduction-based systems have higher performance than non reduction-based. This is not
always the case, although it is the case that they have better coverage, and ICCMA-15
privileged coverage against speed.

Finally, the analysis of portfolio techniques—and their generalisation capabilities—
highlighted that, by combining solvers, it is possible to increase the coverage of 13%
(resp. 3%) and the speed of 51% (resp. 53%) against the best single solver for enumerat-
ing preferred (resp. stable) extensions.

2. Dung’s Argumentation Framework

An argumentation framework [9] consists of a set of arguments and a binary attack rela-
tion between them.4

Definition 1. An argumentation framework (AF) is a pair Γ = 〈A,R〉 where A is a set
of arguments and R ⊆ A ×A . We say that b attacks a iff 〈b,a〉 ∈R, also denoted as
b→ a.

The basic properties of conflict–freeness, acceptability, and admissibility of a set of
arguments are fundamental for the definition of argumentation semantics.

Definition 2. Given an AF Γ = 〈A,R〉:

2http://www.journals.elsevier.com/artificial-intelligence/most-cited-articles, ac-
cessed on 10th June 2016.

3http://argumentationcompetition.org/2015/results.html
4In this paper we consider only finite sets of arguments: see [3] for a discussion on infinite sets of arguments.



• a set S⊆A is a conflict–free set of Γ if @ a,b ∈ S s.t. a→ b;
• an argument a ∈A is acceptable with respect to a set S ⊆A of Γ if ∀b ∈A s.t.

b→ a, ∃ c ∈ S s.t. c→ b;
• a set S ⊆ A is an admissible set of Γ if S is a conflict–free set of Γ and every

element of S is acceptable with respect to S of Γ.

An argumentation semantics σ prescribes for any AF Γ a set of extensions, namely
a set of sets of arguments satisfying the conditions dictated by σ .

Definition 3. Given an AF Γ = 〈A,R〉: a set S⊆A is a:

• preferred extension of Γ iff S is a maximal (w.r.t. set inclusion) admissible set of
Γ;

• stable extension of Γ iff S is a conflict–free set of Γ and A \S = {a ∈A | b→
a and b ∈ S}.

3. Generation of Portfolios

In this section we describe the techniques we used for combining solvers into sequen-
tial portfolios. Every approach requires as input a set of solvers, a set of training AFs,
and measures of performance of solvers on the training set. Solvers’ performance are
measured in terms of Penalised Average Runtime (PAR) score. This metric trades off
coverage and runtime for successfully analysed AFs: runs that do not solve the given
problem get ten times the cutoff time (PAR10), other runs get the actual runtime. The
PAR10 score of a solver on a set of AFs is the average of the associated scores. Although
PAR10 largely emphasises the coverage, it also gives a clear indication on effective per-
formance, thus resulting in an interesting and useful measure. This is also compatible
with the ICCMA experience: ties on coverage are automatically solved on the basis of
performance.

3.1. Static Portfolios

Static portfolios—as the name suggests—are generated once, according to the perfor-
mance of the considered solvers on training instances, and never adjusted. Static portfo-
lios are defined by: (i) the selected solvers; (ii) the order in which solvers will be run,
and (iii) the runtime allocated to each solver.

We considered two different approaches for configuring static portfolios. First, we
generated static portfolios of exactly k components, Shared-k. Each component solver
has been allocated the same amount of CPU-time, equal to maxRuntime/k seconds.
Solvers are selected and ordered according to overall PAR10 score achieved by the re-
sulting portfolio. We considered values of k between 2 and 5. In fact, k = 1 would be
equivalent to select the single solver with the best PAR10 score on training instances,
which is not relevant for our investigation. For k > 5, the CPU-time assigned to each
solver tends to be too short hence drastically reducing portfolio performance.

For our second static portfolio approach, named FDSS, we adapted the Fast Down-
ward Stone Soup technique [15]. We start from an empty portfolio, and iteratively add



either a new solver component, or extend the allocated CPU-time5 of a solver already
added to the portfolio, depending on what maximises the increment of the PAR10 score
of the portfolio. We continue until the time limit of the portfolio has been reached, or it is
not possible to further improve the PAR10 score of the portfolio on the training instances.

