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Abstract. Offline Reinforcement Learning (RL) is an important re-
search domain for real-world applications because it can avert expen-
sive and dangerous online exploration. Offline RL is prone to extrap-
olation errors caused by the distribution shift between offline datasets
and states visited by behavior policy. Existing offline RL methods
constrain the policy to offline behavior to prevent extrapolation er-
rors. But these methods limit the generalization potential of agents
in Out-Of-Distribution (OOD) regions and cannot effectively evalu-
ate OOD generalization behavior. To improve the generalization of
the policy in OOD regions while avoiding extrapolation errors, we
propose an Energy-Based Policy Optimization (EBPO) method for
OOD generalization. An energy function based on the distribution
of offline data is proposed for the evaluation of OOD generalization
behavior, instead of relying on model discrepancies to constrain the
policy. The way of quantifying exploration behavior in terms of en-
ergy values can balance the return and risk. To improve the stability
of generalization and solve the problem of sparse reward in complex
environment, episodic memory is applied to store successful expe-
riences that can improve sample efficiency. Extensive experiments
on the D4RL datasets demonstrate that EBPO outperforms the state-
of-the-art methods and achieves robust performance on challenging
tasks that require OOD generalization.

1 Introduction

Reinforcement Learning (RL) has been applied in various real-
world applications, including robotics [14], intelligent gaming [29],
and sequential recommendation systems [1]. The RL mode of ex-
ploring and exploiting enables effective online policy learning for
agents [28, 6]. However, in actual domains such as medical care and
autonomous driving, the development of RL is difficult due to the
expensive and dangerous trial-and-error in online interaction [23].
Hence, offline RL is proposed to learn policies from offline collected
datasets without online exploration.

Offline RL is challenging. The learned policy of the agent is sus-
ceptible to extrapolation errors caused by the distribution shift be-
tween offline datasets and states visited by the behavior policy dur-
ing training [11, 24]. These errors can be amplified by bootstrap-
ping, resulting in severe estimation errors. The subsequent difficulty
in correcting is also challenging due to the lack of online explo-
ration. Existing offline RL methods focus on the policy constraints
which prevent extrapolation errors during policy learning. The pol-
icy is restricted to offline behavior to prevent extrapolation errors in
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Out-Of-Distribution (OOD) regions that do not involve offline tran-
sitions [2, 10, 19].

Existing model-free offline RL methods [17, 37] introduce the reg-
ularization for the value functions to restrict the learned policy within
the offline data manifold. These approaches are conservative and can
not effectively learn the behavior policy from offline datasets. Model-
based methods [24, 36] utilize dynamics models that are built from
offline datasets to optimize the policy. These models provide a prior
knowledge of how the environment behaves, which makes it eas-
ier to learn an optimal policy than model-free approaches. Model-
based methods introduce uncertainty factors into policy optimiza-
tion to prevent divergence. The uncertainty of the current policy re-
duces the interference of extrapolation errors. However, existing un-
certainty factors limit the behavior to offline datasets by estimating
the model discrepancies that might overfit the limited and suboptimal
offline datasets [32, 35]. The agent is limited to the behavior policy
of offline datasets and can not achieve tasks in OOD regions. The
learned policy appears to be over-conservative. Hence, it is impor-
tant to improve the generalization ability of the policy in offline RL.
The generalization of offline RL in OOD regions is disturbed by the
risk caused by extrapolation errors. How to trade-off the OOD gen-
eralization (return) and extrapolation errors (risk) is the most critical
study point. The evaluation of exploration behavior can effectively
balance the return and risk during OOD generalization. To the best
of our knowledge, there are no existing research methods for evalu-
ating exploration behavior during OOD generalization in offline RL.

To solve the abovementioned problem, we propose an Energy-
Based Policy Optimization (EBPO) method to enhance OOD gener-
alization in offline RL. An energy function based on the distribution
of offline data is proposed for the evaluation of OOD generalization
behavior, instead of relying on model discrepancies to constrain the
policy. Errors that arise from offline data in modeling result in more
extrapolation errors when calculating uncertainties using model dis-
crepancies [39]. The energy model directly built from offline datasets
for behavior evaluation can reduce errors and improve the stability
of training. The way of quantifying exploration behavior in terms of
energy values can balance the return and risk during OOD general-
ization. This effective approach is to assign a high energy value to the
exploration behavior when the policy faces more risk, leading to a re-
duction in reward to avoid risky actions. Conversely, when the policy
achieves higher returns, the energy assigned to exploration behavior
is reduced, and the shaped reward is amplified to encourage further
exploration. This trade-off can significantly enhance OOD general-
ization by robustly balancing exploration and exploitation.
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In the practical implementation, we first build offline RL mod-
els to learn offline behavior policy. Subsequently, we perform the
rollout exploration based on the energy evaluation for OOD general-
ization. The energy score is obtained from the purely discriminative
classification model without explicit reliance on density estimators,
which is less susceptible to overfitting problems. To improve the sta-
bility of the OOD generalization, especially in the complex prob-
lem with sparse rewards, episodic memory (EM) is applied to effec-
tively improve sample efficiency. Episodic memory stores the best
rewards in the past and the policy can repeat the best results with-
out gradient-based learning that ensures stable energy-based OOD
generalization. Rollout based on successful experiences can robustly
conduct OOD generalization to accelerate convergence of the pol-
icy. This method improves the OOD generalization with the help of
energy and episodic memory. The contributions of this research are:

