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Abstract. Hidden Vector Encryption (HVE) is a new kind of attribute-based en-
cryption in which a vector is hidden in the ciphertext or linked with the secret key.
In ESORICS 2014, Phuong et al. proposed an HVE scheme with constant-size ci-
phertext which is constructed in the prime order setting. In this paper, we show that
Phuong et al.’s scheme is not vector-hiding due to public parameters in their scheme
leak some information about vectors. Furthermore, an improved HVE scheme is
proposed in the prime order setting and its security is proven in the security model.
Comparison shows our scheme has more efficient in decryption than current other
HVE schemes.

Keywords. Hidden vector encryption, constant-size ciphertext, prime order setting,
bilinear group, security

1. Introduction

Hidden Vector Encryption (HVE) [1] is a new kind of attribute-based encryption [2,3] in
which the message is encrypted to a hidden vector while a user holds a secret key linked
with a vector. Wildcard can be used in either secret key or ciphertext, the former is called
key policy HVE and the latter is called ciphertext policy HVE [4]. When both vectors
match, the ciphertext can be decrypted. For example, in a ciphertext policy HVE scheme,
two secret keys linked with (1,2,3) and (1,2,5) respectively can decrypt a ciphertext
associated with (1,2,∗). Vector-hiding in HVE means the decryptor cannot know the
concrete target vector except his vector matches the target vector. HVE can be used to do
some operations on encrypted data such as comparison, range queries, conjunctions and
subset queries, so it is very favorable in many applications requiring privacy protection
such as cloud computing.

In ESORICS 2014, Phuong et al. [5] proposed two efficient ciphertext policy HVE
schemes. They used composite order bilinear groups to construct the first HVE scheme.
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Their scheme has constant-size ciphertext and is proven selective security in the standard
model. They then transformed the first scheme to get the second prime-order scheme.
However, their prime-order construction is not secure.

Our Contribution. In this paper, we give an attack on Phuong et al.’s prime or-
der HVE scheme (PYS-HVE in short) and show their scheme is not secure. We con-
struct a special ciphertext and prove that PYS-HVE scheme doesn’t have vector-hidden
property by testing the ciphertext. Furthermore, we construct a new HVE scheme on the
prime order bilinear groups. We also prove its selective security in the standard model.
Experiment shows our scheme has better performance than current HVE schemes.

Related Works. Boneh and Waters [1] first introduced the notion of HVE and they
gave a construction in composite order groups. Katz et al.’s study [6] found that inner-
product encryption implies HVE so we can naturally derive fully secure HVE schemes
from fully secure inner-product encryption schemes [7]. Hattori et al. [4] proposed the
first ciphertext policy HVE scheme which was based on the anonymous HIBE [8] and
the wildcarded IBE [9]. The ciphertext size in Hattori et al.’s CP-HVE scheme is linear
to vector length and Phuong et al. [5] proposed the first HVE scheme with constant-
size ciphertext. Liao et al. [10] presented a ciphertext policy HVE scheme supporting
multiuser keyword search. Lee [11] presented a conversion method which can trans-
form composite-order setting HVE schemes into prime-order setting schemes. Bartusek
et al. [12] proposed a new function-private predicate encryption scheme in the public
key setting which supports point functions, conjunctions, d-disjunctions with read-once
conjunctions and d-CNFs with a constant d. Recently, HVE is extended to ABE with
hidden policy. Murad et al. [13] proposed a new kind of CP-ABE with in which access
structures for AND or OR gates with wildcards are partially hidden. In fact, an access
structure using partially hidden AND-gates with wildcards equals to a hidden vector.

Organization. The rest of this paper is organized as follows. We provide some nec-
essary background knowledge in Section 2. We analyze the PYS-HVE scheme in Section
3 and propose our improved construction with security proof in Section 4 respectively.
Next a brief comparison is given in Section 5. Finally the paper is concluded with future
work in Section 6.

2. Preliminaries

Definition 2.1. Let p be a prime and G, GT be two multiplicative groups of order p. Let
g be a generator of G. e : G×G → GT is a bilinear map which satisfies the following
two properties:

(i) Bilinearity: ∀x,y ∈ Zp, e(gx,gy) = e(g,g)xy.
(ii) Non-degeneracy: e(g,g) �= 1.

