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Abstract. The Collaborative Research Center for Everyday Activ-
ity Science & Engineering (CRC EASE) aims to enable robots to
perform environmental interaction tasks with close to human capac-
ity. It therefore employs a shared ontology to model the activity of
both kinds of agents, empowering robots to learn from human expe-
riences. To properly describe these human experiences, the ontology
will strongly benefit from incorporating characteristics of neuronal
information processing which are not accessible from a behavioral
perspective alone. We, therefore, propose the analysis of human neu-
roimaging data for evaluation and validation of concepts and events
defined in the ontology model underlying most of the CRC projects.
In an exploratory analysis, we employed an Independent Component
Analysis (ICA) on functional Magnetic Resonance Imaging (fMRI)
data from participants who were presented with the same complex
video stimuli of activities as robotic and human agents in different
environments and contexts. We then correlated the activity patterns
of brain networks represented by derived components with timings
of annotated event categories as defined by the ontology model. The
present results demonstrate a subset of common networks with sta-
ble correlations and specificity towards particular event classes and
groups, associated with environmental and contextual factors. These
neuronal characteristics will open up avenues for adapting the ontol-
ogy model to be more consistent with human information processing.

1 Introduction

The development of autonomous robotic agents by the Collabora-
tive Research Center for Everyday Activity Science & Engineering
(CRC EASE) is based on the principles of cognition enabled robotic
control, employing systems for self-reflected reasoning and plan-
ning [8, 7]. Subsystems of the project’s cognitive architecture thereby
interact with a central knowledge base which is populated not only
by the robots’ own experiences but also by recorded environmental
interactions of humans in the real-word as well as virtual reality con-
texts [9, 7]. The goal of this effort is to build a knowledge base from
experience – whether simulated, observed, or self-performed.

Data in the knowledge base are stored as Narrative-Enabled
Episodic Memories (NEEMs) which are subdivided into experience
and narrative. The NEEM narrative provides a symbolic description
of a NEEM in terms of its semantic nature, e.g., the action of picking
up a cup, while the NEEM experience contributes the corresponding
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Figure 1. Correlations between neuronal components and event segmenta-
tion are used to challenge definitions in an existing ontology.

multimodal sub-symbolic data of the acting agent – human or robot
– in the form of, amongst others, audio- and video-recording, mo-
tion vectors, captured peripheral physiological parameters or brain
activity derived signals. Through this linkage of sub-symbolic and
symbolic domains, the robot will be enabled to query task specific
experiences, allowing it to adjust the way how an abstract task is ex-
ecuted based on previous experiences of successful executions.

If interoperability between very different systems and/or knowl-
edge transfer between different expert communities is needed, then
ontologies are a useful tool towards that goal. An ontology is a col-
lection of axioms in a formal, machine-readable, language which
defines terms and makes explicit a conceptualization shared within
a community of people. In the case of NEEM narratives, it is the
Socio-physical Model of Activities (SOMA) ontology [10] which de-
fines the semantic categories which constitute everyday activities and
the relationships between entities participating in such activities. As
such, SOMA models knowledge about activities both from a robotics
perspective, but also aims to model such knowledge as it would be
used by humans to organize their own behavior.
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It is thereby crucial that SOMA, as the basis for the classification
of both human and robot behavior and perception, correctly repre-
sents and interfaces the experience of both. For the case of robotic
agents, this has already been demonstrated [30]. On the human side,
a correct representation is arguably ensured by a learned cognitive
model that represents the rules for segmentation of everyday behav-
ior into distinctive categories. There is a correlation with the under-
lying experience stored in dynamically organized networks of brain
areas, due to the human ability for self-reflection. However, the pro-
cess of rule building, itself based on complex brain activity, might
introduce different layers of abstraction that obscure aspects of the
neuronal activity underlying our experience of everyday activities. It
would be beneficial to access the neuronal level to ascertain whether
SOMA reflects the underlying processing of these events.