• The energy function is proposed to evaluate the exploration behav-
ior during OOD generalization. The energy value is introduced
into the uncertainty factor to balance the return and risk during
rollout exploration.

• Episodic memory is applied to store successful policy experiences
to improve sample efficiency and solve the problem of sparse re-
ward in complex environment. We theoretically prove the policy
convergence of EBPO.

• Extensive experiments on the D4RL datasets demonstrate that the
proposed method outperforms the state-of-the-art (SOTA) meth-
ods and achieves robust performance on challenging tasks requir-
ing OOD generalization. Ablation studies further demonstrate the
contributions of hyperparameters and components in EBPO.

2 Related work

2.1 Model-based offline RL

Model-based offline RL approaches are based on the supervised
learning paradigm [5, 15, 27]. Dynamic models are constructed by
learning transitions from offline datasets and interact as a kind of
environment simulator for policy optimization of the agent. Exist-
ing model-based offline RL methods constrain the policy by incor-
porating the uncertainty factors during the rollout exploration pro-
cess [31, 36]. These methods reduce the estimation errors between
the learned policy and the real-world environment by uncertainty op-
timization. Uncertainty through reward shaping is calculated from
the inconsistency of ensemble models predictions for each state-
action pair. Constrains in policy exploration and optimization to re-
gions with high consistency for better worst-case performances are
also present in deployment environments. However, these methods
reduce the interference of extrapolation errors, while the generaliza-
tion of the policy is greatly limited [38, 39]. Moreover, these ap-
proaches can not evaluate the OOD generalization behaviors during
policy optimization.

2.2 Energy-based models

Energy-based models capture dependencies between variables by as-
sociating scalar energy values with variables [18, 20, 21]. An en-
ergy function is constructed from the model variables, with observed
variable energy values lower than unobserved variable energy values.
The energy-based method is to establish a function E(x) : RD → R,
which maps each point x of the input space to a non-probabilistic

scalar energy. A set of energy values can be transformed into a prob-
ability density p(x) by the Gibbs distribution expressed below:

p (x) =
e−E(x)/τ∫
e−E(x)/τ

, (1)

where the denominator is called the partition function, and τ is the
temperature factor. The energy E(x) for a given data point x ∈ R

D

can be expressed as the negative of logarithmic partition as follows:

E (x) = −τ · log
∫

e−E(x)/τ . (2)

Model-based offline RL builds models in a supervised way. We
propose to build the energy model by the offline datasets. To the best
of our knowledge, this is the first time to evaluate OOD behavior by
energy model in offline RL.

2.3 Episodic memory-based methods

Following concepts in psychobiology, episodic memory-based meth-
ods store promising experiences in nonparametric tables. This
human-like memory approach quickly retrieves past successful poli-
cies when encountering similar scenarios [7, 22, 25]. Episodic mem-
ory proposes a framework to quickly retrieve past successful poli-
cies to improve sample efficiency [13]. The agent can repeat the best
results without gradient-based learning. Reuse of successful experi-
ences can accelerate convergence of the policy and handle the sparse
reward problem of low-quality datasets. Episodic control [4] updates
the memory table by taking the largest return R(s, a) among all in-
ferences starting from the same state-action pair (s, a).

QEM (s, a) =

{
max{R (s, a) , QEM (s, a)}, if (s, a) ∈ EM,
R (s, a) , otherwise,

(3)

where EM represents the stored episodic memory. The process of
exploring the OOD regions is interrupted by a lot of extrapolation er-
rors. Reuse of good experiences can prevent policy divergence. OOD
generalization based on excellent experiences can achieve stable pol-
icy generalization. Hence, episodic memory is applied to store suc-
cessful experiences for generalization in EBPO.