We call G a bilinear group if the group operation in G and the bilinear map e :
G×G→GT can be efficiently computed.

Definition 2.2. Let g be a random generator of G. Let h and Z are chosen randomly from
G and GT respectively. Let −→g g,α,d be g1, · · · ,gd ,gd+2, · · · ,g2d ∈ G

2d−1 where gi = gα i

and α ∈ Z
∗
p is unknown.
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We define the advantage for an algorithm A to break the decision d-BDHE assump-
tion as

Pr[A (g,h,−→g g,α,d ,e(gd+1,h)) = 1]−Pr[A (g,h,−→g g,α,d ,Z) = 1] .

If no probabilistic polynomial-time algorithm has non-negligible advantage to break
the decision d-BDHE assumption, we say the decision d-BDHE assumption holds.

An HVE scheme consists of the following four algorithms: Setup algorithm for
system setup , Key Generation algorithm for secret key generation, Encrypt algorithm
for message encryption, and Decrypt algorithm for ciphertext decryption. The security
model used for our HVE is called selective security model with six stages: Init, Setup,
Query Phase 1, Challenge, Query Phase 2 and Guess. The adversary should submit
two challenging vectors at the Init stage and all queried identities in Query Phase 1, 2

cannot match these two challenging vectors.

3. Attack on PYS-HVE Scheme

We first review the public parameters and ciphertext of PYS-HVE scheme. Suppose the
maximum number of wildcards that are allowed in an encryption vector be N and the
vector length is L. The public parameters include L+1 random elements V,H1, · · · ,HL ∈
G, three random generators g, f ,w ∈G, a paring e : G×G→GT and Y = e(g,w).

Let
−→
v = (v1, · · · ,vL) ∈ ∑∗

L be a vector with τ ≤ N wildcards. To encrypt a message
M with

−→
v , the Encrypt algorithm chooses a random s ∈ Zp and sets

C0 = MY s,C1 = g
s
t ,C2 = f s,C3 =

L

∏
i=1,i/∈J

(Hvi
i V )

∏ j∈J (i− j)s
t (1)

where J = { j1, j2, · · · , jτ} is the set containing the indexes of wildcards in
→
v and t =

(−1)τ j1 j2 · · · jτ . The ciphertext is CT = (C0,C1,C2,C3,J).
In PYS-HVE scheme, the elements linked with vectors, i.e., V,H1, · · · ,HL ∈R G are

both used in encryption and decryption. This allows us to create elements similar to
secret key. These elements cannot be used to decrypt but can be used to test the tar-
get vector. In fact, given the public parameters and a ciphertext, we can easily check
whether a vector

→
z = (z1, · · · ,zL) is used to encrypt the message. We first construct

K =
L
∏

i=1,i/∈J
(Hzi

i V )∏ j∈J(i− j) and check whether the equation

e(C1,K) = e(C3,g) (2)

holds. If the equation holds, we can conclude the encryption vector is
→
z . Hence, the

vector-hiding property in PYS-HVE scheme is broken.
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4. Our Improved Scheme

4.1. Description

• Setup(1k,∑,L): Assume that at most N(N � L) wildcards are allowed in a vector
for encryption. Then the algorithm generates a paring e : G×G→GT , randomly
chooses L+ 1 elements V,H1, · · · ,HL ∈ G, two generators g,w ∈ G and four in-
tegers t1, t2, t3, t4 ∈ Zp. Then it sets U1 = gt1 , U2 = gt2 , U3 = gt3 , U4 = gt4 and
Y = e(g,w)t1t2 . The algorithm sets the public key PK = (PP,V,(H1, · · · ,HL),U1,
U2, U3, U4, Y ) and the master secret key MSK = (w, t1, t2, t3, t4) where PP =
{g, p,G,GT ,e}.