Given the prerequisite as correct that SOMA is considered valid
for classifying human experience on a behavioral as well as neuronal
level, further analysis directed towards neuronal preferences for cer-
tain event classes or levels and a subsequent integration of these neu-
ronal characteristics into the SOMA ontology would be a direct proof
of the robot cognitive architecture’s being inspired by basic princi-
ples of human information processing. We thus decided to investigate
the SOMA ontology on a neuronal level via functional Magnetic Res-
onance Imaging (fMRI) to capture brain activity of participants who
experienced everyday activities as covered by the SOMA ontology.
Since our participants were required to remain in a stationary posi-
tion inside the MR-scanner, data collection made use of the human
brain’s ability to simulate environmental interactions.

This procedure refers to the basic assumption that brain activ-
ity patterns in the absence of external stimuli through motor im-
agery [31, 28], follow similar psycho-physical rules as realized dur-
ing action execution [4, 17] and lead to comparable patterns of brain
activation in perceptual [42], as well as motor-related brain net-
works [18, 44, 48]. If actions are not only imagined but observed,
the human equivalent of the mirror neuron system is hypothesized
to be recruited as an additional system for mapping observed actions
into the subject’s own motor representation [43]. Both motor imagery
and action observation are thought to arise from a complex neuronal
network for learning, maintenance, and refinement of motor actions
through a synergy of execution and simulation [22, 29]. This network
allows for a close approximation of neuronal correlates of real word-
interaction when measuring fMRI participants, especially through
use of immersive stimuli with bio-mechanical action representations
that have a high degree of ecological validity and correspondence to
the observing participants and their motor capabilities [47, 49].

Despite lack of physical engagement in the presented actions dur-
ing fMRI scanning, it was therefore hypothesized that, given an ap-
propriate level of immersion, brain activity patterns would resemble
those present in the real-world experience and therefore allow for a
neuronal validation of SOMA ontology through correlation with the
spatio-temporal characteristics of its ontological classes as depicted
in figure 1. This would contribute to not only SOMA development
but ontology development in general by evaluation of an ontology’s
neuronal validity and potential detection of preferential processing
of event categories, enabling new insights for ontology design.

2 Related Work

The work presented here relates to the field of ontology and knowl-
edge engineering as well as to the field of neuroimaging studies dur-
ing naturalistic viewing. In the following, we will relate our work to
the corpus of existing literature in these two fields.

2.1 Knowledge Engineering and Ontology

Information retrieval/organization have motivated ontology creation
for medicine and bioinformatics. Examples are the Neuroscience In-
formation Framework [26] and the ontologies used for data integra-
tion in the Human Brain Project [11]. A survey of ontologies for
the study of Alzheimer’s is provided in [20]. Mercier et al. present
steps towards an ontological model, informed by cognitive research,
of how a human learns to solve a computational problem [40]; their
model is also able to predict learner behavior to some degree.

Ontologies have also been applied to fields such as robotics. As an
example, the SOMA ontology [10] defines concepts for autonomous
robots to use while performing everyday activities in the home. A
broad survey on robotics ontologies is provided by [41].

Some works [37, 2, 6] make a loose distinction between top-
down, knowledge-driven and bottom up, data-driven, methods to un-
cover scientifically-relevant entities. Bottom-up approaches are less
affected by expert preconceptions and can recover robust patterns [6],
but may confuse dimensionality reduction artifacts with causal mech-
anisms [37]. Ontologies are developed by a mix of empirical and
conceptual issues related to what kinds of entities and questions may
be relevant. A summary of this debate can be found in [2] and [37].

Our work here is itself a hybrid top-down/bottom-up approach,
in that we start from an ontology developed top-down for robotic
actions but compare with human neurological data to ascertain what
distinctions between actions humans find relevant.

2.2 Brain Patterns of Naturalistic Viewing

Functional brain imaging has traditionally favoured simple, static
stimuli, but the use of complex, dynamic ones may be crucial for
analysing the brain in its most natural state (see: [14, 33, 46]). Since
the SOMA ontology is meant to describe the dynamic processes car-
ried out by human- and robot agents, neuronal correlates would have
to stem from such kinds of stimuli in order to assess its neuronal
validity.