3 Preliminaries

In the RL framework, the process of the agent interacting with the en-
vironment is formulated as a Markov Decision Process (MDP). The
standard MDP is defined by the tuple of M = 〈S,A, T, μ0, r, γ〉,
where S denotes the state space, A represents the action space,
T (s′|s, a) is the transition dynamic model, r(s, a) is the reward
function and μ0 is the distribution of the initial state s0. γ ∈ [0, 1) is
the discount factor. The goal of RL is to learn a policy π : S ×A →
[0, 1], which can maximize the expected discounted cumulative re-
ward ηM (π) := Es0∼μ0,st∼T,at∼π

[∑∞
t=0 γ

tr (st, at)
]
. The value

function V π
M (s) := Est∼T,at∼π

[∑∞
t=0 γ

tr (st, at) |s0 = s
]

is the
expected discounted return under the policy π that the state starts
from s.

In offline RL, the policy is only learned from the collected offline
datasets and cannot interact with the real-world environment. We de-
fine the offline dataset Denv = {(s, a, r, s′)}, which contains all
the collected state-action transitions and Dem contains the collected
state-action transitions and returns of the episodic memory. In the
model-based approach, T̂ (s′|s, a) is the dynamic model estimated

H. Cao et al. / Enhancing OOD Generalization in Offline Reinforcement Learning with Energy-Based Policy Optimization336



Trans Value

Models
�
�
���

Offline dataset �
�	


Energy network Episodic memory �
��

Memory
update

Policy
updateRolloutBuild

Figure 1. The framework of EBPO. Ensemble models are trained from the offline dataset Denv . Energy network is proposed for the rollout exploration
evaluation and policy π is updated with the episodic memory Dem and offline dataset Denv .

from transitions in the Denv . This dynamic model defines the es-
timated MDP M̂ = 〈S,A, T̂ , μ0, r, γ〉. Pπ

T̂ ,t
(s) is the probability

of being in state s at time step t when the actions and transitions are
sampled from π and T̂ . ρπ

T̂
(s, a) := π(a|s)∑∞

t=0 γ
t
P
π
T̂ ,t(s) denotes

the discounted occupancy measure of policy π under T̂ . We denote
the improper expectations of ηM̂ (π) = Eρπ

T̂
[r(s, a)]. Our goal is to

learn a policy that maximizes ηM̂ (π) with the offline datasets Denv

and episodic memory Dem.

4 Method

The framework of EBPO is shown in Figure 1. First, based on the
model-based architecture, ensemble models are trained from the of-
fline datasets. Afterwards, we perform the rollout to explore the OOD
regions. In the exploration process, an energy network is proposed to
evaluate the generalization behavior, and the best transition is stored
in the episodic memory. Episodic memory is updated at a fixed fre-
quency. Finally, the policy is updated using the offline dataset and
episodic memory. Rollout based on the energy evaluation explores
the OOD regions and episodic memory stores successful experiences
to ensure steady exploration. This energy-based method can effec-
tively balance the return and risk during exploration process.

The energy network is introduced into rollout exploration for the
evaluation of OOD generalization behavior. How to effectively bal-
ance the return and risk based on the energy-based rollout exploration
is discussed in Section 4.1. Subsequently, episodic memory is ap-
plied to capture successful experiences and accelerate convergence,
which is given in Section 4.2. Finally, the practical algorithms and
implementations are presented in Section 4.3.

4.1 Energy-based OOD generalization evaluation

Due to the lack of interaction with the real environment, offline RL
methods are prone to extrapolation errors. The uncertainty of offline
RL based on the energy evaluation is introduced into the rollout ex-
ploration to avoid extrapolation errors. Energy Eπ(s, a) is proposed
to balance the return and risk of extrapolation errors by reward shap-
ing. Our goal is to learn a policy that can maximize the function
E(s,a)∼ρπ

T̂
[r(s, a)− Eπ(s, a)].

High energy values represent high OOD generalization uncer-
tainty, while low energy values represent the rollout exploration be-
havior closer to in-distribution regions. The reward combined with

energy values can effectively balance the return and risk during OOD
generalization. A higher reward of the current exploration behavior
does not fully represent the stability of the policy. The reward is adap-
tively adjusted according to energy values of exploration behavior
during OOD generalization. The following two parts first introduce
the derivation of uncertainty through reward shaping and an energy
function is proposed for OOD generalization evaluation.