• Encrypt(PK,M,
→
v = (v1, ...,vL) ∈ ∑∗

L): Assume that
→
v = (v1, ...,vL) contains τ ≤

N wildcards and W = { j1, j2, · · · , jτ} is the set of the positions of wildcards in
→
v . The algorithm randomly chooses three integers s,s1,s2 ∈ Zp. It then computes

C0 = M ·Y s, C1 =
L
∏

i=1,i�∈W
(Hvi

i V )∏ j∈J(i− j)s,C2 =Us−s1
1 ,C3 =Us1

2 ,C4 =Us−s2
3 ,C5 =

Us2
4 . The ciphertext CT is set as (C0,C1,C2,C3,C4,C5,J).

• Key Generation(MSK,
→
z = (z1, · · · ,zL) ∈ ∑L): Given a vector

→
z = (z1, ...,zL)

for key generation, the algorithm randomly chooses r1,r2 ∈ Zp, then it computes
K1 = gr1t1t2+r2t3t4 ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K2,0 = wt2
L
∏
i=1

(Hzi
i V )r1t2

K2,1 =
L
∏
i=1

(Hzi
i V )ir1t2

· · ·
K2,N =

L
∏
i=1

(Hzi
i V )iN r1t2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K3,0 = wt1
L
∏
i=1

(Hzi
i V )r1t1

K3,1 =
L
∏
i=1

(Hzi
i V )ir1t1

· · ·
K3,N =

L
∏
i=1

(Hzi
i V )iN r1t1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K4,0 =
L
∏
i=1

(Hzi
i V )r2t4

K4,1 =
L
∏
i=1

(Hzi
i V )ir2t4

· · ·
K4,N =

L
∏
i=1

(Hzi
i V )iN r2t4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

K5,0 =
L
∏
i=1

(Hzi
i V )r2t3

K5,1 =
L
∏
i=1

(Hzi
i V )ir2t3

· · ·
K5,N =

L
∏
i=1

(Hzi
i V )iN r2t3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The corresponding key is SK = (K1,K2,t ,K3,t ,K4,t ,K5,t , t ∈ {0, · · · ,N}).
• Decrypt(CT,SK): Suppose that CT is encrypted to

→
v and SK is associated with

→
z respectively. If vi = zi for i ∈ {1, · · · ,L} \ J, the decryption algorithm decrypts
the ciphertext as follows. It first applies the Viete formulas on J = { j1, · · · , jτ} and
computes aτ−k = (−1)k ∑

i≤i1<i2<...<ik≤τ
ji1 ji2 · · · jik , for 0≤ k ≤ τ . Next it computes

K2 =
τ

∏
t=0

Kat
2,t , K3 =

τ

∏
t=0

Kat
3,t , K4 =

τ

∏
t=0

Kat
4,t , K5 =

τ

∏
t=0

Kat
5,t ,
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and then outputs

M =

(
e(C1,K1)

e(C2,K2)e(C3,K3)e(C4,K4)e(C5,K5)

)a−1
0

·C0 (3)

4.2. Security

Theorem 4.1. Assume the decision L-BDHE assumption hold in G, then our improved
scheme is secure.

We prove Theorem 4.1 through a series of experiments similar to that of [14]. We
define the following games based on the security model with different challenge cipher-
texts:

• G1: The challenge ciphertext is normal, i.e., CT = (C0,C1,C2,C3,C4,C5).
• G2: This game is similar to G1 but C0 is replaced with a random element Z in GT ,

i.e., CT = (Z,C1,C2,C3,C4,C5)
• G3: This game is similar to G2 but C2 is replaced with a random element Z1 in G,

i.e., CT = (Z,C1,R1,C3,C4,C5)
• G4: This game is similar to G3 but C4 is replaced with a random element Z2 in G,

i.e., CT = (Z,C1,Z1,C3,Z2,C5)

In G4, the elements of the challenge ciphertext are all random, so it will leak no informa-
tion about the message or the vector. Therefore, if these four games are indistinguishable,
the security of our HVE scheme is proven.

Lemma 4.1. Under the decision L-BDHE assumption, G1 and G2 are indistinguishable.