3.2. Per-instance Portfolios

Per-instance portfolios rely on instance features for configuring an instance-specific port-
folio. For each AF a vector of features is computed; each feature is a real number that
summarises a potentially important aspect of the considered AF. Similar instances should
have similar feature vectors, and, on this basis, portfolios are configured using empirical
performance models [13].

In this investigation we consider the largest set of features available for AFs [6].
Such set includes 50 features, extracted by exploiting the representation of AFs both as
directed (loss-less) or undirected (lossy) graphs. Features are extracted by considering
aspects such as the size of graphs, the presence of connected components, the presence
of auto-loops, etc. The features extraction process is usually quick (less than 2 CPU-time
seconds on average) and is done by exploiting a wrapper written in Python.

3.2.1. Classification-based approach

The classification-based (hereinafter Classify) approach exploits the technique intro-
duced in [6]. It trains a random decision forest classification model to perform algorithm
selection. It classifies a given AF into a single category which corresponds to the sin-
gle solver predicted to be the fastest. The difference between solvers’ performance is
ignored: all the available CPU-time is then allocated to the selected solver.

3.2.2. Regression-based approaches

For regression-based approaches, deciding which solver to execute and its runtime de-
pends on the empirical hardness models learned from the available training data, in par-
ticular a M5-Rules [11] model generated for each solver. When executed on a fresh AF,
the predictive model estimates the CPU-time required by each solver to successfully
terminate.

We exploit the regression-based model in two different ways. First, for perform-
ing algorithm selection (hereinafter 1-Regression): given the predicted runtime of each
solver, the solver predicted to be the fastest is selected and it has allocated all the avail-
able CPU-time. However, such use of the models do not fully exploit the available pre-
dicted runtimes. Therefore, we designed a different way for using the regression-based
approach, referred to as M-regression. As in 1-Regression, we initially select the solver
predicted to be the fastest, but we allocate only its predicted CPU-time (increased by
10%). If the selected solver is not able to successfully analyse the given AF in the allo-
cated time, it is stopped and no longer available to be selected, and the process iterates
by selecting a different solver. The M-regression approach stops when either a solver has
successfully analysed the AF, or the runtime budget has been exhausted.

With regards to existing well-known portfolio-based solver approaches, it is worthy
to remark that SATZilla [21] is a regression-based approach similar to the 1-regression

5A granularity of 5 CPU-time seconds is considered.



we introduced. However, since it was developed for competition purposes, SATZilla also
exploits pre and backup solvers. These are undoubtedly useful for improving coverage,
but not when the main point is to evaluate to which extent solvers composition/selection
can improve results, as in our investigation.

4. Experimental Analysis of ICCMA-15 Solvers

We randomly generated 2,000 AFs based on four different graph models: Barabasi-
Albert [1], Erdös-Rényi [10], Watts-Strogatz [20] and graphs featuring a large number
of stable extensions (hereinafter StableM).

Erdös-Rényi graphs [10] are generated by randomly selecting attacks between ar-
guments according to a uniform distribution. While Erdös-Rényi was the predominant
model used for randomly generated experiments, [4] investigated also other graph struc-
tures such as scale-free and small-world networks. As discussed by Barabasi and Albert
[1], a common property of many large networks is that the node connectivities follow a
scale-free power-law distribution. This is generally the case when: (i) networks expand
continuously by the addition of new nodes, and (ii) new nodes attach preferentially to
sites that are already well connected. Moreover, Watts and Strogatz [20] show that many
biological, technological and social networks are neither completely regular nor com-
pletely random, but something in the between. They thus explored simple models of net-
works that can be tuned through this middle ground: regular networks rewired to intro-
duce increasing amounts of disorder. These systems can be highly clustered, like regu-
lar lattices, yet have small characteristic path lengths, like random graphs, and they are
named small-world networks by analogy with the small-world phenomenon. The AFs
have been generated by using an improved version of AFBenchGen [7]. It is worthy to
emphasise that Watts-Strogatz and Barabasi-Albert produce undirected graphs: in this
work, differently from [4], each edge of the undirected graph is then associated with a di-
rection following a probability distribution, that can be provided as input to AFBenchGen.
Finally, the fourth set has been generated using the code provided in Probo [8] by the
organisers of ICCMA-15.6

In order to identify challenging frameworks—i.e., neither trivial nor too complex to
be successfully analysed in the given CPU-time—AFs for each set have been selected
using the protocol introduced in the 2014 edition of the International Planning Competi-
tion [18]. This protocol lead to the selection of AFs with a number of arguments between
250 and 650, and number of attacks between (approximately) 400 and 180,000.