The following part introduces the derivation of uncertainty through
reward shaping in offline RL. Offline RL uses offline datasets to op-
timize policies. Due to the lack of online interaction, the uncertainty
in the rollout exploration process can easily lead to extrapolation er-
rors. We define the uncertainty of the model. The estimator error [39]
Uπ

M̂
(s, a) for the true return between the optimal and actual model is

defined as:

Uπ
M̂ (s, a) := Es′∼T̂ (s,a)

[
V π
M̂

(
s′
)]− Es′∼T (s,a)

[
V π
M

(
s′
)]

. (4)

We then combine the objective of policy optimization to maximize
the discounted cumulative reward. The Equation 4 can be derived as
follows:

ηM̂ (π)− ηM (π) = γE(s,a)∼ρπ
T̂

[
Uπ

M̂ (s, a)
]
. (5)

Based on the estimation errors between the models and the ex-
pected discounted return under policy π, the maximized target dis-
counted return can be derived as follows:

ηM (π) = E(s,a)∼ρπ
T̂

[
r(s, a)− γUπ

M̂ (s, a)
]

≥ E(s,a)∼ρπ
T̂

[
r (s, a)− |γUπ

M̂ (s, a) |]
= E(s,a)∼ρπ

T̂
[r (s, a)− u (s, a)]

≥ ηM̂ (π) ,

(6)

where u(s, a) is an artificial fixed uncertainty [39] of the policy.
The goal is to learn a policy that can maximize E(s,a)∼ρπ

T̂
[r(s, a)−

u(s, a)]. Existing uncertainty computations [32, 39] only calculate
the deviation during policy optimization without evaluating OOD
generalization. Therefore, we propose an energy function to evalu-
ate the exploration behavior through reward shaping.

The following part introduces the energy evaluation of uncertainty
in offline RL. Energy-based methods capture dependencies between
variables by associating scalar energy values with variables in the
model [18]. The energy function is constructed from the model vari-
ables. The observed variable energy values are lower than the unob-
served ones. A general theoretical framework is proposed for many
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learning models in the form of a non-probabilistic factor. Compared
to probabilistic approaches, this framework offers greater flexibility
in the design of architecture and training criteria. An energy-based
regularization term is applied to the detection of OOD behavior. The
energy value can be obtained from a purely discriminative classifica-
tion model.

For the K-class neural network classifier f(s, a) : RD → R
K , the

input is mapped to K logarithms. In EBPO, we set two categories:
OOD and in-distribution regions. We use the state-action transitions
and rewards in OOD and in-distribution regions to train the classi-
fier based on the ensemble models. The probability that the current
sample belongs to a certain class is obtained through SoftMax:

p (y| (s, a)) = efy(s,a)/τ∑K
i=1 e

fi(s,a)/τ
, (7)

where fy(s, a) represents the yth index of f(s, a) and denotes the
logit corresponding to the yth class label. By connecting Equation
1 and Equation 7, we can define the given input (s, a) of class y as
Eπ(s, a) = −fy(s, a).

More importantly, we can use the denominator of the SoftMax ac-
tivation to represent the energy function Eπ(s, a) over the reward of
state-action pair (s, a) ∈ R

D without changing the parameterization
of the neural network f(s, a) as:

Eπ (s, a) = −τ · log
K∑
i

efi(s,a)/τ . (8)

The energy of the sample (s, a) is converted to a scalar only with
respect to f(s, a). We apply the energy value into the reward norm
term for OOD behavior exploration without relying on the density es-
timator while avoiding the difficult optimization in training the model
process. Hence, the goal is to learn a policy that can maximize the
function E(s,a)∼ρπ

T̂
[r(s, a)− Eπ(s, a)].

The model is trained with the negative log-likelihood loss in in-
distribution datasets Din. We can express the negative log-likelihood
loss for a model trained on in-distribution data as:

Lnll = E(s,a)∼Din

(
− log

efy(s,a)/τ∑K
j=1 e

fj(s,a)/τ

)
. (9)

By converting the logit value to the energy value, the loss function
can be rewritten as follows:

Lnll = E(s,a)∼Din

(
1

τ
· Eπ (s, a) + log

K∑
j=1

e−Eπ(s,a)/τ

)
, (10)

where the first term pushes down the energy of the ground truth an-
swer. The second term can be interpreted as the Free Energy of the
ensemble of energies. We apply the loss function into the training of
the classifier.

When the reward with energy value can be guaranteed to gradually
increase during rollout exploration, it is inferred that the policy can
effectively generalize in the OOD region and is not greatly disturbed
by extrapolation errors. Therefore, the energy of OOD generaliza-
tion evaluation is used as the uncertainty factor to balance the return
and risk during the rollout exploration. The energy model conducts
scalar evaluation of the data instead of solely relying on binary clas-
sification. This soft-adaptive approach assigns higher energy values
to exploration behavior in riskier situations, reducing rewards to dis-
courage risky actions. This trade-off enhances OOD generalization
by effectively balancing exploration and exploitation.