Presentation of complex dynamic stimuli during fMRI measure-
ments was shown to be feasible via video with a high degree of inter-
participant spatio-temporal correlation of brain activity [21, 12],
leading to insights into the neuronal correlates of event and event
boundary perception (e.g., [52]). It was further shown that machine
learning models could accurately predict the perception of semantic
categories from data recorded during video presentation [25].

For initial dimensionality reduction of fMRI recordings, data
driven models such as Independent Component Analysis (ICA) are
used for clustering brain activity into distinct networks through
blind source separation [38]. For fMRI data recorded under natu-
ral viewing conditions, it was used to subdivide whole-brain activ-
ity into spatio-temporal components with characteristic activity time-
courses. The association of network activity underlying these com-
ponents with presented stimuli was analyzed through inter-subject
correlation of time-courses, resulting in differentiation of relevant
components from non-stimulus related activity and artifacts [5].

A recording and analysis of neuronal dynamics of everyday activi-
ties, which supported the possibility of detecting event dependent al-
location of brain activity via General Linear Model (GLM) and ICA
in the scope of the present research framework was carried out by
Ahrens2021 [1]. The study’s ICA analysis thereby directly correlated
component time-courses with semantically annotated events. Results
indicated a set of components common to participants whose activ-
ity exhibited such correlations with an additional inter-component
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preference depending on the broad classification of the event. These
results were however too vague to be used to study human under-
standing of events.

An updated ICA analysis based on the same data set was thus car-
ried out for the scope of this paper that followed a more stringent
ruleset, including multiple comparison correction and a strict focus
on stable correlations that were shared amongst participants in order
to achieve a more focused set of results.

3 fMRI study

3.1 Experimental Design & Annotation

time

lvl 1

lvl 2

lvl 3

turn-free walk-free reach-free grasp-free lift

navigate-fetch pick

fetch

(a) motions and actions related to fetching of objects

time

lvl 1

lvl 2

lvl 3

turn-carry walk-carry lower release-free retract-free

navigate-deliver place

deliver

(b) motions and actions related object delivery

Figure 2. Exemplary visualization of events on annotation levels 1-3.

Stimulus material consisted of ten 1st-person videos of 29 – 105 s
duration, recorded via a head mounted camera. As demonstrated in
the top rows of figure 2a & 2b, the videos depicted table setting activ-
ities in the Cognitive Systems Lab (CSL) & the Institute for Artificial
Intelligence (IAI)) of the EASE CRC at the University of Bremen,
integrating the main venues for robot- (IAI) and human- (CSL) ac-
tivity research into the analysis and representing the project’s larger
focus on table-setting activities.

The videos covered the fetching of objects from a source area and
their subsequent deliverance to a target area for placement in table-
setting scenarios. Each scenario was split into a video pair with one
part showing the setting of dishes & cutlery and the other part deal-
ing with setting of food & drink items, resulting in four video classes
(IAI-dishes, IAI-food, CSL-dishes, CSL-food). Three scenarios were
recorded in the CSL and two in the IAI. Both venues differed in fac-
tors such as environmental complexity, with the IAI featuring a real-
istic kitchen environment versus the sparser environment of the CSL,
consisting of two tables acting as source and target areas. With the
additional split into dish- and food-videos, this allowed for the anal-
ysis of contextual effects on measured brain activity and resulting
changes in correlation to ontology classes.

Interactions were carried out in a realistic manner, including
single- and two-handed movements, while ensuring that all actions

remained traceable and recognizable for the viewer. Videos were
embedded into an experimental design consisting of two sequences
(A & B) of presented table-setting videos and interspersed resting
periods. Participants were instructed to watch the table-setting pre-
sentations attentively and imagine being the acting protagonist. Both
sequences covered ten 1st-person videos, albeit in a switched order
with respect to presentation of food & drink and dishes & cutlery
parts. Stimuli were presented in a counter-balanced order: half of
the study’s participants were first presented with sequence A then
sequence B, the other half in a reversed order. At the end of a mea-
surement, every participant thus was presented each video twice.