The set of AFs has been divided into training and testing sets. For each graph model,
we randomly selected 200 AFs for training, and the remaining 300 for testing. Therefore,
out of the 2,000 AFs generated, 800 have been used for training purposes, while the
remaining 1,200 have been used for testing and comparing the performance of trained
approaches.

We considered all the solvers that took part in the EE-PR and EE-ST tracks of
ICCMA-15 [17], respectively 15 and 11 systems. For the sake of clarity and conciseness,
we removed from the analysis single solvers that did not successfully analyse at least
one AF or which were always outperformed by another solver. The interested reader

6http://argumentationcompetition.org/2015/results.html



Table 1. PAR10 score and coverage (cov.)—percentage of AFs successfully analysed—of the considered basic
solvers for solving the preferred enumeration (upper table) and stable enumeration (lower table) problems on
the complete testing set (All) of 1,200 AFs, and on testing sets including AFs generated by specific graph
models. Solvers are ordered according to PAR10 on the All testing set. F.t column indicates the number of
times a solver has been the fastest among considered. Best results in bold.

EE-PR

All Barabasi-Albert Erdös-Rényi StableM Watts-Strogatz
Solver PAR10 Cov. F.t PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov.

Cegartix 1350.4 79.1 229 1662.6 74.2 1266.6 81.0 1439.2 77.0 1028.6 84.2
ArgSemSAT 1916.2 69.1 35 3532.3 41.9 433.7 94.2 2530.9 58.7 1171.1 81.5
LabSATSolver 2050.3 66.8 9 3430.7 43.5 261.3 96.5 2869.5 53.0 1657.5 73.9
prefMaxSAT 2057.2 66.8 273 3482.1 42.9 444.0 94.2 3625.2 40.3 697.5 89.4
DIAMOND 2417.0 61.0 1 3447.8 43.2 1366.7 79.0 2831.8 53.7 2026.0 68.0
ASPARTIX-D 2728.6 56.1 4 4101.5 32.6 3067.8 51.6 2068.8 66.7 1630.3 74.3
ASPARTIX-V 2772.2 55.2 21 3646.6 40.3 3292.6 47.1 2340.7 62.0 1772.4 71.9
CoQuiAas 3026.4 50.5 78 3736.1 38.4 2873.4 53.5 2836.4 53.3 2645.1 57.1
ASGL 3477.3 43.2 1 4809.7 20.3 96.1 100.0 4475.4 26.0 4585.5 25.4
Conarg 3696.3 39.3 158 1128.7 81.6 2813.9 55.8 4934.6 18.3 6000.0 0.0
ArgTools 3906.2 35.2 322 3694.4 39.0 45.2 100.0 6000.0 0.0 6000.0 0.0
GRIS 4543.7 24.4 174 254.6 96.1 6000.0 0.0 6000.0 0.0 6000.0 0.0

EE-ST

All Barabasi-Albert Erdös-Rényi StableM Watts-Strogatz
Solver PAR10 Cov. F.t PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov.

ArgTools 440.7 94.5 245 1328.6 78.4 47.4 100.0 144.1 100.0 230.5 100.0
LabSATSolver 641.6 90.0 352 396.2 93.9 22.7 100.0 1497.6 76.0 684.9 90.7
ASPARTIX-D 829.7 87.1 395 412.2 93.5 1194.4 81.6 1187.2 81.0 535.0 93.0
CoQuiAas 1477.2 76.2 372 1453.3 76.5 1485.1 76.5 1879.0 69.3 1106.5 83.3
DIAMOND 1555.4 75.2 42 2527.1 58.7 692.2 89.7 1887.2 69.7 1127.1 83.7
ArgSemSAT 1826.6 70.5 70 4019.0 33.5 408.9 94.5 1970.0 68.0 900.8 87.0
Conarg 1976.4 67.8 292 261.4 96.1 33.6 100.0 3742.1 38.3 4010.0 35.3
ASGL 2647.6 57.3 11 2737.4 56.1 85.2 100.0 3723.8 38.7 4152.8 33.7

is referred to [16] for detailed descriptions of the solvers. Hereinafter, we will refer
to such systems as basic solvers, regardless of the approach they exploit for solving
argumentation-related problems.