4.2 Episodic memory

The energy value is proposed to balance the return and risk of the
policy. However, in complex environment, policy convergence boot-
strapping remains challenging due to sparse rewards and unknown
exploration behavior during OOD generalization. Effectively using
empirical data for policy optimization is crucial. Therefore, value-
based episodic memory methods are applied to avoid overly opti-
mistic estimation during policy generalization. For the policy opti-
mization based on episodic memory incorporating energy values, the
energy-based evaluation can balance the return and risk for efficient
OOD generalization, and episodic memory ensures the safe explo-
ration of the OOD region and prevents divergence.

We use value-based planning to bootstrap more efficiently and im-
plicit memory-based planning schemes plan strictly within offline
datasets. This approach avoids overly optimistic estimation during
the planning phase. We also optimize the expected state values in-
stead of state-action values. Specifically, we compare the best re-
turn along the trajectory so far with the estimated value, and take the
maximum between them to obtain the enhanced return. This process
proceeds recursively from the last step to the first step and forms
an implicit planning scheme in episodic memory which aggregates
optimal experiences along and across trajectories. The entire back-
propagation process can be expressed as follows:

Rt =

{
rt, t = L,
rt + γmax (Rt+1, V (st+1)) , t < L,

(11)

where t represents the step size along the trajectory, L is the trajec-
tory length, and V (st+1) generalizes from similar experiences. Fur-
thermore, the backpropagation process in Equation 11 incorporating
energy values is extended and rewritten as follows:

Vt,h =

{
V (st) , h = 0,
rt (s, a)− Eπ (s, a) + γVt+1,h−1, h > 0,

(12)

Rt = Vt,h∗ , h∗ = argmax
h>0

Vt,h, (13)

where h represents the horizon of rollout steps. Vt,h = 0 if t > L.
The best return and state-value transitions will be stored in the
episodic memory. In order to prove the convergence of the episodic
memory incorporating energy values, we consider the Bellman ex-
pectation operator Bμ and Bellman optimality operator B∗.

BμV (s) := Ea∼μ(a|s) [r (s, a)− Eπ (s, a)

+γEs′∼π(s′|s,a)
[
V
(
s′
)]]

,
(14)

B∗V (s) := max
a

(r (s, a)− Eπ (s, a)

+γEs′∼π(s′|s,a)
[
V
(
s′
)])

,
(15)

where μ is the behavior policy.
Lemma 1. The Bellman expectation operator Bμ has the unique

fixed point Vμ that BμVμ = Vμ. Moreover, the Bellman optimality
operator B∗ has the unique fixed point V∗ that B∗V∗ = V∗. Based
on the Banach fixed point theorem [30], these two Bellman operators
are convergent. Hence, the EBPO is convergent.

Proof. For the same behavior policy, the reward and energy func-
tions based on the state-action transitions and reward distributions in
the offline dataset are invariant. Based on the Banach fixed point the-
orem, if the Bellman operators are the compressive map of the metric
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space (X, d), the Bellman operators have the unique function sets Vμ

and V∗. First, we construct one metric space (X, d). The measure d
can be shown by L−∞ [3]:

||V ||∞ = max
i∈[0,|V |]

|Vi| . (16)

We first prove the convergence of the Bellman expectation opera-
tor. For any V1, V2:

|BμV1 (s)−BμV2 (s)|
=

∣∣Ea∼μ(a|s)
[
r (s, a)− Eπ (s, a) + γEs′∼π(s′|s,a)

[
V1

(
s′
)]

−r (s, a) + Eπ (s, a)− γEs′∼π(s′|s,a)
[
V2

(
s′
)]]∣∣

= γ
∣∣Ea∼μ(a|s)

[
Es′∼π(s′|s,a)

[
V1

(
s′
)− V2

(
s′
)]]∣∣

= γ
∣∣Ea∼μ(a|s),s′∼π(s′|s,a)

[
V1(s

′)− V2

(
s′
)]∣∣

≤ γEa∼μ(a|s),s′∼π(s′|s,a)
[∣∣V1

(
s′
)− V2

(
s′
)∣∣]

≤ γEa∼μ(a|s),s′∼π(s′|s,a)
[
max

s
|V1 (s)− V2 (s)|

]
= γEa∼μ(a|s),s′∼π(s′|s,a)

[||V1 − V2||∞
]

= γ ||V1 − V2||∞ ,

(17)

where γ ∈ [0, 1]. For any state s, |BμV1(s)−BμV2(s)| ≤ γ||V1 −
V2||∞. We can derive:

||BμV1 −BμV2||∞ = max
s

|BμV1 (s)−BμV2 (s)|
≤ γ ||V1 − V2||∞ .