Videos were annotated with EASELAN [39], a modification of the
ELAN [36] software by the Max Planck Institute for Psycholinguis-
tics. The process was carried out according to a predefined subset of
SOMA events for human activity description developed in collabo-
ration between the human activity and ontology subgroups of EASE
CRC. The subset consisted of event categories, nested into annota-
tion levels of increasing length and complexity. Examples of this are
depicted in figure 2.
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Figure 3. Atomic motion-level annotation scheme.

The lowest annotation level (level 1) consisted of the simplest
events in 1st-person videos of everyday activities that are still distin-
guishable using (combinations of) SOMA motion concepts. These
atomic motions are listed in figure 3. They were grouped as ei-
ther arm/hand motions related to object interaction or motions re-
lated to the body’s navigation in space. A further distinction was
made based on whether an object was held while a motion was per-
formed. This was marked by ’carry’ and ’free’. For the motions of
grasp and release, it describes whether additional objects were held
while performing the respective motion, i.e., grasp-carry indicated
that one or more objects were already held while an additional one
was grabbed, release-carry indicated that after a release of one object,
one or more remained in hand. Other distinctions between motions
made by SOMA relate to details of a motion. For example, while
’reach’ and ’push’ involved similar movements of the hand relative
to the body, they involved different force profiles, different contacts,
and different states of control over a manipulated object.

The level above atomic motions was the action level (level 2). Ac-
tions are performed to reach certain goals and are comprised of a
set of motions. For the video annotation we used the actions shown
in figure 4. Five action categories were derived from arm/hand mo-
tions that covered picking and placing of objects as well as opening
and closing of doors and drawers and switching an object between
hands. For navigation, we covered two actions. ’Navigate to fetch’
represented the navigation motions, usually a rotation followed by
a translation, needed to reach the source area, whereas ’navigate to
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Figure 4. Action-level annotation scheme, including constituting motions.

deliver’ covered the respective motions for arriving at the target area.
The level above the action level was the situation level (level 3).

For our annotation it consisted of two large-grained time-frames of
’fetch’ and ’deliver’. ’Fetch’ covered all navigation and object inter-
action motions that lead to the fetching of item from a source area.
During ’deliver’, objects were transported to the target area and set
down. Examples are shown in the bottom rows of figure 2a & 2b.

Additionally, we included an exploratory group level (level 4) by
grouping the atomic motions based on their affiliation to overlapping
classes and sub-classes. In most general terms, we grouped motions
based on their affiliation to either arm/hand based object interaction
motions listed in figure 3a and navigation motions, listed in figure 3b.
Within those groups, we subdivided based on ’object presence’, de-
scribing whether an object was present during motion. For object
interaction, we further introduced the categories of ’relation change’,
describing motions that resulted in change of the spatial relation be-
tween hand and body as well as ’contact change’, describing motions
that either established or broke a contact between hand and object.
For navigation motions, we further introduced the categories ’rota-
tion’, describing motions in which the body/view is rotated either
clock- or anticlockwise and ’translation’, describing a forward move-
ment of the body/view in space. Groups were built out of all class
affiliations except for navigation motions. Here, no grouping based
on object presence was performed since this category was covered by
the actions (level 2) of ’navigate to fetch’ and ’navigate to deliver’.

Overall, this resulted in a maximum of 16 motion-, 7 action-, 2
situation- and 8 group-categories per video, leading to an overall
maximum number of 33 event categories.