Proof. Suppose that the advantage of the adversary A for distinguishing between G1
and G2 is ε which is non-negligible. Then the decision L-BDHE problem can solved
by an algorithm B based on A . Given an L-BDHE challenge (g,−→y g,α,L = (g1,g2, · · · ,
gL, gL+2, · · · , g2L),h,Z), where gi = gα i

and α ∈ Z
∗
p is unknown. B should determine

whether Z = e(gL+1,h) or not.
Let W (−→v ) be {1 ≤ i ≤ L | vi = ∗} and W (−→v ) be {1 ≤ i ≤ L | vi �= ∗}, and W (−→v |kj) be
{i ∈W (−→v | j ≤ i ≤ k}. B executes with A as follows:

• Init: A sends two challenge vectors
−→
v∗0 ∈ ∑∗

L and
−→
v∗1 ∈ ∑∗

L where W (
−→
v∗0 ) =W (

−→
v∗1 ).

B randomly chooses μ ∈ {0,1}. Let
−→
v∗μ be (

−→
v∗1 ,

−→
v∗2 , . . . ,

−→
v∗L) for simplicity.

• Setup: B randomly chooses integers γ,y, t1, t2, t3, t4,u1, . . . ,uL ∈ Zp, then it sets

Y = e(gα ,gαL
gγ)t1t2 ,U1 = gt1 ,U2 = gt2 ,U3 = gt3 ,U4 = gt4 ,

V = gy ∏
i∈W (

−→
v∗μ )

gαL+1−iv∗μ,i ,{Hi = gui−αL+1−i}
i∈W (

−→
v∗μ )

,{Hi = gui}
i∈W (

−→
v∗μ )

The element w in public parameters is gαL+1+αγ . Since gαL+1
is unknown to B, w

cannot computed by B directly.
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• Query Phase 1: A sends a vector −→σu = (σ1,σ2, . . . ,σu) without matching the
challenge vectors for key query. Let k ∈ W (

−→
v∗μ) which is the smallest integer for

σk �= v∗μ,k. B generates the corresponding key as follows. We start from K2,i.

K2,0 = wt2(
L

∏
i=1

Hσi
i V )r1t2

= (gαL+1+αγ)t2( ∏
W (

−→
v∗μ )|k1

gui−αL+1−i ∏
W (

−→
v∗μ )|k1

(gui))σi ·g
y+ ∑

W
−−→
(v∗μ )

αL+1−iv∗μ,i
)r1t2

def
= (gαL+1+αγ)t2(gX )r1t2

where X = ∑W (
−→
v∗μ )

αL+1−iv∗μ,i +y+∑W (
−→
v∗μ )|k1

(ui −αL+1−i)σi +∑W (
−→
v∗μ )|k1

uiσi Since

∑W (
−→
v∗μ )|k1

(ui −αL+1−i)σi +∑W (
−→
v∗μ )|k1

uiσi = ∑W (
−→
v∗μ )|k1

(−αL+1−iσi) +∑k
i=1 uiσi and

recall σi = v∗μ,i for i ∈W (
−→
v∗μ)|k−1

1 and σk �= v∗μ,k. Hence, we have

X = αL+1−kΔk +∑W (
−→
v∗μ )|Lk+1

αL+1−iv∗μ,i +∑k
i=1 xiσi + y

where δk = v∗μ,k −σk. Then we choose r̂1 randomly in Zp, and implicitly set r1 =

−αk

δk
+ r̂1. K2,0 can be represented as

⎡
⎢⎢⎢⎣gαL+1+αγ ·g−αL+1 ·g

∑
i∈W (v∗μ )|Lk+1

−αL+1−i+kv∗μ,i
Δk

·gak(−∑k
i=1 xiσi+y

Δk
) · (V

K

∏
i=1

hσi
i )r̂1

⎤
⎥⎥⎥⎦

t2

=

⎡
⎢⎢⎢⎣gαγ ·g

∑
i∈W (v∗μ )|Lk+1

−αL+1−i+kv∗μ,i
Δk

·gak(−∑k
i=1 xiσi+y

Δk
) · (V

K

∏
i=1

hσi
i )r̂1

⎤
⎥⎥⎥⎦

t2

For k̂ = 1 to N, we compute K2,k̂ as
⎡
⎣g

y+ ∑
W (

−→
v∗μ )

αL+1−iv∗μ,i
· ( ∏

W (
−→
v∗μ )|k−1

1

gui−αL+1−i · ∏
W (v∗μ )|k−1

1

(gui)σi)
−αkik̂

Δk
+r̂1ik̂

⎤
⎦

t2

.