Experiments have been run on a cluster with computing nodes equipped with 2.5
Ghz Intel Core 2 Quad Processors, 4 GB of RAM and Linux operating system. A cutoff
of 600 seconds was imposed to compute the extensions—either preferred or stable—
for each AF. For each solver we recorded the overall result: success (if it solved the
considered problem), crashed, timed-out or ran out of memory.

In ICCMA, solvers have been evaluated by considering only coverage (in case of
ties the overall runtime on solved instances). Here we also evaluate solvers’ performance
by considering the PAR10 score.

4.1. Hypothesis 1: Reduction-based Solvers Constantly Outperform Others

Table 1 shows the results of this analysis in terms of coverage, PAR10 scores, and number
of instances on which a given solver has been the fastest. We considered runtimes below
1 CPU-time second as equally fast.

Each basic solver for the EE-PR problem has at least one instance on which it is
the fastest. We note that, when considering performance achieved on the whole testing
set (All) by solvers, there can be a significant discrepancy between results shown in the
coverage and fastest columns. One would expect that the higher the coverage, the larger



the possibility of a solver to be the fastest. Interestingly, we observed that some of the
solvers with low coverage tend to be fast on the (few) instances they are able to analyse.
For instance, ArgTools (a non reduction-based system) achieves low overall coverage,
but it is the best solver for handling AFs of the Erdös-Rényi set. This contradicts the
hypothesis—endorsed by ICCMA-15 results—that reduction-based systems constantly
outperform others.

The best basic solver for solving the EE-PR problem on the StableM set of AFs
is Cegartix, which is able to solve 77.0% of the instances. This is approximately 10%
more than the coverage of the second best solver on such set, ASPARTIX-D. The
prefMaxSAT solver has shown the best performance on the Watts-Strogatz AFs. From
an (empirical) complexity perspective, we observe that the set with the lowest average
coverage is the Barabasi-Albert set of AFs. This is possibly due to the very large number
(up to few thousands, in some cases) of preferred extensions of such testing frameworks.
Conversely, the Erdös-Rényi set is the less complex for the considered basic solvers
when solving the EE-PR problem. Moreover we can derive that even though there is usu-
ally a basic solver with best coverage performance on each testing set, such solver is not
always the fastest.

As for the EE-ST problem, the results in Table 1 show another interesting scenario.
ArgTools is able to achieve the best PAR10 and coverage performance on two of the four
considered sets, namely StableM and Watts-Strogatz. LabSATSolver obtained the best
PAR10 score on the Erdös-Rényi set, but four of the considered basic solvers successfully
analyse each of the 300 AFs in such a set. The winner of the EE-ST track of ICCMA-15,
ASPARTIX-D, has been the fastest solver on 395 of the testing frameworks, but it did
never excel in any of the 4 considered subsets. It seems that the AFs of the StableM set
are (empirically) the most complex to solve for the considered systems.

4.2. Hypothesis 2: Basic Solvers Show Complementary Performance

Table 1 indicate that there is not a basic solver that is always the best selection on the
vast majority of the testing frameworks. This is evidence that the basic solvers are sub-
stantially complementary, thus supporting the claim that a mixture of approaches can be
fruitful, and justifying the search for improvements via portfolios.

5. Experimental Analysis of Portfolios

First of all, we generated the Virtual Best Solver (VBS) as the (virtual) oracle which
always select the best solver (as to PAR10) for the given framework and problem. This
provides the upper bound of performance achievable by combining considered solvers.

For the preferred semantics, the solvers included in the Shared-5 portfolio, or-
dered following their execution order, are: Cegartix, ArgSemSAT, prefMaxSAT,
LabSATSolver and DIAMOND. Smaller static portfolios include subsets of those 5
solvers, not necessarily in that order. FDSS static portfolio includes ArgSemSAT and
GRIS, only.