3.2 Participants & Data Acquisition

Thirty participants (21 identifying as female) with a mean age of 23.3
years (SD = 4.54 years) were recruited from the campus of the Uni-
versity of Bremen. All subjects were right-handed, healthy by own
accord, and naïve to the experiment before arriving at the laboratory.
Prior to the scan session, participants were given a brief tutorial, in-
cluding presentation of two short videos similar to those shown dur-
ing the experiment. All stimuli were shown through a mirror system
attached to the head coil. Videos were displayed in a rectangle over
a black background. Imaging data were acquired with a Siemens
3 Tesla MAGNETOM Skyra full body scanner. FMRI data were

recorded via T2*-weighted multi-band EPI with acceleration factor
= 3, TR = 1.1 s, TE = 30 ms, matrix size = 64x64x45 voxels and
voxel size = 3x3x3 mm. After completion of the functional record-
ing, a T1-weighted structural scan with matrix size = 255x265x265
voxels and voxel size = 1x1x1 mm was performed.

3.3 Data Processing & Analysis

FMRI data were taken from original recordings made for
Ahrens2021 [1] which were preprocessed in the Statistical Paramet-
ric Mapping toolbox V12 [15] in MATLAB V2018b [27], via subse-
quent slice-time correction, realignment, coregistration and normal-
ization to standard brain template. Data sets were spatially smoothed
with an 8 mm FWHM Gaussian kernel. For each participant, data
were separated into blocks temporally corresponding to the presented
video- and resting trials via a script taking the Hemodynamic Re-
sponse Function (HRF) into account. For partition of participants’
brain activity into spatially independent sources, a spatial ICA was
performed on a group level with the Group ICA of fMRI MATLAB
Toolbox V4.0c [16] over all participants’ blocks through an infomax
algorithm with an automatic estimation of components numbers. An
ICASSO analysis was employed to ascertain the stability of calcu-
lated components over repeated calculations [23]. This resulted in
classification of brain activity into 15 components common to all
participants over all video- and resting trials.

SOMA association of brain activity in component maps was calcu-
lated trough Spearman rank correlation between the subject-specific
component activity time-course during each video trial and the re-
spective HRF-convolved stimulus timings of the presented sequences
of events of a respective category in levels 1-4. Deviating from
Ahrens2021 [1], correlation coefficients had to pass a statistical
threshold of p ≤ 0.05, with a Holm-Bonferroni correction [24] for
multiple comparisons. The remaining significant correlations further
had to proof stable over subsequent presentations of a respective
video for each participant. Finally, each stable correlation needed to
be found in two or more participants to contribute to the resulting
data-set. Components that exhibited such stable and shared correla-
tions were listed and analysed based on their spatial and temporal
characteristics.

4 Results

4.1 Grading of SOMA Association

In nine of fifteen components, at least one out of thirty participants
exhibited significant and stable correlations between brain activity
within the represented network and at least one annotated event cat-
egory, as shown in figure 5a. While for components 3, 10, and 11,
only one participant was found, two were found in component 13,
three in component 6 and four in component 9. The highest numbers
of participants were found in component 4 with 14 participants, com-
ponent 1 with 19 participants and component 2 with 20 participants.
The number of event categories with significant and stable correla-
tions for each component is depicted in figure 5b, split into categories
exclusive to a particular participant and categories shared between at
least two participants. Out of the nine components, only four exhib-
ited shared event categories. In component 6, one such category was
found, while two were present in component 4. The highest number
of categories were present in component 2 with ten categories and
component 1 with eleven categories.
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Figure 5. SOMA association grading of resulting ICA components.

4.2 Spatial Brain Activation Maps of Components
with shared & stable SOMA Association

Brain activity patterns associated with component 1 (fig. 6a) were
primarily found in the temporal- and occipital lobes, with largest acti-
vation in the lateral occipital cortex and extending into the medioven-
tral occipital cortex. In the temporal lobe, the component encom-
passed the fusiform gyrus. Smaller clusters were also found in the
inferior parietal lobule as well as the cerebellum.

Activity associated with component 2 (fig. 6b) occurred in the
parietal lobe with clusters the superior- and inferior parietal lobule,
the precuneus and postcentral gyrus. It extended into parts of the lat-
eral occipital cortex, the middle temporal gyrus and inferior temporal
gyrus. In the frontal lobe, small clusters were situated in the superior-
and middle frontal gyrus, precentral gyrus, and paracentral lobule.