(18)

Hence, the Bellman expectation operator Bμ is the compression
map of (R|S|, L∞). Based on the Banach fixed point theorem [30],
Bμ has the unique fixed point Vμ that satisfies BμVμ = Vμ. Hence,
the Bellman expectation operator is convergent. The following part
will prove the convergence of the Bellman optimality operator. For
any V1, V2:

|B∗V1 (s)−B∗V2 (s)|
=

∣∣∣[max
a

(r(s, a)− Eπ(s, a) + γEs′∼π(s′|s,a)
[
V1(s

′)
]
)
]

−
[
max

a
(r(s, a)− Eπ(s, a) + γEs′∼π(s′|s,a)

[
V2(s

′)
]
)
]∣∣∣

≤
∣∣∣max

a

(
r (s, a)− Eπ (s, a) + γEs′∼π(s′|s,a)

[
V1

(
s′
)]

−r (s, a) + Eπ (s, a)− γEs′∼π(s′|s,a)
[
V2

(
s′
)])∣∣

=
∣∣∣γmax

a
Es′∼π(s′|s,a)

[
V1

(
s′
)− V2

(
s′
)]∣∣∣

≤ γmax
a

∣∣Es′∼π(s′|s,a)
[
V1

(
s′
)− V2

(
s′
)]∣∣

= γmax
a

∣∣∣∣∣
∑
s′

π(s′|s, a) [V1

(
s′
)− V2(s

′)
]∣∣∣∣∣ .

(19)

Then, we can derive:

γmax
a

∣∣∣∣∣
∑
s′

π(s′|s, a)[V1(s
′)− V2(s

′)]

∣∣∣∣∣
≤ γmax

a

∑
s′

π
(
s′|s, a) ∣∣V1

(
s′
)− V2

(
s′
)∣∣

= γ
∑
s′

π
(
s′|s, a∗ (s)

) ∣∣V1

(
s′
)− V2

(
s′
)∣∣

≤ γ
∑
s′

π
(
s′|s, a∗ (s)

)
max

s
|[V1 (s)− V2 (s)]|

= γ
∑
s′

π
(
s′|s, a∗ (s)

) ||V1 − V2||∞

= γ ||V1 − V2||∞ ,

(20)

where γ ∈ [0, 1]. For any state s, |B∗V1(s) − B∗V2(s)| ≤ γ||V1 −
V2||∞. We can derive:

||B∗V1 −B∗V2||∞ = max
s

|B∗V1 (s)−B∗V2 (s)|
≤ γ ||V1 − V2||∞ .

(21)

Therefore, the Bellman expectation operator B∗ is the compres-
sion map of (R|S|, L∞). Based on the Banach fixed point theo-
rem [30], B∗ has the unique fixed point V∗ that satisfies B∗V∗ = V∗.
Hence, the Bellman optimality operator is convergent. These two
Bellman operators are convergent, and the EBPO is convergent.

4.3 Practical implementation

We describe the practical implementation of EBPO driven by the
abovementioned analysis. Ensemble models are trained in the offline
datasets by a supervised learning mode. Supervised learning patterns
efficiently mine all state-action transitions in the datasets. After ob-
taining N ensemble models, we initialize the agent state and episodic
memory from the dataset. For each epoch, the model is rolled out
to explore the OOD region based on the initialize state. During the
rollout exploration process, the energy value is introduced into the
reward normalization as an uncertainty term. Afterwards, transitions
acquired by rollout are added to episodic memory. The above pro-
cess is a round of rollout exploration of the OOD region. Finally,
SAC [12] algorithm is used to update policy π with Denv and Dem

until convergence. Meanwhile, the episodic memory is updated with
a memory update frequency p. Algorithm 1 Energy-Based Policy Op-
timization is listed below.

Algorithm 1 Energy-Based Policy Optimization (EBPO)
Input: Offline dataset Denv , rollout horizon h, episodic memory

Dem, frequency p.
1 Train an ensemble of N dynamic models {Mi}Ni=1 on the dataset

Denv

2 Initialize critic network Vω and actor network πϕ with random pa-
rameters ω, ϕ

3 Initialize episodic memory Dem

4 for epoch 1, 2, 3 . . . do

5 Sample state s1, action a1 from Denv for the initialization of the
rollout

6 for j = 1, 2 . . . , h do

7 Sample an action aj from πϕ(a|sj)
8 Randomly select dynamics M from {Mi}Ni=1 and sample

sj+1, rj ∼ M(sj , aj)
9 rj ← rj − Eπ(sj , aj)

10 Add sample (sj , aj , rj , sj+1) to Dem

11 end

12 Use SAC to update critic network Vω and actor network πϕ with
Denv ∪Dem

13 if epoch mod p = 0 then

14 for transitions ε in episodic memory Dem do

15 for sj , aj , rj , sj+1 in reversed(ε) do

16 Calculate Rj with Equation 13 and add into the
episodic memory Dem

17 end

18 end

19 end

20 end
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Table 1. Comparative experiment results on the D4RL datasets. Each number is the normalized score proposed in [8], averaged over 5 random seeds. We
bold red the highest score among all methods. Suboptimal results are marked in blue. ± standard deviation.