For the stable semantics, the solvers included in the Shared-5 portfolio, or-
dered following their execution order, are: LabSATSolver, ArgTools, ASPARTIX-D,
CoQuiAas and DIAMOND. Smaller portfolios include subsets of the listed solvers, not
necessarily in that order. The FDSS portfolio includes LabSATSolver and ASPARTIX-D.



Table 2. Coverage (Cov.) and PAR10 of the systems considered in this study for solving the EE-PR problem
(left part) and the EE-ST problem (right part) on the complete set of 1,200 testing AFs. VBS indicates the
performance of the virtual best solver. Systems are ordered according to PAR10.

EE-PR EE-ST

System Cov. PAR10 System Cov. PAR10

VBS 91.4 562.9 VBS 100.0 39.3
Classify 89.7 665.2 1-Regression 97.4 206.9
1-Regression 88.6 734.7 Classify 97.1 217.5
M-Regression 82.8 1068.3 Shared-2 97.7 262.3
FDSS 80.0 1311.4 M-Regression 94.7 378.4
Cegartix 79.1 1350.4 Shared-3 94.0 420.1
Shared-2 73.2 1678.0 ArgTools 94.5 440.7
Shared-3 69.4 1892.0 LabSATSolver 90.0 641.6
ArgSemSAT 69.1 1916.2 FDSS 89.4 677.4
LabSATSolver 66.8 2050.3 ASPARTIX-D 87.1 829.7
prefMaxSAT 66.8 2057.2 Shared-5 86.3 867.4
Shared-4 65.7 2105.5 Shared-4 86.0 873.8
Shared-5 63.3 2240.3 CoQuiAas 76.2 1477.2
DIAMOND 61.0 2417.0 DIAMOND 75.2 1555.4
ASPARTIX-D 56.1 2728.6 ArgSemSAT 70.5 1826.6
ASPARTIX-V 55.2 2772.2 Conarg 67.8 1976.4
CoQuiAas 50.5 3026.4 ASGL 57.3 2647.6
ASGL 43.2 3477.3
Conarg 39.3 3696.3
ArgTools 35.2 3906.2
GRIS 24.4 4543.7

We also generated the three per-instance (per-problem) portfolios that exploit pre-
dictive models in order to map the features of the given AF to a solver selection or com-
bination: Classify, 1-Regression, and M-Regression. Classify and 1-Regression select a
single solver by relying, respectively, on classification and regression techniques. M-
regression iteratively selects the next solver to run, and allocates its CPU-time, by con-
sidering the predicted runtime of the available solvers for the given framework and prob-
lem, increased by 10% in order to mitigate the impact of negligible prediction mistakes.

We trained all the portfolio approaches using our training set of 800 AF s, 200 AFs
from each set. The runtime cutoff once again was 600 CPU-time seconds. Table 2 shows
the coverage and PAR10 scores of all portfolios, basic solvers and the VBS on the testing
frameworks.

5.1. Hypothesis 3: Static Portfolios are more Efficient than Basic Solvers

Results for the static portfolios vary between stable and preferred semantics. When deal-
ing with the EE-PR problem, the FDSS approach is the only technique which is able
to outperfom the best basic solver. Shared-2 and Shared-3 achieve performance close
to those of the best basic solver, while Shared-4 and Shared-5 are undistinguishable
from average basic solvers. FDSS portfolio performs better than Shared-k static portfo-
lios because it includes GRIS. ArgSemSAT has good coverage, and GRISexcels on the



Table 3. Number of times each solver has been selected by the Classify (Class.) or M-Regression (M-Reg.)
approaches for solving EE-PR (left part) and EE-ST (right part) problems on the testing frameworks. Basic
solvers are alphabetically ordered. Highest numbers in bold. Empty cells indicate that the corresponding solver
is not able to handle the considered problem.

EE-PR EE-ST

System Class. M-Reg. Class. M-Reg.