Note that K3,i = K
t1
t2

2,i , so we can compute K3,i easily from K2,i. Next we choose

random r2 ∈ Zp and compute K4,k =
L
∏
i=1

(Hzi
i V )ikr2t4 and K5,k =

L
∏
i=1

(Hzi
i V )ikr2t3 for

k = 0, · · · ,N since V,H0, · · · ,HL are known.
At last we can simulate the first element in the key:

K1 = gr1t1t2+r2t3t4 = (gαk)−t1t2/Δk ·gr̂1t1t2+r2t3t4
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• Challenge: Two message M0,M1 are submitted to B by A . B randomly chooses
s1,s2 ∈ Zp and computes:

C0 = Mμ ·Zt1t2 · e(gα ,h)t1t2γ ,C1 = (h
y+

L
∑

i=1
uiv∗μ,i

)

τ
∏

k=1
(i− jk)

,
C2 = ht1Us1

1 ,C3 =Us1
2 ,C4 = ht3U−s2

3 ,C5 =Us2
4 .

Here we implicitly set gs = h. If Z = e(g,h)αL+1
, it is a valid ciphertext encrypted

to Mb. Otherwise, if T is a random element of GT , the challenge ciphertext is an
encryption to a random message.

• Query Phase 2: Query Phase 1 is repeated.
• Guess: A outputs μ ′ ∈ {0,1}. B outputs 1 when μ ′ = μ then, otherwise it outputs

0.

If μ ′ = μ , then the simulation equals to the real game. Therefore, the probability of A to
guess μ correctly is 1

2 +ε . If B outputs 1, then Z is random in GT , then the probability of
A to guess b correctly is 1

2 . Therefore, the advantage of B to solve the decision L-BDHE
assumption is exactly ε .

Lemma 4.2. Under the decision linear assumption, G2, G3 and G4 are indistinguishable.

The proof of Lemma 4.2 will be provided in the full version of this paper due to
space limitation.
Proof of Theorem 4.1. It is straightforward from Lemma 4.1 and Lemma 4.2.

5. Comparison

We give a brief comparison for efficiency in the following Table 1. We compare our
HVE scheme with some current ciphertext policy HVE schemes, including Hattori et
al.’s scheme [4], Liao et al.’s scheme [10], Phuong et al.’s scheme [5]2 and Murad et al.’s
scheme(restricted to AND-gate policy). All the schemes are implemented in Intel Core
i5-8250U 1.60GHz, 8G RAM and Ubuntu 16.04. We consider the times of Setup, Key
Generation, Encryption and Decryption in these schemes. We can see that decryption in
our scheme is much quicker than other schemes. The weakness in our scheme(also in
Phuong et al.’s scheme) is that we need a long time to generate a key. Since many appli-
cations need instant decryption, our scheme may have great advantage in those instant
applications.

6. Conclusion

Hidden Vector Encryption can hide the information of vector used to encrypt the mes-
sage. Phuong et al. proposed two HVE schemes with constant ciphertext size in com-
posite order and prime order groups respectively. We give an analysis on Phuong et al.’s

2We only compare Phuong et al.’s first scheme in composite order groups because the second scheme is not
secure as we show in Section 3.
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Table 1. Efficiency Comparison (ms)

Scheme Group Setup Key Generation Encryption Decryption

Hattori et al.[2011] [4] Composite 1,033 17,710 13,405 332,629
Phuong et al.[2014] [5] Composite 622 499,032 805 22,669
Liao et al.[2015] [10] Prime 307 2,415 462 13,586
Murad et al.[2019] [13] Prime 243 1,635 305 1,721
Our scheme Prime 151 50,387 93 947

Note: we assume that the length of a vector is 1000 and the number of wildcard is 100.

prime order HVE scheme and show their scheme doesn’t satisfy the vector-hiding prop-
erty. Furthermore, we propose an improved construction which also has constant cipher-
text size. The security of proposed scheme is proven under the L-BDHE assumption. Fu-
ture work may be finding more efficient or secure HVE schemes under simple assump-
tions.
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