Environment Dataset EBPO TD3-CVAE F-BRC COMBO MOPO TD3+BC SAC CQL BC
HalfCheetah random 39.9±2.3 28.6±2.0 33.3±1.3 38.8 35.4 10.2 30.5 35.4 2.1
HalfCheetah medium 55.9±0.2 43.2±0.4 41.3±0.3 54.2 42.3 42.8 -4.3 44.4 36.1
HalfCheetah mixed 62.8±1.1 45.3±0.4 43.2±1.5 55.1 53.1 43.3 -2.4 46.2 38.4
HalfCheetah med-expert 102.8±0.4 96.1±9.7 93.3±10.2 90.0 63.3 95.9 1.8 62.4 35.8
Hopper random 13.3±0.2 11.7±0.2 11.3±0.2 17.9 11.7 11.0 11.3 10.8 1.6
Hopper medium 98.9±6.2 55.9±11.4 99.4±0.3 94.9 28.0 98.5 0.8 58.0 29.0
Hopper mixed 98.3±0.3 46.7±17.9 35.6±1.0 73.1 67.5 31.4 1.9 48.6 11.8
Hopper med-expert 106.3±4.9 111.6±2.3 112.4±0.3 111.1 23.7 112.2 1.6 98.7 111.9
Walker2d random 22.5±0.3 5.5±8.0 1.5±0.7 7.0 13.6 1.4 4.1 7.0 9.8
Walker2d medium 71.4±5.3 68.2±18.7 78.8±1.0 75.5 11.8 79.7 0.9 79.2 6.6
Walker2d mixed 69.4±1.1 15.4±7.8 41.8±7.9 56.0 39.0 25.2 3.5 26.7 11.3
Walker2d med-expert 99.7±1.6 84.9±20.9 105.2±3.9 96.1 44.6 101.1 -0.1 111.0 6.4

Figure 2. Learning curves on low-quality datasets. Each number is the averaged return during training, averaged over 5 random seeds and the shadow is the
standard error.

5 Experiments

In the experiments, we aim to study the following questions: (i) How
does the proposed method perform compared with SOTA methods
on the standard offline RL benchmark? Moreover, how does EBPO
perform on low-quality datasets with sparse reward? (ii) How does
EBPO perform on challenging tasks that require generalizing OOD
behavior? (iii) How does the hyperparameters affect the performance
of EBPO? (iv) What is the effect of each component in EBPO?

5.1 Experimental datasets and settings

The D4RL [8] benchmark based on the MuJoCo [33] simulator is
used as the dataset for this experiment. The dataset includes three
environments (halfCheetah, hopper and walker2d) and four dataset
types (random, medium, mixed and med-expert). We construct a total
of 12 sub-datasets for experiments. In all domains, ensemble models
are trained in the offline dataset. Each model in ensemble models
is parameterized by a 4-layer feedforward neural network with 200
hidden units. The energy network is based on the 4-layer feedforward
neural network for evaluation. The discount factor is set to 0.99. The
epoch length is set to 1000. The rollout horizon is set according to
different offline RL tasks. The frequency p of episodic memory up-
date is set to 10. For the SAC policy optimization update, we sam-
ple a batch of 256 transitions, 5% of which are from Denv and the
rest from Dem. The temperature factor τ is set to 5. The selection
of temperature factor is determined by counterfactual query method
through comparative experiment of hyperparameters.

5.2 Comparative methods

Comparative methods are shown as follows:

• BC [34]. Behavior policy imitated by supervised learning is made
as the offline version.

• CQL [17]. A model-free offline RL method optimizes the policy
with regularization.

• SAC [12]. SAC is based on maximum entropy and uses a random
distributed policy function.

• TD3+BC [9]. An offline RL method with minimal changes.
• MOPO [39]. A model-based offline RL method constructs ensem-

ble models and rollout with the uncertainty return penalty.
• COMBO [38]. An offline model-based conservative policy opti-

mization method by regularization.
• F-BRC [16]. An offline RL approach that parameterizes critics as

log behavior policies that generate offline data.
• TD3-CVAE [26]. An offline model-free method with bonus-based

exploration.