The largest activity cluster for component 4 (fig. 6c) was found
spanning areas of the medioventral occipital cortex with smaller clus-
ters in the lateral occipital cortex. It expanded into the superior pari-
etal lobule and the precuneus in the parietal lobe, and the fusiform
gyrus and parahippocampal gyrus in the temporal lobe. In the limbic
lobe, a small cluster was found in cingulate gyrus.

Activity in component 6 (fig. 6d) was located in the postcentral
gyrus of the parietal lobes as well as the superior temporal gyri of
the temporal lobe. In the frontal lobe, the component comprised the
paracentral lobule and precentral- as well as superior frontal gyri.

4.3 Intra-Component Correlations

The number of shared significant stable correlations for all
SOMA associated components is depicted in figure 7 via bar graphs
for all four video classes. Figure 7a depicts shared stable correlations

(a) component 1 (b) component 2

(c) component 4 (d) component 6

Figure 6. Spatial maps of resulting ICA components that exhibited shared
and stable correlations with events of the ontology.

for component 1 ranging over all annotation levels. On level 1, the
ICA component correlated with four motion categories (33 correla-
tions in total). Its highest number is for ’reach-free’ (14 correlations,
9 CSL-dishes, 5 IAI-dishes), followed by ’grasp-free’ (12 correla-
tions, 5 CSL-dishes, 3 IAI-food, 2 IAI-dishes, 2 CSL-food), ’lift’ (4
correlations in IAI-food) and ’reach-carry’ (3 correlations in CSL-
food). On level 2, it correlated with the action category of ’pick’
(8 correlations, 4 CSL-food, 4 IAI-food). On level 3, it correlated
with the situation category of ’fetch’ (15 correlations, 11 IAI-dishes,
4 CSL-dishes). On level 4, it correlated with five exploratory groups
(16 correlations in total). Highest correlation is with ’relation change’
(6 correlations in CSL-food), followed by ’all arm movement’ (4 cor-
relations in CSL-food) and the categories of ’no object present’ (2
correlations in CSL-food), ’contact change’ (2 correlations in CSL-
food) and ’object present’ (2 correlations in IAI-food).

Significant and shared stable correlations for component 2 as de-
picted in figure 7b also covered four annotation levels. On level 1,
the component correlated with four motion categories (13 correla-
tions in total). Its highest number was found for ’release-carry’ (6
correlations in CSL-dishes), followed by ’lower’ (3 correlations in
CSL-dishes) and ’retract-carry’ (2 correlations in IAI-dishes) as well
as ’grasp-free’ (2 correlations in CSL-food). On level 2, it correlated
with the action category of place (3 correlations in CSL dishes). On
level 3, it correlated with the situation category of deliver (5 correla-
tions in CSL-dishes) On level 4, it correlated with four exploratory
groups (56 correlations in total). Its highest number found for ’object
present’ (26 correlations, 19 CSL-dishes, 5 CSL-food, 2 IAI-dishes),
followed by ’relation change’ (15 correlations, 12 CSL-dishes, 3
CSL-food), ’all arm movement’ (8 correlations in CSL-dishes) and
’contact change’ (7 correlations, 4 CSL-food, 3 CSL-dishes).

Further significant and stable correlations were found for compo-
nent 4 in two exploratory groups on annotation level 4 (fig 7d; 19
correlations in total). Both were found for navigation with the high-
est number for ’navigate rotation’ (16 correlations in CSL-dishes),
followed by ’navigate all’ (3 correlations in CSL-dishes).

In addition, correlations for component 6 as depicted in figure 7d
were found on annotation level 4 for the exploratory group ’contact
change’ (2 correlations in IAI-dishes).