ArgSemSAT 0 253 0 212
ArgTools 311 305 138 428
ASGL 6 36 0 35
ASPARTIX-D 2 80 305 409
ASPARTIX-V 1 99
Cegartix 221 403
Conarg 157 122 231 337
CoQuiAas 43 44 288 193
DIAMOND 0 65 33 138
GRIS 153 278
LabSATSolver 13 208 228 548
prefMaxSAT 297 301

Barabasi-Albert set (Table 1), while Shared-k portfolios do not include any solver able
to efficiently solve the EE-PR problem on the Barabasi-Albert set.

Conversely, the right part of Table 2 shows that on the EE-ST problem, both Shared-
2 and Shared-3 are able to achieve better performance than any basic solver, and the
FDSS portfolio. Shared portfolios performance are boosted by the inclusion of ArgTools,
which is able to achieve the best performance on three of the considered benchmark set
structures, and CoQuiAas—that is the second best basic solver in terms of number of
AFs quickly analysed. Moreover, the EE-ST problems are usually quickly solved by the
basic solvers, therefore 2 or 3 solvers can be easily executed within the 600 CPU-time
seconds limit. When more than three solvers are combined by the Shared approach—
i.e. the CPU-time allocated to each basic solver is less than 200 seconds—performance
drops.

5.2. Hypothesis 4: Per-Instance Portfolios are more Efficient than Static Portfolios

When considering per-instance portfolios, Table 2 indicates that they are all able to out-
perfom the best basic solver on the considered testing frameworks. This comes as no
surprise, since per-instance approaches should be able to select the most promising—
ideally, the fastest—algorithm for solving the considered problem on the given AF. For
both EE-PR and EE-ST problems, the performances of Classify and 1-Regression are
very similar, but the M-Regression approach performance is always worse. Such results
indicate that: (i) the 50 features considered are informative for both EE-PR and EE-ST
problems, and allow to effectively select solvers; (ii) classification and regression pre-
dictive models have similar performance when used for selecting a single solver to run;
and (iii) the regression predictive model tends to underestimate the CPU-time needed by
algorithms for solving the considered problem on the given AF.

Table 3 shows the number of times each basic solver has been executed by either
the Classify or the M-Regression portfolio. 1-Regression executed solvers are not shown,



Table 4. Coverage (Cov.) and PAR10 of the systems considered in this study on the complete testing set, when
trained on a training set not containing AFs of that structure (leave-one-set-out scenario). Systems are ordered
according to results shown in Table 2. Best results in bold.

EE-PR

Barabasi-Albert Erdös-Rényi StableM Watts-Strogatz

System Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10

Classify 78.9 1321.4 88.6 745.0 74.4 1574.3 89.5 677.8
1-Regression 76.3 1479.0 63.0 2255.2 76.5 1453.9 83.0 1079.9
M-Regression 70.4 1828.4 67.3 2039.7 77.0 1434.7 79.6 1267.6
FDSS 69.1 1916.2 80.9 1245.5 79.1 1341.9 78.6 1380.0
Shared-2 73.2 1678.0 73.2 1678.0 74.2 1620.4 73.2 1678.0
Shared-3 69.4 1892.0 67.3 2007.9 69.5 1896.7 69.4 1892.0
Shared-4 65.7 2106.2 65.7 2101.1 65.7 2108.1 65.7 2103.9
Shared-5 63.3 2240.9 63.4 2235.8 63.3 2242.9 63.3 2242.9

EE-ST

Barabasi-Albert Erdös-Rényi StableM Watts-Strogatz

System Cov. PAR10 Cov. PAR10 Cov. PAR10 Cov. PAR10

1-Regression 88.6 756.9 92.6 508.7 98.6 149.9 81.6 1153.0
Classify 93.0 470.4 92.4 519.6 91.2 575.6 93.4 439.3
Shared-2 97.7 262.3 97.3 285.2 97.7 220.9 97.7 262.3
M-Regression 96.2 297.4 96.4 282.2 95.6 334.9 90.3 636.5
Shared-3 94.0 420.1 94.0 435.5 94.0 420.1 94.0 476.6
FDSS 89.4 677.4 87.1 829.7 89.4 677.4 88.7 714.7
Shared-4 85.9 878.2 86.0 887.5 86.0 873.8 86.8 833.8
Shared-5 86.3 867.4 86.3 870.8 86.3 862.3 84.3 973.4

because they are a subset of the M-regression selections. Table 3 shows some remark-
able differences in the algorithm selected by the classification and regression approaches,
and also those included in the static portfolios. For instance, Classify never selects
ArgSemSAT, while it is largely exploited by M-regression, and included in static port-
folios generated for solving EE-PR problems. This is because ArgSemSAT, and a few
other basic solvers, has rarely been the fastest: therefore the classification approach—
which only focuses on the best solver—ignores its performance. On the contrary, solvers
like ArgTools (EE-PR) and ASPARTIX-D (EE-ST) are usually the fastest, and are often
selected by both Classify and M-Regression approaches.