5.3 Comparative experiments

The results of comparative experiments are shown in Table 1. EBPO
achieves 7 best results on 12 tasks. Compared with model-based
methods COMBO and MOPO, EBPO is the best in 8 out of the
12 tasks, indicating that EBPO outperforms existing model-based
methods. Compared to uncertainty calculation methods based on the
model divergence and regularization, energy-based method improves
the generalization of the policy. Likewise, against model-free meth-
ods, EBPO achieves 8 best results on 12 tasks. CQL which constrains
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Figure 3. Learning curves on mixed datasets with three different rollout horizons h. Each number is the normalized return during training, averaged over 5
random seeds and the shadow is the standard error.

actions to in-distribution regions outperforms generalization-boosted
method EBPO in the walker2d-medium dataset, but EBPO shows
strong performance on other datasets. EBPO is not limited to the op-
timization of a single task. Compared to the bonus-based exploration
model-free method TD3-CVAE, EBPO achieves 10 best results on
12 tasks. The proposed method shows better performance in offline
RL tasks. Overall, EBPO outperforms the SOTA offline RL methods.

Moreover, we choose F-BRC and COMBO to conduct compara-
tive experiments on three low-quality datasets with sparse reward.
The experimental learning curves are shown in Figure 2. EBPO con-
verges faster and has better performance in halfCheetah-random and
walker2d-random datasets. Furthermore, EBPO shows stable perfor-
mance in hopper-random dataset. Rollout based on the energy evalu-
ation can improve OOD generalization during the agent exploration
process. Episodic memory can improve sample efficiency and accel-
erate convergence. The successful experiences can handle the sparse
reward problem and prevent the policy divergence.

5.4 Sensitivity to rollout horizon

Rollout horizons can reflect the ability of the agent exploration for
OOD generalization. We set different rollout horizons of EBPO to
conduct experiments on mixed datasets in Figure 3. Under differ-
ent horizons, the performance of EBPO is greatly affected. In the
halfCheetah and hopper environments, the method with the roll-
out horizon 7 achieves the best results. Meanwhile, in the walker2d
environment, the method with rollout horizon 3 reaches the best
performance. Compared with the rollout horizons in the SOTA
model-based settings, EBPO expands the rollout exploration hori-
zons within a certain range. Moreover, EBPO can improve the roll-
out horizons in difficult environment of walker2d. The proposed
method can improve the exploration range of offline RL agents.
Episodic memory stores successful experiences that ensure stable
energy-based OOD generalization improvement. EBPO can improve
the OOD generalization in offline RL robustly.

5.5 Evaluation on tasks requiring OOD generalization

The halfCheetah-jump (half-jump) and ant-angle tasks [8] are pro-
posed to study the generalization performance of OOD in question
(ii). Agents in these two environments not only need to execute the
behavior policies in the dataset but also need to explore the OOD re-
gion to achieve tasks that are different from the transitions in the
datasets. We choose model-based methods COMBO, MOPO and
model-free method CQL for comparative experiments.

The results of experiments are shown in Table 2. EBPO outper-
forms the other methods on two OOD generalization tasks. The
learning curves of EBPO, COMBO and MOPO for the experiment
are shown in Figure 4. EBPO achieves better and stable performance
in the halfCheetah-jump task. EBPO also outperforms the other two
model-based methods in the ant-angle task. EBPO accelerates the
improvement of the policy optimization. Energy can balance the re-
turn and risk during policy generalization which enables stable exe-
cution of OOD generalization behavior. These results further demon-
strate that the proposed method can achieve stable and effective gen-
eralization in the OOD region.

Table 2. Average returns of half-jump and ant-angle tasks that require
OOD generalization. All results are averaged over 5 random seeds. We bold

the highest score across all methods.

Environment EBPO COMBO MOPO CQL SAC
Half-jump 6311.8 5392.7 4016.6 741.1 -3588.2
Ant-angle 3207.9 2764.8 2530.9 2473.4 -966.4

Figure 4. Learning curves on half-jump and ant-angle tasks. Each number
is the average return during training, averaged over 5 random seeds and the

shadow is the standard error.

6 Conclusion

This research proposes an energy-based policy optimization method
for OOD generalization in offline RL. Energy function is proposed
to evaluate the exploration behavior during OOD generalization.
Episodic memory is then applied to improve sample efficiency and
speed up policy convergence. The proposed method effectively bal-
ances the return and risk and improves the generalization of the pol-
icy. Experiments on the D4RL datasets show that EBPO outperforms
the SOTA offline RL methods. Furthermore, EBPO achieves supe-
rior performance on two tasks requiring OOD generalization. Fu-
ture studies are encouraged to combine meta-learning methods with
EBPO to improve the adaptability in different RL tasks.
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