5 Discussion

Out of the four resulting SOMA associated components, brain net-
works represented by components 1 and 2 had shared and signifi-
cant stable correlations with ontology events for most participants
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Figure 7. Number of shared and stable correlations for neuronal networks
represented by resulting ICA components.

and event classes. For both, associated event classes on annotation
levels 1, 2, and 4 were solely based on arm/hand-based object in-
teraction (obligatory navigation involvement in level 3). Out of the
minor components 4 and 6, component 4 had a focus on the naviga-
tion event of body rotation, while the neuronal network represented
by component 6 showed only a minor number of correlations with
motions facilitating hand-object contact changes of annotation level
4. These data corroborated the findings of an earlier pilot study by
Ahrens2021 [1] for most of the depicted brain networks.

On the basis of significant shared stable correlations and environ-
mental and contextual factors, the current results allow for a distinc-
tion of two main networks within four domains, with three of these
domains rooted in their characteristics of ontological association.

The first domain, task sensitivity, consists of the functional sepa-
ration between the concepts of fetch and deliver on event levels 1-
3. The network of component 1 thereby representing the concept of
fetch and ranging from the situation level (lvl 3) down to its most
prominent action (lvl 2) and most constituting motions (lvl 1), while
the same holds true in case of component 2 for the concept of deliver.

The second domain, event structure bias, consists of the contrast-
ing bias of both networks towards either single events and situations

(lvls 1-3) connected to fetching of objects as found in component
1, or a more pronounced activity during a generalized set of event
classes (level 4) as found in component 2.

A third domain, context sensitivity, covers the distinction of find-
ings based on contextual factors. For all components, there was a sta-
tistical trend towards correlation to events presented in the context of
setting dishes and cutlery as opposed to food and drink items, except
for level 4 event grouping of component 1. Out of the two main com-
ponents, brain activity related to component 2 showed a preference
for events recorded in the simpler, less everyday-like environment of
the CSL. This was at least in part influenced by the 3:2 ratio of videos
recorded in this lab, but further analysis into both factors could prove
for a fruitful discussion on this topic.

Underlying all other, a fourth domain of functional characteris-
tics separated networks based on brain activity patterns. Brain ac-
tivity related to component 1 could be primarily classified into vi-
sual perception and object recognition [51, 34], while activation pat-
terns of component 2 covered brain areas that are associated with,
e.g., (visuo)spatial attention [3], event boundary perception [52] as
well as action planning and execution, including areas hypothesized
to house mirror neurons [13, 35]. Additional networks were repre-
sented by component 4, which covered areas seen involved in, e.g.,
whole scene and event boundary perception [50, 52] as well as men-
tal navigation and episodic memory retrieval [19, 32] and compo-
nent 6 which covered a network involved in primary motor- and so-
matosensory function and inner verbalization [45]. Associated brain
networks thereby give potential explanations for correlation char-
acteristics, e.g., prominent focus on the rotation part of navigation
events in component 4 due to its network’s potential involvement in
perception of boundaries between object interaction and navigation.

They also offer avenues for helping understand the characteristics
of the other domains. Examples for components 1 and 2 include:
Fetching-related event classes on levels 1-3 are potentially processed
on a more perceptual grade compared to those related to delivery
which are more closely associated with the planning- and executive
network (task sensitivity domain). The planning- and execution net-
work additionally trends towards generalized event classes while the
perception-based network focuses on more specialized classes (event
structure bias domain). The planning- and execution focused net-
work might furthermore differ in activity based on the environment
of video presentation, and both are more active for specific object or
event characteristics that are related to dishes & cutlery within the
context of everyday activities (environmental sensitivity domain).

We now turn to possible interpretations of the results in relation
to validating and improving SOMA. One observation is that the kind
of events described by SOMA also correlate well to patterns of ob-
served neuronal activity in human subjects, but more fine-grained
conclusions can be obtained based on the domains we described
above. The first domain, task sensitivity, validates a particular task
distinction made in SOMA, i.e., a functional separation of fetch and
deliver concepts.