Finally, by looking at Table 2, it can be noted that the largest performance improve-
ment can be achieved when exploiting portfolio approaches for solving the problem of
enumerating preferred extensions of an AF: the use of portfolio-based techniques allows
to solve up to 10.6% more instances than the best basic solver, Cegartix. Such margin
is reduced to 2.9% when solving the EE-ST problem. This is due to the higher empiri-
cal complexity of the EE-PR problem, and to the higher complementarity between basic
solvers able to handle the EE-PR problem.



5.3. Post-Hoc Analysis: Generalisation of Performance

To assess the ability of our portfolios on testing instances that are dissimilar from in-
stances used for training we generated four different new training sets as follows: starting
by the original training set composed by 800 AFs, we removed all the frameworks corre-
sponding to one set at a time, and randomly oversampled frameworks from the remaining
three sets—in order to have again approximately 800 frameworks for training. We then
tested our portfolios on the complete testing set of 1,200 AFs, so that performance can
be compared with those of basic solvers (Table 2). This can be seen as a leave-one-out
scenario. The results of such generalisation analysis are shown in Table 4.

Unsurprisingly, static portfolios—particularly Shared-k—show the best generalisa-
tion performance: their behaviour does not change much with the new training sets. On
the other hand, per-instance approaches do not show good generalisation capabilities:
their performance varies significantly when the training set is not fully representative of
the testing instances. This is true for both EE-PR and EE-ST problems, despite the fact
that gaps are smaller in the EE-ST case, although it is true that also the performance of
basic solvers on EE-ST tends to be closer.

Remarkably, Classify (covering up to 89.7%, cf. Table 2) is very sensible to the ab-
sence of Barabasi-Albert (−10.8%, cf. Table 4) or StableM (−15.3%, cf. Table 4) frame-
works from the training set for EE-PR, while regression-based approaches show scarse
generalisation abilities when the Erdös-Rényi frameworks are removed from the training
set. On the contrary, Classify is very generalisable on the EE-ST set, and the 1-Regression
method is very sensitive when Watts-Strogatz AFs are removed. M-Regression is more
generalisable than 1-Regression when dealing with the EE-ST problem: this indicates
that when testing instances are dissimilar from training ones, the exploitation of more
than one solver can be fruitful.

6. Conclusion

We exploit the ICCMA-15 legacy by combining state-of-the-art solvers, able to handle
EE-PR and EE-ST problems, using—for the first time in this research area—portfolio-
based techniques. In particular, we tested static and per-instance portfolios, exploiting
the largest available set of argumentation features [6]. We remark this is the first compre-
hensive experimental analysis on the performance of different portfolio-based methods,
in the argumentation area.

The results of our extensive empirical analysis showed that: (i) the claim that
reduction-based solvers always outperform non reduction-based systems—one of the
takeaway message from ICCMA-15—is not always the case; (ii) the solvers at the state
of the art show a high level of complementarity (specially those able to deal with EE-PR
problems), thus they are suitable to be combined in portfolios; (iii) portfolio systems gen-
erally outperform basic solvers; (iv) if the training instances are representative of testing
AFs, the existing set of features is informative for selecting most suitable solvers; (v)
classification-based portfolios show good generalisation performance; (vi) static portfo-
lios are usually the approaches which are less sensitive to different training sets.

As part of future research, we are interested in further investigating the general-
isation capabilities of portfolios performance by considering significantly differently-



structured AFs, including complex frameworks generated by real-world scenarios. We
will also extend the portfolio methods considering SATZilla [21] like approaches, or
more sophisticated model-based techniques. Finally, we are interested in testing portfolio
methods also in other complex argumentation problems.
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