Meanwhile the third domain, context-related biases, suggests
some potential additions to SOMA. While further investigations are
required to rule out causes unrelated to brain processing, it appears
the brain processes delivery tasks involving dishes differently than
delivery tasks involving food. SOMA assumes that the roles played
by participants in an activity are specifiable depending on the activity
itself, e.g., a delivery task defines a ’patient’ role played by the object
being delivered. While there are different kinds of patient roles, e.g.,
cut-object which is a patient role defined by cutting tasks, the attribu-
tion of a role to an object is not informed by the type of object nor its
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potential subsequent roles in future activities. This ontological com-
mitment might need rethinking, assuming new data from neuronal
investigations strengthen the case for revision.

Another potentially important observation is the trending of cer-
tain event classes towards a dominance of being processed by net-
works focused either on perception or planning and execution. This
distinction becomes apparent when stable correlations during fetch-
ing are compared with ones during delivering events. In the present
study, fetching tasks have shown significant stable correlations with
perceptual networks, while delivery was preferentially correlated
with networks that are related to planning and execution. These re-
sults suggest that humans exhibit different neuronal treatment for ac-
tions that involve imagined entities such as states which are desired
by an agent planning its next action. This fundamental distinction is
only covered sparsely by the SOMA ontology. The task taxonomy
of SOMA distinguishes between physical and mental tasks where
the latter only includes actions whose execution does not involve the
agent’s body. The ontology further classifies physical tasks based on
goals of the agent. However, these task types are not grouped ac-
cording to whether their execution involves mental entities such as
an imagined placement of an object. The results suggest that such
a grouping could also be useful in the SOMA ontology. However,
further studies will be needed that cover additional action types.

Additional studies would also prove fruitful to gain deeper insights
into other characteristics of the current results. For example, only
few significant correlations were found with primary motor- and so-
matosensory networks as represented by component 6, which could
have stemmed from the study’s focus on stable and shared corre-
lations. Analyses concerning inter-subject variation or changes in
correlation strength due to repetition- and learning effects through
repeated video presentations might offer valuable insights into un-
derlying neuronal processing characteristics when compared with
other networks. Furthermore, since component signals were corre-
lated with events defined by our existing ontology, components could
be present in the current data-set whose underlying brain networks
were stimulus coupled in novel ways not yet covered by existing on-
tological classes. Analyses focusing, e.g., on effects of resting peri-
ods on component signals could help identifying these networks.

Other avenues for extended analysis concern the preferential cor-
relation to events based on contextual factors. Underlying stimuli
difference could thereby be based in both the spatial dimension, e.g.,
overall environmental complexity or object characteristics, and/or the
temporal dimension, e.g., differences in the timing and distribution of
scenes and events. An analysis of the stimulus material concerning
these factors would thus prove insightful. Finally, to achieve SOMA-
related add-on value from the second domain, network bias towards
specific vs generalized events, additional knowledge about the tem-
poral nature of both networks is crucial. For example, the planning
and execution focused network might exhibit a primarily tonic sig-
nal with additional spiking activity during specific object deliverance
events for all participants. However, it could also trend towards one
or the other for certain groups of participants.

6 Conclusion

The aim of the present study was to validate SOMA with neuronal
activity patterns derived from human volunteers who view record-
ings of actors who conduct several table setting scenarios. This is,
to our knowledge, a fairly new line of research and as such there is
significant work still to be done, including at a methodological level
– e.g., does viewing the same video a second time change which

networks get activated? If so, how would that bias stable correla-
tions? As such, we have not gathered data to validate the complete
SOMA; however, the early results we have are encouraging. The
data derived from ICA and subsequent correlational analyses offer
promising insights into domains of human neuronal networks and
their relation to SOMA underlying our robot cognitive architecture.
Significant and stable correlations were found with various action
and situational levels of the ontological concepts. These correlations
were also shared between subjects. Furthermore, a functional dis-
tinction in the SOMA between the concepts of fetching and deliv-
ering were also represented in the neuronal data, substantiating the
ontology’s validity on an organizational level. Additional neuronal
network characteristics not yet present in the ontology were found,
which are planned to be integrated into the SOMA concepts, thus
bringing it closer to human neuronal information processing.
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